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Summary

The importance of three-nucleon forces for a variety of nuclear structure phenomena

is apparent in various investigations. This thesis provides a first step towards the

inclusion of realistic three-nucleon forces by studying simple phenomenological three-

body interactions.

The Unitary Correlation Operator Method (UCOM) and the Similarity Renormaliza-

tion Group (SRG) provide two different approaches to derive soft phase-shift equivalent

nucleon-nucleon (NN) interactions via unitary transformations. Although their moti-

vations are quite different the NN interactions obtained with the two methods exhibit

some similarities.

The application of the UCOM- or SRG-transformed Argonne V18 potential in the

Hartree-Fock (HF) approximation and including the second-order energy corrections

emerging from many-body perturbation theory (MBPT) reveals that the systematics

of experimental ground-state energies can be reproduced by some of the interactions

considering a series of closed-shell nuclei across the whole nuclear chart. However,

charge radii are systematically underestimated, especially for intermediate and heavy

nuclei. This discrepancy to experimental data is expected to result from neglected

three-nucleon interactions.

As first ansatz for a three-nucleon force, we consider a finite-range three-body

interaction of Gaussian shape. Its influence on ground-state energies and charge radii

is discussed in detail on the basis of HF plus MBPT calculations and shows a significant

improvement in the description of experimental data.

As the handling of the Gaussian three-body interaction is time-extensive, we show

that it can be replaced by a regularized three-body contact interaction exhibiting a very

similar behavior. An extensive study characterizes its properties in detail and confirms

the improvements with respect to nuclear properties. To take into account information

of an exact numerical solution of the nuclear eigenvalue problem, the No-Core Shell

Model is applied to calculate the 4He ground-state energy.

As they are of direct interest for nuclear astrophysics collective excitation modes,

namely giant resonances, are investigated in the framework of the Random Phase

Approximation. Including the full three-body interaction would be very time-demanding.

Therefore, a density-dependent two-body interaction is used instead. This simple in-

teraction leads to a significant improvement in the description of the isovector dipole

and isoscalar quadrupole resonances while the isoscalar monopole resonances remain

in good agreement with experimental data compared to the results obtained with pure

unitarily transformed two-body interactions.
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Zusammenfassung
Eine Vielzahl von Kernstrukturuntersuchungen belegt, dass Dreinukleonenkräfte

einen wesentlichen Einfluß auf verschiedene Observablen haben. Als ersten Schritt

hin zur Verwendung von realistischen Dreinukleonenkräften werden in dieser Arbeit

einfache phänomenologische Dreiteilchenwechselwirkungen untersucht.

Sowohl die Methode der Unitären Korrelatoren (UCOM) als auch die Ähnlichkeits-

Renormierungsgruppe (SRG) verwenden unitäre Transformationen, um weiche streu-

phasenäquivalente Nukleon-Nukleon (NN) Wechselwirkungen abzuleiten. Obwohl die

beiden Methoden von unterschiedlichen Ansätzen ausgehen, weisen die aus dem

realistischen Argonne V18 Potential gewonnenen NN Wechselwirkungen eine Reihe

von Gemeinsamkeiten auf.

Auf der Grundlage der Hartree-Fock (HF) Methode und der Vielteilchenstörungs-

theorie (MBPT) zweiter Ordnung kann die Systematik der Grundzustandsenergien einer

Reihe von Kernen mit abgeschlossenen Schalen mit Hilfe einiger der unitär trans-

formierten NN Wechselwirkungen über die gesamte Nuklidkarte hinweg reproduziert

werden. Die Ladungsradien werden dagegen systematisch zu klein vorhergesagt, ins-

besondere für mittelschwere und schwere Kerne. Es wird erwartet, dass diese Ab-

weichungen auf vernachlässigte Dreiteilchenwechselwirkungen zurückzuführen sind.

Als erster Ansatz wird der Einfluß einer gaußförmigen Dreiteilchenwechselwirkung

im Rahmen von HF und MBPT untersucht, was zu einer deutlich besseren Beschreibung

der experimentellen Daten führt.

Da Rechnungen mit der gaußförmigen Dreiteilchenwechselwirkung sehr zeitaufwän-

dig sind, wird sie durch eine regularisierte Dreiteilchenkontaktwechselwirkung ersetzt,

die vergleichbare Ergebnisse liefert. Die Eigenschaften dieser Wechselwirkung werden

untersucht und die verbesserte Beschreibung von Grundzustandsobservablen bestätigt.

Um einen Referenzpunkt aus einer exakten numerischen Lösung des nuklearen Eigen-

wertproblems zu erhalten, wird die 4He Grundzustandsenergie im Rahmen des No-Core

Schalenmodells berechnet.

Abschließend werden kollektive Anregungen, die besonders für Anwendungen in

der nuklearen Astrophysik interessant sind, im Rahmen der Random Phase Approxi-

mation studiert. Da die Verwendung der Dreiteilchenkontaktwechselwirkung in dieser

Methode zu zeitaufwändig wäre, wird sie durch eine dichteabhängige Zweiteilchenwech-

selwirkung ersetzt. Verglichen mit den Ergebnissen von reinen unitär transformierten

Zweiteilchenwechselwirkungen führt die Einbeziehung der phänomenologischen Wech-

selwirkung zu einer deutlichen Verbesserung bei der Beschreibung der isovektoriellen

Dipol- und der isoskalaren Quadrupolriesenresonanzen, während die isoskalaren Mono-

polriesenresonanzen gleichbleibend gut reproduziert werden.
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Chapter 1

Introduction

The existence of a diversity of chemical elements is the most fundamental precondition

for the existence of our planet earth. During the cooling of the universe after the

big bang no elements heavier than lithium were formed. Only some of the chemical

elements up to iron are produced by fusion in the inner cores of stars. For the production

of all other elements hotter and denser environments are required, which appear in

different astrophysical scenarios such as red giants, novae, and supernovae. Nuclear

astrophysics aims at the modeling of nucleosynthesis via various processes like the rapid

neutron capture process (r-process) that proceeds in supernovae. On the basis of the

r-process the existence of most neutron-rich nuclei up to the neutron dripline can be

understood. In contrast, the slow neutron capture process (s-process) stays close to

the valley of stability, while the rapid proton capture process (rp-process) covers the

proton-rich part of the nuclear chart. These nucleosynthesis processes are sketched

in Figure 1.1, where the nuclear chart consisting of the stable elements, the known

unstable isotopes, and the nuclei that are expected to exist but are (still) unknown is

shown. To allow for reliable statements about the various nucleosynthesis processes a

detailed fundamental knowledge of atomic nuclei, stable as well as unstable and exotic

ones, is indispensable.

The properties of stable nuclei have been investigated in numerous experiments, e.g.

at various accelerator facilities, since a long time. In recent years experimental tech-

niques for the study of unstable and exotic nuclei have been developed. Nonetheless,

a reliable theoretical framework is inevitable, on the one hand to explain experimental

observations and to offer guidelines for the development of further experiments and

on the other hand to provide reliable predictions for exotic nuclei that cannot (yet)
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Chapter 1 · Introduction

Figure 1.1: Nuclear chart consisting of stable isotopes (black), known unstable isotopes

(yellow), and unknown isotopes (green) where some of the possible nucleosynthesis processes

are indicated [1].

be studied experimentally. The theoretical framework is developed step by step in

constant connection to experimental advance, which is a difficult task as it cannot

simply be derived from first principles. First of all, the theory has to reliably repro-

duce well-known properties of stable and unstable nuclei, e.g. ground-state properties

and certain excitations. Built on this well-established foundation one can provide pre-

dictions for observables and phenomena that are not experimentally accessible. For

example information on very short-lived exotic nuclei that is required for modeling the

nucleosynthesis, supernovae, etc., or the possible existence of an island of stability in

the region of superheavy elements.

The accurate theoretical description of atomic nuclei is a difficult task for several

reasons. On the one hand the interaction between the nucleons is of complex nature

and on the other hand the quantum mechanical many-body problem has to be solved,

which cannot be done analytically.

Nucleons are no elementary particles but consist of quarks and gluons interacting

via the strong interaction, which is described by Quantum Chromodynamics (QCD).

2



Unfortunately, in the low-energy regime relevant for nuclear physics the QCD cannot

be treated perturbatively, which means that the nuclear interaction cannot be easily

derived from QCD. The most consistent approach to this problem currently available

is provided by chiral effective field theory, where the nucleons and pions are regarded

as relevant degrees of freedom and chiral symmetry is taken into account. It is, thus,

possible to derive a systematic expansion of an effective nuclear interaction in the

framework of chiral perturbation theory. One advantage of this approach is that it

offers consistent three-body and higher many-body interactions in addition to the two-

nucleon interaction [2]. However, these chiral interactions are not yet well-studied

and especially the inclusion of suitable three-body interactions may lead to unforeseen

effects [3, 4].

A more established approach to nuclear interactions is given by the so-called realistic

potentials, e.g. the Argonne V18 [5], CD-Bonn [6], and Nijmegen [7] potentials, which

reproduce experimental two-nucleon observables like scattering phase-shifts with high

precision. The Argonne V18 is a combination of the one-pion exchange describing the

long-range behavior and phenomenological intermediate and short-range terms.

A closer inspection of the realistic potentials reveals that their momentum space

representations contain large off-diagonal matrix elements due to strong short-range

correlations induced by the nuclear interaction, i.e. low-momentum states are con-

nected to states with high-lying momenta. The short-range correlations are mainly

caused by the hard core, i.e., the strong short-range repulsion in the central part of

the interaction, and tensor forces. Consequently, large model spaces are required to

obtain converged results in the framework of various many-body methods. For light

nuclei, the corresponding computational effort may still be manageable. But at least

for the investigation of intermediate and heavy nuclei such large model spaces cannot

be handled.

A solution to this problem is offered by different approaches. The Unitary Correla-

tion Operator Method (UCOM) [8–10] was developed to facilitate the convergence of

calculations in moderate model spaces by constructing a soft interaction via a unitary

transformation. To build the unitary transformation operator short-range central and

tensor correlations are considered explicitly. The transformation is designed such that

the resulting interaction is phase-shift equivalent to the underlying bare potential. In

momentum space the UCOM transformation leads to a suppression of off-diagonal

matrix elements and thus to a band-diagonal structure of the Hamiltonian, which in

turn improves the convergence behavior significantly.

The transformed interactions obtained with the Similarity Renormalization Group

(SRG) [10, 11] exhibit several similarities with the UCOM-transformed interactions,

3



Chapter 1 · Introduction

although the SRG starts from a different motivation. The idea of SRG is to use a

renormalization group flow equation in order to pre-diagonalize the Hamilton matrix

with respect to a given basis. When choosing the appropriate generator for the transfor-

mation the resulting interaction is, like the UCOM-transformed interaction, phase-shift

equivalent to the underlying interaction and exhibits a band-diagonal structure with

respect to momentum-space matrix elements. Both types of unitary transformations

lead to a decoupling of low and high momenta.

The properties of the different unitarily transformed nucleon-nucleon (NN) inter-

actions can be investigated by applying various many-body methods for the study of

different observables. A diversity of many-body approaches is available, each with its

inherent advantages and limitations. The No-Core Shell Model (NCSM) performs an

exact diagonalization of the Hamilton matrix but it is restricted to light nuclei [12].

For the investigation of intermediate and heavy nuclei mean-field approaches like the

Hartree-Fock (HF) method are suitable [13]. In the HF approximation the use of the

bare Argonne V18 would not even yield bound nuclei. Thus, using a transformed in-

teraction is inevitable. The HF states are not capable of describing any correlations.

For that purpose, many-body perturbation theory (MBPT) can be applied on top of

the HF results.

Using these methods one can study simultaneously the properties of the NN inter-

actions and their influence on different ground-state observables. For the investigation

of excited states, the Random Phase Approximation (RPA) proves to be an appropriate

method, which is also based on HF results [14]. This method is especially suited for

the investigation of collective excitations such as giant resonances, which are of direct

interest for applications in nuclear astrophysics.

By construction, the unitarily transformed interactions contain irreducible contri-

butions to all particle numbers, but they are truncated at the two-body level discarding

three-body and higher many-body forces. The investigation of ground-state proper-

ties of closed-shell nuclei across the whole nuclear chart reveals systematic deviations

from experimental data, e.g. charge radii are underestimated. This is expected to

result from neglected genuine and induced three-body forces. In recent years, it be-

came clear that the consideration of three-body forces is inevitable for an accurate

description of atomic nuclei. The most consistent way of including three-body forces

would be to start from the chiral two- plus three-nucleon interaction and perform the

unitary transformations including all terms up to three-body level. As this approach

was only investigated very recently [3, 4], we choose a more pragmatic approach by

supplementing the unitarily transformed two-nucleon interactions by phenomenological

three-body forces.

4



The aim of this thesis is on the one hand to investigate the impact of simple

phenomenological three-body forces on different observables and on the other hand to

establish an efficient handling of three-body interactions and to extend the many-body

methods such that three-body terms can be included in a computationally feasible

manner.

In order to provide a complete and consistent discussion of the influence of phe-

nomenological three-body interactions, we start by considering the pure NN interac-

tions. The Argonne V18 is used as starting point for the construction of soft phase-shift

equivalent NN interactions via UCOM and SRG. In Chapter 2, the UCOM and SRG

approaches are presented in some detail.

In Chapter 3 we will derive the formalism required for the application of unitarily

transformed two-body plus phenomenological three-body interactions in the Hartree-

Fock approximation and in many-body perturbation theory. Furthermore, we will in-

vestigate ground-state energies and charge radii of closed-shell nuclei across the whole

nuclear chart on the basis of pure two-body interactions. These studies reveal that

the charge radii are systematically underestimated for intermediate and heavy nuclei.

Thus, the necessity of including three-body interactions is demonstrated.

As a first ansatz for a phenomenological three-body interaction we introduce a

finite-range three-body interaction of Gaussian shape in Chapter 4. After the cal-

culation of the three-body matrix elements, the impact of the Gaussian three-body

interaction on ground-state energies and charge radii is discussed in detail. The three-

body interaction is first included in the HF method as we want to determine the free

parameters of this interaction such that the experimental charge radii are reproduced

across the whole nuclear chart. Unfortunately, the Gaussian three-body interaction

requires an enormous computational effort, which inhibits calculations in model spaces

large enough to warrant convergence. We can show, however, that the results ob-

tained with the Gaussian three-body interaction are similar to those of a regularized

three-body contact interaction.

The matrix elements of the regularized contact interaction are derived in Chap-

ter 5. As for the Gaussian interaction, the parameters of the contact interaction are

determined on the basis of HF calculations in order to reproduce the experimental

charge radii. Subsequently, the influence of long-range correlations is studied in the

framework of many-body perturbation theory. The handling of the three-body contact

interaction is efficient such that calculations in large model spaces are feasible.

In Chapter 6 the three-body contact interaction is included in the No-Core Shell

Model. After a short discussion of the formalism, the NCSM is used to confirm the

choice of the parameters on the basis of an exact calculation of the 4He ground-state

5



Chapter 1 · Introduction

energy.

Finally, we focus on excited states in the framework of the Random Phase Approxi-

mation in Chapter 7. The inclusion of the three-body contact interaction in RPA would

be computationally too demanding. Therefore, it is replaced by a density-dependent

two-body contact interaction, which is approximately equivalent in this case. The RPA

is especially suitable for the study of collective excitations, e.g. giant resonances.

The main statements of this work are summarized in Chapter 8 together with a

prospect on continuative investigations.

This work is complemented by several appendices. In Appendices A – C the basic

concepts of the applied many-body methods are summarized. In Appendix D the normal

ordering of a general three-body interaction is derived as a possibility to provide an

effective two-body interaction. In Appendix E supplementary figures are collected, that

complete the set of figures discussed in Chapters 5 and 7 but reveal no further physical

insight. Finally, frequently used symbols and acronyms are listed in Appendix F.
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Chapter 2

Unitarily Transformed Interactions

In this chapter we discuss the different transformed nucleon-nucleon (NN) potentials

that provide the starting point for the subsequent investigations. We start by summa-

rizing the main aspects of the realistic Argonne V18 potential in Section 2.1, which

will be used for all calculations discussed in this thesis. Since the bare Argonne V18

potential is not suitable for performing efficient many-body calculations in finite model

spaces, we will introduce two approaches, namely the Unitary Correlation Operator

Method (UCOM) in Section 2.2 and the Similarity Renormalization Group (SRG) in

Section 2.3, which both provide a possibility to generate a soft interaction suitable for

the application in different many-body methods.

2.1 Realistic Nucleon-Nucleon Potentials

Realistic NN potentials are designed to reproduce phase shifts in scattering experiments

and other low-energy two-body observables with high precision. Therefore, they prove

to be a good starting point for nuclear structure calculations. Among the various

realistic nucleon-nucleon potentials we will only consider the Argonne V18 [5], which

will be used in the subsequent investigations. The Argonne V18 is a nonrelativistic

potential with a local operator structure that has been fit directly to both pp and

np data as well as low-energy nn scattering parameters and deuteron properties. The

potential consists of an electromagnetic part, a one-pion-exchange part describing the

long-range behavior, and an intermediate and short-range phenomenological part:

v = vEM + vπ + vR . (2.1)

7
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Figure 2.1: Radial dependencies of the Argonne V18 potential for the different contributions

in the respective spin-isospin channels.
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2.2 · Unitary Correlation Operator Method

The phenomenological part is expressed as a sum of central, quadratic angular

momentum, tensor, spin-orbit and quadratic spin-orbit terms:

vR
ST = v c

ST (r) + v l2
ST (r)L2 + v t

ST (r)S12 + v ls
ST (r)L·S + v ls2

ST (r)(L·S)2 . (2.2)

The radial dependencies v i
ST (r) are parameterized in an appropriate manner and fit to

experimental data. For illustration the radial dependencies are displayed in Figure 2.1

for the respective spin-isospin channels, where to the tensor part the contribution

emerging from the one-pion exchange has been added.

Alternatively, the strong interaction potential can be projected into an operator

format with 18 terms:

vij =

18∑

p=1

vp(rij)O
p
ij , (2.3)

giving the potential its name. Of these 18 operators, 14 are charge-independent while

three are charge-dependent and one is charge-asymmetric.

2.2 Unitary Correlation Operator Method

The development of realistic NN potentials reproducing experimental data with high

precision, like the Argonne V18, is the basis for an ab initio description of nuclei.

Due to the enormous computational effort, these investigations are restricted to light

nuclei. For the description of heavier nuclei, while staying as close as possible to

an ab initio treatment of the many-body problem, the many-body Hilbert space has

to be truncated to a smaller subspace. The combination of realistic NN potentials

with simple many-body states, e.g. a superposition of Slater-determinants, reveals

a fundamental problem: The strong short-range correlations induced by the nuclear

interaction cannot be adequately described by simple many-body states in a small

Hilbert space.

These correlations are already revealed in the deuteron solution, which is visual-

ized in Figure 2.2, where the spin-projected two-body density resulting from an exact

calculation based on the Argonne V18 potential is shown [9, 15]. The repulsive core

of the interaction leads to a suppression of the two-body density at small interparticle

distances, while the effect of the tensor force is manifested in the strong dependence on

the relative distance and the spin alignments leading to the ”doughnut” and ”dump-

bell” shapes for antiparallel and parallel spins, respectively.

The Unitary Correlation Operator Method (UCOM) [8–10,15] was developed in or-

der to handle this problem by explicitly dealing with the strong short-range correlations

9



Chapter 2 · Unitarily Transformed Interactions
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Figure 2.2: Two-body density of the deuteron calculated with the AV18 potential and pro-

jected onto the two possibilities of antiparallel spins (left) and parallel spins (right). Shown

are the isodensity surfaces for ̺
(2)
1MS

= 0.005 fm−3 (taken from [15]).

induced by the nuclear interaction by means of a unitary transformation. The main

features of the Unitary Correlation Operator Method will be discussed in the following

subsections.

2.2.1 Correlation Operators

The idea of the UCOM is to imprint the short-range correlations into a simple many-

body state |Ψ〉 that can be a Slater-determinant in the simplest case. This is achieved

via a state-independent unitary transformation using the correlation operator C:

|Ψ̃〉 = C|Ψ〉 , (2.4)

leading to a correlated state |Ψ̃〉 that is no longer a Slater determinant due to the

complex structure of the short-range correlations [8–10,15]. Instead of correlating the

many-body state one can also perform a unitary transformation of the operators

Õ = C†OC , (2.5)

which are then evaluated in the untransformed model space. These two approaches

are equivalent as we can see by considering expectation values or matrix elements:

〈
Ψ̃
∣∣O
∣∣Ψ̃′ 〉 =

〈
Ψ
∣∣C†OC

∣∣Ψ′ 〉 =
〈
Ψ
∣∣ Õ
∣∣Ψ′ 〉 . (2.6)

Hence, one can choose the form that is technically more advantageous for the respective

application.

10



2.2 · Unitary Correlation Operator Method

As mentioned above, the most dominant short-range correlations are the central

and tensor ones. Therefore, it is convenient to decompose the correlation operator C

into two operators Cr and CΩ describing the central and tensor correlations, respec-

tively. Since the correlation operators are unitary they can be expressed as exponentials

involving hermitian generators [8, 15]:

C = CΩCr = exp{−i
∑

i<j

gΩ,ij} exp{−i
∑

i<j

gr ,ij} , (2.7)

where we have assumed the generators gr and gΩ to be two-body operators since the

correlations are induced by a two-body potential. The detailed form of the generators

is determined by the structure of the central and tensor correlations.

Central Correlations

The repulsive core of the central part of the NN interaction prohibits that two nucleons

in a many-nucleon system approach each other too closely. This leads to a suppression

of the two-body density at small interparticle distances (cf. Fig. 2.2). Hence, the cen-

tral correlator is constructed such that two nucleons are shifted apart if their distance

is smaller than the range of the repulsive core and are instead concentrated in the

attractive region of the NN potential. This radial shift is generated by the projection

of the relative momentum q = 1
2
(p1 −p2) onto the distance vector r = x1 − x2 of two

nucleons:

qr =
1

2
(q· r

r
+ r

r
· q) . (2.8)

The radial dependence of the transformation is encapsulated in the shift function

sST (r) for each spin-isospin channel that depends on the structure of the underlying

NN potential. The hermitized form of the central generator can thus be written

as [8, 16]

gr =
∑

S,T

1

2
(sST (r)qr + qrsST (r))ΠST , (2.9)

where the operator ΠST projects onto two-body spin S and isospin T .

Tensor Correlations

The correlations induced by the tensor force of the NN interaction entangle the align-

ment of the spins of a nucleon pair with their relative spatial orientation. For the

description of these correlations, we construct the tensor correlation operator such

11
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that it only acts on the orbital part of the relative wave function of two nucleons.

Therefore, we define the orbital momentum operator qΩ:

qΩ = q − r

r
qr =

1

2r2
(L × r − r × L) (2.10)

with the relative orbital angular momentum operator L = r × q, which generates

shifts orthogonal to the radial momentum r
r
qr . The complex structure of the tensor

correlations can be described by the tensor operator S12(r, qΩ), where the general

tensor operator of rank 2 reads

S12(a, b) =
3

2
[(σ1· a)(σ2· b) + (σ1· b)(σ2· a)] − 1

2
(σ1·σ2)(a· b + b· a) . (2.11)

Therefore, this operator is used to construct the generator for the tensor correlator

[9, 17]

gΩ =
∑

T

ϑT (r)S12(r, qΩ)Π1T , (2.12)

where the function ϑT (r) describes the size and distance dependence of the transverse

shift. The tensor operator S12(r, qΩ) entering in this generator has the same structure

as the standard tensor operator S12 = S12(
r
r
, r

r
) generating the tensor force.

2.2.2 Correlated Wave Functions

To illustrate the effect of the central and tensor correlation operators, we consider their

impact on a two-nucleon wave function. We only have to consider the relative wave

function since the correlation operators do not affect the center-of-mass motion. The

uncorrelated two-body state is written as LS-coupled angular momentum eigenstate

|φ(LS)JMTMT〉, where the radial wave function is denoted as φ(r) in coordinate-space

representation. We will omit the quantum numbers M and MT in the following since

the they are not affected by the unitary transformation.

In coordinate representation, the action of the central correlation operator

Cr = exp(−i gr) resembles a norm-conserving coordinate transformation of the ra-

dial wave function [10]

〈
r(L′S)JT

∣∣Cr

∣∣φ(LS)JT
〉

=
R−(r)

r

√
R ′
−(r)φ(R−(r))δL′L

〈
r(L′S)JT

∣∣C†
r

∣∣φ(LS)JT
〉

=
R+(r)

r

√
R ′

+(r)φ(R+(r))δL′L

(2.13)

while the orbital part, spin and isospin remain unchanged. The correlation functions

12



2.2 · Unitary Correlation Operator Method

R±(r) are mutually inverse, R±(R∓(r)) = r , and are connected to the shift function

s(r) by the integral equation

∫ R±(r)

r

dξ

s(ξ)
= ±1 , (2.14)

where we have suppressed the (S , T )-dependence for brevity. For slowly varying shift

functions, the correlation functions can be approximated by

R±(r) ≈ r ± s(r) . (2.15)

This illustrates that two nucleons having the distance r are shifted by the distance

s(r).

Contrary to the central correlator, the tensor correlator CΩ = exp(−i gΩ) does

not affect the radial part of the relative two-body wave function but acts only on the

angular part. The tensor operator S12(r, qΩ) entering in the generator for the tensor

correlator has only off-diagonal matrix elements in the LS-coupled basis:

〈
(J ± 1, 1)JT

∣∣ S12(r, qΩ)
∣∣(J ∓ 1, 1)JT

〉
= ±3i

√
J(J + 1) . (2.16)

Hence, total angular momentum is conserved, and the matrix exponential can be

evaluated in a subspace of fixed J , i.e. the matrix elements of the full tensor correlator

can be computed. States with L = J remain unaffected by the tensor correlator while

states with L = J ± 1 are connected to states with L = J ∓ 1:

〈
r(L′S)JT

∣∣CΩ

∣∣φ(LS)JT
〉

=





φ(r) , L′ = L = J

cos θJ(r) φ(r) , L′ = L = J ± 1

± sin θJ(r) φ(r) , L′ = J ± 1, L = J ∓ 1
(2.17)

with the abbreviation θJ(r) = 3
√

J(J + 1)ϑ(r).

Applying the central and tensor correlator subsequently leads to the fully correlated

wave function

〈
r(L′S)JT

∣∣CΩCr

∣∣φ(LS)JT
〉

=






R−(r)
r

√
R ′
−(r)φ(R−(r)) , L′ = L = J

cos θJ(r)
R−(r)

r

√
R ′
−(r)φ(R−(r)) , L′ = L = J ± 1

± sin θJ(r)
R−(r)

r

√
R ′
−(r)φ(R−(r)) , L′ = J ± 1, L = J ∓ 1

(2.18)

in coordinate-space representation.

As an illustration of the important role of the central and tensor correlations,

we show in Figure 2.3 how a simple two-nucleon trial wave function is turned into

13
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Figure 2.3: Starting from the trial wave function (a), applying the central correlator with

correlation function (d) yields wave function (b). Subsequent application of the tensor

correlator with correlation function (e) generates wave function (c), see text. (taken from

[10]).

an almost realistic deuteron solution. We start from a simple S-wave trial state

|φ0(LS)JT 〉 = |φ0(01)10〉 depicted in Figure 2.3(a). Applying the central correlator

with the correlation function shown in Figure 2.3(d) yields the central correlated wave

function
〈
r
∣∣Cr

∣∣φ0(01)10
〉

= R−(r)
r

√
R ′
−(r)〈R−(r) r

r
|φ0(01)10〉 (Fig. 2.3(b)) contain-

ing a correlation hole at small interparticle distances. The subsequent application of

the tensor correlator generates a D-wave admixture that depends on the tensor corre-

lation function ϑ(r) depicted in Figure 2.3(e). The fully correlated wave function [15]

14



2.2 · Unitary Correlation Operator Method

〈
r
∣∣CΩCr

∣∣φ0(01)10
〉

= cos(3
√

2ϑ(r))
R−(r)

r

√
R ′
−(r)〈R−(r) r

r
|φ0(01)10〉

+ sin(3
√

2ϑ(r))
R−(r)

r

√
R ′
−(r)〈R−(r) r

r
|φ0(21)10〉

(2.19)

is shown in Figure 2.3(c). In order to generate a realistic deuteron wave function the

tensor correlation needs to be of long range (dashed curve in Figure 2.3). But the

aim of the UCOM is to cover only short-range state-independent correlations. The

long-range correlations have to be described by the many-body model space. Thus,

we will restrict the range of the tensor correlation function leading to the solid curves

in Figure 2.3(c) and (e).

2.2.3 Cluster Expansion

After the illustrative discussion of correlated wave functions, we consider a more formal

aspect concerning correlated operators. The generators of the correlation operators are

restricted to two-body operators but the correlation operator itself contains irreducible

contributions of higher particle numbers because it is the exponential of the generator.

Likewise, the similarity transformation of an arbitrary operator O leads to a correlated

operator containing irreducible contributions to all particle numbers, which can be

expressed via the cluster expansion [9, 15]:

Õ = C†OC =

A∑

k=1

Õ[k] , (2.20)

where Õ[k] denotes the irreducible k-body part. For a n-body operator all contributions

with k < n vanish.

Assuming a generic Hamiltonian

H = T + VNN + V3N (2.21)

containing the kinetic energy as well as a two- and a three-nucleon interaction, the

application of the correlation operator yields

H̃ = T̃[1] + (T̃[2] + Ṽ
[2]
NN) + (T̃[3] + Ṽ

[3]
NN + Ṽ

[3]
3N) + ... . (2.22)

The significance of the higher-order terms decreases with increasing order. In princi-

ple, it is possible to evaluate the higher-order contributions of the cluster expansion.
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However, already the calculation of the third order and its inclusion in many-body cal-

culations is very involved. Therefore, we restrict ourselves to the evaluation of the first

and second order of the cluster expansion which leads to the two-body approximation

of a general operator O

ÕC2 = Õ[1] + Õ[2] . (2.23)

For the Hamiltonian this reads

H̃C2 = T̃[1] + (T̃[2] + Ṽ
[2]
NN) ≡ T + VUCOM , (2.24)

where T̃[1] = T and the correlated interaction VUCOM is defined as the two-body

part of the correlated Hamiltonian containing the correlated kinetic energy and the

correlated NN potential. The parameters of the correlation functions will be adjusted

such that the term T̃[3] + Ṽ
[3]
NN + Ṽ

[3]
3N becomes small, i.e. the induced third order

of the cluster expansion and genuine three-body forces cancel each other to a large

extent. Nonetheless, the application of different many-body methods reveals that

three-body forces – induced and genuine – are not negligible [10,13,18,19]. Therefore,

we mimic the omitted three-body contributions by introducing phenomenological three-

body forces, and investigate their impact on different observables. This approach

provides a first step towards the inclusion of realistic three-body forces.

2.2.4 Correlated Interaction

Since the correlation operators are given in an explicit operator form, also the correlated

interaction can be written in an operator representation. The unitary transformation

is restricted to the two-body approximation, as discussed in Section 2.2.3, therefore it

is sufficient to consider the transformation in the two-nucleon system. We assume the

following generic operator form for the bare NN potential [18]:

V =
∑

p

1

2
(vp(r)Op + Opvp(r)) , (2.25)

where the charge-independent part of the Argonne V18 can be expressed via the op-

erators

Op =

{
1, (σ1·σ2), q2

r , q2
r (σ1·σ2), L2, L2(σ1·σ2),

(L·S), S12

(
r

r
,

r

r

)
, S12(L,L)

}
⊗ {1, (τ 1· τ 2)} .

(2.26)
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For simplicity, the charge-dependent terms are not considered here although they are

included in the correlated interaction VUCOM.

The kinetic energy in two-body space is split into a center-of-mass contribution

tcm, which is not affected by the UCOM transformation and a relative contribution trel,

which is in turn divided into a radial and an angular part:

T = tcm + trel = tcm + tr + tΩ = tcm +
1

mN

(
q2

r +
L2

r2

)
(2.27)

with the nucleon mass mN .

As the correlated interaction can be written as VUCOM = C†
rC

†
ΩHCΩCr −T, we start

with the application of the tensor correlator to the required operators.

Tensor Correlated Hamiltonian

To evaluate the transformation with the tensor correlation operator we can use the

Baker-Campbell-Hausdorff expansion [15, 18]

C†
ΩOCΩ = exp(igΩ) O exp(−igΩ) = O + i [gΩ, O] +

i2

2!
[gΩ, [gΩ, O]] + ... . (2.28)

In general, this expansion yields an infinite series. Only for some operators, the simi-

larity transformation can be evaluated exactly.

Firstly, the distance operator r is invariant under the transformation:

C†
ΩrCΩ = r (2.29)

since it commutes with the tensor generator gΩ. For the radial momentum q2
r , the

expansion terminates after the second order and yields

C†
Ωq2

r CΩ = q2
r − {ϑ′(r)qr + qrϑ

′(r)}S12(r, qΩ) + {ϑ′(r)S12(r, qΩ)}2 (2.30)

with S12(r, qΩ)2 = 9{S2 + 3(L·S) + (L·S)2}. For all other basic operators the Baker-

Campbell-Hausdorff expansion does not terminate. In first order, the following com-

mutators have to be calculated:

[
gΩ, S12

(r

r
,
r

r

)]
= iϑ(r)

{
−24ΠS=1 − 18(L·S) + 3S12

(r

r
,
r

r

)}

[gΩ, (L·S)] = iϑ(r){−S̄12(qΩ, qΩ)}
[
gΩ,L2

]
= iϑ(r){2 S̄12(qΩ, qΩ)}

[gΩ, S12(L,L)] = iϑ(r){7 S̄12(qΩ, qΩ)}

(2.31)
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with the abbreviation

S̄12(qΩ, qΩ) = 2r2S12(qΩ, qΩ) + S12(L,L) − 1

2
S12

(
r

r
,
r

r

)
. (2.32)

Through the evaluation of the first-order commutators, the additional tensor operator

S̄12(qΩ, qΩ) is generated, which will in turn generate further operators in the next

order. In order to yield a closed representation of the tensor correlated operators,

one, therefore, has to truncate the number of newly emerging operators. Usually,

contributions beyond the third order in angular and orbital angular momentum are

neglected.

Central and Tensor Correlated Hamiltonian

Contrary to the tensor correlations, the central correlations can be evaluated analyt-

ically for all relevant operators. Starting with the distance operator r, the picture of

a coordinate transformation, which we have already introduced in Section 2.2.2, is

confirmed [15, 18]:

C†
r rCr = R+(r) (2.33)

with the correlation function R+(r). Due to the unitarity of the correlation operators,

C†
r = C−1

r , an arbitrary function of r transforms as

C†
r f (r)Cr = f (C†

r rCr ) = f (R+(r)) . (2.34)

This affects especially the radial dependencies of the various contributions of the NN

potential. The correlation of the components of the relative momentum operator read

C†
rqrCr =

1√
R ′

+(r)
qr

1√
R ′

+(r)
, C†

rqΩCr =
r

R+(r)
qΩ , (2.35)

and for the square of the radial momentum one finds

C†
rq

2
r Cr =

1

2

{
1

R ′
+(r)2

q2
r + q2

r

1

R ′
+(r)2

}
+

7R ′′
r (r)2

4R ′
+(r)4

− R ′′′
+ (r)

2R ′
+(r)3

. (2.36)

Thus, the transformation of the square of the radial momentum operator generates an

additional local potential.

All other basic operators as well as those generated by the application of the

tensor correlator through the Baker-Campbell-Hausdorff expansion are invariant under

similarity transformation with the central correlation operator.
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Correlated Interaction VUCOM

Collecting the terms for the different central and tensor correlated operators, we can

formulate the correlated interaction VUCOM, which can – like the underlying bare NN

potential – be written in a closed operator representation [10, 18]:

VUCOM =
∑

p

1

2
[Ṽp(r)Õp + ÕpṼp(r)] (2.37)

containing the operators

Õp =

{
1, (σ1·σ2), q2

r , q2
r (σ1·σ2), L2, L2(σ1·σ2), (L·S),

S12

(
r

r
,

r

r

)
, S12(L,L), S12(qΩ, qΩ), qrS12(r, qΩ),

L2(L·S), L2S̄12(qΩ, qΩ), ...

}
⊗ {1, (τ 1· τ 2)} .

(2.38)

These are not all operators generated by the Baker-Campbell-Hausdorff expansion

during the tensor transformation, however, the inclusion of these terms is sufficient for

most applications.

The examination of the effect of the similarity transformations using the central

and tensor correlation operators shows how the application of the correlators changes

the operator structure of the bare potential. The central correlator reduces the short-

range repulsion in the local part while creating an additional nonlocal repulsion, and the

tensor correlator generates additional central and new nonlocal tensor contributions.

The operator representation of the correlated interaction is of great advantage for

the application in many-body methods that are not based on a simple oscillator or

plane-wave basis. Furthermore, the UCOM allows for a straightforward investigation

of different observables, since one only has to transform all operators of interest in the

same way as the Hamiltonian.

Due to the finite range of the correlation functions s(r) and ϑ(r), the correlation

operators act as unit operators at large distances. Hence, asymptotic properties of

a two-body wave function are preserved, i.e., the correlated interaction is phase-shift

equivalent to the underlying bare NN potential.

2.2.5 Correlated Two-Body Matrix Elements

For the application in different many-body methods two-body matrix elements of the

correlated interaction are required. The calculation of matrix elements discussed in the
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following is independent of the particular choice of the basis, however, throughout this

thesis we will only apply the harmonic oscillator basis. The two-body states are divided

into a center-of-mass and a relative state via a Talmi-Moshinsky transformation. Since

the unitary transformation does not affect the center-of-mass part, we only have to

calculate the relative matrix elements

〈
n(LS)JMTMT

∣∣VUCOM

∣∣n′(L′S)JMTMT

〉
=

〈
n(LS)JMTMT

∣∣C†
rC

†
ΩHintCΩCr − Tint

∣∣n′(L′S)JMTMT

〉
, (2.39)

where we assume LS-coupled basis states |n(LS)JMTMT〉 with radial quantum number

n and use the intrinsic Hamiltonian Hint containing the intrinsic kinetic energy Tint (cf.

Sec. 3.1). The corresponding wave function will be denoted as φn,L(r) and the radial

wave function as un,L(r):

〈r(LS)JMTMT |n(LS)JMTMT〉 = φn,L(r) =
un,L(r)

r
. (2.40)

The NN interaction explicitly depends on the isospin projection quantum number MT

through Coulomb and other charge-dependent terms. Nevertheless, we will omit this

quantum number as well as the projection M of total angular momentum in the fol-

lowing, since we again only discuss the charge-independent contributions.

The calculation of matrix elements can be performed in different ways. One pos-

sible approach is to use the operator representation of the correlated interaction and

evaluate the matrix elements directly. However, for the formulation of a closed operator

representation it was necessary to truncate the Baker-Campbell-Hausdorff expansion

employed for the evaluation of the tensor correlations. When calculating matrix ele-

ments, this approximation can be avoided if we apply the tensor correlator to the basis

states. The central correlator will still be applied to the operators as this transforma-

tion is given by a simple and exact expression. Therefore, we have to rearrange the

order of the correlation operators by exploiting the identity

C†
rC

†
Ω Hint CΩCr = (C†

rC
†
ΩCr )C

†
r Hint Cr (C

†
rCΩCr )

= C̃†
ΩC†

r Hint Cr C̃Ω ,
(2.41)

where the ”centrally correlated” tensor correlator is given by

C̃Ω = C†
rCΩCr = exp[−iϑ(R+(r))S12(r, qΩ)] . (2.42)

As already discussed in Section 2.2.2, the tensor correlator acts on LS-coupled two-

body wave functions in the following way [10]:
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〈
r(L′S)JT

∣∣ C̃Ω

∣∣n(LS)JT
〉

=





φn,L(r) , L′ = L = J

cos θ̃J(r) φn,L(r) , L′ = L = J ± 1

± sin θ̃J(r) φn,L(r) , L′ = J ± 1, L = J ∓ 1
(2.43)

with θ̃J(r) = 3
√

J(J + 1)ϑ(R+(r)). Thus, two-body states with L = J remain un-

changed while states with L = J ± 1 are coupled to states with L = J ∓ 1. Based on

these relations, the correlated two-body matrix elements can be evaluated exactly.

We again consider the operator set

O =

{
1, (σ1·σ2), q2

r , q2
r (σ1·σ2), L2, L2(σ1·σ2),

(L·S), S12

(
r

r
,

r

r

)
, S12(L,L)

}
⊗ {1, (τ 1· τ 2)}

(2.44)

containing the operators to express the charge-independent part of the Argonne V18.

Firstly, we calculate the matrix elements for the local contributions of the form V (r)O

which fulfill the condition [r, O] = [qr , O] = 0, i.e. all operators of the set (2.44)

except the q2
r terms.

On the diagonal matrix elements with L = L′ = J , the tensor correlator acts like

the unit operator, i.e. they are only affected by the central correlator, yielding [10,18]

〈
n(JS)JT

∣∣C†
rC

†
ΩV (r)OCΩCr

∣∣n′(JS)JT
〉

=∫
dr u⋆

n,J(r)un′,J(r)Ṽ (r)
〈
(JS)JT

∣∣O
∣∣(JS)JT

〉 (2.45)

in coordinate representation. The correlated radial dependence of the potential is

simply given by Ṽ (r) = V (R+(r)). Applying the tensor correlator to the states, we

obtain for the diagonal matrix elements with L = L′ = J ∓ 1

〈
n(J ∓ 1, 1)JT

∣∣C†
rC

†
ΩV (r)OCΩCr

∣∣n′(J ∓ 1, 1)JT
〉

=∫
dr u⋆

n,J∓1(r)un′,J∓1(r)Ṽ (r)

×
[〈

(J ∓ 1, 1)JT
∣∣O
∣∣(J ∓ 1, 1)JT

〉
cos2 θ̃J(r)

+
〈
(J ± 1, 1)JT

∣∣O
∣∣(J ± 1, 1)JT

〉
sin2 θ̃J(r)

±
〈
(J ∓ 1, 1)JT

∣∣O
∣∣(J ± 1, 1)JT

〉
2 cos θ̃J(r) sin θ̃J(r)

]

(2.46)
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with θ̃J(r) = θJ(R+(r)). Finally, the off-diagonal matrix elements with L = J ∓ 1 and

L′ = J ± 1 are given by

〈
n(J ∓ 1, 1)JT

∣∣C†
rC

†
ΩV (r)OCΩCr

∣∣n′(J ± 1, 1)JT
〉

=∫
dr u⋆

n,J∓1(r)un′,J±1(r)Ṽ (r)

×
[〈

(J ∓ 1, 1)JT
∣∣O
∣∣(J ± 1, 1)JT

〉
cos2 θ̃J(r)

−
〈
(J ± 1, 1)JT

∣∣O
∣∣(J ∓ 1, 1)JT

〉
sin2 θ̃J(r)

∓
〈
(J ∓ 1, 1)JT

∣∣O
∣∣(J ∓ 1, 1)JT

〉
cos θ̃J(r) sin θ̃J(r)

±
〈
(J ± 1, 1)JT

∣∣O
∣∣(J ± 1, 1)JT

〉
sin θ̃J(r) cos θ̃J(r)

]
.

(2.47)

Hence, for the evaluation of the matrix elements we have to calculate the integrals

of the radial wave functions as well as the matrix elements of the operators O in

LS-coupled angular momentum states. The off-diagonal matrix elements on the right-

hand-side of Eqs. (2.46) and (2.47) vanish for all operators except for the standard

tensor operator S12(
r
r
, r

r
) which simplifies these relations significantly.

The correlated matrix elements reveal the effect of the tensor correlator leading to

an admixture of components with ∆L = ±2 to the states, as we have already seen in

Section 2.2.2.

For the radial momentum the full unitary transformation is applied to the operator

Vqr =
1

2
[q2

r V (r) + V (r)q2
r ] , (2.48)

since it is given by a closed exact expression. The application of the tensor correlator

yields

C†
ΩVqrCΩ =

1

2
[q2

r V (r) + V (r)q2
r ] + V (r)[ϑ′(r)S12(r, qΩ)]2

−[qrV (r)ϑ′(r) + ϑ′(r)V (r)qr ]S12(r, qΩ) .
(2.49)

After including the central correlations, the following expression is derived for the

diagonal matrix elements with L = L′ = J :
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2.2 · Unitary Correlation Operator Method

〈
n(JS)JT

∣∣C†
rC

†
ΩVqrCΩCr

∣∣n′(JS)JT
〉

=
∫

dr

{
u⋆

n,J(r)un′,J(r)

[
Ṽ (r)W (r) − Ṽ ′(r)

R ′′
+(r)

R ′
+(r)2

]

−1

2
[u⋆

n,J(r)u
′′
n′,J(r) + u′′⋆

n,J(r)un′,J(r)]
Ṽ (r)

R ′
+(r)2

} (2.50)

with Ṽ ′(r) = V ′(R+(r)) and the additional local potential

W (r) =
7R ′′

+(r)2

4R ′
+(r)4

− R ′′′
+ (r)

2R ′
+(r)3

. (2.51)

Again, these matrix elements are only affected by the central correlator. For the

diagonal matrix elements with L = L′ = J ∓ 1 one obtains

〈
n(J ∓ 1, 1)JT

∣∣C†
rC

†
ΩVqrCΩCr

∣∣n′(J ∓ 1, 1)JT
〉

=
∫

dr

{
u⋆

n,J∓1(r)un′,J∓1(r)

[
Ṽ (r)W (r) + Ṽ (r)θ̃′J(r)

2 − Ṽ ′(r)
R ′′

+(r)

R ′
+(r)2

]

−1

2
[u⋆

n,J∓1(r)u
′′
n′,J∓1(r) + u′′⋆

n,J∓1(r)un′,J∓1(r)]
Ṽ (r)

R ′
+(r)2

} (2.52)

with θ̃′J(r) = θ′J(R+(r)). And finally, the off-diagonal matrix elements with L = J ∓ 1

and L′ = J ± 1 are calculated:

〈
n(J ∓ 1, 1)JT

∣∣C†
rC

†
ΩVqrCΩCr

∣∣n′(J ± 1, 1)JT
〉

=

±
∫

dr [u⋆
n,J∓1(r)u

′
n′,J±1(r) − u′⋆

n,J∓1(r)un′,J±1(r)]
Ṽ (r)θ̃′J(r)

R ′
+(r)

.
(2.53)

Using these relations, the matrix elements for all contributions of the correlated

interaction can be constructed, including the matrix elements of the correlated kinetic

energy.

2.2.6 Optimal Correlation Functions

The correlation functions describing the radial dependencies of the correlation opera-

tors depend on the underlying bare NN potential but they should not depend on the

nucleus under consideration. Hence, we have to disentangle the long- and short-range

correlations, as already mentioned earlier, in order to construct a state-independent
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S T Param. αc [ fm] βc [ fm] γc [ fm] η

0 0 II 0.7971 1.2638 0.4621 –

0 1 I 1.3793 0.8853 – 0.3724

1 0 I 1.3265 0.8342 – 0.4471

1 1 II 0.5665 1.3888 0.1786 –

Table 2.1: Parameters of the central correlation functions R+(r) in the different S , T -

channels for the Argonne V18 potential (cf. [10]).

unitary transformation. The correlation functions are determined for each spin-isospin

channel separately. The most convenient procedure is based on an energy minimization

in the two-body system. For each spin-isospin channel we choose the two-body state

with the lowest possible angular momentum L and compute the energy expectation

value of the correlated energy with the trial state. As the uncorrelated trial state should

not contain any of the short-range correlations, one possible choice is to use a free

zero-energy scattering solution φL(r) ∝ rL [9, 10, 18].

Different parameterizations for the correlation functions have been investigated.

For the central correlation functions two parameterizations with a double-exponential

drop-off and different short-range behavior have proven appropriate:

R I
+(r) = r + αc(r/βc)

η exp[− exp(r/βc)]

R II
+(r) = r + αc [1 − exp(−r/γc)] exp[− exp(r/βc)] ,

(2.54)

where we choose in each spin-isospin channel the parameterization which yields the

lower energy expectation value. The tensor correlation function is described by the

following parameterization:

ϑ(r) = αt [1 − exp(−r/γt)] exp[− exp(r/βt)] . (2.55)

In the S = 0 channels we only have to consider the central correlations. The

minimization of the energy EST is performed via the variation of the parameters where

the lowest possible angular momenta are L = 1 for T = 0 and L = 0 for T = 1,

respectively, i.e.:

E00 =
〈
φ1(10)10

∣∣C†
rHintCr

∣∣φ1(10)10
〉

E01 =
〈
φ0(00)01

∣∣C†
rHintCr

∣∣φ0(00)01
〉 (2.56)

with the states |φL(LS)JT 〉. The determination of the central correlation function in

the S = 0, T = 1 channel is straightforward. The parameters for the central correlation
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T Iϑ [ fm3] αt βt [ fm] γt [ fm]

0 0.04 521.60 1.0367 1000.0

0 0.09 536.67 1.2608 1000.0

0 0.20 450.67 1.6081 1000.0

1 -0.01 -0.1036 1.5869 3.4426

1 -0.03 -0.0569 2.1874 1.4761

1 -0.09 -0.0364 3.2925 0.5473

Table 2.2: Parameters of the tensor correlation functions ϑ(r) for the Argonne V18 potential

with different values for the range-constraint Iϑ (cf. [10]).

functions are summarized in Table 2.1. In the S = 0, T = 0 channel the potential is

purely repulsive leading to a correlation function of very long range. Hence, in order

to stick to the short-range correlations, we introduce a constraint via

IR+ =

∫
dr r 2(R+(r) − r) , (2.57)

which is fixed to IR+ = 0.1 fm4 in the S = 0, T = 0 channel giving a range similar to

the values in the other spin-isospin channels.

For S = 1 the central and tensor correlation functions have to be determined

simultaneously, i.e. for T = 0 the energy

E10 =
〈
φ0(01)10

∣∣C†
rC

†
ΩHintCΩCr

∣∣φ0(01)10
〉

(2.58)

has to be minimized since the lowest possible angular momentum is L = 0. For

T = 1, however, the total angular momentum can be coupled to J = 0, 1, 2 as the

lowest angular momentum is L = 1. We, therefore, choose a superposition of all three

energy expectation values with relative weights of 2J + 1 for the minimization:

E11 =
1

9

〈
φ1(11)01

∣∣C†
rHintCr

∣∣φ1(11)01
〉

+
3

9

〈
φ1(11)11

∣∣C†
rHintCr

∣∣φ1(11)11
〉

+
5

9

〈
φ1(11)21

∣∣C†
rC

†
ΩHintCΩCr

∣∣φ1(11)21
〉

.

(2.59)

For the tensor correlator, all correlation functions are of long range as the tensor

correlations themselves are long-ranged. However, the aim is to construct a state-

independent unitary transformation, i.e. we have to separate the short-range correla-

tions covered by the correlation operators from the long-range correlations which have
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Figure 2.4: Optimal central correlation functions R+(r) − r for the isospin channels T = 0

(left), T = 1 (right) and the spins S = 0( ) and S = 1( ) for the Argonne

V18 potential (cf. [10]).
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Figure 2.5: Optimal tensor correlation functions ϑ(r) for the Argonne V18 potential

with different values for the range constraint Iϑ for the isospin channels T = 0 with

Iϑ = 0.04 fm3( ) , 0.09 fm3( ) , and 0.20 fm3( ) (left) and T = 1 with

Iϑ = −0.01 fm3( ) , −0.03 fm3( ) , and −0.09 fm3( ) (right) (cf. [10]).

to be described by the many-body states. Therefore, we employ a range-constraint for

the tensor correlation functions, which is done via the following integral:

Iϑ =

∫
dr r 2ϑ(r) . (2.60)

The optimal parameters for the tensor correlation functions are listed in Table 2.2 for

different values of the constraint Iϑ. The variation of Iϑ has almost no effect on the

central correlation functions, hence, they are chosen to be independent of the tensor

correlator range.

In Figure 2.4 the optimal central correlation functions are shown for the Argonne
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V18 potential. The correlation functions in the even channels ((S , T ) = (0, 1) and

(1, 0)) decrease rapidly while those in the odd channels ((S , T ) = (0, 0) and (1, 1))

are weaker and of slightly longer range due to the effect of the centrifugal barrier.

The optimal tensor correlation functions are shown in Figure 2.5 for different values of

the range constraint. The tensor interaction is significantly weaker in the triplet-odd

channel. Therefore, also the correlation functions and the corresponding constraints

are much weaker than in the triplet-even channel. The optimal values for the tensor

range constraints cannot be determined on the basis of two-body calculations. They

can only be fixed including information of few-nucleon systems.

2.3 Similarity Renormalization Group

Another possibility to address short-range correlations induced by the NN interaction

is provided by the Similarity Renormalization Group (SRG) [10, 11, 20, 21]. The basic

idea of the SRG is to pre-diagonalize a Hamilton matrix with respect to a specific basis.

Although the motivations of UCOM and SRG are quite different, they show a couple

of similarities as will be discussed in the following sections.

2.3.1 SRG Flow Equation

The initial many-body Hamiltonian H shall be pre-diagonalized by using a continuous

similarity transformation:

Hα = U†
αHUα (2.61)

with the unitary transformation operator Uα depending on the flow parameter α. This

similarity transformation is equivalent to the renormalization group flow equation

dHα

dα
= [ηα, Hα] , Hα=0 = H (2.62)

containing the anti-hermitian generator ηα, which is connected to the operator Uα via

dUα

dα
= −Uαηα . (2.63)

All operators one is interested in besides the Hamiltonian have to be transformed in

the same way. Therefore, one can either evolve all operators of interest consistently

using Equation (2.62) or one can determine the unitary transformation operator Uα

using Equation (2.63) with the initial condition Uα=0 = 1 and transform all operators
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of interest via Equation (2.61). Since the generator ηα generally depends on the flow

parameter in a nontrivial way, the unitary operator is not simply given by an exponential

of the generator but can be expressed via a Dyson series.

Before solving the flow equation (2.62) or the similarity transformation (2.61) one

has to choose a generator suitable for the specific problem. We will deal with A-

nucleon systems leading to evolved operators that contain up to A-body contributions

even if starting from a Hamiltonian with two-body operators at most. Therefore, the

following approximation is employed, similar to the two-body approximation of the

cluster expansion in the UCOM. We use the operator defining the basis with respect

to which the Hamiltonian shall be diagonalized, which is a two-body operator in our

case, and perform the evolution in two-body space, hence, discarding three-body and

higher contributions. The corresponding generator is defined as

ηα = (2µ)2 [Tint, Hα] = 2µ [q2, Hα] (2.64)

with the intrinsic kinetic energy Tint = T − Tcm = q2

2µ
in the two-body system [10,

11, 21, 22]. The prefactor of the commutator is chosen such that the flow parameter

has the dimension [α] = fm4. It can be understood easily why the commutator with

the evolved Hamiltonian is used in the definition of the generator: If the evolved

Hamiltonian is diagonal with respect to the eigenbasis of the intrinsic kinetic energy,

the commutator vanishes and the flow evolution reaches a trivial fix point. The square

of the two-body relative momentum operator can be written as a sum of a radial and

an angular part:

q2 = q2
r +

L2

r2
, qr =

1

2

(
q· r

r
+

r

r
· q
)

. (2.65)

Hence, the two-body Hamiltonian Hα is diagonalized in a simultaneous eigenbasis of q2
r

and L2

r2
, i.e. in a partial-wave momentum space representation the matrix elements of

the Hamiltonian are driven towards a band-diagonal structure with respect to relative

momentum (q, q′) and orbital angular momentum (L, L′).

2.3.2 Evolution of Two-Body Matrix Elements

We start from a Hamiltonian H = Tint + VNN consisting of the intrinsic kinetic energy

Tint and two-body interaction VNN. Similar to the correlated interaction VUCOM the

evolved interaction Vα is defined such that it contains all α-dependent terms of the

evolved Hamiltonian Hα, which includes the evolved intrinsic kinetic energy:

Hα = Tint + Vα . (2.66)
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Since the intrinsic kinetic energy is chosen such that it is independent of α, the flow

evolution of the Hamiltonian is reduced to the evolution of the interaction Vα. With

the generator (2.64) the flow equation reads

dHα

dα
=

dVα

dα
= [ηα, Hα] = (2µ)2[[Tint, Vα], Tint + Vα] . (2.67)

This flow evolution can most conveniently be evaluated on the level of matrix elements

[10, 23]. Since the square of the relative momentum operator q2 enters into the

generator, we choose the partial-wave momentum eigenbasis |q(LS)JMTMT 〉. The

projection quantum numbers M and MT will be omitted for brevity in the following.

Thus, we have to derive evolution equations for the matrix elements

V (JLL′ST )
α (q, q′) =

〈
q(LS)JT

∣∣Vα

∣∣q′(L′S)JT
〉

(2.68)

from Equation (2.67). The result can be written in a generic form:

dVα(q, q′)

dα
= −(q2 − q′2)2 Vα(q, q′)

+ 2µ

∫
dQ Q2(q2 + q′2 − 2Q2) Vα(q, Q)Vα(Q, q′) ,

(2.69)

where we simply have

Vα(q, q′) = V (JJJST )
α (q, q′) (2.70)

for non-coupled partial waves with L = L′ = J .

For S = 1, angular momenta with ∆L = ±2 are coupled due to the tensor force.

Thus, for the flow equations in the coupled channels, the Vα(q, q′) are defined as 2×2

matrices

Vα(q, q′) =

(
V

(JLLST )
α (q, q′) V

(JLL′ST )
α (q, q′)

V
(JL′LST )
α (q, q′) V

(JL′L′ST )
α (q, q′)

)
(2.71)

containing the matrix elements with the possible combinations of the orbital angular

momenta L = J−1 and L′ = J +1. Due to the properties of the generator (2.64), each

non-coupled partial wave and each set of coupled partial waves evolves independently

of the other channels.

As mentioned above, not only the Hamiltonian but all operators of interest have

to be evolved in the same way. The evolution of all operators has to be done simulta-

neously since they are coupled to the evolution of the Hamiltonian via the generator.

29



Chapter 2 · Unitarily Transformed Interactions
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Figure 2.6: SRG evolution of momentum-space matrix elements in the 3S1 and 3S1 −3 D1

partial waves in units of MeV fm3 starting from the Argonne V18 potential in the upper two

rows for flow parameters α = 0 fm4, 0.001 fm4, 0.01 fm4, 0.04 fm4 from left to right. The

bottom row shows the S- ( ) and D-wave ( ) radial wave functions of the deuteron

ground-state obtained with the respective SRG-evolved interaction (taken from [23]).

2.3.3 Evolved Wave Functions and Matrix Elements

In this section, some properties of the SRG evolution are illustrated using momentum-

space matrix elements and the deuteron wave function as example [10,23,24]. Figure

2.6 depicts the momentum-space matrix elements of the 3S1 and 3S1 −3 D1 partial

waves in the upper two rows as well as the S- and D-wave components of the radial

deuteron wave function in the lower row. Starting from the Argonne V18 potential in

the left column the SRG evolution is performed up to a flow parameter α = 0.04 fm4.

Inspection of the matrix elements reveals that the initial interaction has large off-

diagonal contributions for both considered partial waves. The application of the SRG

evolution leads to a strong suppression of the off-diagonal matrix elements already

for very small values of the flow parameter (column (b)). The evolution finally yields

momentum-space matrices with a pronounced band-diagonal structure (column (d)).

At the same time the correlation effects being present in the initial deuteron wave func-
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Figure 2.7: Momentum-space matrix elements in units of MeV fm3 for the 1S0, 3S1 and
3S1 −3 D1 partial waves of the bare Argonne V18 potential (upper row), the UCOM trans-

formed AV18 using variationally optimized correlation functions with I
(10)
ϑ = 0.09 fm3 (sec-

ond row), the UCOM transformed AV18 using SRG-generated correlation functions with

α = 0.04 fm4 (third row) and the SRG-evolved AV18 with α = 0.03 fm4 (bottom row)

(taken from [10]).
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tion are eliminated throughout the SRG evolution, i.e. the correlation hole at small

interparticle distances caused by the repulsive core vanishes and the D-wave admixture

due to the tensor force becomes much weaker. Hence, the SRG flow evolution resem-

bles the application of the UCOM central and tensor correlators discussed in Section

2.2.2 (Fig. 2.3).

Finally, we compare the momentum-space matrix elements of the different inter-

actions obtained via the UCOM and SRG transformations. Figure 2.7 shows matrix

elements using the 1S0,
3S1 and 3S1 −3 D1 partial waves as an example. The main

features are comparable in all partial waves. The upper row shows the matrix elements

of the initial Argonne V18 potential, which show large off-diagonal contributions in all

considered partial waves. The two middle rows show the AV18 transformed via the

UCOM using correlation functions obtained via energy minimization, and using SRG-

generated correlation functions, and the bottom row shows the SRG-evolved AV18.

All three transformed interactions show some common features that are also mani-

fested in the momentum space matrix elements. In all partial waves, the off-diagonal

contributions are suppressed while the low-momentum parts are enhanced yielding a

band-diagonal structure. In other words, all unitary transformations lead to a de-

coupling of low-momentum and high-momentum states, which in turn improves the

convergence properties of the unitarily transformed interactions compared to the initial

bare interaction.

On the other hand, the investigation of the momentum-space matrix elements also

reveals some differences between the approaches. The SRG evolution yields almost

perfect band-diagonal matrices, while the UCOM transformations lead to a broader

band falling off more slowly with increasing distance from the diagonal. Here, using

the variationally optimized correlation functions produces an even broader plateau of

non-vanishing matrix elements along the diagonal regarding the 1S0 and 3S1 partial

waves than the application of SRG-generated correlation functions. The band-diagonal

structure being not as perfect as for the SRG-evolved interaction is due to the limited

flexibility of the UCOM approach compared to the SRG (cf. Sec. 2.3.4).

2.3.4 Connections between UCOM and SRG

The UCOM and the SRG both aim at the construction of soft interactions. Though

their starting points are quite different, there are also some connections between the

two approaches [10,22–25]. Firstly, both methods use unitary transformations to con-

struct a manifold of interactions that are all phase-shift equivalent to the underlying

potential. In the course of the transformations, both approaches generate irreducible
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many-body operators even if starting from a pure two-body potential. For computa-

tional reasons we have restricted both approaches to two-body operators. However,

different many-body calculations reveal that the neglected higher-order contributions

play an important role if we want to describe properties of nuclei beyond the lightest

isotopes [10, 13, 18, 19, 23]. The evaluation of the three-body contributions of the

UCOM and SRG transformations is in principle possible but very involved [26]. Hence,

for first investigations of the importance of the omitted higher orders we will introduce

phenomenological three-body forces, which can be included in the calculations more

easily and demand less computing time.

Further similarities between the UCOM and the SRG are manifested if we compare

the UCOM generators gr and gΩ with the initial SRG generator η0. We consider an

interaction

V =
∑

p

vp(r)Op (2.72)

that contains the operators of the charge-independent part of the Argonne V18 poten-

tial (cf. Eq. (2.26)). The evaluation of the generator at α = 0 using this interaction

yields

η0 =
i

2
(qrS(r) + S(r)qr ) + i Θ(r)S12(r, qΩ) (2.73)

with the operator-valued functions

S(r) = −1

µ

(∑

p

v ′
p(r)Op

)
, Θ(r) = −2

µ

vt(r)

r2
. (2.74)

Therefore, one finds the same operator structure for the initial SRG generator as for

the sum of the UCOM generators gr and gΩ (Eqs. (2.9) and (2.12)). This means

that both methods deal with the same kind of short-range correlations induced by the

nuclear interaction, although they start from different motivations: the SRG aims at

a pre-diagonalization of the Hamilton matrix while the UCOM explicitly addresses the

short-range central and tensor correlations. Furthermore, we can deduce from this

connection, that the most important terms are covered by the UCOM correlators.

A closer look at Eqs. (2.73) and (2.74) also reveals some differences between the

two approaches. The UCOM correlation functions s(r) and ϑ(r) only depend on the

respective spin-isospin channel while the operator valued function S(r) also depends on

the respective partial wave. Hence, the UCOM generators represent a simplification

compared to the SRG generator. The UCOM generators could also be made more

flexible by introducing separate correlation functions for each partial wave. Neverthe-

less, the SRG evolution drives the Hamiltonian towards a band-diagonal structure more
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efficiently than the UCOM transformation since the SRG uses a dynamical generator

that changes its structure during the evolution in order to perform the diagonalization

in an optimal way (cf. Sec. 2.3.3). In contrast, the UCOM performs only one unitary

transformation using static generators.

2.3.5 SRG-Generated UCOM Correlation Functions

In view of the connections between UCOM and SRG discussed in the previous section,

one is prompted to extract UCOM correlation functions from the SRG evolution. This

is achieved by the following procedure [10, 23, 25]: Starting from a given interaction,

the SRG flow equations are solved up to a specific flow parameter α yielding the

momentum space matrix elements Vα(q, q′) for a certain partial wave. Subsequently,

a set of coordinate-space wave functions is determined by solving the two-body problem

based on the evolved matrix elements. Finally, the correlation functions are derived

via a mapping of the two-body wave function of the SRG-evolved interaction onto the

corresponding wave function of the initial interaction.

To illustrate the mapping procedure, we start with the two-body eigenstate |ϕ(α)〉
of the evolved interaction and the corresponding state |ϕ(0)〉 of the initial interaction,

both having the same energy eigenvalue. The correlation functions of the correlation

operator C are determined such that they map these two states onto each other:

|ϕ(0)〉 = C|ϕ(α)〉 = CΩCr |ϕ(α)〉 . (2.75)

First, we consider non-coupled partial waves with L = J , where the two-body states

can be written as

|ϕ(0)〉 = |φ(0)(LS)JT 〉
|ϕ(α)〉 = |φ(α)(LS)JT 〉 .

(2.76)

In this case we only have to consider central correlations. Using the relations for the

central correlated two-body wave functions derived in Section 2.2.2 (Eq. (2.13)), we

find the following equation for the determination of the central correlation function

R−(r):

φ(0)(r) =
R−(r)

r

√
R ′
−(r) φ(α)(R−(r)) . (2.77)

The wave functions are assumed to be real-valued. By formal integration we can

deduce an implicit integral equation:

R−(r)3 = 3

∫ r

0

dξ ξ2 φ(0)(ξ)2

φ(α)(R−(ξ))2
, (2.78)
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which is solved iteratively for the partial wave under consideration. The corresponding

correlation function R+(r) is obtained by numerical inversion.

For coupled partial waves we use the following ansatz for the two-body eigenstates

of the initial and evolved interaction, respectively:

|ϕ(0)〉 = |φ(0)
L (LS)JT 〉 + |φ(0)

L′ (L′S)JT 〉
|ϕ(α)〉 = |φ(α)

L (LS)JT 〉 + |φ(α)
L′ (L′S)JT 〉

(2.79)

with L = J − 1 and L′ = J + 1. In these channels central as well as tensor correlation

functions have to be determined, since both types of correlations appear. Using the

coordinate space representation of the central and tensor correlated wave functions

(Eq. (2.18)), we obtain a system of coupled equations

(
φ

(0)
L (r)

φ
(0)
L′ (r)

)
=

R−(r)

r

√
R ′
−(r)

(
cos θJ(r) sin θJ(r)

− sin θJ(r) cos θJ(r)

)(
φ

(α)
L (R−(r))

φ
(α)
L′ (R−(r))

)
(2.80)

containing the correlation functions R−(r) and ϑ(r) = θJ(r)

3
√

J(J+1)
. By considering the

sum of the squares of the two orbital components of the initial wave function, we

obtain an equation independent of the tensor correlation function:

φ
(0)
L (r)2 + φ

(0)
L′ (r)2 =

R−(r)2

r 2
R ′
−(r) {φ(α)

L (R−(r))2 + φ
(α)
L′ (R−(r))2} . (2.81)

From this the central correlation function can be obtained, analogously to the uncou-

pled partial waves, via

R−(r)3 = 3

∫ r

0

dξ ξ2 φ
(0)
L (ξ)2 + φ

(0)
L′ (ξ)2

φ
(α)
L (R−(ξ))2 + φ

(α)
L′ (R−(ξ))2

. (2.82)

Subsequently, the tensor correlation function can be determined numerically via the

solution of Equation (2.80).

In practical applications, the SRG evolution of the matrix elements for the required

partial wave is performed on a momentum-space grid. After the solution of the two-

body problem on the same momentum-space grid using the evolved matrix elements,

the resulting wave functions are transformed into coordinate representation. Applying

the mapping procedure to the ground-state wave functions finally yields the discretized

correlation functions.

Although it would be straightforward, we do not introduce separate correlation

functions for each partial wave, but stay as close as possible to the scheme already used
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Figure 2.8: SRG-generated central correlation functions R+(r) − r for the AV18 poten-

tial in the four spin-isospin channels for different values of the flow parameter: α =

0.03 fm4( ) , α = 0.04 fm4( ) , α = 0.06 fm4( ), α = 0.08 fm4( )

(taken from [10]).
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Figure 2.9: SRG-generated tensor correlation functions ϑ(r) for the AV18 potential in the

two spin-isospin channels for different values of the flow parameter: α = 0.03 fm4( ) ,

α = 0.04 fm4( ) , α = 0.06 fm4( ), α = 0.08 fm4( ) (taken from [10]).
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Figure 2.10: Comparison of variationally determined central correlation functions R+(r) − r

( ) and SRG-generated ones with α = 0.04 fm4 ( ) for the AV18 potential in

the four spin-isospin channels (taken from [10]).
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Figure 2.11: Comparison of variationally determined tensor correlation functions ϑ(r) with

constraints I
(10)
ϑ = 0.09 fm3, I

(11)
ϑ = −0.03 fm3 ( ) and SRG-generated ones with

α = 0.04 fm4 ( ) for the AV18 potential in the two spin-isospin channels (taken

from [10]).
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for the variationally determined correlation functions. That means, that we distinguish

the possible spin-isospin channels and only consider the lowest angular momenta in

the respective channel [10]. Hence, for the determination of the central correlation

functions in the spin-singlet channels we use the 1S0 partial wave for T = 1 and

the 1P1 partial wave for T = 0. In the spin-triplet channel, both central and tensor

correlation functions have to be calculated. For T = 0 this is straightforward by using

the deuteron solution in the coupled 3S1 −3 D1 partial wave. But for T = 1 the

lowest allowed angular momentum is L = 1 so that the total angular momentum can

be coupled to J = 0, 1, 2. There are several possibilities to deal with this ambiguity,

currently the most convenient scheme is to create a pseudo interaction by averaging

the 3P0,
3P1 and 3P2 partial waves with a relative weight 2J +1 and use its eigenstates

for the mapping procedure. We extract the correlation functions of the SRG evolution

by using the energetically lowest states in the respective spin-isospin channel.

Contrary to the correlation functions determined via an energy minimization we do

not have to introduce additional range constraints. The only parameter is the flow

parameter α that enters the central and tensor correlation functions in a consistent

way.

In Figs. 2.8 and 2.9 we show the dependencies of the central and tensor correlation

functions on the flow parameter, respectively. The range of all correlation functions

increases with increasing flow parameter. This can be understood in the following way:

The flow evolution starts by suppressing the matrix elements at high-lying momenta,

i.e. small inter-particle distances. With increasing flow parameter, also the matrix

elements involving lower momenta are driven towards a band-diagonal structure, i.e.

in coordinate space the wave functions are modified at larger distances, leading to

longer-ranged correlation functions.

The SRG-generated central and tensor correlation functions are compared to those

determined via an energy minimization in Figs. 2.10 and 2.11, respectively. The pa-

rameters were chosen such that both sets of correlators yield approximately the same

ground-state energy of 4He in a No-Core Shell Model calculation, i.e. α = 0.04 fm4

for the SRG-generated correlation functions and for the variationally optimized ten-

sor correlation functions the range constraints are Iϑ = 0.09 fm3 for T = 0 and

Iϑ = −0.03 fm3 for T = 1. In the S = 0, T = 0 channel the shapes of both cen-

tral correlation functions are very similar, but the variationally optimized correlation

function is somewhat weaker and of smaller range, which can be explained by the addi-

tional constraint introduced in Section 2.2.6. In the even channels (S = 0, T = 1 and

S = 1, T = 0), where the dominant central correlations appear, the correlation func-

tions nicely agree at small distances. But the SRG-generated functions have a negative
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contribution around 2 fm while the variationally optimized correlation functions simply

fall off to zero. The behavior of the latter is caused by the chosen parameterization

which does not allow for negative parts. Possibly, the agreement at intermediate dis-

tances could be improved if one would apply parameterizations that are more flexible.

The shape of the SRG-generated correlation functions reveals that the attractive re-

gion of the interaction is exploited by shifting probability amplitude of both smaller

and larger inter-particle distances towards the potential minimum. Finally, in the odd

S = 1, T = 1 channel both types of central correlation functions agree very well.

Figure 2.11 shows that the agreement of the tensor correlation functions is not as

good as for the central correlation functions. This is again explained by the artificial

range constraints of the variationally optimized tensor correlation functions. For T = 0

the SRG-generated correlation function shows a negative part, which is much weaker

than for the corresponding central correlation function.
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Chapter 3

Many-Body Calculations

As a starting point to characterize the properties of the unitarily transformed two-body

interactions discussed in Chapter 2 we will apply the Hartree-Fock method to calculate

binding energies and charge radii across the whole nuclear chart. The derivation of the

general Hartree-Fock equations applied to a Hamiltonian containing a two-body and a

three-body interaction is summarized in Appendix A, in Section 3.1 we will discuss the

practical application of the Hartree-Fock method adapted to our specific requirements.

Subsequently, we will examine the properties of different two-body interactions by

considering HF ground-state energies and charge radii of selected closed-shell nuclei in

Section 3.2 and single-particle spectra in Section 3.3.

To estimate the importance of long-range correlations we apply low-order many-

body perturbation theory on top of the Hartree-Fock results. We will derive the second-

order energy correction in Section 3.4, again on the basis of a two- plus three-body

interaction. To conclude the discussion based on pure two-body interactions, we will

investigate the perturbative energy corrections for the different two-body interactions

in Section 3.5.

3.1 The Hartree-Fock Method

In the Hartree-Fock approximation the many-body state is represented by a single

Slater determinant [13]:

|HF〉 = A(|ϕα1
〉 ⊗ |ϕα2

〉 ⊗ · · · ⊗ |ϕαA
〉) , (3.1)
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where A denotes the antisymmetrization operator acting on the A-body product state

|ϕα1
〉 ⊗ |ϕα2

〉 ⊗ · · · ⊗ |ϕαA
〉. The minimization of the energy expectation value is

performed by using the single-particle states |ϕα〉 as variational degrees of freedom.

Since this simple many-body state is not capable of describing the complex correla-

tions induced by the nuclear interaction, it is crucial to employ an appropriate unitarily

transformed NN interaction in connection with the HF method incorporating at least

parts of the correlations. The Hamiltonian entering the HF equations consists of the

kinetic energy T, a transformed NN interaction VNN and a phenomenological 3N in-

teraction V3N [13, 19, 27]:

Hint = T − Tcm + VNN + V3N =

= Tint + VNN + V3N = H
(2)
int + V3N .

(3.2)

The unitarily transformed interaction VNN includes all Coulomb and charge-dependent

terms. In order to approximately account for the center-of-mass contribution to the

energy, the center-of-mass kinetic energy Tcm has been subtracted yielding the intrinsic

kinetic energy Tint, which can be written as a pure two-body operator:

Tint =
1

Aµ

A∑

i<j

q2
ij (3.3)

with the reduced nucleon mass µ = mN/2 and the relative two-body momentum

operator q. Thus, the Hamiltonian only contains two- and three-body operators.

We choose the eigenstates |nljmmt〉 of the spherical harmonic oscillator as basis

for the calculations. The HF single-particle states can be expanded in the following

way:

|ϕα〉 = |νljmmt〉 =
∑

n

C (νljmmt )
n |nljmmt〉 , (3.4)

where only states with the same quantum numbers l , j and m can contribute as we as-

sume spherical symmetry. Furthermore, we will only consider nuclei with closed j-shells

in the following, i.e. the expansion coefficients can be chosen to be independent of the

projection quantum number m: C
(νljmmt)
n = C

(νljmt)
n . These expansion coefficients are

used as variational parameters for the minimization of the energy expectation value.

Thus, the HF equations can be written as
∑

n′1

h
(l1j1mt1 )

n1n
′
1

C
(ν1l1j1mt1 )

n′1
= ε(ν1l1j1mt1 )C

(ν1l1j1mt1 )
n1 (3.5)

with the single-particle energies ε(νljmt). The matrix elements of the single-particle

Hamiltonian
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h
(l1j1mt1 )

n1n
′
1

=
∑

l2j2mt2

∑

n2n
′
2

H
(l1j1mt1 ,l2j2mt2 )

n1n2,n′1n
′
2

̺
(l2j2mt2 )

n′2n2

+
1

2

∑

l2j2mt2

∑

l3j3mt3

∑

n2n3n
′
2n

′
3

V
(l1j1mt1 ,l2j2mt2 ,l3j3mt3 )

3N, n1n2n3,n′1n
′
2n

′
3

̺
(l2j2mt2 )

n′2n2
̺

(l3j3mt3 )

n′3n3

(3.6)

consist of the matrix elements H
(l1j1mt1 ,l2j2mt2 )

n1n2,n′1n
′
2

of the two-body part of the Hamil-

tonian H
(2)
int = Tint + VNN and the matrix elements of the three-body interaction

V
(l1j1mt1 ,l2j2mt2 ,l3j3mt3 )

3N, n1n2n3,n′1n
′
2n

′
3

. The one-body density matrix ̺ is defined by

̺
(ljmt)
n′n =

∑

ν

(2j + 1)C
(νljmt)⋆

n′ C (νljmt )
n , (3.7)

The single-particle Hamiltonian itself depends on the coefficients C
(νljmt)
n via the one-

body density matrix revealing the non-linearity of the HF equations.

The m-averaged antisymmetric matrix elements of the two-body part of the Hamil-

tonian entering into the eigenvalue problem (3.5) can be expressed by using uncoupled

two-body matrix elements:

H
(l1j1mt1 ,l2j2mt2 )

n1n2,n′1n
′
2

=
1

(2j1 + 1)(2j2 + 1)
(3.8)

×
∑

m1 m2

〈
n1l1j1m1mt1 , n2l2j2m2mt2

∣∣H(2)
int

∣∣n′
1l1j1m1mt1 , n

′
2l2j2m2mt2

〉
.

However, it is more convenient to start from jj-coupled two-body matrix elements:

H
(l1j1mt1 ,l2j2mt2 )

n1n2,n′1n
′
2

=
∑

JTMT

(2J + 1)

(2j1 + 1)(2j2 + 1)
c
(

1
2

1
2

mt1 mt2

∣∣∣ T

MT

)2

×
〈
n1l1j1, n2l2j2; JTMT

∣∣H(2)
int

∣∣n′
1l1j1, n

′
2l2j2; JTMT

〉 (3.9)

with the Clebsch-Gordan coefficient c
(

1
2

1
2

mt1 mt2

∣∣∣ T

MT

)
.

The matrix elements of the two-body interactions are most conveniently calculated

in a basis of LS-coupled relative two-body states and they have to be transformed into

jj-coupled matrix elements for the application in Hartree-Fock and other methods.

In addition the matrix elements of the three-body interaction are required. They will

be calculated in Chapter 4 for a finite-range three-body interaction with Gaussian shape

and in Chapter 5 for a regularized three-body contact interaction. In the following, we

will discuss HF calculations based on pure two-body interactions.
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3.2 Ground-State Energies and Charge Radii

We start by discussing some results obtained with pure unitarily transformed two-

body interactions. While the properties of the transformed interactions were studied in

Section 2.3.3 by considering momentum-space matrix elements, we now perform many-

body calculations to investigate some other aspects of the pure two-body interactions

before including three-body forces.

The matrix elements of the transformed two-body interaction as well as those of

any other observables, especially the intrinsic kinetic energy and the charge radius, are

computed beforehand for each basis size and oscillator parameter separately and stored

to disk. This procedure allows for an efficient solution of the Hartree-Fock eigenvalue

problem on the one hand and on the other hand the matrix elements can be used as

input for different many-body methods without calculating them again. The solution

of the HF equations is performed in an iterative fashion until full self-consistency is

reached.

In the following, we will consider ground-state energies (cf. Eq. (A.33)) as well

as charge radii for selected nuclei across the whole nuclear chart. In order to preserve

spherical symmetry only closed-shell nuclei are investigated. The operators of the

mean-square radii can be written in a translationally invariant form [24,28]:

rms =
1

A

∑

i

(xi −Xcm)2 =
1

2A2

∑

ij

r2
ij (3.10)

rpms =
1

AZ

∑

ij

r2
ijΠp −

1

2A2

∑

ij

r2
ij (3.11)

rnms =
1

AN

∑

ij

r2
ijΠn −

1

2A2

∑

ij

r2
ij , (3.12)

where rms denotes the radius operator for a nucleon and r
p/n
ms for a proton/neutron. The

point root-mean-square (rms) radius rrms is obtained by calculating the square-root of

the expectation value of the mean-square radius operator for the HF ground-state.

In principle, one would have to use the unitarily transformed radius operators. For

the UCOM transformation using variationally optimized correlators, however, it was

shown that the difference between the correlated and the uncorrelated charge radii is

marginal [13]. Therefore, we will discuss uncorrelated charge radii in the following. The

impact of the SRG transformation on the charge radii has not yet been investigated,

but we neglect it nonetheless.
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UCOM(SRG) standard UCOM using SRG-generated correlation functions

S-UCOM(SRG) S-wave only UCOM using SRG-generated correlation functions

SRG standard SRG

S-SRG S-wave only SRG

Table 3.1: Acronyms for the four different families of unitarily transformed interactions.

To obtain the charge radius rch one has to add the standard corrections for proton

and neutron size:

rch =

√
r 2
p,rms + r 2

p,ch +
N

Z
r 2
n,ch , (3.13)

where we use

rp,ch = 0.8768 fm , r 2
n,ch = −0.116 fm2 (3.14)

for the proton and neutron charge radii [29].

We employ the UCOM and the SRG to obtain a manifold of phase-shift equivalent

transformed NN potentials depending on one parameter. When applying the standard

SRG evolution all partial waves are transformed consistently. However, it is also possible

to restrict the SRG evolution to the relative S-partial waves, i.e. the 1S0 and the coupled
3S1 −3 D1 partial waves, since the short-range correlations are most dominant in these

channels. For higher angular momenta the wave functions are suppressed at short

distances due to the centrifugal barrier, i.e. the effects of short-range correlations are

not as pronounced as in the S-wave channels.

For the UCOM transformation we use correlation functions obtained from the SRG

evolution. In each spin-isospin channel the lowest partial waves are considered for the

determination of the correlation functions. Subsequently, these correlation functions

are used to transform all partial waves consistently. In contrast to this standard UCOM,

we can also correlate the S-partial waves only, i.e. the 1S0 and the coupled 3S1 −3 D1

partial waves, in analogy to the restricted SRG evolution. Note that in this case already

the SRG evolution is restricted to the S-partial waves as the higher partial waves are

not required for the determination of the correlation functions.

In the following we will consider these four different classes of unitarily transformed

two-body interactions, the corresponding acronyms are listed in Table 3.1.

The harmonic-oscillator basis is truncated with respect to the major oscillator quan-

tum number e = 2n + l ≤ emax. Additional constraints for the radial quantum number

n or the orbital angular momentum l are possible. A truncation at emax = 10 is

sufficient to obtain converged Hartree-Fock results (cf. Sec. 3.5).
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Isotope 4He 16O 24O 34Si 40Ca 48Ca 48Ni 56Ni 60Ni

aHO [ fm] 1.3 1.8 1.9 1.9 2.0 2.0 2.0 2.0 2.0

Isotope 78Ni 88Sr 90Zr 100Sn 114Sn 132Sn 146Gd 208Pb

aHO [ fm] 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.4

Table 3.2: Optimal oscillator lengths for the considered closed-shell nuclei.

To perform the Hartree-Fock calculations we, first of all, have to choose the oscilla-

tor parameter aHO defining the width of the oscillator potential. In former applications

the oscillator parameter was fixed for each nucleus separately by minimizing the HF

energy. However, when perturbative corrections are included, the oscillator lengths

can no longer be determined via an energy minimization, since perturbation theory

does not obey the variational principle. Therefore, we will apply a different scheme

for the determination of the oscillator lengths, i.e. instead of ground-state energies we

consider charge radii. We choose the oscillator parameter such that the experimental

charge radius is approximately reproduced by a Slater determinant which is built of

the harmonic-oscillator single-particle states with the lowest energies. For those nuclei,

where no experimental value for the charge radius is available, we have to estimate

the oscillator parameter. The advantage of this procedure is that the oscillator pa-

rameter is independent of the respective two- and three-body interactions. Hence, we

can stick to the once determined set of oscillator parameters throughout all following

calculations. The resulting values are summarized in Table 3.2.

Figures 3.1 and 3.2 show the ground-state energies per nucleon (upper panel) and

the charge radii (lower panel) for selected closed-shell nuclei across the whole nuclear

chart obtained from HF calculations based on the UCOM(SRG) and S-UCOM(SRG)

interactions, respectively. The different symbols indicate different values of the flow

parameter. In both cases, the smallest value of the flow parameter, i.e. α = 0.04 fm4, is

chosen such that the experimental 4He ground-state energy is reproduced in converged

No-Core Shell Model (NCSM) calculations. Therefore, calculations with the pure two-

body interaction are performed using this flow parameter. Nonetheless, we investigate

the influence of the flow parameter, and especially examine the properties of two-

body interactions with larger flow parameters as they will be required when including

a repulsive three-body interaction. Figures 3.1 and 3.2 show that the HF ground-state

energies calculated with α = 0.04 fm4 reproduce the systematics of the experimental

data except for an almost constant shift. In case of the UCOM(SRG) interaction

all nuclei are underbound by about 2.5 to 3.5 MeV per nucleon, while for the S-

UCOM(SRG) interaction the ground-state energies per nucleon differ from experiment
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Figure 3.1: Ground-state energies per nucleon and charge radii of selected closed-shell nuclei

resulting from HF calculations for the UCOM(SRG) interaction for emax = 10 and different

flow parameters: (●) α = 0.04 fm4, (�) α = 0.12 fm4, ( �) α = 0.16 fm4. The bars indicate

the experimental values [30, 31].
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Figure 3.2: Same as in Figure 3.1 for the S-UCOM(SRG) interaction with emax = 10 and

(●) α = 0.04 fm4, (�) α = 0.12 fm4, ( �) α = 0.16 fm4.
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by about 4 to 5 MeV. With increasing flow parameter the difference to the experimental

binding energies diminishes, in case of the S-UCOM(SRG) interaction the trend of the

experimental energies is no longer reproduced, i.e. the light nuclei are underbound

while the heaviest nuclei are already overbound for the largest flow parameter. The

gain of binding energy with increasing flow parameter can be understood by considering

the meaning of the flow parameter. With increasing flow parameter, the range of the

derived correlation functions increases as well. Hence, correlations of longer range are

covered by the UCOM transformation and are thus included effectively already on the

HF level leading to an improved reproduction of the experimental binding energies.

Nonetheless, for calculations based on the pure two-body interaction one chooses the

flow parameter α = 0.04 fm4 for the above-mentioned reason. Furthermore, missing

long-range correlations can be included by using second-order many-body perturbation

theory on top of the HF results, which will entail a lowering of the ground-state energies

(cf. Sec. 3.5).

Figure 3.1 reveals a further interesting feature of the UCOM(SRG) interaction. If

we compare the ground-state energies calculated with the flow parameter α = 0.16 fm4

to those calculated with α = 0.12 fm4, we find that for light nuclei the trend to lower

energies is confirmed while we observe the opposite trend for the heaviest nuclei.

With increasing flow parameter correlations of longer range are included in the UCOM

transformation, but only the short-range correlations are state-independent. Hence,

for α = 0.16 fm4 the UCOM transformation obviously becomes state-dependent due

to the long range of the correlation functions, which is reflected in the trend of the

binding energies.

The charge radii shown in the lower parts of Figures 3.1 and 3.2 are significantly

smaller than the experimental values for both the UCOM(SRG) and the S-UCOM(SRG)

interaction. The variation of the charge radii with increasing flow parameter is much

weaker than in case of the ground-state energies. For the UCOM(SRG) interaction

the charge radii slightly increase with increasing flow parameter. In contrast, the radii

decrease with increasing flow parameter in case of the S-UCOM(SRG) interaction.

In Figures 3.3 and 3.4 the ground-state energies and charge radii obtained with

the SRG and S-SRG interaction for different flow parameters are displayed. Again,

the smallest flow parameter is chosen such that the experimental 4He ground-state

energy is reproduced in a converged NCSM calculation, which is α = 0.03 fm4 for

these interactions. For the SRG interaction the binding energy per nucleon increases

rapidly with increasing mass number leading to a strong overbinding of intermediate

and heavy nuclei. With increasing flow parameter this systematic deviation is even

more dramatic. At the same time the charge radii are significantly too small, e.g. for
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Figure 3.3: Ground-state energies per nucleon and charge radii of selected closed-shell nuclei

resulting from HF calculations for the SRG interaction for emax = 10 and different flow

parameters: (●) α = 0.03 fm4, (�) α = 0.06 fm4, ( �) α = 0.10 fm4. The bars indicate the

experimental values [30, 31].
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Figure 3.4: Same as in Figure 3.3 for the S-SRG interaction with emax = 10 and (●) α =

0.03 fm4, (�) α = 0.06 fm4, ( �) α = 0.10 fm4.
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Figure 3.5: Ground-state energies per nucleon and charge radii of selected closed-shell nu-

clei resulting from HF calculations for different two-body interactions with emax = 10: (●)

UCOM(SRG), α = 0.04 fm4; (�) S-UCOM(SRG), α = 0.04 fm4; ( �) SRG, α = 0.03 fm4;

(N) S-SRG, α = 0.03 fm4. The bars indicate the experimental values [30, 31].

208Pb the difference to experiment reaches 1.5 fm. The radii are almost independent of

the flow parameter. This behavior shows that for the SRG transformation the induced

three-body and higher many-body forces do not cancel genuine three-body forces, i.e.

the net three-body forces have a significant impact on the results. Hence, we expect

that the three-body interaction has to be strong compared to the other cases in order

to reproduce the experimental data.

For the S-SRG interaction, the systematic of the ground-state energies is again

reproduced, as seen in Figure 3.4. For the smallest flow parameter the values differ

by about 4.5 to 5.5 MeV per nucleon from experiment, for the larger flow parameters

this difference decreases. The charge radii are again smaller than in experiment and

depend only weakly on the flow parameter.

It is obvious that the energies as well as the charge radii will increase, if one

adds a repulsive three-body interaction. The additional repulsion shifts the nucleons

apart, which increases the radius and reduces the binding energy at the same time.

Fortunately, the dependence of the radii on the flow parameter is weak, so we can

determine the strength of the three-body interaction such that the experimental charge

radii are reproduced. Subsequently, the flow parameter is used to adjust the ground-

state energies.
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Figure 3.5 shows a comparison of the results of the four different interactions, each

with the flow parameter one uses for calculations with the pure two-body interaction,

in order to emphasize the differences between these interactions. First we compare

the UCOM(SRG) with the SRG interactions, which have some inherent differences as

seen from the HF ground-state energies and charge radii. The UCOM transformation

is designed to describe short-range correlations which are most dominant in the lowest

partial waves. Hence, the higher partial waves are not treated in an optimal way by the

UCOM transformation. Since short-range correlations are more and more suppressed in

higher partial waves due to the centrifugal barrier, this non-optimal pre-diagonalization

of the higher partial waves only leads to minor effects. In contrast, in SRG each

partial wave is evolved separately leading to an optimal pre-diagonalization also for

higher partial waves resulting in faster convergence than in case of the UCOM(SRG)

interaction [10]. Evidently, this entails larger contributions from three- and many-body

forces which in turn yields strongly overbound nuclei with small radii as shown in Figure

3.5.

Next, we compare the UCOM(SRG) and SRG interactions with S-UCOM(SRG) and

S-SRG, respectively. As mentioned above, UCOM aims at the description of short-

range correlations which are most dominant in the lowest partial waves. Therefore, the

higher partial waves are not correlated in an optimal manner. The UCOM transforma-

tion generates repulsion in higher partial waves, which is not evident from Figure 3.5,

but becomes apparent for larger flow parameters. Consequently, we will need a weaker

three-body force to supplement the UCOM(SRG) interaction than for S-UCOM(SRG)

as we will discuss in Chapter 5.

In the S-SRG approach only the S-partial waves are evolved as well. Compared to

the HF results of the SRG interaction this also leads to an improved description of the

charge radii. As the nuclei are strongly overbound when using the SRG interaction,

the S-SRG interaction yields also an improvement in the description of ground-state

energies.

The S-UCOM(SRG) and the S-SRG interaction both yield very similar results for

ground-state energies and charge radii in the HF approximation.

Considering the UCOM(SRG), S-UCOM(SRG) and S-SRG interactions, the ground-

state energies of all considered closed-shell nuclei differ from experiment, but their

description can be improved by including long-range correlations, e.g. in the frame-

work of many-body perturbation theory. The charge radii are systematically smaller

than the experimental values for all four types of two-body interactions. However, this

discrepancy cannot be covered by the inclusion of long-range correlations but is an

evidence for the omitted three- and many-body forces of the respective interaction.
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Figure 3.6: Single-particle spectra of 40Ca for the different two-body interactions with emax =

10: (1) UCOM(SRG), α = 0.04 fm4; (2) S-UCOM(SRG), α = 0.04 fm4; (3) SRG, α =

0.03 fm4; (4) S-SRG, α = 0.03 fm4; compared to experimental data [32]. Solid and dashed

lines indicate occupied and unoccupied states of the HF solutions, respectively.

Hence, for an improved description of the charge radii one has to include a repulsive

three-body interaction.

3.3 Single-Particle Spectra

Besides ground-state energies and charge radii the HF calculations provide an esti-

mate for single-particle spectra. The single-particle energies being physical observ-

ables are defined via many-body energy differences of neighboring nuclei. However, in

HF calculations based on the intrinsic kinetic energy calculating the energy difference

EA − EA−1(β removed), where the energy expectation value of the Slater determinant

with removed state |β〉 is subtracted from the expectation value of the full A-body

Slater determinant, does not directly yield the single-particle energy of a hole state |β〉;
but one obtains two additional terms leading to the corrected single-particle energy,

which can be compared to data extracted from experiment [13]:

εcorr
β = EA−EA−1(β removed) = εβ−

〈Tint〉
A − 1

+
2

mA(A − 1)

<εF∑

α

〈
αβ
∣∣ q2

∣∣αβ
〉

, (3.15)
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where 〈Tint〉 is the expectation value of the intrinsic kinetic energy. For particle states

the single-particle energy reads

εcorr
β = EA+1(β added)− EA = εβ −

〈Tint〉
A + 1

− 2

mA(A + 1)

<εF∑

α

〈
αβ
∣∣ q2

∣∣αβ
〉

. (3.16)

We can use these corrected single-particle energies to investigate the properties of the

four different two-body interactions introduced in the previous section. However, one

has to be careful with the interpretation of single-particle spectra since they are no

direct experimental observable.

Figure 3.6 shows the single-particle spectra for 40Ca obtained with the four different

two-body interactions in comparison to experimental estimates for the single-particle

energies. The order of the levels is in nice agreement with experiment. But for

all four interaction types the Fermi gap is overestimated and especially the spectra

calculated with the SRG interaction are spread too wide compared with experiment.

As a second example, the single-particle spectra of 90Zr are shown in Figure 3.7, where

one can observe similar features as for 40Ca. The level ordering is mainly reproduced

by the UCOM(SRG), S-UCOM(SRG) and S-SRG interactions, while there are some

interchanged levels in case of the SRG interaction. The level spacings are overestimated

by all four interactions, especially by the SRG interaction. This behavior shows the

connection between radii and level spacings of single-particle spectra: On the basis of

the SRG interaction the smallest radii were observed, which entails the largest level

spacings.

The single-particle spectra of most of the other considered nuclei show a similar

behavior, hence, they are not displayed here.

Like in the case of ground-state energies and charge radii, the S-UCOM(SRG) and

the S-SRG interactions yield very similar single-particle spectra which confirms that

these two interactions have a number of common properties.

It is expected that the inclusion of a repulsive three-body interaction will improve

the description of the single-particle spectra. The additional repulsion will shift the

nucleons apart from each other which results in larger radii as well as a reduction of

the level spacings.

On the other hand, increasing the flow parameter may also lead to unintentional

effects. As an example, the spectra of 60Ni are shown in Figure 3.8 using the largest flow

parameters for each two-body interaction. For both the proton and the neutron spectra

one can observe, that the Fermi gap collapses and even occupied and unoccupied levels

are interchanged. These effects are most pronounced in the spectra calculated with

the UCOM(SRG) interaction. They are observed also in the spectra of several other
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nuclei, but the corresponding spectra are not shown here. The collapse of the Fermi

gap as well as the interchanging of particle and hole states might lead to problems,

when applying many-body perturbation theory on top of these HF results. We will

come back to this point in Section 3.5 and in Chapter 5, where the three-body contact

interaction is considered.

3.4 Low-Order Many-Body Perturbation Theory

As discussed in the previous sections, the Hartree-Fock method is not capable of de-

scribing correlations. The short-range correlations are included by the unitarily trans-

formed NN interactions while the long-range correlations have to be covered by the

many-body states. The single Slater determinant used in the Hartree-Fock method

cannot describe these correlations. One possibility to include long-range correlations

is to apply many-body perturbation theory on top of the HF results. This approach

will allow us to disentangle the effects of long-range correlations from the impact of

three-body forces.

The basic concept of general perturbation theory is summarized in Appendix B.

In the following, we will illustrate the formalism of many-body perturbation theory

(MBPT) including two- and three-body interactions.

As we apply MBPT on top of the HF results, we start from the same intrinsic

Hamiltonian

Hint = Tint + VNN + V3N = H
(2)
int + V3N (3.17)

containing the intrinsic kinetic energy Tint, a transformed two-body interaction VNN

and a phenomenological three-body interaction V3N. In order to apply perturbation

theory, we have to find a decomposition of the Hamiltonian of the form

Hint = H0 + W , (3.18)

with the unperturbed Hamiltonian H0, whose eigensystem has already been solved,

and the perturbation W. In the HF eigenbasis only the diagonal matrix elements of

the Hamiltonian contribute when calculating the HF energy. Hence, the unperturbed

Hamiltonian H0 can be expressed via the creation and annihilation operators a† and a,

respectively, in the following way [27]:
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H0 =
1

2

∑

ν1ν2

〈
ν1ν2

∣∣H(2)
int

∣∣ν1ν2

〉
a†ν1

a†ν2
aν2

aν1

+
1

6

∑

ν1ν2ν3

〈
ν1ν2ν3

∣∣V3N

∣∣ν1ν2ν3

〉
a†ν1

a†ν2
a†ν3

aν3
aν2

aν1
,

(3.19)

where the matrix elements are understood to be antisymmetrized. Thus, the pertur-

bation W consists of the off-diagonal part of the Hamiltonian Hint in HF basis:

W =
1

4

∑

ν1ν2
κ1κ2

〈
ν1ν2

∣∣H(2)
int

∣∣κ1κ2

〉
a†ν1

a†ν2
aκ2

aκ1

+
1

36

∑

ν1ν2ν3
κ1κ2κ3

〈
ν1ν2ν3

∣∣V3N

∣∣κ1κ2κ3

〉
a†ν1

a†ν2
a†ν3

aκ3
aκ2

aκ1
,

(3.20)

where the antisymmetric two-body states |ν1ν2〉 and |κ1κ2〉 as well as the three-body

states |ν1ν2ν2〉 and |κ1κ2κ3〉 must differ in at least one single-particle state, respec-

tively.

Since we start from the HF solution, the unperturbed ground-state energy is the

HF energy: E
(0)
0 = EHF, while the first-order correction vanishes: E

(0)
1 = 0. Thus

the second order provides the leading correction to the HF ground-state energy. The

generic form of the second-order energy correction can be written as (cf. Eq. (B.14)):

E
(2)
0 =

∑

n
n 6=0

|〈Ψ(0)
0 |W|Ψ(0)

n 〉|2

E
(0)
0 − E

(0)
n

, (3.21)

where the unperturbed state |Ψ(0)
0 〉 is the HF ground-state and the states |Ψ(0)

n 〉 are

n-particle-n-hole (npnh, n = 1, 2, 3, ...) excitations of the HF ground-state.

The HF Hamiltonian is constructed such that it does not connect the HF ground-

state with 1p1h excitations [35]:

〈
HF
∣∣Hint

∣∣HFp
h

〉
= 0 , (3.22)

where |HFp
h〉 denotes the HF state with one particle removed from state |h〉 below the

Fermi energy (hole state) and one particle added to state |p〉 above the Fermi energy

(particle state). Since the Hamiltonian contains up to three-body operators we have to

consider 2p2h as well as 3p3h excitations of the HF ground-state. For the derivation of

the second order energy correction we consider the two-body part of the Hamiltonian

H
(2)
int and the three-body interaction V3N separately.
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Energy Correction for H
(2)
int

Considering the two-body part of the Hamiltonian we only have to take into account

2p2h excitations written as |HFpp′

hh′
〉. Thus, the second order energy correction reads

E
(2)
0 (H

(2)
int ) =

1

4

<εF∑

hh′

>εF∑

pp′

|
〈
HF
∣∣H(2)

int

∣∣HFpp′

hh′

〉
|2

EHF − E
HFpp′

hh′

, (3.23)

where the summations cover the holes h, h′ below the Fermi energy εF and the particles

p, p′ above the Fermi energy. The energy denominator can be approximated via the

single-particle energies of the respective particle and hole states:

EHF − E
HFpp′

hh′
≈ εh + εh′ − εp − εp′ . (3.24)

The 2p2h excitation is generated via the application of the creation and annihilation

operators to the HF ground-state:

|HFpp′

hh′
〉 = a†pa

†
p′ah′ah|HF〉 . (3.25)

Together with the two-body part of the Hamiltonian written in second quantization

H
(2)
int =

1

4

∑

ν1ν2
κ1κ2

〈
ν1ν2

∣∣H(2)
int

∣∣κ1κ2

〉
a†ν1

a†ν2
aκ2

aκ1
(3.26)

we obtain the following expression for the energy correction:

E
(2)
0 (H

(2)
int ) =

1

64

<εF∑

hh′

>εF∑

pp′

∑

ν1ν2
κ1κ2

|
〈
ν1ν2

∣∣H(2)
int

∣∣κ1κ2

〉 〈
HF
∣∣ a†ν1

a†ν2
aκ2

aκ1
a†pa

†
p′ah′ah

∣∣HF
〉
|2

εh + εh′ − εp − εp′
.

(3.27)

Since the HF ground-state is given by a Slater determinant, the numerator can be

evaluated to

∑

ν1ν2
κ1κ2

〈
ν1ν2

∣∣H(2)
int

∣∣κ1κ2

〉 〈
HF
∣∣ a†ν1

a†ν2
aκ2

aκ1
a†pa

†
p′ah′ah

∣∣HF
〉

=
∑

ν1ν2
κ1κ2

〈
ν1ν2

∣∣H(2)
int

∣∣κ1κ2

〉 {
δν1hδν2h

′δκ2p′δκ1p − δν1h
′δν2hδκ2p′δκ1p

−δν1hδν2h
′δκ2pδκ1p′ + δν1h

′δν2hδκ2pδκ1p′
}

=
〈
hh′∣∣H(2)

int

∣∣pp′ 〉−
〈
h′h
∣∣H(2)

int

∣∣pp′ 〉

−
〈
hh′∣∣H(2)

int

∣∣p′p
〉
+
〈
h′h
∣∣H(2)

int

∣∣p′p
〉

.

(3.28)
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Inserting this relation, the final expression for the second order energy correction emerg-

ing from the two-body part of the Hamiltonian is obtained [13]:

E
(2)
0 (H

(2)
int ) =

1

4

<εF∑

hh′

>εF∑

pp′

|
〈
hh′∣∣H(2)

int

∣∣pp′ 〉 |2
εh + εh′ − εp − εp′

. (3.29)

Energy Correction for V3N

For the second-order energy correction emerging from the three-body interaction, we

have to consider 2p2h as well as 3p3h excitations of the HF ground-state:

E
(2)
0 (V3N) =

1

4

<εF∑

hh′

>εF∑

pp′

|
〈
HF
∣∣V3N

∣∣HFpp′

hh′

〉
|2

EHF − E
HFpp′

hh′

+
1

36

<εF∑

hh′h′′

>εF∑

pp′p′′

|
〈
HF
∣∣V3N

∣∣HFpp′p′′

hh′h′′

〉
|2

EHF − E
HFpp′p′′

hh′h′′

.

(3.30)

In analogy to the 2p2h excitations, the 3p3h excitations of the HF state are expressed

as

|HFpp′p′′

hh′h′′
〉 = a†pa

†
p′a

†
p′′ah′′ah′ah|HF〉 , (3.31)

and the three-body interaction is written in second quantization

V3N =
1

36

∑

ν1ν2ν3
κ1κ2κ3

〈
ν1ν2ν3

∣∣V3N

∣∣κ1κ2κ3

〉
a†ν1

a†ν2
a†ν3

aκ3
aκ2

aκ1
. (3.32)

Performing the analogous steps as discussed in the previous passage, the energy cor-

rection can be reformulated to

E
(2)
0 (V3N) =

1

4

<εF∑

hh′

>εF∑

pp′

∣∣∣∣∣
<εF∑
h̄

〈
hh′h̄

∣∣V3N

∣∣pp′h̄
〉
∣∣∣∣∣

2

εh + εh′ − εp − εp′

+
1

36

<εF∑

hh′h′′

>εF∑

pp′p′′

|
〈
hh′h′′∣∣V3N

∣∣pp′p′′ 〉 |2
εh + εh′ + εh′′ − εp − εp′ − εp′′

.

(3.33)

Combining Eqs. (3.29) and (3.33) the final expression for the full second order

energy correction is obtained [19, 27]:
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E
(2)
0 =

1

4

<εF∑

hh′

>εF∑

pp′

∣∣∣∣∣
〈
hh′∣∣H(2)

int

∣∣pp′ 〉+
<εF∑
h̄

〈
hh′h̄

∣∣V3N

∣∣pp′h̄
〉
∣∣∣∣∣

2

εh + εh′ − εp − εp′

+
1

36

<εF∑

hh′h′′

>εF∑

pp′p′′

|
〈
hh′h′′∣∣V3N

∣∣pp′p′′ 〉 |2
εh + εh′ + εh′′ − εp − εp′ − εp′′

.

(3.34)

First of all, it is obvious that this expression reduces to the energy correction for a

pure two-body Hamiltonian (Eq. (3.29)) if all three-body matrix elements are set to

zero.

The additional computational effort of calculating the second-order energy correc-

tion in many-body perturbation theory including a three-body interaction compared to

the effort using a pure two-body interaction can be roughly estimated by having a closer

look at Equation (3.34). There is one additional sum over three-body matrix elements

in the term for the 2p2h excitations. As this sum only runs over occupied states with

respect to the HF ground-state, the required computing time will be moderate un-

der the assumption that the three-body matrix elements are calculated beforehand, in

analogy to the handling of the two-body matrix elements. But for the 3p3h term there

are in addition to the three sums over occupied states also three sums over unoccupied

states which make the computation very time-consuming.

3.5 Second-Order Energy Corrections

In this section we will investigate the perturbative energy corrections for the Hartree-

Fock results obtained with the pure two-body interactions discussed in Section 3.2.

We will consider the same set of closed-shell nuclei with the same oscillator lengths.

We consider only the second order energy correction of many-body perturbation

theory as the calculation of higher orders would become too time-consuming when

including a three-body interaction. For the UCOM interaction using variationally op-

timized correlators it was shown for some light nuclei that the third order MBPT

corrections are small [13]. However, one has to be careful with the interpretation of

the second order MBPT corrections as they provide only an estimate of the influence

of long-range correlations as the convergence of higher orders is not guaranteed [36].

As mentioned in Section 3.3 some properties of the HF solutions, revealed in the

single-particle spectra, might lead to problems when calculating the second-order en-
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Figure 3.9: Ground-state energies per nucleon based on the UCOM(SRG) interaction (upper

panel) and the S-UCOM(SRG) interaction (lower panel) resulting from HF+MBPT calcula-

tions for emax = 10 and different flow parameters: (●,❍) α = 0.04 fm4, ( �, �) α = 0.16 fm4.

Filled symbols indicate the HF energies, open symbols include the MBPT corrections. The

bars indicate the experimental values [30].
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Figure 3.10: Same as in Figure 3.9 for the SRG and the S-SRG interactions with emax = 10

and (●,❍) α = 0.03 fm4, ( �, �) α = 0.10 fm4.
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ergy correction. Especially a collapse of the Fermi gap and interchanged particle and

hole states can cause divergent terms because the energy denominator becomes very

small (Eq. (3.29)). In order to identify and eliminate these divergent terms we intro-

duce a cut-off κR , which is defined via the square of the first-order correction to the

states, and is growing linearly with the particle number:

( 〈
hh′∣∣H(2)

int

∣∣pp′ 〉

εh + εh′ − εp − εp′

)2

≤ A κR . (3.35)

This cut-off is used to check each single term contributing to the energy correction.

The cut-off is set to κR = 0.0001 for all calculations. The perturbative energy correc-

tions are computed with and without cut-off simultaneously. Thus, by comparing the

results one can easily identify the nuclei, for which divergent terms occur. Fortunately,

these are only individual cases. Throughout all calculations, divergent terms in the

second-order energy correction were only observed for some nuclei calculated with the

UCOM(SRG) interaction, also when including the three-body contact interaction. In

the following figures the perturbative corrections obtained with the cut-off are shown.

One has to be careful with the interpretation of the results anyway, because we have no

information about the behavior of higher orders, and especially for the UCOM(SRG)

interaction.

Figure 3.9 shows the HF ground-state energies together with the second-order

MBPT energies for the UCOM(SRG) interaction in the upper panel and for the S-

UCOM(SRG) interaction in the lower panel for different values of the flow parameter.

The corresponding results for the SRG and the S-SRG interactions are displayed in the

upper and lower panel of Figure 3.10, respectively. These calculations were performed

using 11 major oscillator shells, which does not yield fully converged MBPT corrections

as we will discuss below.

In all four cases one can observe that the second-order energy correction decreases

with increasing flow parameter. This can be understood intuitively: For larger flow

parameters correlations of longer range are already included on the HF level, entail-

ing a lowering of the ground-state energy, and reducing the remaining difference to

experimental data that has to be covered by MBPT.

For the UCOM(SRG) interaction systematics of the experimental ground-state en-

ergies is nicely reproduced for the light nuclei with the small value of the flow parameter,

while the heavier isotopes are still slightly underbound, as seen in Figure 3.9. But one

has to keep in mind, that these energies are not yet converged. Increasing the basis

size will entail a further lowering of the ground-state energies. For the larger flow

parameter almost all nuclei are overbound already in this small model space. In case
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Figure 3.11: Ground-state energies per nucleon based on the UCOM(SRG) interaction (upper

panel) and the S-UCOM(SRG) interaction (lower panel) resulting from HF+MBPT calcula-

tions for α = 0.04 fm4 and different model space sizes: (●,❍) emax = 10; (�,�) emax = 12,

lmax = 10; ( �, �) emax = 14, lmax = 10. Filled symbols indicate the HF energies, open

symbols include the MBPT corrections. The bars indicate the experimental values [30].
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Figure 3.12: Same as in Figure 3.11 for the SRG and the S-SRG interactions with α =

0.03 fm4 and (●,❍) emax = 10; (�,�) emax = 12, lmax = 10; ( �, �) emax = 14, lmax = 10.
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of the S-UCOM(SRG) and the S-SRG interaction the nuclei are still underbound when

using the small flow parameter and overbound for the larger flow parameter (Figs. 3.9

and 3.10). The energies calculated with the SRG interaction are significantly too low

already on the HF level, the second-order MBPT corrections cannot improve this trend

(Fig. 3.10).

Finally, we investigate the dependence of the second-order MBPT energy correc-

tions on the basis size emax. Therefore, we consider three model spaces, the smallest

with emax = 10, the second with emax = 12 with an additional truncation of the orbital

angular momentum at lmax = 10, and the largest considered model space is emax = 14,

lmax = 10.

Figure 3.11 shows the ground-state energies calculated with the UCOM(SRG) and

S-UCOM(SRG) interactions in the upper and lower part, respectively, using the flow

parameter α = 0.04 fm4 and the basis sizes mentioned above. The HF energies are fully

converged while the perturbative corrections are not yet converged, even for the largest

model space. In case of the UCOM(SRG) interaction the lowering of the ground-state

energies with increasing model space leads to a slight overbinding for most nuclei.

For the S-UCOM(SRG) interaction a reasonable agreement with experimental data is

achieved for the largest basis size, where one has to keep in mind that these energies

are not yet converged.

The ground-state energies obtained with the SRG and S-SRG interactions are shown

in Figure 3.12 using the flow parameter α = 0.03 fm4. For the SRG interaction even

the HF energies of the heaviest nuclei are not converged. Hence, the perturbative

corrections are not converged either. The results of the S-SRG interaction exhibit

an agreement with experiment which is comparable to those of the S-UCOM(SRG)

interaction keeping in mind the same limitations.

Regarding the UCOM(SRG), S-UCOM(SRG) and S-SRG interactions it is pos-

sible to achieve reasonable agreement with experimental data when calculating the

ground-state energies in the HF approximation and adding the second-order perturba-

tive corrections. The charge radii have not been considered in this section as it was

shown that the influence of many-body perturbation theory on charge radii is only

marginal [13]. Hence, to improve the description of charge radii we have to include a

repulsive three-body interaction in our calculations. We will then exploit the fact that

the considered nuclei are overbound on the basis of HF plus MBPT for larger values

of the flow parameter as a repulsive three-body interaction will counteract this trend.
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Chapter 4

Gaussian Three-Body Interaction

In Chapter 3 we have discussed some properties of pure two-body interactions. The

investigation of ground-state energies and charge radii on the basis of HF plus MBPT

calculations has revealed that a three-body interaction is necessary for a quantitative

description of nuclear properties. We, therefore, introduce a finite-range three-body

interaction of Gaussian shape. First, the matrix elements of the Gaussian three-body

interaction are calculated in Section 4.1 and are then included in the HF approximation

(Sec. 4.2) and in many-body perturbation theory (Sec. 4.3).

4.1 Calculation of Matrix Elements

A Gaussian three-body interaction is a simple interaction of finite range, which can be

written as

VG
3N = CG

3N exp

{
− 1

a2
3N

{(r1 − r2)
2 + (r2 − r3)

2 + (r3 − r1)
2}
}

(4.1)

with variable strength CG
3N and range a3N.

The matrix elements are calculated in the harmonic-oscillator basis. In coordinate

space representation the matrix elements can be evaluated in spherical or cartesian co-

ordinates. Using spherical coordinates, it is convenient to calculate the matrix elements

in relative states. Since for various many-body methods the matrix elements need to

be calculated with respect to single-particle states a double Talmi-Moshinsky trans-

formation [37, 38], which is numerically costly, has to be applied. When calculating
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the matrix elements in cartesian coordinates one has to perform a transformation into

the spherical single-particle quantum numbers, which is time-consuming, too. Since

the latter option is computationally less costly, we evaluate the three-body matrix ele-

ments in cartesian single-particle coordinates and apply a transformation into spherical

coordinates subsequently.

4.1.1 Cartesian Matrix Elements

To evaluate the three-body matrix elements in the eigenbasis of the cartesian harmonic

oscillator, we start by considering three-body product states and perform the antisym-

metrization at the end. With the cartesian harmonic-oscillator quantum numbers nx ,

ny and nz the matrix elements read in coordinate representation:

〈nx1
ny1

nz1
, nx2

ny2
nz2

, nx3
ny3

nz3
|VG

3N|n′
x1

n′
y1

n′
z1

, n′
x2

n′
y2

n′
z2

, n′
x3

n′
y3

n′
z3
〉

=

∫
d3r1 d3r2 d3r3 Φ∗

nx1ny1nz1
(r1)Φ

∗
nx2ny2nz2

(r2)Φ
∗
nx3ny3nz3

(r3)

×CG
3N exp

{
− 1

a2
3N

{(r1 − r2)
2 + (r2 − r3)

2 + (r3 − r1)
2}
}

×Φn′x1
n′y1

n′z1
(r1)Φn′x2

n′y2
n′z2

(r2)Φn′x3
n′y3

n′z3
(r3) . (4.2)

The coordinate representation of the eigenstates of the harmonic oscillator Φnxny nz
(r)

can be written as a product of three independent functions:

Φnxny nz
(r) = ϕnx

(x)ϕny
(y)ϕnz

(z) , (4.3)

where the one-dimensional wave function is given by

ϕnx
(x) = Nnx

Hnx

(
x

aHO

)
exp

{
− x2

2a2
HO

}
(4.4)

with the oscillator length aHO, the normalization factor Nnx
= (

√
π aHO 2nx nx !)

−1/2,

and the Hermite polynomials Hnx
(x) [39]. Inserting the harmonic-oscillator wave func-

tions (4.3) into the expression for the matrix element, we can separate the three
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cartesian dimensions:

〈nx1
ny1

nz1
, nx2

ny2
nz2

, nx3
ny3

nz3
|VG

3N|n′
x1

n′
y1

n′
z1

, n′
x2

n′
y2

n′
z2

, n′
x3

n′
y3

n′
z3
〉

= CG
3N

∫
dx1 dx2 dx3 ϕnx1

(x1) ϕnx2
(x2) ϕnx3

(x3) ϕn′x1
(x1) ϕn′x2

(x2) ϕn′x3
(x3)

×exp

{
− 1

a2
3N

{(x1 − x2)
2 + (x2 − x3)

2 + (x3 − x1)
2}
}

×
∫

dy1 dy2 dy3 ϕny1
(y1) ϕny2

(y2) ϕny3
(y3) ϕn′y1

(y1) ϕn′y2
(y2) ϕn′y3

(y3)

×exp

{
− 1

a2
3N

{(y1 − y2)
2 + (y2 − y3)

2 + (y3 − y1)
2}
}

×
∫

dz1 dz2 dz3 ϕnz1
(z1) ϕnz2

(z2) ϕnz3
(z3) ϕn′z1

(z1) ϕn′z2
(z2) ϕn′z3

(z3)

×exp

{
− 1

a2
3N

{(z1 − z2)
2 + (z2 − z3)

2 + (z3 − z1)
2}
}

≡ CG
3N I{nx}(x1, x2, x3) I{ny}(y1, y2, y3) I{nz}(z1, z2, z3) . (4.5)

Hence, the matrix element is split into a product of three equivalent integrals. For

the further discussion we consider the integral I{nx}(x1, x2, x3). By inserting the one-

dimensional wave functions (4.4) we can reformulate the integral:

I{nx}(x1, x2, x3)

= N

∫
dx1 dx2 dx3 Hnx1

(
x1

aHO

)
Hnx2

(
x2

aHO

)
Hnx3

(
x3

aHO

)

×Hn′x1

(
x1

aHO

)
Hn′x2

(
x2

aHO

)
Hn′x3

(
x3

aHO

)
exp

{
− 1

a2
HO

(x2
1 + x2

2 + x2
3 )

}

×exp

{
− 1

a2
3N

{(x1 − x2)
2 + (x2 − x3)

2 + (x3 − x1)
2}
}

= N

∫
dx1 Hnx1

(
x1

aHO

)
Hn′x1

(
x1

aHO

)
exp

{
−
(

1

a2
HO

+
2

a2
3N

)
x2
1

}

×
∫

dx2 Hnx2

(
x2

aHO

)
Hn′x2

(
x2

aHO

)
exp

{
−
(

1

a2
HO

+
2

a2
3N

)
x2
2 +

2x1

a2
3N

x2

}

×
∫

dx3 Hnx3

(
x3

aHO

)
Hn′x3

(
x3

aHO

)
exp

{
−
(

1

a2
HO

+
2

a2
3N

)
x2
3 +

2(x1 + x2)

a2
3N

x3

}

with the normalization factor N = Nnx1
Nnx2

Nnx3
Nn′x1

Nn′x2
Nn′x3

. We are not able to

provide an analytic solution for these integrals in a closed expression. Therefore, we

calculate them numerically and ensure the agreement with analytical values for some
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chosen sets of quantum numbers. The numerical calculation of a three-dimensional

integral is rather elaborate. Fortunately, these integrals can be computed by performing

three one-dimensional integrations. We start with the innermost integral and consider

(x1+x2) as a parameter, i.e. we solve the integral for a set of values for this parameter.

The result is inserted in the next integral, where we take x1 as parameter and follow

the same procedure. Finally, by using these results we can solve the outermost integral.

The numerical integration is performed via the application of the trapezoidal rule.

The program Mathematica [40] is capable of providing an exact solution of the three-

dimensional integral I{nx}(x1, x2, x3) if the quantum numbers are sufficiently small. We

are thus able to guarantee a sufficient accuracy of the numerical calculation.

For applications in many-body methods we have to perform a transformation of

these matrix elements from the cartesian harmonic oscillator into the spherical one.

4.1.2 Coordinate Transformation

In order to convert the three-body matrix elements the single-particle states of the

cartesian harmonic oscillator have to be transformed into spherical ones:

|nlml〉 =
∑

nxny nz

|nxnynz〉〈nxnynz |nlml〉 , (4.6)

where the eigenstates of the spherical harmonic oscillator are defined via the principal

quantum number n and angular momentum l with projection ml . The transformation

coefficients 〈nxnynz |nlml〉 can be determined using the generating functions of the har-

monic oscillator wave functions [41]. The generating function of the three-dimensional

cartesian harmonic oscillator reads

F (x , y , z ; x0, y0, z0)

=
∞∑

nx=0

∞∑

ny=0

∞∑

nz=0

1

nx ! ny ! nz !
exp

{
− x2 + y 2 + z2

2a2
HO

}

×Hnx

(
x

aHO

)
Hny

(
y

aHO

)
Hnz

(
z

aHO

)(
x0

aHO

)nx
(

y0

aHO

)ny
(

z0

aHO

)nz

. (4.7)

The eigenfunctions of the cartesian harmonic oscillator can be obtained by deriving

the generating function with respect to x0, y0, and z0 and evaluating the derivation

at x0 = y0 = z0 = 0. The generating function for the spherical harmonic oscillator is
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given by

F (r ,ϑ,ϕ; r0,ϑ0,ϕ0)

=
∞∑

n=0

∞∑

l=0

l∑

ml=−l

2π3/2(−1)n

Γ(n + l + 3
2
)
exp

{
− r 2

2a2
HO

}(
r

aHO

)l

×L
[l+ 1

2
]

n

(
r 2

a2
HO

)
Ylml

(ϑ,ϕ)Y ∗
lml

(ϑ0,ϕ0)

(
r0

aHO

)2n+l

. (4.8)

The coordinate representation of the eigenfunctions of the spherical harmonic oscillator

can again be obtained out of the derivatives of the corresponding generating function

with respect to r0, ϑ0, and ϕ0 and reads

ψnlml
(r ,ϑ,ϕ) = Nnl exp

{
− r 2

2a2
HO

}(
r

aHO

)l

L
[l+ 1

2
]

n

(
r 2

a2
HO

)
Ylml

(ϑ,ϕ) (4.9)

with the normalization factor Nnl =
√

2 n!
a3
HOΓ(n+l+3/2)

, the Laguerre polynomials

L
[l+ 1

2
]

n

(
r2

a2
HO

)
, and the spherical harmonics Ylml

(ϑ,ϕ).

Identifying these eigenfunctions in Equation (4.8) as well as the eigenfunctions (4.4)

of the cartesian harmonic oscillator in Equation (4.7), we find the following relation:

∞∑

nx=0

∞∑

ny =0

∞∑

nz=0

1

nx ! ny ! nz ! Nnx
Nny

Nnz

|nxnynz〉xnx

0 y
ny

0 znz

0

=
∞∑

n=0

∞∑

l=0

l∑

ml=−l

2π3/2(−1)n

Γ(n + l + 3
2
)Nnl

|nlml〉Y ∗
lml

(ϑ0,ϕ0)r
2n+l
0 , (4.10)

where we use the ket representation of the wave functions as we aim at the derivation

of the transformation coefficients 〈nxnynz |nlml〉. For this purpose we have to express

the spherical coordinates in cartesian ones. Therefore, we need the binomial formula

(x + y)n =
n∑

k=0

(
n

k

)
xn−ky k , (4.11)

and the spherical harmonics in cartesian coordinates [42]

r lYlml
(x , y , z) =

√
2l + 1

4π
(l + ml)!(l − ml)!

×
∑

pqs

1

p! q! s!

(
− x + i y

2

)p(
x − i y

2

)q

z s (4.12)
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with p+q+s = l and p−q = ml . These equations can be reformulated to q = p−ml ,

s = l + ml − 2p, and p = 0, ..., l . Then, Equation (4.12) reads

r lYlml
(x , y , z) =

√
2l + 1

4π
(l + ml)!(l − ml)!

×
l∑

p=0

(p!(p − ml)!(l + ml − 2p)!)−1

×
(
− x + i y

2

)p(
x − i y

2

)p−ml

z l+ml−2p . (4.13)

Using Eqs. (4.13) and (4.11), we can deduce the following relation between spherical

and cartesian coordinates

Y ∗
lml

(ϑ0,ϕ0) r 2n+l
0 = (−1)ml r l

0 Yl−ml
(ϑ0,ϕ0) (r 2

0 )n

=
∞∑

nx=0

∞∑

ny=0

∞∑

nz=0

C nlml
nxnynz

xnx

0 y
ny

0 znz

0 (4.14)

with the transformation constant

C nlml
nxny nz

=

√
2l + 1

4π
(l + ml)!(l − ml)!

×
n∑

a=0

⌊(l−ml )/2⌋∑

p=0

p∑

b=0

(−1)n−nx−a−b iml−nx

p!(p + ml)!(l − ml − 2p)! 22p+ml
(4.15)

×
(

n

a

)(
a

(nz + 2p − l + ml)/2

)(
p

b

)(
p + ml

2n + 2p − 2a + ml − nx − b

)
.

By multiplying Equation (4.10) from the left with 〈n′l ′m′
l | and inserting Equation (4.14)

we finally arrive at the transformation coefficients

〈nlml |nxnynz〉 =
2π3/2(−1)n

Γ(n + l + 3/2)Nnl

nx ! ny ! nz ! Nnx
Nny

Nnz
C nlml

nxnynz
. (4.16)

For the computation of each three-body matrix element, six single-particle states have

to be transformed, which requires 18 summations involving the coefficients (4.16).

This coordinate transformation is the most demanding part regarding computing time

during the calculation of the three-body matrix elements.

So far, we have only considered coordinate-space matrix elements, for the full

matrix elements we also have to take into account spin and isospin. The Gaussian

three-body interaction only acts in coordinate space, i.e. the spin-isospin part of the
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matrix element is simply given by Kronecker deltas for the spin and isospin projection

quantum numbers ms and mt , respectively:

〈n1l1ml1ms1mt1 , n2l2ml2ms2mt2 , n3l3ml3ms3mt3 |
×VG

3N|n′
1l

′
1m

′
l1
m′

s1
m′

t1
, n′

2l
′
2m

′
l2
m′

s2
m′

t2
, n′

3l
′
3m

′
l3
m′

s3
m′

t3
〉

= 〈n1l1ml1, n2l2ml2 , n3l3ml3 |VG
3N|n′

1l
′
1m

′
l1
, n′

2l
′
2m

′
l2
, n′

3l
′
3m

′
l3
〉

×δms1m′
s1
δms2m′

s2
δms3m′

s3
δmt1m′

t1
δmt2m′

t2
δmt3m′

t3
. (4.17)

For brevity, we have omitted the quantum numbers s = 1
2

and t = 1
2

for spin and

isospin, respectively. In the next step, the single-particle angular momenta l and single-

particle spins are coupled to total single-particle angular momenta j with projection

quantum numbers m using Clebsch-Gordan coefficients. Finally, the matrix elements

have to be antisymmetrized explicitly.

The calculation of the matrix elements is very time-consuming due to the coordinate

transformation involving a large number of summations. Thus, it is not feasible to

compute the full matrix elements during the many-body calculation. Therefore, the

coordinate space matrix elements with respect to the spherical harmonic-oscillator basis

are precomputed and stored for each set of oscillator length aHO and three-body range

a3N. The inclusion of spin and isospin, the j-coupling and the antisymmetrization are

then done on-the-fly during the many-body calculation. Due to the large number of

non-vanishing matrix elements, we are restricted to small model spaces. Currently, we

are able to handle the three-body matrix elements for a model space including seven

major oscillator shells with an additional truncation of the orbital angular momentum

at lmax = 4.

4.2 Ground-State Energies and Charge Radii

As starting point, the impact of the Gaussian three-body interaction is investigated in

the framework of the Hartree-Fock approximation. The parameters of the three-body

interaction – the strength CG
3N and the range a3N – have to be determined, and the

flow parameter of the respective two-body interaction has to be adjusted accordingly.

As we are only able to handle small model spaces, we can only provide an estimate for

the strength CG
3N and the range a3N, the choice of the parameters would have to be

verified in model spaces sufficiently large to reach convergence.

In the following, we consider a set of closed-shell nuclei from 4He to 90Zr. The

heaviest nuclei included in Chapter 3 are not considered here, since one cannot obtain

reliable results in such small model spaces. We use again the oscillator parameters
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Figure 4.1: Ground-state energies per nucleon and charge radii of selected closed-shell nuclei

resulting from HF calculations for the S-UCOM(SRG) interaction for α = 0.16 fm4, emax = 4,

C3N = 100 MeV and different three-body ranges: (●) a3N = 1.22 fm, (�) a3N = 1.26 fm, ( �)

a3N = 1.30 fm. The bars indicate the experimental values [30, 31].
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Figure 4.2: Same as in Figure 4.1 for the S-SRG interaction with α = 0.10 fm4, emax = 4,

C3N = 100 MeV, and (●) a3N = 1.22 fm, (�) a3N = 1.26 fm, ( �) a3N = 1.30 fm.
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Figure 4.3: Ground-state energies per nucleon and charge radii of selected closed-shell nuclei

resulting from HF calculations for the S-UCOM(SRG) interaction for α = 0.16 fm4, emax = 4,

a3N = 1.22 fm and different three-body strengths: (●) C3N = 50 MeV, (�) C3N = 100 MeV,

( �) C3N = 200 MeV. The bars indicate the experimental values [30, 31].
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Figure 4.4: Same as in Figure 4.3 for the S-SRG interaction with α = 0.10 fm4, emax = 4,

a3N = 1.22 fm, and (●) C3N = 50 MeV, (�) C3N = 100 MeV, ( �) C3N = 200 MeV.
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listed in Table 3.2. The following calculations will be performed in a model space with

emax = 4. In this chapter we do not consider all four two-body interactions introduced

in Chapter 3 but restrict ourselves to S-UCOM(SRG) and S-SRG.

First, the influence of the three-body range a3N is studied. In Figure 4.1 the ground-

state energies per nucleon (upper panel) and the charge radii (lower panel) are shown

for different values of a3N using the S-UCOM(SRG) interaction with the flow parameter

α = 0.16 fm4. The systematics of the experimental ground-state energies is reproduced

except for an almost constant shift. With increasing three-body range the energies

increase as well, for the smallest value a3N = 1.22 fm they differ by about 2.5 MeV

from experiment and for a3N = 1.30 fm by about 3.5 MeV. The charge radii are in

reasonable agreement with data. The dependence of the charge radii on the three-body

range is weaker than for the ground-state energies. Increasing the range a3N of the

three-body interaction shifts apart the nucleons, which results in larger, weaker bound

nuclei. However, one cannot find one value for a3N that fits all nuclei perfectly, e.g.

for the smallest value, the radii of the intermediate nuclei are slightly underestimated

while the light and the heavy ones are in nice agreement with experimental data.

The corresponding results for the S-SRG interaction (Fig. 4.2) using the flow pa-

rameter α = 0.10 fm4 and the same parameters for the three-body interaction are very

similar. In the following, we will use a3N = 1.22 fm for both interactions.

In Figures 4.3 and 4.4 the dependence on the three-body strength is shown for the

S-UCOM(SRG) and the S-SRG interactions. The influence of the strength is similar to

the one of the range. With increasing three-body strength the ground-state energies as

well as the charge radii increase. This behavior can be understood intuitively. As the

three-body interaction is purely repulsive, increasing the strength leads to weaker bound

nuclei with larger charge radii. Again, it is not possible to find one parameter that

describes all considered nuclei with the same accuracy. For the following calculations

we will use CG
3N = 100 MeV. Although we refer to the parameter CG

3N as three-body

strength, a more accurate measure for the strength of the interaction would be an

integral over the three-body interaction, which clearly connects the two parameters

a3N and CG
3N with each other.

Next, we investigate the influence of the flow parameter in Figures 4.5 and 4.6. For

both interactions the ground-state energies decrease with increasing flow parameter for

the same reason as discussed in Section 3.2. In contrast to the results obtained with the

pure two-body interactions, the systematics of the experimental data is reproduced by

all flow parameters, which is due to the inclusion of a repulsive three-body interaction.

The charge radii depend only weakly on the flow parameter. However, using the

smallest flow parameters, i.e. α = 0.04 fm4 for the S-UCOM(SRG) interaction and
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Figure 4.5: Ground-state energies per nucleon and charge radii of selected closed-shell nuclei

resulting from HF calculations for the S-UCOM(SRG) interaction for emax = 4, a3N =

1.22 fm, C3N = 100 MeV and different flow parameters: (●) α = 0.04 fm4, (�) α = 0.12 fm4,

( �) α = 0.16 fm4. The bars indicate the experimental values [30, 31].
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Figure 4.6: Same as in Figure 4.5 for the S-SRG interaction with emax = 4, a3N = 1.22 fm,

C3N = 100 MeV, and (●) α = 0.03 fm4, (�) α = 0.06 fm4, ( �) α = 0.10 fm4.
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Figure 4.7: Ground-state energies per nucleon and charge radii of selected closed-shell nuclei

resulting from HF calculations for the S-UCOM(SRG) interaction for α = 0.16 fm4, a3N =

1.22 fm, CG
3N = 100 MeV and different basis sizes: (●) emax = 4 (optimal aHO), (�) emax =

6, lmax = 4 (aHO = 1.9 fm). The bars indicate the experimental values [30, 31].
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Figure 4.8: Same as in Figure 4.7 for the S-SRG interaction with α = 0.10 fm4, a3N =

1.22 fm, CG
3N = 100 MeV, and (●) emax = 4 (optimal aHO), (�) emax = 6, lmax = 4 (aHO =

1.9 fm).
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α = 0.03 fm4 for S-SRG, leads to a slightly improved overall description of the charge

radii. On the other hand, the ground-state energies calculated with the small flow

parameters are significantly larger than those obtained with the larger flow parameters.

One can, therefore, choose the flow parameters such that either the ground-state

energies are closer to experiment or the charge radii. We prefer a better description

of the energies, i.e. we use α = 0.16 fm4 for the S-UCOM(SRG) interaction and

α = 0.10 fm4 for S-SRG, as the effect is rather weak for the charge radii.

Finally, the convergence of the HF results is examined by increasing the model

space size. The number of three-body matrix elements can only be stored up to a

basis size of emax = 6 with an additional constraint for the orbital angular momentum

of lmax = 4. The calculation of the matrix elements for this basis size is very time-

consuming. As the matrix elements have to be calculated for each oscillator parameter

separately, we choose an average oscillator length of aHO = 1.9 fm for all nuclei for the

calculation in the larger model space. Consequently, we only have to calculate one set

of three-body matrix elements.

The results obtained in this model space are compared to the previous ones with

emax = 4 in Figure 4.7 for the S-UCOM(SRG) interaction and in Figure 4.8 for the

S-SRG interaction. As we do not expect to obtain reliable results for the heavier nuclei

using the oscillator length aHO = 1.9 fm, the energies and radii are only shown up to
48Ca. The ground-state energies as well as the charge radii are almost identical in

both model spaces suggesting convergence. The small deviations observed for 4He can

be explained by the non-optimal oscillator length. However, one has to keep in mind,

that the larger model space only takes into account few additional single-particle states

as the largest possible orbital angular momentum is the same as for the small model

space, i.e. lmax = 4.

4.3 Perturbative Energy Corrections

In this section the impact of the second-order energy correction is studied. We only

consider the energy corrections emerging from the two-body part of the Hamiltonian

(Eq. (3.29)) as the correction emerging from the three-body interaction is marginal at

least in such small model spaces: it does not exceed 1.5% for emax = 4. Furthermore,

the calculation of the energy correction emerging from the three-body interaction is

very time-consuming and is therefore not feasible in larger model spaces. As discussed

in Section 3.5 we study the energy corrections obtained with the cut-off κR = 0.0001,

although it has almost no effect on the results discussed in this section. Figure 4.9
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Figure 4.9: Ground-state energies per nucleon based on the S-UCOM(SRG) interaction with

α = 0.16 fm4 (upper panel) and the S-SRG interaction with α = 0.10 fm4 (lower panel)

resulting from HF+MBPT calculations for a3N = 1.22 fm, CG
3N = 100 MeV, and different

model space sizes: (●,❍) emax = 4 (optimal aHO), (�,�) emax = 6, lmax = 4 (aHO = 1.9 fm).

Filled symbols indicate the HF energies, open symbols include the MBPT corrections. The

bars indicate the experimental values [30].

shows the HF ground-state energies as well as the perturbative energy corrections

for the S-UCOM(SRG) interaction (upper panel) and the S-SRG interaction (lower

panel), where the results obtained with the basis size emax = 4 are compared to those

obtained with emax = 6, lmax = 4. As already discussed in the previous section, for the

calculations in the larger model space only one oscillator parameter was used for all

nuclei due to the computational effort of the matrix element calculation. While the

difference of the HF energies is only marginal in the two model spaces, the perturbative

corrections are significantly larger in the larger model space, especially for intermediate

nuclei. On the basis of these results it is impossible to make a statement about the

convergence behavior. For this purpose it would be necessary to further increase the

model space size.

A more illuminating aspect is revealed by the comparison of the finite-range three-

body interaction of Gaussian shape with the regularized contact interaction, which

will be introduced in the following chapter. For the contact interaction we use the

parameters that are determined in Chapter 5. Note, that the optimal parameters

are different for the S-UCOM(SRG) and the S-SRG interaction. In Figures 4.10 and
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Figure 4.10: Ground-state energies per nucleon and charge radii based on the S-UCOM(SRG)

interaction resulting from HF+MBPT calculations for α = 0.16 fm4, emax = 4, and

comparing the three-body interactions: (●,❍) Gaussian interaction with a3N = 1.22 fm,

CG
3N = 100 MeV; (�,�) regularized contact interaction with C3N = 2200 MeV fm6, e3N = 20.

Filled symbols indicate the HF energies, open symbols include the MBPT corrections. The

bars indicate the experimental values [30].
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Figure 4.11: Same as in Figure 4.10 for the S-SRG interaction with α = 0.10 fm4, emax = 4,

and (●,❍) Gaussian interaction with a3N = 1.22 fm, CG
3N = 100 MeV; (�,�) regularized contact

interaction with C3N = 2000 MeV fm6, e3N = 20.
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4.11 the HF ground-state energies together with the perturbative corrections emerging

from the two-body Hamiltonian and the charge radii are shown for the S-UCOM(SRG)

and the S-SRG interactions in a model space including five major oscillator shells.

The comparison of the Gaussian three-body interaction with the regularized contact

interaction reveals that the latter yields slightly less binding energy for intermediate

and heavy nuclei on the HF level. This discrepancy could be reduced by an adjustment

of the parameters. The perturbative energy corrections are almost identical for both

interactions across the whole nuclear chart, which is not surprising as the corrections

are only calculated for the two-body interactions being the same in both cases. The

calculated charge radii are similar for both three-body interactions, but the overall

agreement with experimental data is slightly better for the contact interaction. The

results are very similar for both underlying two-body interactions.

On the basis of these results, we can motivate the following strategy: The Gaus-

sian three-body interaction is the most simple finite-range three-body interaction, but

we can only handle it in very small model spaces. The calculation of the matrix el-

ements of the regularized three-body contact interaction is much more efficient and

this interaction can also be included in larger model spaces. We have shown that

both three-body interactions yield comparable results in small model spaces. We will,

therefore, perform further studies on the basis of the regularized contact interaction.

As this three-body interaction can be included in various many-body methods and in

sufficiently large model spaces, this procedure allows for reliable investigations.
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Three-Body Contact Interaction

In Chapter 4 we have seen that already the most simple finite-range three-body force

of Gaussian shape proves to be an enormous computational challenge. In this case,

it was not possible to perform calculations in sufficiently large Hilbert spaces allowing

for reliable converged calculations. In order to investigate the impact of three-body

forces and to develop strategies for the handling of three-body matrix elements we

introduce a three-body contact interaction. In this chapter we discuss the calculation

of the matrix elements of a regularized three-body contact interaction in Section 5.1.

Subsequently, the Hartree-Fock method is used to calculate ground-state energies and

charge radii in Section 5.2 as well as single-particle spectra in Section 5.3. In Section 5.4

the second-order energy corrections emerging from many-body perturbation theory are

discussed.

5.1 Calculation of Matrix Elements

In the following, we discuss the calculation of the matrix elements of a three-body

contact interaction which is supplemented by a cut-off introduced at the end of this

section. The three-body contact interaction can be written as

V3N = C3N δ(3)(x1 − x2)δ
(3)(x1 − x3) (5.1)

with variable strength C3N, and δ(3)(x) being the Dirac delta distribution in three

dimensions. The strength C3N of the three-body interaction will be positive since the

interaction has to be repulsive in order to increase the charge radii (cf. Sec. 3.2).

81



Chapter 5 · Three-Body Contact Interaction

Considering general three-body interactions it is common to calculate the matrix

elements in a basis that is based on Jacobi coordinates. But for applications in many-

body methods the matrix elements have to be transformed into the m-scheme, i.e.

using independent single-particle states, which is computationally very demanding for

a three-body interaction. In contrast, the matrix elements of a contact interaction

can be directly evaluated in the m-scheme, which is of great advantage compared to

general three-body forces. The calculation of these matrix elements has already been

discussed in my diploma thesis [27], but since it is the most essential ingredient for the

following investigations it will be recapitulated in this section.

The matrix elements are calculated in the harmonic-oscillator basis. We start

with three-body product states in coordinate space. Since the three-body contact

interaction does not affect spin and isospin, we will neglect these quantum numbers

for the moment. The antisymmetrization will be performed explicitly in the end.

Introducing the coordinate-space representation of the harmonic-oscillator states, the

matrix elements can be expressed as

〈n1l1ml1, n2l2ml2 , n3l3ml3 |V3N|n′
1l

′
1m

′
l1
, n′

2l
′
2m

′
l2
, n′

3l
′
3m

′
l3
〉

=

∫
d3x1d

3x2d
3x3〈n1l1ml1|x1〉〈n2l2ml2|x2〉〈n3l3ml3|x3〉

×C3N δ(3)(x1 − x2) δ
(3)(x1 − x3)〈x1|n′

1l
′
1m

′
l1
〉〈x2|n′

2l
′
2m

′
l2
〉〈x3|n′

3l
′
3m

′
l3
〉

(5.2)

with the principal quantum number n, angular momentum l and projection quantum

number ml of the harmonic oscillator states. By introducing the relative coordinates

r12 = x1 − x2 and r13 = x1 − x3 we can directly exploit the properties of the delta

distributions and evaluate six of the nine integrals:

∫
d3x1d

3x2d
3x3〈n1l1ml1|x1〉〈n2l2ml2 |x2〉〈n3l3ml3 |x3〉

×C3N δ(3)(x1 − x2) δ
(3)(x1 − x3)〈x1|n′

1l
′
1m

′
l1
〉〈x2|n′

2l
′
2m

′
l2
〉〈x3|n′

3l
′
3m

′
l3
〉

=

∫
d3x1d

3r12d
3r13〈n1l1ml1 |x1〉〈n2l2ml2 |x1 − r12〉〈n3l3ml3 |x1 − r13〉

×C3N δ(3)(r12) δ
(3)(r13)〈x1|n′

1l
′
1m

′
l1
〉〈x1 − r12|n′

2l
′
2m

′
l2
〉〈x1 − r13|n′

3l
′
3m

′
l3
〉

= C3N

∫
d3x1〈n1l1ml1 |x1〉〈n2l2ml2 |x1〉〈n3l3ml3 |x1〉

×〈x1|n′
1l

′
1m

′
l1
〉〈x1|n′

2l
′
2m

′
l2
〉〈x1|n′

3l
′
3m

′
l3
〉 . (5.3)

In coordinate space, the harmonic-oscillator eigenfunctions are composed of a real-

valued radial part Rnl(x) and an angular part represented by the spherical harmonics
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Ylml
(Ω) [39]:

〈x|nlml〉 = Rnl(x)Ylml
(Ω) . (5.4)

Inserting this representation into Equation (5.3) one arrives at

〈n1l1ml1 , n2l2ml2, n3l3ml3 |V3N|n′
1l

′
1m

′
l1
, n′

2l
′
2m

′
l2
, n′

3l
′
3m

′
l3
〉

= C3N

∫
dx1x

2
1Rn1l1(x1)Rn2l2(x1)Rn3l3(x1)Rn′1l

′
1
(x1)Rn′2l

′
2
(x1)Rn′3l

′
3
(x1)

×
∫

dΩ Y ∗
l1ml1

(Ω)Y ∗
l2ml2

(Ω)Y ∗
l3ml3

(Ω)Yl ′1m
′
l1
(Ω)Yl ′2m

′
l2
(Ω)Yl ′3m

′
l3
(Ω) . (5.5)

The integral over the six radial wavefunctions has to be calculated numerically while

the integral over the six spherical harmonics can be evaluated analytically. The product

of three spherical harmonics can be reduced to one spherical harmonic:

Yl1ml1
(Ω)Yl2ml2

(Ω)Yl3ml3
(Ω)

=
∑

L1ML1

√
(2l1 + 1)(2l2 + 1)

4π(2L1 + 1)
c
(

l1 l2

0 0

∣∣∣ L1

0

)
c
(

l1 l2
ml1

ml2

∣∣∣ L1

ML1

)
YL1ML1

(Ω)Yl3ml3
(Ω)

=
∑

L1ML1

√
(2l1 + 1)(2l2 + 1)

4π(2L1 + 1)
c
(

l1 l2

0 0

∣∣∣ L1

0

)
c
(

l1 l2
ml1

ml2

∣∣∣ L1

ML1

)

×
∑

L2ML2

√
(2L1 + 1)(2l3 + 1)

4π(2L2 + 1)
c
(

L1 l3

0 0

∣∣∣ L2

0

)
c
(

L1 l3

ML1
ml3

∣∣∣ L2

ML2

)
YL2ML2

(Ω) (5.6)

with the Clebsch-Gordan coefficients c
(

l1 l2
ml1

ml2

∣∣∣ L

ML

)
. Using this relation we can eval-

83



Chapter 5 · Three-Body Contact Interaction

uate the angular part of the integral:

∫
dΩ Y ∗

l1ml1
(Ω)Y ∗

l2ml2
(Ω)Y ∗

l3ml3
(Ω)Yl ′1m

′
l1
(Ω)Yl ′2m

′
l2
(Ω)Yl ′3m

′
l3
(Ω)

=
∑

L1ML1
L2ML2

√
(2l1 + 1)(2l2 + 1)

4π(2L1 + 1)

√
(2L1 + 1)(2l3 + 1)

4π(2L2 + 1)

×c
(

l1 l2

0 0

∣∣∣ L1

0

)
c
(

l1 l2
ml1

ml2

∣∣∣ L1

ML1

)
c
(

L1 l3

0 0

∣∣∣ L2

0

)
c
(

L1 l3

ML1
ml3

∣∣∣ L2

ML2

)

×
∑

L′
1
M′

L1
L′
2
M′

L2

√
(2l ′1 + 1)(2l ′2 + 1)

4π(2L′
1 + 1)

√
(2L′

1 + 1)(2l ′3 + 1)

4π(2L′
2 + 1)

×c
(

l ′1 l ′2

0 0

∣∣∣ L′
1

0

)
c

(
l ′1 l ′2

m′
l1

m′
l2

∣∣∣∣
L′

1

M′
L1

)
c
(

L′
1 l ′3

0 0

∣∣∣ L′
2

0

)
c

(
L′

1 l ′3

M′
L1

m′
l3

∣∣∣∣
L′

2

M′
L2

)

×
∫

dΩ Y ∗
L2ML2

(Ω)YL′
2M

′
L2

(Ω)
︸ ︷︷ ︸

=δL2L′
2
δML2

M′
L2

=
∑

L1L2L′
1

ML1
ML2

M′
L1

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l ′1 + 1)(2l ′2 + 1)(2l ′3 + 1)

16π2(2L2 + 1)

×c
(

l1 l2

0 0

∣∣∣ L1

0

)
c
(

l1 l2
ml1

ml2

∣∣∣ L1

ML1

)
c
(

L1 l3

0 0

∣∣∣ L2

0

)
c
(

L1 l3

ML1
ml3

∣∣∣ L2

ML2

)

×c
(

l ′1 l ′2

0 0

∣∣∣ L′
1

0

)
c

(
l ′1 l ′2

m′
l1

m′
l2

∣∣∣∣
L′

1

M′
L1

)
c
(

L′
1 l ′3

0 0

∣∣∣ L2

0

)
c

(
L′

1 l ′3

M′
L1

m′
l3

∣∣∣ L2

ML2

)
. (5.7)

Hence, the calculation of the angular integral is reduced to six summations over a

number of Clebsch-Gordan coefficients.

For the complete matrix element we have to include spin and isospin degrees of

freedom. As the three-body contact interaction only acts in coordinate space, the

evaluation of matrix elements simply yields Kronecker deltas for the spin and isospin

projection quantum numbers ms and mt , respectively:

〈n1l1ml1ms1mt1 , n2l2ml2ms2mt2 , n3l3ml3ms3mt3 |
× V3N|n′

1l
′
1m

′
l1
m′

s1
m′

t1
, n′

2l
′
2m

′
l2
m′

s2
m′

t2
, n′

3l
′
3m

′
l3
m′

s3
m′

t3
〉

= 〈n1l1ml1 , n2l2ml2, n3l3ml3 |V3N|n′
1l

′
1m

′
l1
, n′

2l
′
2m

′
l2
, n′

3l
′
3m

′
l3
〉

× δms1m′
s1
δms2m′

s2
δms3m′

s3
δmt1m′

t1
δmt2m′

t2
δmt3m′

t3
. (5.8)
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For brevity, we have omitted the quantum numbers s = 1
2

and t = 1
2

for spin and

isospin, respectively.

For the practical application of the three-body interaction in various many-body

methods, the single-particle angular momenta li and spins si have to be coupled to

total single-particle angular momenta ji . This is achieved by inserting a number of

Clebsch-Gordan coefficients yielding the j-coupled three-body matrix elements

〈n1l1j1m1mt1 , n2l2j2m2mt2 , n3l3j3m3mt3 |
×V3N|n′

1l
′
1j

′
1m

′
1m

′
t1
, n′

2l
′
2j

′
2m

′
2m

′
t2
, n′

3l
′
3j

′
3m

′
3m

′
t3
〉

=
∑

ml1
...m′

l3
ms1 ...m′

s3

c
(

l1
1
2

ml1
ms1

∣∣∣ j1
m1

)
c
(

l2
1
2

ml2
ms2

∣∣∣ j2
m2

)
c
(

l3
1
2

ml3
ms3

∣∣∣ j3
m3

)

×c

(
l ′1

1
2

m′
l1

m′
s1

∣∣∣ j ′1

m′
1

)
c

(
l ′2

1
2

m′
l2

m′
s2

∣∣∣ j ′2

m′
2

)
c

(
l ′3

1
2

m′
l3

m′
s3

∣∣∣ j ′3

m′
3

)

×〈n1l1ml1ms1mt1 , n2l2ml2ms2mt2 , n3l3ml3ms3mt3 |
×V3N|n′

1l
′
1m

′
l1
m′

s1
m′

t1
, n′

2l
′
2m

′
l2
m′

s2
m′

t2
, n′

3l
′
3m

′
l3
m′

s3
m′

t3
〉

=
∑

ml1
...m′

l3
ms1 ...m′

s3

c
(

l1
1
2

ml1
ms1

∣∣∣ j1
m1

)
c
(

l2
1
2

ml2
ms2

∣∣∣ j2
m2

)
c
(

l3
1
2

ml3
ms3

∣∣∣ j3
m3

)

×c

(
l ′1

1
2

m′
l1

m′
s1

∣∣∣ j ′1

m′
1

)
c

(
l ′2

1
2

m′
l2

m′
s2

∣∣∣ j ′2

m′
2

)
c

(
l ′3

1
2

m′
l3

m′
s3

∣∣∣ j ′3

m′
3

)

×C3N

∫
dx x2Rn1l1(x)Rn2l2(x)Rn3l3(x)Rn′1l

′
1
(x)Rn′2l

′
2
(x)Rn′3l

′
3
(x)

× 1

16π2

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l ′1 + 1)(2l ′2 + 1)(2l ′3 + 1)

×
∑

L1L2L′
1

ML1
ML2

M′
L1

1

(2L2 + 1)
c
(

l1 l2

0 0

∣∣∣ L1

0

)
c
(

L1 l3

0 0

∣∣∣ L2

0

)
c
(

l ′1 l ′2

0 0

∣∣∣ L′
1

0

)
c
(

L′
1 l ′3

0 0

∣∣∣ L2

0

)

×c
(

l1 l2
ml1

ml2

∣∣∣ L1

ML1

)
c
(

L1 l3

ML1
ml3

∣∣∣ L2

ML2

)
c

(
l ′1 l ′2

m′
l1

m′
l2

∣∣∣∣
L′

1

M′
L1

)
c

(
L′

1 l ′3

M′
L1

m′
l3

∣∣∣ L2

ML2

)

×δms1m′
s1
δms2m′

s2
δms3m′

s3
δmt1m′

t1
δmt2m′

t2
δmt3m′

t3
. (5.9)

For an efficient calculation of the three-body matrix elements it is advantageous to

evaluate as many as possible of these 18 sums analytically. Therefore, one can evaluate

the Kronecker deltas and exploit the condition m1 + m2 = M in the Clebsch-Gordan
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coefficients c
(

j1 j2
m1 m2

∣∣ J

M

)
. Thus, 12 sums can be eliminated:

〈n1l1j1m1mt1 , n2l2j2m2mt2 , n3l3j3m3mt3 |
×V3N|n′

1l
′
1j

′
1m

′
1m

′
t1
, n′

2l
′
2j

′
2m

′
2m

′
t2
, n′

3l
′
3j

′
3m

′
3m

′
t3
〉

= C3Nδmt1m′
t1
δmt2m′

t2
δmt3m′

t3

× 1

16π2

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l ′1 + 1)(2l ′2 + 1)(2l ′3 + 1)

×
∫

dx x2Rn1l1(x)Rn2l2(x)Rn3l3(x)Rn′1l
′
1
(x)Rn′2l

′
2
(x)Rn′3l

′
3
(x)

×
∑

ms1ms2ms3

c
(

l1
1
2

m1−ms1 ms1

∣∣∣ j1
m1

)
c
(

l2
1
2

m2−ms2 ms2

∣∣∣ j2
m2

)
c
(

l3
1
2

m3−ms3 ms3

∣∣∣ j3
m3

)

×c
(

l ′1
1
2

m′
1−ms1 ms1

∣∣∣ j ′1

m′
1

)
c
(

l ′2
1
2

m′
2−ms2 ms2

∣∣∣ j ′2

m′
2

)
c
(

l ′3
1
2

m′
3−ms3 ms3

∣∣∣ j ′3

m′
3

)

×
∑

L1L2L
′
1

1

(2L2 + 1)
c
(

l1 l2

0 0

∣∣∣ L1

0

)
c
(

L1 l3

0 0

∣∣∣ L2

0

)
c
(

l ′1 l ′2

0 0

∣∣∣ L′
1

0

)
c
(

L′
1 l ′3

0 0

∣∣∣ L2

0

)

×c
(

l1 l2

m1−ms1 m2−ms2

∣∣∣ L1

ML1

)
c
(

L1 l3

ML1
m3−ms3

∣∣∣ L2

ML2

)

×c

(
l ′1 l ′2

m′
1−ms1 m′

2−ms2

∣∣∣∣
L′

1

M′
L1

)
c

(
L′

1 l ′3

M′
L1

m′
3−ms3

∣∣∣ L2

ML2

)
, (5.10)

where the following conditions must be fulfilled:

ML1
= m1 + m2 − ms1 − ms2 ,

ML2
= m1 + m2 + m3 − ms1 − ms2 − ms3

= m′
1 + m′

2 + m′
3 − ms1 − ms2 − ms3 ,

M ′
L1

= m′
1 + m′

2 − ms1 − ms2 .

(5.11)

Finally, these matrix elements have to be antisymmetrized explicitly.

In order to facilitate calculations in large model spaces, the radial integrals (see

Eq. (5.5)) as well as the angular integrals (5.7) are precomputed and stored. The

inclusion of the spin and isospin quantum numbers, the j-coupling and the antisym-

metrization are then done on the fly during the many-body calculation [19].

The calculation of these matrix elements is simple compared to more general three-

body forces. But a pure contact interaction is not of physical character and leads to

difficulties, e.g. in the framework of many-body perturbation theory [27]. Hence,

a regularization of the three-body interaction is inevitable. As we want to preserve

the simplicity of the matrix element calculation, momentum-space cut-offs are out of
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question. Instead, we introduce an energy cut-off parameter e3N which is defined via

(2n1 + l1) + (2n2 + l2) + (2n3 + l3) ≤ e3N as an upper limit for the total oscillator

energy of the three-particle state [19]. This cut-off is implemented consistently for all

calculations.

5.2 Ground-State Energies and Charge Radii

For first investigations the regularized contact interaction is included in Hartree-Fock

calculations. We consider the same set of closed-shell nuclei as in Chapter 3 with the

same oscillator parameters. To obtain converged HF results it is sufficient to include 11

major oscillator shells. In the following, the parameters of the three-body interaction,

i.e. the strength C3N and the cut-off e3N, have to be determined. In addition, the flow

parameters of the different two-body interactions have to be adjusted. The strength

of the three-body interaction will be chosen such that the experimental charge radii

are reproduced while the flow parameter is used to adjust the ground-state energies as

the dependence of the charge radii on the flow parameter is weak.

We consider the same types of two-body interactions as in Chapter 3, i.e. the

UCOM(SRG) and the S-UCOM(SRG) interactions as well as the SRG and the S-SRG

interactions.

In Figure 5.1 the ground-state energies per nucleon (upper panel) and the charge

radii (lower panel) for the S-UCOM(SRG) interaction using the flow parameter α =

0.16 fm4 and different three-body strengths C3N are shown. The systematics of the ex-

perimental ground-state energies is reproduced by all considered two- plus three-body

interactions except for an almost constant shift. The considered nuclei are under-

bound by about 2.5 to 3.5 MeV per nucleon for the weakest three-body force up to

3.5 to 4.5 MeV per nucleon for the strongest one, since the three-body interaction

is purely repulsive and, therefore, reduces the binding energies. As in case of pure

two-body interactions this discrepancy can be reduced by including the effect of long-

range correlations via many-body perturbation theory (cf. Sec. 5.4). The charge radii

also increase with increasing three-body strength which is again due to the repulsive

character of the three-body interaction pushing the nucleons apart. For the strongest

three-body interaction the experimental radii are almost perfectly reproduced. How-

ever, we will choose the intermediate value C3N = 2.2 GeV fm6 as we have to keep in

mind that minor corrections to the charge radii emerge from many-body perturbation

theory although they are not calculated here. Furthermore, we have not transformed

the corresponding operator, which would also result in minor corrections.
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Figure 5.1: Ground-state energies per nucleon and charge radii of selected closed-shell nuclei

resulting from HF calculations for the S-UCOM(SRG) interaction with α = 0.16 fm4, emax =

10, e3N = 20, and different three-body strengths: (●) C3N = 1.6 GeV fm6, (�) C3N =

2.2 GeV fm6, ( �) C3N = 2.8 GeV fm6. The bars indicate the experimental values [30, 31].

The dependencies on the strength of the three-body interaction are similar for all

four two-body interactions. Therefore, they are not all shown here but can be found

in Appendix E. The optimal values for the strengths of the three-body interactions

supplementing the two-body interactions are: C3N = 1.6 GeV fm6 for the UCOM(SRG)

interaction, C3N = 4.3 GeV fm6 for the SRG interaction, and C3N = 2.0 GeV fm6 for

the S-SRG interaction (cf. Tab. 5.1). The three-body strengths for the UCOM(SRG),

S-UCOM(SRG) and S-SRG interactions are in the same range while the three-body

force supplementing the SRG interaction has to be significantly stronger in order to

compensate the strong overbinding and the significantly smaller charge radii observed

in Section 3.2 (Fig. 3.3).

Next, we investigate the dependence of the two- plus three-body interactions on

the flow parameter. Figures 5.2 and 5.3 show the ground-state energies per nucleon

and the charge radii for the UCOM(SRG) interaction with C3N = 1.6 GeV fm6 and

the S-UCOM(SRG) interaction with C3N = 2.2 GeV fm6, for different values of the

flow parameter. In both cases, the ground-state energies decrease with increasing flow

parameter. The step from the smallest flow parameter α = 0.04 fm4 to α = 0.12 fm4 is

connected with a substantial gain of binding energy while going further to α = 0.16 fm4

leads only to slightly stronger bound nuclei. In contrast, the charge radii are almost
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Figure 5.2: Ground-state energies per nucleon and charge radii of selected closed-shell nuclei

resulting from HF calculations for the UCOM(SRG) interaction with emax = 10, C3N =

1.6 GeV fm6, e3N = 20, and different flow parameters: (●) α = 0.04 fm4, (�) α = 0.12 fm4,

( �) α = 0.16 fm4. The bars indicate the experimental values [30, 31].
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Figure 5.3: Same as in Figure 5.2 for the S-UCOM(SRG) interaction with emax = 10,

C3N = 2.2 GeV fm6, e3N = 20, and (●) α = 0.04 fm4, (�) α = 0.12 fm4, ( �) α = 0.16 fm4.
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Figure 5.4: Same as in Figure 5.2 for the SRG interaction with emax = 10, C3N = 4.3 GeV fm6,

e3N = 20, and (●) α = 0.03 fm4, (�) α = 0.06 fm4, ( �) α = 0.10 fm4.
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Figure 5.5: Same as in Figure 5.2 for the S-SRG interaction with emax = 10, C3N =

2.0 GeV fm6, e3N = 20, and (●) α = 0.03 fm4, (�) α = 0.06 fm4, ( �) α = 0.10 fm4.
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α C3N

[ fm4] [ GeV fm6]

UCOM(SRG) 0.16 1.6

S-UCOM(SRG) 0.16 2.2

SRG 0.10 4.3

S-SRG 0.10 2.0

Table 5.1: Optimal parameter sets for the different two- plus three-body interactions.

independent of the flow parameter considering the UCOM(SRG) interaction. In case of

the S-UCOM(SRG) interaction the charge radii slightly decrease with increasing flow

parameter.

The energies and radii calculated with the SRG interaction with C3N = 4.3 GeV fm6

(Fig. 5.4) and the S-SRG interaction with C3N = 2.0 GeV fm6 (Fig. 5.5) show a similar

behavior. Increasing the flow parameter leads to a significant lowering of the ground-

state energies and a slight decrease of the charge radii.

For the following calculations we will use the largest flow parameters, i.e. α =

0.16 fm4 for the UCOM(SRG) and the S-UCOM(SRG) interactions and α = 0.10 fm4

for the SRG and the S-SRG interactions. The complete optimal parameter sets are

listed in Table 5.1.

Finally, in Figure 5.6 are compared the four combinations of two- plus three-body

interactions that will be employed in the following. The charge radii of all four in-

teractions are almost identical and reproduce nicely the experimental data while the

ground-state energies show some small differences. The remaining difference to the

experimental ground-state energies will be covered by including the second-order per-

turbative corrections (Sec. 5.4).

5.3 Single-Particle Spectra

In this section, single-particle spectra resulting from the HF calculations are investi-

gated. We compare the four two- plus three-body interactions discussed in the previous

section using the parameters listed in Table 5.1. The harmonic-oscillator basis is again

truncated at emax = 10 and the three-body cut-off is set to e3N = 20.

Figure 5.7 shows the corrected single-particle energies of 40Ca for the four interac-

tions compared to data extracted from experiment. For the UCOM(SRG) interaction

the order of the 1s1/2 and the 0p3/2 levels is interchanged but all other level orderings
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Figure 5.6: Ground-state energies per nucleon and charge radii of selected closed-shell nuclei

resulting from HF calculations for different two- plus three-body interactions with emax =

10, e3N = 20: (●) UCOM(SRG), α = 0.16 fm4, C3N = 1.6 GeV fm6; (�) S-UCOM(SRG),

α = 0.16 fm4, C3N = 2.2 GeV fm6; ( �) SRG, α = 0.10 fm4, C3N = 4.3 GeV fm6; (N) S-SRG,

α = 0.10 fm4, C3N = 2.0 GeV fm6. The bars indicate the experimental values [30, 31].

are nicely reproduced. Furthermore, the level spacings are in reasonable agreement

with experiment. There are only minor differences between the spectra calculated with

the four different interactions, especially the overestimated level spacings observed for

the two-body SRG interaction (cf. Sec. 3.3) are compensated by the inclusion of the

appropriate three-body contact interaction.

The single-particle spectra of 90Zr (Fig. 5.8) are in reasonable agreement with

experiment as well. But for the UCOM(SRG) interaction one observes a collapse of level

spacings at several points. Furthermore, considering the single-particle spectra of 60Ni

(Fig. 5.9) reveals, in addition to collapsed level spacings, that for all four interactions

the order of occupied and unoccupied states with respect to the HF ground-state is

interchanged at least once. At this point one has to be extremely careful when applying

many-body perturbation theory to these nuclei. In the formula for the second-order

energy correction the difference of single-particle energies enters in the denominator

(Eq. (3.34)). The interchange of occupied and unoccupied levels might lead to a

sign change of the term while collapsed level spacings might yield divergent terms.

Both effects invalidate the perturbative energy corrections. For most of the heavier

nuclei the corresponding single-particle spectra exhibit at least one of the effects, i.e.
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Figure 5.7: Single-particle spectra of 40Ca for the different two- plus three-body interac-

tions with emax = 10, e3N = 20: (1) UCOM(SRG), α = 0.16 fm4, C3N = 1.6 GeV fm6;

(2) S-UCOM(SRG), α = 0.16 fm4, C3N = 2.2 GeV fm6; (3) SRG, α = 0.10 fm4, C3N =

4.3 GeV fm6; (4) S-SRG, α = 0.10 fm4, C3N = 2.0 GeV fm6; compared to experimental

data [32]. Solid and dashed lines indicate occupied and unoccupied states of the HF so-

lutions, respectively.
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Figure 5.8: Single-particle spectra of 90Zr for the same interactions used in Figure 5.7.

Experimental data taken from Refs. [33, 34].

93



Chapter 5 · Three-Body Contact Interaction

d3�2
d5�2

s1�2

f7�2
f5�2

p1�2
p3�2

d3�2
d5�2

s1�2

f7�2
f5�2

p1�2
p3�2

-30

-20

-10

0

.

εc
or

r
[M

eV
]

protons neutrons

(1) (2) (3) (4) (1) (2) (3) (4)

60Ni

Figure 5.9: Single-particle spectra of 60Ni for the same interactions used in Figure 5.7.

a collapse of level spacings and/or the interchange of occupied and unoccupied levels.

A procedure to deal with divergent terms in the second-order energy correction in

MBPT discussed in Section 3.5 will be used in the following.

5.4 Perturbative Energy Corrections

After the study of different observables on the Hartree-Fock level we will now investi-

gate the impact of long-range correlations by applying many-body perturbation theory

on top of the HF results. As a reminder, the second-order energy correction for two-

plus three-body interactions (Eq. (3.34)) is repeated:

E
(2)
0 =

1

4

<εF∑

hh′

>εF∑

pp′

∣∣∣∣∣
〈
hh′∣∣H(2)

int

∣∣pp′ 〉+
<εF∑
h̄

〈
hh′h̄

∣∣V3N

∣∣pp′h̄
〉
∣∣∣∣∣

2

εh + εh′ − εp − εp′

+
1

36

<εF∑

hh′h′′

>εF∑

pp′p′′

|
〈
hh′h′′∣∣V3N

∣∣pp′p′′ 〉 |2
εh + εh′ + εh′′ − εp − εp′ − εp′′

.

(5.12)

The inclusion of a three-body interaction entails two additional terms compared to the

expression for a pure two-body interaction [19]. The matrix elements of the two-body
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Figure 5.10: Contributions to the ground-state energy resulting from HF plus MBPT

based on the S-UCOM(SRG) interaction for α = 0.16 fm4, C3N = 2.2 GeV fm6, emax =

10 in dependence of the cut-off parameter e3N: (●) HF, (�) HF+MBPT(2b), ( �)

HF+MBPT(2b+3bpphh), (N) HF+MBPT(2b+3b).
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Figure 5.11: Same as in Figure 5.10 for the S-SRG interaction with α = 0.10 fm4, C3N =

2.0 GeV fm6, emax = 10.

Hamiltonian involving 2p2h excitations are supplemented by an expression that results

from a contraction of the third particle index in the three-body matrix elements. The

second additional term results from 3p3h excitations involving the pure three-body

interaction.

In order to disentangle the effects of these different contributions we introduce

three variants of MBPT in the following. The contribution of the two-body Hamilto-

nian, labeled MBPT(2b), provides the starting point. In the next step, the expression

emerging from 2p2h excitations of the three-body interaction is added, i.e. the com-
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Figure 5.12: Same as in Figure 5.10 for the SRG interaction with α = 0.10 fm4, C3N =

4.3 GeV fm6, emax = 10. Note the different energy scale.

plete first term, labeled MBPT(2b+3bpphh). Finally, MBPT(2b+3b) indicates the full

expression (5.12). Thus, the difference between MBPT(2b) and MBPT(2b+3bpphh)

indicates the amount of energy correction emerging from the three-body interaction

involving 2p2h excitations, while the step from MBPT(2b+3bpphh) to MBPT(2b+3b)

contains the energy gain due to the 3p3h excitations generated by the three-body in-

teraction. Obviously, the difference between MBPT(2b) and MBPT(2b+3b) reveals

the overall influence of the three-body interaction.

The different energy contributions are considered exemplarily for the three nuclei
4He, 16O and 40Ca as a function of the three-body cut-off e3N. The ground-state

energies resulting from HF, MBPT(2b), MBPT(2b+3bpphh) and MBPT(2b+3b) are

shown in Figure 5.10 for the S-UCOM(SRG) interaction with α = 0.16 fm4 and C3N =

2.2 MeV fm6, and in Figure 5.11 for the S-SRG interaction with α = 0.10 fm4 and

C3N = 2.0 MeV fm6. The results are very similar for both interactions. Above e3N = 10

the HF energies are independent of the cut-off, which confirms that the choice of

e3N = 20 for the previous calculations is justified.

The inclusion of the energy correction emerging from the two-body Hamiltonian

(MBPT(2b)) results in a lowering of the ground-state energies of about 1 MeV per

nucleon for 4He and about 2.5 MeV for 16O and 40Ca. This correction has to be

almost constant with respect to the cut-off parameter as the two-body Hamiltonian

is independent of the cut-off, this term is affected only indirectly via high-lying HF

single-particle states. As seen in Figures 5.10 and 5.11 the HF+MBPT(2b) energies

essentially depend on e3N via the HF energy, confirming the above consideration.

The energy corrections involving the three-body interaction directly depend on the
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cut-off parameter, because the sums over particle states above the Fermi energy probe

the high-lying matrix elements. Compared to MBPT(2b), MBPT(2b+3bpphh) can

change the ground-state energy in either direction. In contrast, including also the term

containing 3p3h excitations, i.e. MBPT(2b+3b) compared to MBPT(2b+3bpphh),

one always arrives at a lowering of the energy as can be seen in Equation (5.12).

For all three nuclei, the step from MBPT(2b) to MBPT(2b+3b) results in a slight

increase of the ground-state energies for the smallest values of the cut-off parameter

for both the S-UCOM(SRG) and the S-SRG interaction. Considering 4He, increasing

the cut-off leads to a significant gain of binding energy of about 2 MeV for the S-

UCOM(SRG) interaction and about 1.5 MeV for the S-SRG interaction, where the

main contribution results from the matrix elements involving 3p3h excitations. In

contrast, comparing MBPT(2b+3b) to MBPT(2b) for 16O and 40Ca reveals that the

ground-state energy is slightly increased for small values of the cut-off, but remains

almost unchanged for larger values. These calculations were done in a model space

with emax = 10. If the cut-off is further increased beyond e3N ≥ 3emax = 30 all energies

will become independent of this cut-off.

Figures 5.10 and 5.11 already indicate the systematics of the MBPT(2b+3b) cor-

rections: For most nuclei the contribution emerging from the three-body interaction

compared to the full energy correction is small particularly when compared to other

uncertainties, e.g. the convergence with respect to the model space (cf. Figs. 5.16 and

5.17). Therefore, and due to the fact that the calculation of the full MBPT(2b+3b) is

currently not feasible for heavy nuclei, we will consider only MBPT(2b) using e3N = 20

for the following calculations. This restriction allows us to estimate the perturbative

corrections up to 208Pb. However, one has to keep in mind that the full second-order

correction MBPT(2b+3b) leads to significant lowering of the ground-state energy com-

pared to MBPT(2b) for very light nuclei, i.e. 4He, which improves the agreement with

experiment (cf. Figs. 5.16 and 5.17).

For the UCOM(SRG) interaction we obtain similar results, therefore, they are not

shown here. For the SRG interaction, however, the picture is somewhat different,

which is demonstrated in Figure 5.12. Including the second-order energy corrections

emerging from the three-body interaction (MBPT(2b+3b)) leads to a substantial en-

ergy gain for larger values of the cut-off e3N compared to MBPT(2b) for all nuclei.

For 4He this results in an overbinding. But also for the other nuclei the influence of

the three-body interaction on the second-order energy corrections is not negligible.

Nonetheless, we will only consider MBPT(2b) as the calculation of MBPT(2b+3b) is

not feasible for heavier nuclei, where we have to keep in mind the observed importance

of MBPT(2b+3b).
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Figure 5.13: Ground-state energies per nucleon based on the S-UCOM(SRG) interaction

for α = 0.16 fm4, emax = 10, e3N = 20, and different three-body strengths: (●,❍) C3N =

1.6 GeV fm6, (�,�) C3N = 2.2 GeV fm6, ( �, �) C3N = 2.8 GeV fm6. Filled symbols indicate the

HF energies, open symbols include the MBPT corrections. The bars indicate the experimental

values [30].

The dependence of the MBPT(2b) energy corrections on the strength of the three-

body interaction, the flow parameter and the model space size will be discussed in the

following. Figure 5.13 shows the dependence of the perturbative energy corrections

on the strength of the three-body interaction for the S-UCOM(SRG) interaction with

α = 0.16 fm4. The inclusion of long-range correlations via MBPT leads to a substantial

lowering of the ground-state energies across the whole nuclear chart. The energy gain

per nucleon with increasing three-body strength is almost constant for all considered

nuclei. For the heaviest nuclei the energy gain is slightly smaller, which can be explained

by the model space size being not sufficiently large to obtain fully converged results.

Furthermore, the perturbative correction for 4He is small compared to the neighboring

nuclei. But for this nucleus it was shown that the perturbative corrections emerging

from the three-body interaction have a significant effect and their inclusion would yield

a further lowering of the ground-state energy. Enhancing the repulsion of the three-

body interaction leads to an increase of the HF ground-state energies as well as the

HF+MBPT(2b) energies. The amount of energy gain is constant for the different

three-body strengths. As they reveal no further insight, the corresponding figures for

the UCOM(SRG), SRG and S-SRG interactions are only shown in Appendix E.

In order to emphasize the differences in the dependencies on the flow parameter,

the corresponding results are shown for all four interactions in Figures 5.14 and 5.15. In

all cases the MBPT(2b) ground-state energies per nucleon are lowered with increasing

flow parameter and differ by about 0.5 to 1 MeV from experiment in case of the larger

value. Thus, choosing the larger flow parameters, i.e. α = 0.16 fm4 for UCOM(SRG)

and S-UCOM(SRG) as well as α = 0.10 fm4 for SRG and S-SRG (cf. Tab. 5.1),
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Figure 5.14: Ground-state energies per nucleon based on the UCOM(SRG) interaction

with C3N = 1.6 GeV fm6 (upper panel) and the S-UCOM(SRG) interaction with C3N =

2.2 GeV fm6 (lower panel) for emax = 10, e3N = 20, and different flow parameters: (�,�)

α = 0.12 fm4, ( �, �) α = 0.16 fm4. Filled symbols indicate the HF energies, open symbols

include the MBPT corrections. The bars indicate the experimental values [30].
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Figure 5.15: Same as in Figure 5.14 for the SRG with C3N = 4.3 GeV fm6 (upper panel) and

the S-SRG interaction with C3N = 2.0 GeV fm6 (lower panel) with emax = 10, e3N = 20, and

(�,�) α = 0.06 fm4, ( �, �) α = 0.10 fm4.
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Figure 5.16: Ground-state energies per nucleon based on the UCOM(SRG) interaction

with C3N = 1.6 GeV fm6 (upper panel) and the S-UCOM(SRG) interaction with C3N =

2.2 GeV fm6 (lower panel) for α = 0.16 fm4, e3N = 20 and different basis sizes: (●,❍)

emax = 10; (�,�) emax = 12, lmax = 10; ( �, �) emax = 14, lmax = 10. Filled symbols

indicate the HF energies, open symbols include the MBPT corrections. The bars indicate

the experimental values [30].
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Figure 5.17: Same as in Figure 5.16 for the SRG interaction with C3N = 4.3 GeV fm6 (upper

panel) and the S-SRG interaction with C3N = 2.0 GeV fm6 (lower panel) with α = 0.10 fm4,

e3N = 20 and (●,❍) emax = 10; (�,�) emax = 12, lmax = 10; ( �, �) emax = 14, lmax = 10.
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for further investigations seems appropriate. As already observed on the basis of pure

two-body interactions the perturbative energy corrections decrease with increasing flow

parameter. In contrast to the results obtained with the pure two-body interactions,

the respective three-body interaction compensates for the overbinding observed for the

larger values of the flow parameter (cf. Sec. 3.5, especially Figures 3.9 and 3.10).

Finally, the convergence of the MBPT(2b) energies is examined by increasing the

model space size in Figures 5.16 and 5.17. For the UCOM(SRG), the S-UCOM(SRG)

and the S-SRG interactions with the appropriate three-body interactions the MBPT

energies are not yet converged, even for the largest basis size. But as the considered

nuclei are still slightly underbound an extrapolation to infinite basis sizes would result

in a reasonable agreement with the experimental ground-state energies. However, one

has to keep in mind that the second-order perturbative energy corrections only serve

as an estimate as already discussed in Section 3.5. The picture is somewhat different

for the SRG interaction where the MBPT(2b) energies are converged, but still exhibit

a significant difference to experiment, especially for the light and intermediate nuclei.

But for this interaction we have demonstrated in Figure 5.12 that the influence of

the energy corrections emerging from the three-body interaction is significantly larger.

Therefore, including these terms would improve the agreement with the experimental

ground-state energies.
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Chapter 6

Few-Body Calculations

In the previous chapters we have used the Hartree-Fock method and many-body per-

turbation theory, which both aim at an approximate solution of the nuclear many-body

problem. We will now focus on an exact solution in the famework of the No-Core Shell

Model (NCSM). We will briefly introduce the NCSM in Section 6.1 and calculate the
4He ground-state energy in Section 6.2.

6.1 The No-Core Shell Model

The No-Core Shell Model [12, 43] aims at an exact numerical solution of the nuclear

eigenvalue problem

H|Ψn〉 = En|Ψn〉 , (6.1)

where we again use the Hamiltonian

H = Tint + VNN + V3N (6.2)

consisting of the intrinsic kinetic energy Tint, the two-nucleon interaction VNN, and the

three-nucleon interaction V3N. The eigenvalue problem is solved by diagonalizing the

Hamilton matrix. Therefore, we have to choose a many-body basis, which is given by

Slater determinants |Φν〉 built of single-particle harmonic-oscillator eigenstates. The

eigenstates of the Hamiltonian are expanded in these Slater determinants:

|Ψn〉 =
∑

ν

C n
ν |Φν〉 . (6.3)
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As the number of Slater determinants is infinite one has to truncate the many-body

basis to obtain a tractable eigenvalue problem in a finite model space. This is achieved

by restricting the maximum number of harmonic-oscillator excitation quanta Nmax

with respect to the configuration with the lowest possible energy. The specific choice

of the basis and the corresponding truncation guarantee that the eigenstates of the

Hamiltonian are free of spurious center-of-mass contaminations. Furthermore, the

NCSM follows the variational principle, i.e. the energies converge monotonically from

above towards the exact value.

The NCSM is a powerful tool to investigate the properties of the applied interactions

regarding convergence behavior as well as the agreement of calculated observables with

experimental data. However, the model space sizes required to obtain converged results

increase factorially with the number of nucleons, which restricts the applicability to light

nuclei.

6.2 4He Ground-State Energy

We use the No-Core Shell Model to calculate the ground-state energy of 4He. The

oscillator frequency defining the single-particle harmonic-oscillator basis is set to ~Ω =

28 MeV.

In Figure 6.1 we display the 4He ground-state energy calculated on the basis of the

S-UCOM(SRG) interaction with α = 0.16 fm4 as function of the model space size Nmax

for different values of the three-body strength C3N. In these calculations the three-body

cut-off e3N is larger than the model space size Nmax, i.e. the results are independent of

the three-body cut-off. As expected the energies slightly increase with increasing three-

body strength. For the calculations including the three-body interaction the largest

model space is not sufficient to obtain fully converged results. For comparison the

energies obtained with the pure two-body interaction using the same flow parameter

are shown, which can be performed in larger model spaces and which show a similar

convergence behavior. Thus, the convergence behavior of the energies obtained with

the three-body interaction can be deduced from the results obtained with the pure

two-body interaction. Moreover, an extrapolation towards infinite model spaces based

on the values obtained in the largest three model spaces (Nmax = 6, 8, 10) is carried

out, the resulting values are indicated by horizontal lines. Even the weakest three-body

interaction leads to underbinding of 1.1 MeV. In the framework of the Hartree-Fock

approximation (cf. Sec. 5.2, Tab. 5.1) we have seen, that the charge radii are best

reproduced using C3N = 2.2 GeV fm6. But the difference between the respective 4He
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Figure 6.1: Ground-state energy of 4He as function of the model space size based on the S-

UCOM(SRG) interaction with α = 0.16 fm4, emax = 12, and different three-body strengths:

(�) C3N = 2.0 GeV fm6, ( �) C3N = 2.2 GeV fm6, (N) C3N = 2.4 GeV fm6. The horizontal

lines indicate the corresponding energies obtained by extrapolating Nmax → ∞. For compar-

ison the results obtained with the pure two-body interaction (●) as well as the experimental

value [30] ( ) are shown.

ground-state energies is only 120 keV. Adding the second-order perturbative energy

correction resulting from the full two- plus three-body interaction to the HF ground-

state energy, one arrives at an overbinding of 1.1 MeV. Thus, the difference to the

experimental 4He ground-state energy is the same in the framework of the NCSM and

HF plus MBPT, but the NCSM leads to an underbinding while HF plus MBPT yields

an overbinding of 4He.

Figure 6.2 shows the corresponding results obtained with the S-SRG interaction

using α = 0.10 fm4. The energies show a similar behavior as observed for the S-

UCOM(SRG) interaction except that they show a slightly faster convergence resulting

in a larger deviation from the experimental value of 1.9 MeV for the weakest three-

body interaction. In this case, the values obtained in the three largest model spaces

do not exhibit an exponential convergence behavior. Therefore, the extrapolation

was performed using four energies (Nmax = 4, 6, 8, 10). The 4He ground-state energy

obtained from HF plus MBPT differs only slightly from the experimental energy, i.e.

including the full two- plus three-body second-order energy correction leads to an
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Figure 6.2: Same as in Figure 6.1 for the S-SRG interaction with α = 0.10 fm4, emax =

12, and (�) C3N = 2.0 GeV fm6, ( �) C3N = 2.2 GeV fm6, (N) C3N = 2.4 GeV fm6. For

comparison: (●) pure two-body interaction, ( ) experiment [30].

overbinding of 130 keV.

For a consistent study one would also have to investigate the dependencies of the
4He ground-state energy on the flow parameter α and the oscillator frequency Ω, where

the dependence on the oscillator frequency is expected to be weak [10].

In summary, the 4He ground-state energies obtained with the three-body contact

interaction differ from the experimental value by 1 to 2 MeV, which is a promising

result but still leaves room for improvement. In principle, it is possible to choose the

parameters such that the experimental 4He ground-state energy is reproduced, but

obviously this would also change the results for the charge radii on the basis of the HF

approximation.
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Collective Excitations

In the previous chapters we have studied ground-state properties of nuclei across the

whole nuclear chart. In this chapter we will focus on excited states, particularly collec-

tive excitations. On the one hand the investigation of collective excitations provides

valuable information about the underlying interaction. On the other hand, a detailed

knowledge especially of giant resonances provides information on properties of nuclear

matter and is important for various applications, e.g. in nuclear astrophysics for the

understanding of supernovae. A suitable method for the investigation of collective

excitation modes is the Random Phase Approximation (RPA) based self-consistently

on a Hartree-Fock calculation. The general RPA equations are derived in Appendix C.

In the following we will outline the RPA on the basis of unitarily transformed two-body

interactions in Section 7.1, where the three-body contact interaction is replaced by a

density-dependent two-body interaction. After introducing multipole transition oper-

ators in Section 7.2, we will discuss the energy-weighted sum rules in Section 7.3 to

ensure the proper implementation of the RPA. Finally, the response functions obtained

for three different excitation modes will be investigated in detail in Section 7.4.

7.1 Random Phase Approximation

The Random Phase Approximation is based on Hartree-Fock single-particle states.

Therefore, as in the HF method, we would prefer to use the intrinsic Hamiltonian Hint

containing the intrinsic kinetic energy Tint = T − Tcm, the unitarily transformed two-

body interaction VNN as well as the phenomenological three-body interaction V3N. The
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inclusion of the full three-body interaction in RPA calculations is, however, very time-

extensive. Fortunately, for Hartree-Fock calculations of even-even nuclei the three-

body contact interaction (without regularization) is equivalent to a density-dependent

two-body interaction [44, 45]

VNN[̺] =
C3N

6
(1 + Pσ) ̺

(
r1 + r2

2

)
δ(3)(r1 − r2) (7.1)

with the spin-exchange operator Pσ. This equivalence holds also for RPA [46]. The

Hamiltonian thus reads

Hint = Tint + VNN + VNN[̺] . (7.2)

Note, that for the HF calculations providing the basis for RPA the density-dependent

two-body interaction is employed instead of the three-body contact interaction for

consistency. The only difference is that in this way the three-body interaction enters

without the cut-off e3N in the HF method. In the following we will refer to the three-

body interaction although it is technically included as density-dependent two-body

interaction.

As already in the previous chapters, we will restrict our studies to spherically sym-

metric nuclei so that the single-particle angular momenta can be coupled to good total

angular momentum J indicating the multipolarity of the respective collective state.

The excited states are generated by the operators Q†
ν,JM (cf. Eq. (C.2)):

Q†
ν,JM |Ψ0〉 = |Ψν〉 , Qν,JM |Ψ0〉 = 0 (7.3)

with the RPA ground-state |Ψ0〉 = |RPA〉. The excitation operators are formulated in

the coupled representation [47, 48]

Q†
ν,JM =

∑

ph

(X ν,JM
ph AJ,M†

ph − (−1)J−MY ν,JM
ph AJ,−M

ph ) , (7.4)

where the summation includes all particle-hole (ph) excitations of the HF ground-state,

and

AJ,M†

ph =
∑

mpmh

c
(

jp jh
mp mh

∣∣ J

M

)
(−1)jh−mh a†jpmp

ajhmh
(7.5)

represents the ph-creation operator built of the single-particle creation and annihilation

operators a†jm and ajm, respectively. The RPA equations are written as

(
AJ BJ

BJ⋆

AJ⋆

)(
X ν,JM

Y ν,JM

)
= ~ων

(
1 0

0 −1

)(
X ν,JM

Y ν,JM

)
(7.6)
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with the amplitudes X ν,JM
ph and Y ν,JM

ph , and the RPA eigenvalues ~ων . For the derivation

of this eigenvalue problem one has to exploit the quasi-boson approximation, and the

RPA ground-state is approximated by the HF ground-state (cf. Appendix C). Thus,

the matrices AJ and BJ are obtained from

AJ
php′h′ =

〈
HF
∣∣
[[

AJ,M
ph , Hint

]
, AJ,M†

p′h′

] ∣∣HF
〉

BJ
php′h′ = −

〈
HF
∣∣
[[

AJ,M
ph , Hint

]
, (−1)J−MAJ,−M

p′h′

] ∣∣HF
〉

.
(7.7)

7.2 Multipole Transitions

In the following, we will investigate the impact of the three-body contact interaction

on electric multipole transitions. The reduced transition probability

BT (EJ , J0 → Jν) = BT
J (ων) =

1

2J0 + 1
|〈ν||QT

J ||0〉|2 (7.8)

describes the response on these excitation modes [14,48]. The reduced matrix element

〈ν||QT
J ||0〉 connects the initial state |0〉, which is the ground-state in our case, with

the final state |ν〉 via the multipole transition operator QT
J . In the following we will

consider isoscalar monopole (ISM) excitations for which the transition operator is given

by

Q0
00 =

A∑

i=1

x2
i Y00(ϑi ,ϕi) , (7.9)

isovector dipole (IVD) excitations with the transition operator

Q1
1M = e

A∑

i=1

τ
(i)
3 xi Y1M(ϑi ,ϕi) , (7.10)

as well as the isoscalar quadrupole (ISQ) excitation operator

Q0
2M = e

A∑

i=1

x2
i Y2M(ϑi ,ϕi) (7.11)

with the elementary charge e, the third component of the isospin τ3 and the spherical

harmonics YJM(ϑ,ϕ). As unitarily transformed NN potentials enter in the Hamiltonian,

the transition operators should be transformed consistently. However, for the UCOM
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Figure 7.1: Cumulative energy-weighted sum of the isoscalar monopole transition strengths

for 40Ca as function of the excitation energy based on calculations including the density-

dependent two-body interaction compared to the classical sum rule (dotted lines).

transformation it was shown that the difference between the response functions calcu-

lated with transformed and initial operators is marginal [14]. It is expected that the

effect of the SRG transformation is small as well. Therefore, we will work with the

bare transition operators (7.9) to (7.11) for the following studies.

7.3 Sum Rules

The transition operators introduced in the previous section satisfy sum rules, which

provide a useful test of the RPA. For electromagnetic transitions the energy-weighted

sum rule [49]

S =
∑

ν>0

~ων |
〈
ν
∣∣Q
∣∣0
〉
|2 =

1

2

〈
0
∣∣ [Q, [H, Q]]

∣∣0
〉

(7.12)

is of special interest. We will only consider electric multipole transitions for which the

energy-weighted sum rule is given by [14, 24]

ST (EJ) =
∑

ν>0

~ωνB
T
J (ων) . (7.13)

This energy-weighted sum of transition strengths can be compared to the classical

sum rules, which are derived by evaluating the double commutator in Equation (7.12)

under the assumption of a local interaction without any exchange terms. In this case
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UCOM(SRG) S-UCOM(SRG) SRG S-SRG

(a) (b) (a) (b) (a) (b) (a) (b)

α [ fm4] 0.04 0.16 0.04 0.16 0.03 0.10 0.03 0.10

C3N [ GeV fm6] – 1.6 – 2.2 – 4.3 – 2.0

ISM 16O 98.7 90.4 98.3 92.2 99.8 94.7 98.8 94.6
40Ca 97.7 90.5 98.4 93.7 100.8 95.1 99.1 95.8
90Zr 99.0 92.8 99.5 95.4 117.8 95.9 100.1 97.0

208Pb 101.7 95.7 100.6 97.4 158.8 97.1 100.9 98.4

IVD 16O 180.1 193.2 175.4 179.8 173.4 160.9 172.9 174.7
40Ca 194.1 209.0 183.9 188.5 187.9 168.3 180.9 182.4
90Zr 205.6 218.9 192.3 195.1 207.7 173.4 188.9 188.4

208Pb 211.8 223.8 195.4 198.4 235.7 176.9 191.8 191.3

ISQ 16O 103.0 104.3 101.0 100.2 102.2 100.3 101.3 100.7
40Ca 102.2 102.9 100.8 100.0 102.8 100.1 101.1 100.6
90Zr 102.1 102.0 100.9 100.0 110.1 100.0 101.2 100.5

208Pb 101.1 99.9 99.6 98.5 127.6 98.4 99.7 98.9

Table 7.1: Exhaustion of the energy-weighted sum rules, i.e. ST (EJ)/ST
class(EJ) in percent

for (a) the pure two-body interaction, (b) including the three-body interaction.

only the kinetic energy contributes to the commutator and we obtain for isoscalar

monopole excitations

ST=0
class (E0) =

2~
2e2

m
(N〈r2

n〉 + Z 〈r2p〉) (7.14)

with the neutron and proton root-mean-square radii rn/p. Considering the isovector

dipole excitation operator one arrives at the Thomas-Reiche-Kuhn sum rule:

ST=1
class (E1) =

~
2e2

2m

9

4π

NZ

A
. (7.15)

Finally, the classical sum rule for isoscalar quadrupole excitations is given by

ST=0
class (E2) =

25~
2e2

4πm
(N〈r2

n〉 + Z 〈r2p〉) . (7.16)

The UCOM and SRG transformed interactions are not purely local but contain non-

local contributions as well as exchange terms. This will lead to an enhancement of

the energy-weighted sum rules. Hence, the overestimation of the classical sum rules
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is a measure for the non-locality of the applied interaction. Especially the model-

independent Thomas-Reiche-Kuhn sum rule is expected to be exceeded by 40 − 80%.

On the other hand a significant underestimation of the classical sum rules hints at

instabilities in the RPA, e.g. incomplete convergence with respect to the model space

size or unstable ground-state.

A typical example for the cumulative energy-weighted sum of the transition strengths

is shown in Figure 7.1 for the isoscalar monopole response of 40Ca calculated with the

four different two-body interactions including the three-body interaction and compared

to the classical sum rule. For all four interactions the sums converge to their final values

above 50 MeV but underestimate the classical sum rules by up to 10%.

The exhaustion of the sum rules is listed in Table 7.1 using all four interactions

for the three excitation modes in 16O, 40Ca, 90Zr and 208Pb. The values obtained

with the pure two-body interactions (columns (a)) are compared to those obtained

after including the three-body interaction (columns (b)). For the isoscalar monopole

excitation the deviation from the classical sum rule does not exceed 2.3% for the

pure two-body UCOM(SRG), S-UCOM(SRG) and S-SRG interactions. For the SRG

interaction, however, the sum rule is significantly overestimated for the heavy isotopes.

For illustration, the cumulative energy-weighted sum of the transition strengths is

shown in Figure 7.2 comparing the four pure two-body interactions for 208Pb. For

the UCOM(SRG), the S-UCOM(SRG) and the S-SRG interactions the sums converge

above 50 MeV to their final values, which are in nice agreement with the classical sum

rule. For the SRG interaction, however, the cumulative energy-weighted sum increases

far beyond the classical sum rule.

When including the three-body interaction the deviation of the classical monopole

sum rule reaches up to 10%, but on the other hand, the strong overestimation by the

SRG interaction is suppressed. Since density-dependent interactions do not affect the

sum rules [46], this effect is due to the variation of the flow parameter. Increasing

the flow parameter on the one hand generates nonlocal contributions to the respec-

tive interaction, on the other hand the HF single-particle spectra, which provide the

starting point for RPA, obtained with the pure two-body interactions are spread wider,

i.e. discrepancies to experimental data are increased. These effects lead to a larger

deviation of the classical sum rule for the UCOM(SRG), S-UCOM(SRG), and S-SRG

interactions and for the light nuclei calculated with the SRG interaction. For the heavy

nuclei calculated with the SRG interaction the HF calculations yield a strong overbind-

ing of up to 20 MeV per nucleon for α = 0.10 fm4. Therefore, one cannot expect to

obtain a stable ground-state suitable for the application in RPA. The corresponding

values for the ISM sum rule reveal this unphysical behavior [50].

112



7.4 · Giant Resonances

20 40 60 80 100
E [ MeV]

0

1

2

3

4

.

S
T

=
0
(E

0)
×

10
−

5
[e

2
fm

4
]

UCOM(SRG)

S-UCOM(SRG)

50 100 150 200
E [ MeV]

SRG

S-SRG

Figure 7.2: Cumulative energy-weighted sum of the isoscalar monopole transition strengths

for 208Pb as function of the excitation energy based on the pure two-body interactions

compared to the classical sum rule (dotted lines). Note the different energy scales.

For the isovector dipole excitations one observes an enhancement of the Thomas-

Reiche-Kuhn sum rule of at least 60% reaching up to more than 100%. As mentioned

above, an enhancement of the isovector dipole sum rule in this magnitude is expected

due to the non-localities of the applied interactions.

Finally, the deviations of the classical isoscalar quadrupole sum rule are small for

the pure two-body interactions as well as for the interactions including the three-

body interaction. The monopole and dipole resonances are excitation modes involving

essential all nucleons, while the giant quadrupole resonance is a vibration of the surface

of the nucleus. Therefore, one expects the dependence on the flow parameter to be

weaker, which is confirmed by the sum rules listed in Table 7.1. The only exceptions

are, like for the monopole excitations, the heavy isotopes calculated with the pure

two-body SRG interaction, which can be explained with the same arguments.

In summary, the cumulative energy-weighted sums of the transition strengths are

mainly in reasonable agreement with the classical sum rules for the monopole and

quadrupole excitations and reproduce the expected enhancement for the dipole reso-

nances.
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Figure 7.3: Isoscalar monopole response based on the S-UCOM(SRG) interaction with

α = 0.16 fm4, emax = 10 for different three-body strengths: ( ) C3N = 1.6 GeV fm6,

( ) C3N = 2.2 GeV fm6, ( ) C3N = 2.8 GeV fm6. Centroid energies extracted from

experiment [51–53] are indicated by arrows.

7.4 Giant Resonances

After the study of sum rules, we will now investigate the corresponding response func-

tions. For ease of presentation, the calculated discrete strength distributions are con-

volved with a Lorentzian function yielding continuous strength functions in dependence

of the excitation energy [14]:

RT
J (E ) =

∑

ν

BT
J (ων)

1

π

Γ/2

(E − ων)2 + (Γ/2)2
, (7.17)

where the width Γ of the Lorentzian distribution is set arbitrarily to 2 MeV. The

Lorentzian function is chosen such that the energy-weighted sum rule is equal for the
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Figure 7.4: Same as in Figure 7.3 for the S-SRG interaction with α = 0.10 fm4, emax = 10,

and ( ) C3N = 1.5 GeV fm6, ( ) C3N = 2.0 GeV fm6, ( ) C3N = 2.5 GeV fm6.

discrete distribution and the continuous strength function:

ST
J =

∑

ν

EνB
T
J (ων) =

∫
dE E RT

J (E ) . (7.18)

7.4.1 Isoscalar Giant Monopole Resonance

First, we study the isoscalar giant monopole resonance, which is understood as a spher-

ically symmetric compressional oscillation of the nucleus. As this mode is isoscalar

protons and neutrons move in phase. This excitation mode is also known as breathing

mode and is an important element in the investigation of various astrophysical sce-

narios, such as supernovae and neutron stars, as it is related to the compressibility of

nuclear matter.
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Figure 7.5: Isoscalar monopole response based on the S-UCOM(SRG) interaction with C3N =

2.2 GeV fm6, emax = 10 for different flow parameters: ( ) α = 0.04 fm4, ( ) α =

0.12 fm4, ( ) α = 0.16 fm4. Centroid energies extracted from experiment [51–53] are

indicated by arrows.

In the following the four nuclei 16O, 40Ca, 90Zr, and 208Pb with the oscillator

parameters listed in Table 3.2 are considered. The optimal parameter set for each of

the four two- plus three-body interactions was determined in Chapter 5. The strength

parameters C3N were chosen on the basis of the three-body contact interaction. As this

interaction is approximately equivalent to the density-dependent two-body interaction

applied in the RPA, we will use the same values for C3N. Nonetheless, we want to

investigate the influence of the parameters on the giant monopole resonance. As the

effects are similar for all four interactions only the S-UCOM(SRG) and the S-SRG

interactions are shown here, the corresponding figures for the UCOM(SRG) and the

SRG interactions can be found in Appendix E.3.
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Figure 7.6: Same as in Figure 7.5 for the S-SRG interaction with C3N = 2.0 GeV fm6,

emax = 10, and ( ) α = 0.03 fm4, ( ) α = 0.06 fm4, ( ) α = 0.10 fm4.

Figures 7.3 and 7.4 show the isoscalar monopole response for the S-UCOM(SRG)

and the S-SRG interactions for different values of the strength C3N. The arrows indicate

the centroid energies extracted from experiment. The results are very similar for both

interactions. The main peak of the response function of 16O lies slightly below the

experimental centroid with a second smaller peak at higher energies. For the other

three nuclei the experimental centroids lie within the calculated response functions.

Especially for the heavy nuclei 90Zr and 208Pb the response is concentrated in one

strongly collective peak. In all cases, increasing the strength C3N leads to a shift towards

lower excitation energies, while the response is concentrated in a narrower peak. With

increasing three-body strength the level density of the single-particle spectra increases,

which leads to a lowering of the excitation energies.

The dependencies on the flow parameter are illustrated in Figures 7.5 and 7.6
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Figure 7.7: Isoscalar monopole response based on the UCOM(SRG) interaction with

α = 0.16 fm4, C3N = 1.6 GeV fm6 for different model spaces sizes: ( ) emax = 10;

( ) emax = 12, lmax = 10; ( ) emax = 14, lmax = 10. For comparison: ( ) re-

sponse function obtained with the pure transformed two-body interaction with α = 0.04 fm4,

emax = 14, lmax = 10. Calculated centroid energies are indicated by dashed arrows, experi-

mental centroids [51–53] by solid arrows.

for the S-UCOM(SRG) and the S-SRG interactions, which are again similar for both

interactions. For the smallest flow parameters the main peaks lie significantly below

the experimental centroids for all nuclei. With increasing flow parameter the response

is shifted to higher excitation energies and spread over a wider range. The influence

of the flow parameter on single-particle spectra is opposite to the one of the strength:

With increasing flow parameter the level density is reduced, the spectra are spread

wider, which entails an increase of the excitation energy.

Finally, the isoscalar monopole resonance is studied in dependence on the model-
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Figure 7.8: Same as in Figure 7.7 for the S-UCOM(SRG) interaction with α = 0.16 fm4,

C3N = 2.2 GeV fm6, and ( ) emax = 10; ( ) emax = 12, lmax = 10; ( ) emax =

14, lmax = 10. For comparison: ( ) α = 0.04 fm4, emax = 14, lmax = 10.

space size for all four interactions. In Figure 7.7 the response functions calculated

with the UCOM(SRG) interaction in three different model spaces are compared to the

response obtained with the pure two-body interaction for α = 0.04 fm4 in the largest

model space. The monopole resonances obtained with the three-body interaction show

a stronger fragmentation with increasing model-space size, while the centroids remain

essentially unchanged for all considered nuclei. For 16O one observes that the second

small peak at higher excitation energies moves towards the main peak. The fragmen-

tation shows that the giant resonance is spread over several RPA excitations and is

not concentrated on one single excitation. This behavior agrees with experimental

observations. Furthermore, the calculated response functions agree nicely with the

experimental centroids. The comparison with the results obtained with the pure two-
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Figure 7.9: Same as in Figure 7.7 for the SRG interaction with α = 0.10 fm4, C3N =

4.3 GeV fm6, and ( ) emax = 10; ( ) emax = 12, lmax = 10; ( ) emax = 14,

lmax = 10. For comparison: ( ) α = 0.03 fm4, emax = 14, lmax = 10.

body interaction reveals that these response functions are even more fragmented for

all nuclei and the calculated centroids slightly overestimate the experimental ones (cf.

Tab. 7.2).

Figure 7.8 shows the corresponding data obtained with the S-UCOM(SRG) interac-

tion. One can again observe a fragmentation of the response functions with increasing

basis size and the experimental centroids are again reproduced. The response functions

obtained without three-body interaction are again more fragmented and the centroids

nicely reproduce the experimental ones for all nuclei.

In Figures 7.9 and 7.10 the response functions calculated with the SRG and the

S-SRG interactions are shown. For both interactions the already discussed fragmenta-

tion is observed. For the SRG interaction the centroid of the monopole resonance of
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Figure 7.10: Same as in Figure 7.7 for the S-SRG interaction with α = 0.10 fm4, C3N =

2.0 GeV fm6, and ( ) emax = 10; ( ) emax = 12, lmax = 10; ( ) emax = 14,

lmax = 10. For comparison: ( ) α = 0.03 fm4, emax = 14, lmax = 10.

16O is underestimated by 2 MeV but the centroids of 40Ca, 90Zr, and 208Pb are almost

perfectly reproduced. In contrast, the response functions obtained with the pure trans-

formed two-body interaction with α = 0.03 fm4 overestimate the monopole resonances

of 16O and 40Ca. For 90Zr the response is weak and lies at very high excitation energies.

Finally, for 208Pb no collective excitation is found at all. In contrast, the corresponding

response functions obtained with the S-SRG interaction nicely agree with the exper-

imental centroids. After including the three-body interaction the experimental ISM

centroids are underestimated by roughly 2 MeV for all four nuclei (cf. Tab. 7.3).

In summary, the isoscalar giant monopole resonances of the considered nuclei are

nicely reproduced by all four interactions including the three-body contact interaction.

In contrast, considering the pure two-body interactions only the centroids calculated
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Figure 7.11: Isovector dipole response based on the UCOM(SRG) interaction with α =

0.16 fm4, C3N = 1.6 GeV fm6 for different model space sizes: ( ) emax = 10;

( ) emax = 12, lmax = 10; ( ) emax = 14, lmax = 10. For comparison: ( ) re-

sponse function obtained with the pure transformed two-body interaction with α = 0.04 fm4,

emax = 14, lmax = 10. Calculated centroid energies are indicated by dashed arrows, experi-

mental centroids [54–57] by solid arrows.

with the S-UCOM(SRG) and the S-SRG interactions agree with the experimental data.

7.4.2 Isovector Giant Dipole Resonance

The isovector giant dipole resonance is an excitation mode where protons and neutrons

move out-of-phase. The dependencies of the isovector dipole response functions on the

strength C3N and the flow parameter α are similar to those observed for the isoscalar

monopole excitations, therefore, they are not discussed here.
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Figure 7.12: Same as in Figure 7.11 for the S-UCOM(SRG) interaction with α = 0.16 fm4,

C3N = 2.2 GeV fm6, and ( ) emax = 10; ( ) emax = 12, lmax = 10; ( ) emax =

14, lmax = 10. For comparison: ( ) α = 0.04 fm4, emax = 14, lmax = 10.

Beginning with the UCOM(SRG) interaction in Figure 7.11 the isovector dipole

response functions are shown for different model-space sizes. The response functions

of the dipole excitations are broader than for the monopole resonances and divided into

several peaks for all four nuclei. For 16O one observes two main peaks and a smaller

one at higher excitation energies. With increasing basis size the high-lying main peak

moves towards the low-lying one, which remains at the same energy. For 40Ca the

response is redistributed with increasing model space size from one main peak with

several smaller maxima into one broader peak without changing the position of the

centroid. The response functions of 90Zr develop one main peak with one smaller peak

at lower excitation energies with increasing basis size. Finally, the response functions of
208Pb show only minor variations with increasing model space size. For all four nuclei
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Figure 7.13: Same as in Figure 7.11 for the SRG interaction with α = 0.10 fm4, C3N =

4.3 GeV fm6, and ( ) emax = 10; ( ) emax = 12, lmax = 10; ( ) emax = 14,

lmax = 10. For comparison: ( ) α = 0.03 fm4, emax = 14, lmax = 10.

the experimental centroids lie within the range of the response functions, but the

calculated centroids overestimate the experimental ones by 4 to 5 MeV (cf. Tab. 7.2).

The overestimation of the experimental centroids is even more pronounced on the basis

of the pure two-body interaction.

The isovector dipole strengths obtained with the S-UCOM(SRG) are shown in

Figure 7.12. The response functions exhibit a similar behavior as observed for the

UCOM(SRG) interaction, and their centroids still overestimate the experimental ones

by 2 to 3 MeV. The centroids of the strength distributions obtained with the pure two-

body interaction are closer to experiment than in case of the UCOM(SRG) interaction,

but the overestimation is stronger than for the two- plus three-body S-UCOM(SRG)

interaction.
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Figure 7.14: Same as in Figure 7.11 for the S-SRG interaction with α = 0.10 fm4, C3N =

2.0 GeV fm6, and ( ) emax = 10; ( ) emax = 12, lmax = 10; ( ) emax = 14,

lmax = 10. For comparison: ( ) α = 0.03 fm4, emax = 14, lmax = 10.

In Figure 7.13 the isovector dipole strengths calculated with the SRG interaction

are shown. Compared to the results obtained with the other interactions the response is

concentrated in one or two strongly collective peaks. For 16O and 40Ca the experimental

centroids are slightly underestimated while they are reproduced for 90Zr and significantly

overestimated for 208Pb. The response functions obtained without the three-body

interaction lie at unphysically high excitation energies for all four nuclei.

The isovector dipole resonances of the S-SRG interaction (Fig. 7.14) are very similar

to those obtained with the S-UCOM(SRG) interaction (Fig. 7.12) in all aspects.

In summary, the experimental isovector giant dipole resonance is overestimated by

the pure two-body interactions in most cases, especially by the SRG interaction. The

inclusion of the three-body contact interaction leads to a reasonable overall agreement
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Figure 7.15: Isoscalar quadrupole response based on the UCOM(SRG) interaction with

α = 0.16 fm4, C3N = 1.6 GeV fm6 for different model space sizes ( ) emax = 10;

( ) emax = 12, lmax = 10; ( ) emax = 14, lmax = 10. For comparison: ( ) re-

sponse function obtained with the pure transformed two-body interaction with α = 0.04 fm4,

emax = 14, lmax = 10. Calculated centroid energies are indicated by dashed arrows, experi-

mental centroids [51, 52, 58–60] by solid arrows.

for all four interactions and all considered nuclei.

7.4.3 Isoscalar Giant Quadrupole Resonance

Finally, the isoscalar quadrupole response is investigated. The calculated strength

distributions are shown in Figures 7.15 to 7.18 for the four different interactions. For all

nuclei the strength is concentrated in narrow strongly collective peaks. The influence

of increasing model space size is similar for all four interactions. For 16O a slight
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Figure 7.16: Same as in Figure 7.15 for the S-UCOM(SRG) interaction with α = 0.16 fm4,

C3N = 2.2 GeV fm6, and ( ) emax = 10; ( ) emax = 12, lmax = 10; ( ) emax =

14, lmax = 10. For comparison: ( ) α = 0.04 fm4, emax = 14, lmax = 10.

fragmentation is observed while the response functions remain essentially unchanged

for 40Ca, 90Zr and 208Pb. For the heavy nuclei one observes a low-lying 2+ excitation

in addition to the giant quadrupole resonance.

For the pure two-body UCOM(SRG) interaction only the centroid of the low-lying

2+ excitation of 208Pb is reproduced, but all giant quadrupole resonances as well as

the low-lying 2+ excitation of 90Zr are significantly overestimated. The inclusion of the

three-body interaction leads to a nice description of both low-lying excitations. The

response peaks of the giant resonances move towards lower energies but still lie slightly

above the experimental centroids for 16O and 40Ca while they perfectly reproduce the

centroids for 90Zr and 208Pb.

The description of the isoscalar quadrupole resonances using the pure two-body
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Figure 7.17: Same as in Figure 7.15 for the SRG interaction with α = 0.10 fm4, C3N =

4.3 GeV fm6, and ( ) emax = 10; ( ) emax = 12, lmax = 10; ( ) emax = 14,

lmax = 10. For comparison: ( ) α = 0.03 fm4, emax = 14, lmax = 10.

S-UCOM(SRG) interaction (Fig. 7.16) is of similar quality as for the UCOM(SRG)

interaction. The excitation energies of the giant resonances are slightly lowered but

they still overestimate the experiment. Including the three-body interaction leads to an

agreement of the calculated giant resonances of 90Zr and 208Pb with the experimental

centroids. The giant resonances of 16O and 40Ca as well as the low-lying excitation of
90Zr are overestimated by about 1.5 to 2 MeV.

For the SRG interaction (Fig. 7.17) the response functions obtained without the

three-body interaction exhibit only weak resonances at very high excitation energies as

was already observed for the isoscalar monopole and the isovector dipole resonances.

In contrast, including the three-body interaction leads to an almost perfect agreement

of all calculated centroids with the experimental ones.
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Figure 7.18: Same as in Figure 7.15 for the S-SRG interaction with α = 0.10 fm4, C3N =

2.0 GeV fm6, and ( ) emax = 10; ( ) emax = 12, lmax = 10; ( ) emax = 14,

lmax = 10. For comparison: ( ) α = 0.03 fm4, emax = 14, lmax = 10.

As was already seen in case of the giant dipole resonances, the S-SRG and the

S-UCOM(SRG) interactions (Figs. 7.18 and 7.15) yield very similar response functions

that are in agreement with the experimental centroids for the giant quadrupole res-

onances of 90Zr and 208Pb and the low-lying 2+ excitation of 208Pb while the giant

resonances of 16O and 40Ca as well as the low-lying excitation of 90Zr are only slightly

overestimated.

In summary, the inclusion of the three-body interaction leads to an improved de-

scription of all considered isoscalar quadrupole excitations, compared to the response

functions obtained without the three-body interaction, and in many cases yield nice

agreement with the experimental centroids.
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UCOM(SRG) S-UCOM(SRG) Exp.

(a) (b) (a) (b)

α [ fm4] 0.04 0.16 0.04 0.16

C3N [ GeV fm6] – 1.6 – 2.2

ISM 16O 23.83 21.78 20.87 19.98 21.13
40Ca 23.02 19.81 19.40 18.57 19.18
90Zr 21.02 16.73 17.63 16.40 17.81

208Pb 17.20 12.88 13.87 12.93 14.18

IVD 16O 33.43 29.17 30.24 26.16 24.3
40Ca 31.10 25.86 26.88 23.22 21.9
90Zr 28.86 22.20 24.94 20.79 17.9

208Pb 24.00 17.88 19.91 16.96 13.6

ISQ 16O 31.17 26.51 27.32 23.05 21.67
40Ca 28.52 22.54 24.30 20.06 17.8
90Zr 20.93 14.74 18.15 14.33 14.2

208Pb 16.02 10.84 13.53 10.67 10.9

Table 7.2: Centroid energies in MeV obtained for the UCOM(SRG) and S-UCOM(SRG)

interactions based on (a) the pure two-body interaction, (b) including the three-body inter-

action, compared to experimental values [51–58].

7.4.4 Comparison of Giant Resonances

The inclusion of a simple phenomenological three-body contact interaction leads to a

substantial improvement in the description of collective excitations. For comparison

the centroid energies calculated with the pure two-body and the two- plus three-body

interactions are listed in Tables 7.2 and 7.3 together with the experimental values for all

discussed excitation modes in 16O, 40Ca, 90Zr, and 208Pb. Considering the agreement or

disagreement with the experiment one finds several connections with earlier discussed

results.

As it is an instructive example, we consider 208Pb calculated with the pure two-body

SRG interaction. On the Hartree-Fock level this nucleus is overbound by 11 MeV per

nucleon for α = 0.03 fm4, with increasing flow parameter the overbinding is even more

enhanced. Considering the single-particle spectra of 208Pb one observes a strongly

underestimated level density, which is connected to the small charge radius differing

by 1.5 fm from the experimental value. The RPA is built on the HF single-particle

spectra, i.e. it is sensitive to the reproduction of the experimental single-particle levels
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SRG S-SRG Exp.

(a) (b) (a) (b)

α [ fm4] 0.03 0.10 0.03 0.10

C3N [ GeV fm6] – 4.3 – 2.0

ISM 16O 27.57 19.12 19.85 19.38 21.13
40Ca 31.02 18.91 18.48 17.92 19.18
90Zr 40.27 17.37 16.82 15.81 17.81

208Pb 49.56 14.41 13.19 12.35 14.18

IVD 16O 37.88 22.07 29.29 25.68 24.3
40Ca 39.92 20.34 25.98 22.61 21.9
90Zr 42.16 18.46 24.16 20.27 17.9

208Pb 37.16 15.72 19.25 16.44 13.6

ISQ 16O 36.01 21.04 26.70 22.94 21.67
40Ca 37.88 19.02 23.76 19.92 17.8
90Zr 35.89 13.77 17.79 14.28 14.2

208Pb 34.42 10.65 13.23 10.59 10.9

Table 7.3: Centroid energies in MeV obtained for the SRG and S-SRG interactions based

on (a) the pure two-body interaction, (b) including the three-body interaction, compared to

experimental values [51–58].

especially in the region of the Fermi energy [50]. Consequently, for 208Pb a significant

deviation from the expected exhaustion of the classical sum rules is observed for all

collective excitation modes (cf. Tab. 7.1). Finally, no giant monopole resonance is

generated at all for 208Pb on the basis of the SRG interaction, and the dipole and

quadrupole resonances are found at unphysically high excitation energies, which is also

reflected in the corresponding centroid energies.

Including the three-body contact interaction, which is the most simple phenomeno-

logical three-body interaction, cures all these effects. It especially improves the de-

scription of the single-particle spectra, which entails a nice reproduction of the giant

resonances.

On the other the experimental ground-state energies are not reproduced by any of

the applied two-body or two- plus three-body interactions on the HF level. Instead a

reasonable agreement is achieved after including the second-order perturbative energy

correction. Hence, an improper description of the ground-state energy on the HF level

does not exclude a good description of giant resonances in RPA [61]. As mentioned

above, a more important measure is the reproduction of single-particle levels in the
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region of the Fermi energy.

The additional repulsion of the three-body interaction increases the level density of

single-particle spectra on the Hartree-Fock level, which entails a lowering of the excita-

tion energies of the isovector dipole and the isoscalar quadrupole giant resonances, and

in part of the isoscalar monopole giant resonance compared to the response functions

obtained with the pure two-body interactions. This results in an improved agreement of

calculated centroid energies with the experimental ones for the dipole and quadrupole

giant resonances. The giant monopole resonances are already nicely reproduced by the

pure two-body S-UCOM(SRG) and S-SRG interactions. This agreement is maintained

after including the three-body interaction.

The impact of the three-body contact interaction is especially pronounced in case

of the SRG interaction. But one has to be careful with these results, because the

three-body strength is roughly twice as large as for the other interactions and might

lead to problems when considering other observables.

Up to now only centroid energies were compared with experimental data. A more

sophisticated insight could be obtained by comparing the experimental response func-

tions with the calculated ones.
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Conclusions

The importance of three-nucleon interactions is demonstrated in various nuclear struc-

ture investigations based on pure nucleon-nucleon interactions. As a first step towards

the consistent inclusion of realistic three-body forces we study simple phenomenolog-

ical three-body interactions. We develop an appropriate scheme for the handling of

three-body matrix elements and derive the formal application of three-body forces in

various many-body methods.

The nuclear interaction induces complex correlations, such as the strong short-

range repulsion and tensor correlations. Due to these correlations large model spaces

are required to reach convergence. To facilitate calculations in tractable model spaces

the Unitary Correlation Operator Method and the Similarity Renormalization Group

are discussed as two different approaches to generate soft phase-shift equivalent in-

teractions via unitary transformations. Although the motivations of both methods

are quite different, the resulting interactions show a number of similarities, e.g. they

exhibit a band-diagonal structure with respect to momentum space matrix elements.

These methods are used to obtain four different classes of two-body interactions out

of the realistic Argonne V18 potential. Beside the standard UCOM(SRG) and SRG

interactions, where all partial waves are transformed consistently, we employ the S-

UCOM(SRG) and S-SRG interactions, where only the S-waves undergo the respective

unitary transformations.

To investigate ground-state energies and charge radii of selected closed-shell nuclei

across the whole nuclear chart the four different two-body interactions are used in the

Hartree-Fock approximation. While the systematics of the experimental ground-state

energies is reproduced by the UCOM(SRG), S-UCOM(SRG) and S-SRG interactions
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except for a constant shift, the SRG interaction leads to a strong overbinding of

intermediate and heavy nuclei. The charge radii are systematically underestimated by

all four interactions. The HF ground-state is described by a single Slater determinant,

which is not capable of describing any correlations. The short-range correlations are

covered by the unitary transformations while the long-range correlations have to be

described by the many-body states, e.g., by applying many-body perturbation theory

on top of the HF results. Including the second-order perturbative corrections leads to a

reasonable agreement with experimental ground-state energies for the UCOM(SRG), S-

UCOM(SRG) and S-SRG interactions, while the perturbative corrections to the charge

radii are negligible. For the SRG interaction most nuclei are already overbound on the

HF level, and second-order perturbation theory cannot improve these results.

On the level of the HF approximation also single-particle spectra are examined. The

general description of the level ordering agrees rather well with experimental spectra,

but the level spacings, and especially the Fermi gap, are significantly overestimated.

The flow parameters used for these calculations are determined for each interaction

such that the experimental 4He ground-state energy is reproduced in a No-Core Shell

Model calculation, i.e. the flow parameter is chosen considering a four-nucleon system

only. Therefore, it is a remarkable result, that the systematics of the experimental

ground-state energies is reproduced across the whole nuclear chart on the basis of

HF plus MBPT calculations. Nonetheless, the results obtained with the pure two-

body interactions show some systematic deviations from experimental data, e.g. the

charge radii cannot be accurately reproduced by pure two-body interactions and the

description of single-particle spectra leaves room for improvement. To reduce these

deviations introducing a repulsive three-body interaction is inevitable.

The first ansatz for a phenomenological three-body interaction is a finite-range

interaction of Gaussian shape. The matrix elements are most conveniently calculated

in a basis of cartesian harmonic oscillator eigenstates and subsequently transformed

into a basis of spherical harmonic oscillator eigenstates. Only the S-UCOM and the

S-SRG interactions are supplemented by the Gaussian three-body interaction. The free

parameters, the strength and the range, are determined on the basis of HF calculations

such that the experimental charge radii are approximately reproduced across the whole

nuclear chart. Unfortunately, the matrix element calculation is very time-consuming re-

stricting the applicability of the Gaussian three-body interaction to small model spaces.

Since the influence of the Gaussian interaction on the second-order energy corrections

is only marginal, we consider only the corrections obtained with the two-body interac-

tions. The small model spaces avoid the convergence of the HF plus MBPT results.

But we are able to show that the ground-state energies and charge radii obtained with
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the Gaussian three-body interaction are similar to the corresponding results obtained

with a regularized three-body contact interaction.

The matrix elements of the three-body contact interaction can directly be cal-

culated in a basis of spherical harmonic-oscillator eigenstates. The structure of the

regularized contact interaction entails that the matrix element computation is very ef-

ficient compared to the Gaussian three-body interaction. Thus, the contact interaction

is also manageable in large model spaces. The contact interaction is employed in con-

nection with all four unitarily transformed two-body interactions. For each underlying

two-body interaction the three-body strength is again chosen such that the HF charge

radii are in agreement with the experimental ones. For the SRG interaction the three-

body strength is roughly twice as large as for the other three two-body interactions.

After the inclusion of the three-body interaction the trend of the experimental ground-

state energies is reproduced except for an almost constant shift on the basis of all four

two-body interactions. Furthermore, in the description of single-particle spectra, the

level spacings are reduced due to the additional repulsion. Only for the UCOM(SRG)

interaction some inaccuracies appear in the description of single-particle spectra. The

inclusion of the perturbative corrections yields a reasonable agreement with experi-

mental data, although we have not yet reached complete convergence. However, these

results must not be overstated as the perturbative corrections are only calculated for

the two-body interactions and one has to keep in mind the inherent limitations of

MBPT.

To obtain a reference point from an exact diagonalization of the Hamilton matrix

we include the regularized contact interaction in the No-Core Shell Model. Using

the parameter sets optimized to reproduce experimental charge radii across the whole

nuclear chart, NCSM calculations based on the S-UCOM(SRG) and S-SRG interactions

result in an underbinding of 4He of about 1 to 2 MeV.

As giant resonances are of direct interest for applications in nuclear astrophysics,

the influence of the three-body contact interaction on these collective excitation modes

is investigated. The Random Phase Approximation provides a suitable framework for

the investigation of collective excitations. As including the full three-body interac-

tion in the RPA would be too time-consuming we replace it by a density-dependent

two-body contact interaction, which is equivalent in this case except for the regu-

larization. We study extensively isoscalar monopole, isovector dipole, and isoscalar

quadrupole excitations. Considering the pure two-body interactions, especially the

SRG interaction, strongly overestimates the experimental excitation energies of the

considered giant resonances. The giant monopole resonance is generally in agreement

with the experimental centroids for the pure two-body interactions while the giant
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dipole and giant quadrupole resonances are significantly overestimated. The inclusion

of the three-body contact via the density-dependent two-body interaction leads to a

reasonable description of all three excitation modes for all four interactions.

Summarizing the preceding studies one can conclude that the UCOM(SRG) inter-

action shows problems in the description of single-particle spectra and accordingly in

the application of MBPT. The SRG interaction has to be supplemented by a stronger

three-body interaction in order to compensate the strong overbinding observed on the

HF plus MBPT level. As the regularized contact interaction is a phenomenological in-

teraction with a simple structure, e.g. no spin-isospin dependence, one would prefer it

to be as weak as possible. The S-UCOM(SRG) and the S-SRG interactions both yield

very similar results in all aspects of nuclear properties and, furthermore, their results

agree well with experimental data in the framework of various many-body methods

for nuclei across the whole nuclear chart. Therefore, one would choose one of these

interactions for further investigations, e.g. predictions for exotic nuclei. To perform

the next step towards the study of exotic nuclei a number of further important and

interesting investigations remain to be examined.

First of all, there are some minor aspects related to the calculation of charge

radii. The three-body strength can be chosen such that the radii are in almost perfect

agreement with experimental data for all considered nuclei. Therefore, it is worthwhile

to examine also minor corrections to the radii, which are the unitary transformation of

the radius operator and the calculation of the perturbative corrections for the radii.

The studies in the framework of the No-Core Shell Model can be extended to

investigate nuclei beside 4He up to the mid p-shell. Beyond this mass region the

Importance Truncated No-Core Shell Model can be applied to examine even heavier

nuclei [62]. Furthermore, the study of the influence of the three-body interaction on

the Tjon line is an interesting aspect.

Throughout this thesis only closed-shell nuclei were examined. For a profound un-

derstanding one has to extend the studies to open-shell nuclei, e.g. in the framework

of the Hartree-Fock-Bogoliubov method and the Quasiparticle Random Phase Approx-

imation [24, 48, 63]; but also degenerate many-body perturbation theory [64] and the

(Importance Truncated) No-Core Shell Model can be applied.

Already the handling of the most simple three-body interaction requires an enor-

mous computational effort. But one would like to include three-body interactions in

all aspects that are considered on the basis of pure two-body interactions. Further-

more, one would like to study more general three-body interactions, which exhibit a

more complex structure, e.g. the chiral interactions. One possibility to derive of an

effective two-body interaction is provided by the normal ordering [65]. The three-body

136



interaction is reformulated into a zero- plus one- plus two-body interaction with a

residual three-body interaction, which is discussed in Appendix D. The influence of

the residual three-body interaction on various observables is expected to be negligible.

This assumption can be verified by using the contact interaction in the framework of

many-body perturbation theory and the No-Core Shell Model.

In summary, the investigation of simple phenomenological three-nucleon interac-

tions proves to be a versatile tool to improve the description of various observables

across the whole nuclear chart using different many-body methods as well as to develop

an efficient procedure for the handling of three-body matrix elements.
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Appendix A

Derivation of the Hartree-Fock Equations

For the derivation of the general Hartree-Fock equations, we first discuss the variational

principle which is used to deduce an average single-particle potential out of the NN

plus 3N interaction.

A.1 The Variational Principle

The solution of the exact Schrödinger equation

H|Ψ〉 = E |Ψ〉 (A.1)

is equivalent to the variation

δE [|Ψ〉] = E [|Ψ〉 + |δΨ〉] − E [|Ψ〉] = 0 , (A.2)

where we regard the energy E as a functional of the state |Ψ〉 [49, 66]:

E [|Ψ〉] =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 . (A.3)

The state |Ψ〉 + |δΨ〉 denotes an infinitesimal but arbitrary variation of the state |Ψ〉
with 〈δΨ|δΨ〉 ≪ 1. Discarding higher orders in |δΨ〉 the variation leads to

δE [|Ψ〉] =
1

〈Ψ|Ψ〉

{
〈δΨ|H|Ψ〉 + 〈Ψ|H|δΨ〉 − 〈Ψ|H|Ψ〉

〈Ψ|Ψ〉 (〈δΨ|Ψ〉 + 〈Ψ|δΨ〉)
}

. (A.4)
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Together with the condition of stationarity the variation reads

〈δΨ|(H − E )|Ψ〉 + 〈Ψ|(H − E )|δΨ〉 = 0 . (A.5)

Since |δΨ〉 is arbitrary the variation can be carried out over i |δΨ〉 as well:

−i〈δΨ|(H − E )|Ψ〉 + i〈Ψ|(H − E )|δΨ〉 = 0 . (A.6)

Together with Equation (A.5) this yields the operator equation

〈δΨ|(H − E )|Ψ〉 = 0 (A.7)

which is equivalent to the Schrödinger equation since |δΨ〉 is an arbitrary state.

In practical applications one is usually restricted to mathematically simple wave

functions for the variation. If the exact solution is not contained in the set of trial

wave functions the variation yields only an approximation. The variational principle is

especially appropriate to determine ground-states since it can be shown that

E [|Ψ〉] ≥ E0 , (A.8)

i.e. the exact ground state energy E0 is always the lower bound of the variational

calculation. To verify this inequality we only have to expand the trial state |Ψ〉 in the

eigenbasis |n〉 of the Hamiltonian:

|Ψ〉 =
∑

n

cn|n〉 with H|n〉 = En|n〉 . (A.9)

Inserting this expansion in the energy expectation value (A.3) yields

E [|Ψ〉] =

∑
n,m

c∗
ncm〈n|H|m〉
∑
n

|cn|2
=

∑
n

|cn|2En

∑
n

|cn|2
≥

∑
n

|cn|2E0

∑
n

|cn|2
= E0 , (A.10)

where we have assumed E0 ≤ E1 ≤ E2 ≤ .... Hence, for the approximation of the

ground-state we only have to carry out an energy minimization by varying the trial

state.

A.2 The Hartree-Fock Method

In the Hartree-Fock (HF) method, which we use for the description of an A-fermion

system, one uses a single Slater determinant

|Φ〉 = a†1a
†
2 ... a†A|0〉 (A.11)
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as trial state [49, 66]. The energy minimization is performed via the variation of the

single-particle states |ϕk〉 = a†k |0〉. We work on the basis of a complete and orthogonal

set of single-particle states {|χl〉} with the corresponding creation operators c†l , which

are the spherical harmonic-oscillator states in our case. The HF single-particle states

are expanded in this basis:

|ϕk〉 =
∞∑

l=1

Dlk |χl〉 and a†k =
∞∑

l=1

Dlkc
†
l , (A.12)

where we have to determine the expansion coefficients Dlk . The transformation D is

unitary since both single-particle bases, {|ϕk〉} and {|χl〉}, are complete and orthog-

onal.

It is not possible to determine the expansion coefficients Dlk in an unambiguous

way because Slater determinants are – apart from a phase – invariant under unitary

transformations which do not mix particle and hole states. This means that the energy

minimization will only mark a single-particle subspace which can be represented more

conveniently by the single-particle density matrix ̺
(1)
ll ′ = 〈χl |̺(1)|χl ′〉. We can express

the single-particle density via the expansion coefficients as

̺
(1)
ll ′ = 〈Φ|c†l ′cl |Φ〉 =

∞∑

k,k′

DlkD
∗
l ′k′〈Φ|a†k′ak |Φ〉 =

A∑

k=1

DlkD
∗
l ′k (A.13)

since ̺(1) is diagonal in the single-particle basis a†k with eigenvalues 1 for occupied and

0 for unoccupied states. Since we have an unambiguous relation between the Slater

determinant |Φ〉 and the single-particle density ̺(1) we will use the density matrix

elements as variational parameters. The density matrix of a Slater determinant is

hermitian and idempotent:

(̺(1))† = ̺(1) and (̺(1))2 = ̺(1) , (A.14)

i.e. we have to perform the variation under the constraint (A.14).

To carry out the variation we have to express the energy functional via the single-

particle density matrix. Therefore, we start with the Hamiltonian in the basis c†l
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[27, 49, 66]:

H =
∞∑

aā

taā c†acā

+
1

4

∞∑

ab
āb̄

V
(2)

ab,āb̄
c†ac

†
bcb̄cā

+
1

36

∞∑

abc
āb̄c̄

V
(3)

abc,āb̄c̄
c†ac

†
bc

†
ccc̄cb̄cā (A.15)

with the one-body matrix elements of the kinetic energy

taā = 〈χa|T|χā〉 , (A.16)

the antisymmetric two-body matrix elements of the NN interaction

V
(2)

ab,āb̄
= a〈χaχb|V(2)|χāχb̄〉a , (A.17)

and the antisymmetric three-body matrix elements of the 3N interaction

V
(3)

abc,āb̄c̄
= a〈χaχbχc |V(3)|χāχb̄χc̄〉a . (A.18)

Thus, the energy expectation value reads

E [|Φ〉] =
∞∑

aā

taā 〈Φ|c†acā|Φ〉

+
1

4

∞∑

ab
āb̄

V
(2)

ab,āb̄
〈Φ|c†ac†bcb̄cā|Φ〉

+
1

36

∞∑

abc
āb̄c̄

V
(3)

abc,āb̄c̄
〈Φ|c†ac†bc†ccc̄cb̄cā|Φ〉

=
∞∑

aā

taā ̺
(1)
āa +

1

4

∞∑

ab
āb̄

V
(2)

ab,āb̄
̺

(2)

āb̄,ab
+

1

36

∞∑

abc
āb̄c̄

V
(3)

abc,āb̄c̄
̺

(3)

āb̄c̄,abc
(A.19)

with the two-particle density matrix ̺(2) and the three-particle density matrix ̺(3) which

can be expressed via the single-particle density matrix, since the state |Φ〉 is a Slater

determinant:

̺
(2)

āb̄,ab
= ̺

(1)
āa ̺

(1)

b̄b
− ̺

(1)
āb ̺

(1)

b̄a
(A.20)

̺
(3)

āb̄c̄,abc
= ̺

(1)
āa ̺

(1)

b̄b
̺

(1)
c̄c + ̺

(1)
āc ̺

(1)

b̄a
̺

(1)
c̄b + ̺

(1)
āb ̺

(1)

b̄c
̺

(1)
c̄a

−̺(1)
āa ̺

(1)

b̄c
̺

(1)
c̄b − ̺

(1)
āb ̺

(1)

b̄a
̺

(1)
c̄c − ̺

(1)
āc ̺

(1)

b̄b
̺

(1)
c̄a . (A.21)
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Inserting these relations in Equation (A.19) yields the energy as functional of the

single-particle density matrix:

E [̺(1)] =

∞∑

aā

taā ̺
(1)
āa +

1

2

∞∑

ab
āb̄

V
(2)

ab,āb̄
̺

(1)
āa ̺

(1)

b̄b
+

1

6

∞∑

abc
āb̄c̄

V
(3)

abc,āb̄c̄
̺

(1)
āa ̺

(1)

b̄b
̺

(1)
c̄c . (A.22)

If we take into account only the linear terms in δ̺(1) the variation of the energy

functional reads

δE [̺(1)] =

∞∑

aā

taā δ̺
(1)
āa

+
1

2

∞∑

ab
āb̄

V
(2)

ab,āb̄
(δ̺

(1)
āa ̺

(1)

b̄b
+ ̺

(1)
āa δ̺

(1)

b̄b
)

+
1

6

∞∑

abc
āb̄c̄

V
(3)

abc,āb̄c̄
(δ̺

(1)
āa ̺

(1)

b̄b
̺

(1)
c̄c + ̺

(1)
āa δ̺

(1)

b̄b
̺

(1)
c̄c + ̺

(1)
āa ̺

(1)

b̄b
δ̺

(1)
c̄c )

=
∞∑

aā

{
taā +

∞∑

bb̄

V
(2)

ab,āb̄
̺

(1)

b̄b
+

1

2

∞∑

bc
b̄c̄

V
(3)

abc,āb̄c̄
̺

(1)

b̄b
̺

(1)
c̄c

}
δ̺

(1)
āa . (A.23)

In the last equation we can identify the single-particle potential

uaā[̺
(1)] =

∞∑

bb̄

V
(2)

ab,āb̄
̺

(1)

b̄b
+

1

2

∞∑

bc
b̄c̄

V
(3)

abc,āb̄c̄
̺

(1)

b̄b
̺

(1)
c̄c (A.24)

depending on the single-particle density matrix. Together with the kinetic energy we

get the matrix elements of the single-particle Hamiltonian

haā[̺
(1)] = taā + uaā[̺

(1)] . (A.25)

The variational equation can thus be written as

δE [̺(1)] =
∞∑

aā

haā[̺
(1)]δ̺

(1)
āa = 0 . (A.26)

Here, we have to remember the constraints (A.14). A small variation of the den-

sity matrix ̺(1) + δ̺(1) still has to describe a Slater determinant, hence it has to be

idempotent: (̺(1) + δ̺(1))2 = ̺(1) + δ̺(1) which leads to the following conditions:

̺(1)δ̺(1)̺(1) = 0 and (1 − ̺(1))δ̺(1)(1 − ̺(1)) = 0 . (A.27)
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Appendix A · Derivation of the Hartree-Fock Equations

In the Hartree-Fock basis the single-particle density is diagonal, i.e. in order to satisfy

the conditions (A.27) the variation can only take place between occupied (hole) and

unoccupied (particle) states. This means that the variation is restricted to ph (particle-

hole) and hp matrix elements of ̺(1) in the HF basis. On the other hand, Equation

(A.26) reveals that the single-particle Hamiltonian can only consist of non-vanishing

pp and hh matrix elements in the HF basis. In other words, the commutator of the

single-particle Hamiltonian and the single-particle density has to vanish:

[h[̺(1)], ̺(1)] = 0 . (A.28)

This means that the single-particle Hamiltonian and the single-particle density have a

simultaneous eigenbasis. Hence, instead of solving the commutator equation we can

convert Equation (A.28) into the eigenvalue problem:

h[̺(1)]|ϕk〉 = εk |ϕk〉 , (A.29)

which defines the single-particle Hartree-Fock states |ϕk〉 and the corresponding single-

particle energies εk . Finally, we transform this eigenvalue problem into the basis |χl〉:
∞∑

ā

haā[̺
(1)]Dāk = εkDak . (A.30)

Inserting the single-particle Hamiltonian (A.25) and the density matrix (A.13) we obtain

the Hartree-Fock equations

∞∑

ā

{
taā +

A∑

i=1

∞∑

bb̄

V
(2)

ab,āb̄
Db̄iD

∗
bi

+
1

2

A∑

i ,j=1

∞∑

bc
b̄c̄

V
(3)

abc,āb̄c̄
Db̄iD

∗
biDc̄ jD

∗
cj

}
Dāk = εkDak . (A.31)

This set of equations represents a nonlinear eigenvalue problem which can be solved

by applying an iterative scheme in order to obtain a self-consistent solution for the

coefficients Dlk .

The A single-particle states with the lowest single-particle energies are used for the

construction of the Hartree-Fock ground-state:

|HF〉 = |Φ〉 = a†1a
†
2 ... a†A|0〉 , (A.32)
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A.2 · The Hartree-Fock Method

which is again a single Slater determinant. The energy expectation value of the HF

state is given by

E [|HF〉] = 〈HF|H|HF〉

=
A∑

i=1

〈ϕi |T|ϕi〉 +
1

2

A∑

i ,j=1

a〈ϕiϕj |V(2)|ϕiϕj〉a

+
1

6

A∑

i ,j ,k=1

a〈ϕiϕjϕk |V(3)|ϕiϕjϕk〉a

=
A∑

i=1

ǫi −
1

2

A∑

i ,j=1

a〈ϕiϕj |V(2)|ϕiϕj〉a

−1

3

A∑

i ,j ,k=1

a〈ϕiϕjϕk |V(3)|ϕiϕjϕk〉a , (A.33)

which means that the ground-state energy is not equal to the sum of the A lowest

single-particle energies.
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Appendix B

Basic Concepts of Perturbation Theory

Perturbation theory provides a procedure to solve eigenvalue problems of the following

form:

H|Φi 〉 = (H0 + W)|Φi〉 = Ei |Φi〉 . (B.1)

The Hamiltonian H can be divided into one part H0 with known eigenvalues E
(0)
i and

eigenstates |Ψ(0)
i 〉: H0|Ψ(0)

i 〉 = E
(0)
i |Ψ(0)

i 〉, and the perturbation W which has to be

small compared to H0 with respect to its contributions to the full eigenvalues. In this

case, it is possible to formulate an expansion that approximates the eigenvalues Ei and

eigenstates |Φi〉 of the full Hamiltonian step by step starting from E
(0)
i and |Ψ(0)

i 〉,
respectively.

For the formal expansion, the parameter λ is introduced [35]:

H = H0 + λW . (B.2)

Expressing the eigenenergies and eigenstates via power series yields

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + ... (B.3)

|Φi〉 = |Ψ(0)
i 〉 + λ|Ψ(1)

i 〉 + λ2|Ψ(2)
i 〉 + ... . (B.4)

The unperturbed states are assumed to be normalized: 〈Ψ(0)
i |Ψ(0)

i 〉 = 1. Furthermore,

the following relation is obtained by inserting the power series (B.4) into the normal-

ization condition 〈Ψ(0)
i |Φi〉 = 1 under the requirement that the resulting equation is

valid for arbitrary values of λ:

〈Ψ(0)
i |Ψ(n)

i 〉 = 0 , n ≥ 1 . (B.5)
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Appendix B · Basic Concepts of Perturbation Theory

Inserting the power series (B.3) and (B.4) into the Schrödinger equation and sorting

in powers of λ yields

λ0 : H0|Ψ(0)
i 〉 = E

(0)
i |Ψ(0)

i 〉 (B.6)

λ1 : H0|Ψ(1)
i 〉 + W|Ψ(0)

i 〉 = E
(0)
i |Ψ(1)

i 〉 + E
(1)
i |Ψ(0)

i 〉 (B.7)

λ2 : H0|Ψ(2)
i 〉 + W|Ψ(1)

i 〉 = E
(0)
i |Ψ(2)

i 〉 + E
(1)
i |Ψ(1)

i 〉 + E
(2)
i |Ψ(0)

i 〉 (B.8)
...

After multiplication with 〈Ψ(0)
i | and using Equation (B.5) we obtain the energies

λ0 : E
(0)
i = 〈Ψ(0)

i |H0|Ψ(0)
i 〉 (B.9)

λ1 : E
(1)
i = 〈Ψ(0)

i |W|Ψ(0)
i 〉 (B.10)

λ2 : E
(2)
i = 〈Ψ(0)

i |W|Ψ(1)
i 〉 (B.11)

...

Hence, the first order energy correction is given by the expectation value of the per-

turbation W with the unperturbed states |Ψ(0)
i 〉. For the determination of the second

order correction, the first order states |Ψ(1)
i 〉 have to expressed via the unperturbed

states. Therefore, Equation (B.7) is multiplied by 〈Ψ(0)
n | yielding

〈Ψ(0)
n |Ψ(1)

i 〉 =
〈Ψ(0)

n |W|Ψ(0)
i 〉

E
(0)
i − E

(0)
n

, (B.12)

which is inserted in the expansion

|Ψ(1)
i 〉 =

∑

n

c(1)
n |Ψ(0)

n 〉 =
∑

n
n 6=i

|Ψ(0)
n 〉〈Ψ(0)

n |Ψ(1)
i 〉 . (B.13)

Together with Equation (B.11) the second order energy correction is obtained:

E
(2)
i =

∑

n
n 6=i

|〈Ψ(0)
i |W|Ψ(0)

n 〉|2

E
(0)
i − E

(0)
n

. (B.14)

The third and higher orders can be determined in an analogous manner. However,

they are not needed throughout this thesis.
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Appendix C

Basic Concepts of the Random Phase

Approximation

Collective excitations can be investigated by applying the Random Phase Approxima-

tion (RPA) [47–49,63] on the basis of a HF solution. For the derivation of the general

RPA equations we start from the exact Schrödinger equation

H|Ψν〉 = Eν |Ψν〉 , (C.1)

and define the operators Q†
ν and Qν such that the excited state |Ψν〉 is created by the

application of Q†
ν to the ground-state |Ψ0〉:

|Ψν〉 = Q†
ν |Ψ0〉 and Qν |Ψ0〉 = 0 . (C.2)

Formally these operators can be written as

Q†
ν = |Ψν〉〈Ψ0| and Qν = |Ψ0〉〈Ψν| . (C.3)

Using these operators, the Schrödinger equation can be transformed into the equivalent

equation of motion

[H, Q†
ν]|Ψ0〉 = (Eν − E0)Q

†
ν |Ψ0〉 . (C.4)

Multiplying this equation from the left with an arbitrary state 〈Ψ0|δQ and inserting

terms of the form 〈Ψ0|Q†
ν = 〈Ψ0|HQ†

ν = 0 we arrive at

〈Ψ0|[δQ, [H, Q†
ν]]|Ψ0〉 = (Eν − E0)〈Ψ0|[δQ, Q†

ν]|Ψ0〉 . (C.5)
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This final form of the equation of motion is exact since the variation

δQ†|Ψ0〉 =
∑

ν 6=0

δcνQ
†
ν |Ψ0〉 =

∑

ν 6=0

δcν |Ψν〉 (C.6)

exhausting the whole Hilbert space is arbitrary but orthogonal to the ground-state.

A crucial task is the choice of the specific form of the excitation operators Q†
ν . If

the exact ground-state is approximated by the HF state and the operators Q†
ν describe

1p1h excitations of the HF state, the resultant equations build the Tamm-Dancoff

method. However, in RPA an improved ansatz for the excitation operators is chosen:

Q†
ν =

∑

mi

X
(ν)
mi a†mai −

∑

mi

Y
(ν)
mi a†i am . (C.7)

Here and in the following, the indices i , j refer to states below the Fermi energy, i.e.

εi , εj ≤ εF with respect to the HF single-particle energies, and the indices m, n refer

to states above the Fermi energy, i.e. εm, εn ≥ εF . Hence, the operators a†mai and

a†i am can be interpreted as ph-creation and ph-annihilation operators, respectively. The

ground-state |Ψ0〉 = |RPA〉 is defined consistently via

Qν |RPA〉 = 0 , (C.8)

which can be understood as the HF ground-state containing additional ph-correlations.

The variation

δQ†|RPA〉 =
∑

mi

δX
(ν)
mi a†mai |RPA〉 −

∑

mi

δY
(ν)
mi a†i am|RPA〉 (C.9)

has to be performed independently for the two types of coefficients, X
(ν)
mi and Y

(ν)
mi ,

yielding a set of two coupled equations

〈RPA|[a†i am, [H, Q†
ν]]|RPA〉 = ERPA

ν 〈RPA|[a†i am, Q†
ν]|RPA〉

〈RPA|[a†mai , [H, Q†
ν]]|RPA〉 = ERPA

ν 〈RPA|[a†mai , Q
†
ν]|RPA〉

(C.10)

with the excitation energy ERPA
ν = Eν−E0. These equations, that define the excitation

operators Q†
ν via the coefficient matrices X

(ν)
mi and Y

(ν)
mi , cannot be solved directly since

the RPA ground-state is unknown. One can determine the RPA ground-state and the

coefficient matrices simultaneously by applying an iterative scheme which is known

as extended RPA. However, we will only use the standard RPA where an additional

approximation is made in order to avoid the iteration procedure.
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For the calculation of expectation values we assume that the RPA ground-state

does not differ significantly from the HF state:

〈RPA|[a†i am, a†naj ]|RPA〉 = δijδmn − δmn〈RPA|aja
†
i |RPA〉 − δij〈RPA|a†nam|RPA〉

≈ 〈HF|[a†i am, a†naj ]|HF〉 = δijδmn . (C.11)

This is known as quasi-boson approximation as it would be exact if the ph-creation and

-annihilation operators were bosonic operators. Within this approximation, the abso-

lute squares of the amplitudes X
(ν)
mi and Y

(ν)
mi directly give the probability of finding the

states a†mai |RPA〉 and a†i am|RPA〉, respectively, in the excited state |Ψν〉. Thus, the

matrix elements of the one-body transition density ̺(1) read

̺
(1)ν
mi = 〈RPA|a†i am|Ψν〉 = 〈RPA|[a†i am, Q†

ν]|RPA〉
≈ 〈HF|[a†i am, Q†

ν]|HF〉 = X
(ν)
mi

̺
(1)ν
im = 〈RPA|a†mai |Ψν〉 = 〈RPA|[a†mai , Q

†
ν]|RPA〉

≈ 〈HF|[a†mai , Q
†
ν]|HF〉 = Y

(ν)
mi .

(C.12)

The RPA is well-suited for the description of collective states which can be under-

stood by looking closer at the quasi-boson approximation (C.11). This approximation

is valid if many coefficients X
(ν)
mi are of the same order of magnitude, i.e. for excited

states with collective character. Furthermore, the correlated ground-state |RPA〉 is

approximated by the HF state which is only justified if the ground-state correlations

are small, i.e. the amplitudes Y
(ν)
mi have to be small compared to X

(ν)
mi .

The RPA equations can now be written in a compact matrix form

(
A B

B⋆ A⋆

)(
X (ν)

Y (ν)

)
= ERPA

ν

(
1 0

0 −1

)(
X (ν)

Y (ν)

)
(C.13)

with the hermitian matrix A

Ami ,nj = 〈HF|[a†i am, [H, a†naj ]]|HF〉 = (εm − εi)δmnδij + Vmj ,in (C.14)

and the symmetric matrix B

Bmi ,nj = −〈HF|[a†i am, [H, a†j an]]|HF〉 = Vmn,ij . (C.15)

In the RPA equations enter the matrix elements Vmj ,in between 1p1h-states of a general

two-body interaction as well as matrix elements Vmn,ij between 2p2h states.
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The energy eigenvalues ERPA
ν are not necessarily real-valued since the non-hermitian

eigenvalue problem (C.13) contains the metric tensor ( 1 0
0 −1 ). The solutions of the RPA

equations fulfill the orthogonality relation

δµν =
∑

mi

(X
(µ)⋆

mi X
(ν)
mi − Y

(µ)⋆

mi Y
(ν)
mi ) (C.16)

as well as the closure relation

δmnδij =
∑

ν

(X
(ν)⋆

mi X
(ν)
nj − Y

(ν)⋆

mi Y
(ν)
nj ) . (C.17)

The energy expectation value of the RPA ground-state

〈RPA|H|RPA〉 = 〈HF|H|HF〉 −
∑

ν

ERPA
ν

∑

mi

|Y (ν)
mi |2 (C.18)

is always lower than the HF energy as it takes into account higher correlations. How-

ever, the RPA-energy can even fall below the exact ground-state energy since it does

not follow from a variational principle due to the approximations that were made during

the derivation of the standard RPA equations.

The RPA ground-state defined by Equation (C.8) can be written as

|RPA〉 = N0 exp

{
1

2

∑

minj

Zmi ,nja
†
maia

†
naj

}
|HF〉 (C.19)

with the normalization constant N0 and
∑
mi

X
(ν)⋆

mi Zmi ,nj = Y
(ν)⋆

nj , i.e. the RPA ground-

state is a coherent state of 2p2h-excitations of the HF ground-state.
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Normal Ordering

For various applications including a three-body interaction is not feasible. Via the

normal ordering one can derive an effective zero- plus one- plus two-body interaction

with a residual three-body interaction, whose impact is expected to be negligible [65].

The normal ordering is defined with respect to a reference state, which is the Hartree-

Fock ground-state in our case, as

{aαa†β} =





−a†βaα for εα > εF , εβ > εF

aαa†β = −a†βaα for εα > εF , εβ < εF

aαa†β = −a†βaα for εα < εF , εβ > εF

aαa†β for εα < εF , εβ < εF

, (D.1)

where a†β and aα create and annihilate a fermion with single-particle energy εβ and εα,

respectively, and εF indicates the Fermi-energy.

By rearranging the summands the normal ordered form of a general three-body

interaction is obtained [65]:

1

36

∑

pqrstu

〈pqr ||stu〉a†pa†qa†rauatas (D.2)

=
1

6

∑

ijk

〈ijk||ijk〉 +
1

2

∑

ijpq

〈ijp||ijq〉{a†paq} +
1

4

∑

ipqrs

〈ipq||irs〉{a†pa†qasar}

+
1

36

∑

pqrstu

〈pqr ||stu〉{a†pa†qa†rauatas} ,

where 〈pqr ||stu〉 denote the antisymmetrized three-body matrix elements. The indices

i , j , k label occupied orbitals of the reference state while p, q, r , s, t, u refer to all
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orbitals. The normal ordering of four and six creation and annihilation operators

follows directly from the extension of definition (D.1).

In our existing programs for the various many-body methods enter the interactions

not in the normal ordered but in the standard form. In principle, it is possible to

change the program structure, however, it is more convenient to express the one- and

two-body normal ordered interactions via the standard forms.

The normal ordered form of the one-body interaction reads

∑

ijpq

〈ijp||ijq〉a†paq =
∑

ijk

〈ijk||ijk〉 +
∑

ijpq

〈ijp||ijq〉{a†paq} , (D.3)

and for the two-body interaction we find

1

4

∑

ipqrs

〈ipq||irs〉a†pa†qasar (D.4)

=
1

2

∑

ijk

〈ijk||ijk〉 +
∑

ijpq

〈ijp||ijq〉{a†paq} +
1

4

∑

ipqrs

〈ipq||irs〉{a†pa†qasar} .

Thus, the normal ordered three-body interaction can be rewritten:

1

36

∑

pqrstu

〈pqr ||stu〉a†pa†qa†rauatas (D.5)

=
1

6

∑

ijk

〈ijk||ijk〉 − 1

18

∑

ijpq

〈ijp||ijq〉a†paq +
1

4

∑

ipqrs

〈ipq||irs〉a†pa†qasar

+
1

36

∑

pqrstu

〈pqr ||stu〉{a†pa†qa†rauatas} .

After discarding the residual three-body term 1
36

∑
pqrstu〈pqr ||stu〉{a†pa†qa†rauatas} the

effective interaction can be easily included in all existing program codes for various

many-body methods.
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Appendix E

Figures

In this appendix are collected some figures that complete the discussions in Chapters 5

and 7, but reveal no further physical insight.

E.1 Hartree-Fock Results for the Contact

Interaction

The following figures supplement the discussion in Section 5.2.
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Figure E.1: Ground-state energies per nucleon and charge radii of selected closed-shell nuclei

resulting from HF calculations for the UCOM(SRG) interaction with α = 0.16 fm4, emax =

10, e3N = 20, and different three-body strengths: (●) C3N = 1.0 GeV fm6, (�) C3N =

1.6 GeV fm6, ( �) C3N = 2.2 GeV fm6. The bars indicate the experimental values [30, 31].
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Figure E.2: Same as in Figure E.1 for the SRG interaction with α = 0.10 fm4, emax = 10,

e3N = 20, and (●) C3N = 3.8 GeV fm6, (�) C3N = 4.3 GeV fm6, ( �) C3N = 4.8 GeV fm6.
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Figure E.3: Same as in Figure E.1 for the S-SRG interaction with α = 0.10 fm4, emax = 10,

e3N = 20, and (●) C3N = 1.5 GeV fm6, (�) C3N = 2.0 GeV fm6, ( �) C3N = 2.5 GeV fm6.
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E.2 Perturbative Energy Corrections for the

Contact Interaction

The following figures supplement the discussion in Section 5.4.
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Figure E.4: Ground-state energies per nucleon based on the UCOM(SRG) interaction for α =

0.16 fm4, emax = 10, e3N = 20, and different three-body strengths: (●,❍) C3N = 1.0 GeV fm6,

(�,�) C3N = 1.6 GeV fm6, ( �, �) C3N = 2.2 GeV fm6. Filled symbols indicate the HF energies,

open symbols include the MBPT corrections. The bars indicate the experimental values [30].
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Figure E.5: Same as in Figure E.4 for the SRG interaction with α = 0.10 fm4, emax = 10,

e3N = 20, and (●,❍) C3N = 3.8 GeV fm6, (�,�) C3N = 4.3 GeV fm6, ( �, �) C3N = 4.8 GeV fm6.
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Figure E.6: Same as in Figure E.4 for the S-SRG interaction with α = 0.10 fm4, emax = 10,

e3N = 20, and (●,❍) C3N = 1.5 GeV fm6, (�,�) C3N = 2.0 GeV fm6, ( �, �) C3N = 2.5 GeV fm6.
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E.3 Collective Excitations

The following figures supplement the discussion in Section 7.4.1.
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Figure E.7: Isoscalar monopole response based on the UCOM(SRG) interaction with

α = 0.16 fm4, emax = 10 for different three-body strengths: ( ) C3N = 1.0 GeV fm6,

( ) C3N = 1.6 GeV fm6, ( ) C3N = 2.2 GeV fm6. Centroid energies extracted from

experiment [51–53] are indicated by arrows.
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Figure E.8: Same as in Figure E.7 for the SRG interaction with α = 0.10 fm4, emax = 10,

and ( ) C3N = 3.8 GeV fm6, ( ) C3N = 4.3 GeV fm6, ( ) C3N = 4.8 GeV fm6.
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Figure E.9: Isoscalar monopole response based on the UCOM(SRG) interaction with C3N =

1.6 GeV fm6, emax = 10 for different flow parameters: ( ) α = 0.04 fm4, ( ) α =

0.12 fm4, ( ) α = 0.16 fm4. Centroid energies extracted from experiment [51–53] are

indicated by arrows.
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Figure E.10: Same as in Figure E.9 for the SRG interaction with C3N = 4.3 GeV fm6, emax =

10, and ( ) α = 0.03 fm4, ( ) α = 0.06 fm4, ( ) α = 0.10 fm4.
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Appendix F

Notation

In the following, some frequently appearing symbols and acronyms are listed.

Quantum Numbers

e major harmonic oscillator quantum number

n principal harmonic oscillator quantum number

nx cartesian harmonic oscillator quantum number

l , ml single-particle orbital angular momentum

s, ms single-particle spin

j , m single-particle total angular momentum

t, mt single-particle isospin

L, ML total orbital angular momentum

J , M total angular momentum

T , MT total isospin
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Symbols

N neutron number

Z proton number

A mass number

ǫF Fermi energy

mN nucleon mass

c
(

j1 j2
m1 m2

∣∣ J

M

)
Clebsch-Gordan coefficient

Operators

H Hamiltonian

T kinetic energy

VNN two-body interaction

V3N three-body interaction

C, Cr , CΩ correlation operators: general, central, tensor

Õ arbitrary correlated operator

x position operator

qr radial momentum operator

qΩ orbital angular momentum operator

L orbital angular momentum

S spin

Π projection operator
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Acronyms

NN nucleon-nucleon

3N three-nucleon

AV18 Argonne V18

UCOM Unitary Correlation Operator Method

SRG Similarity Renormalization Group

HF Hartree-Fock

MBPT Many-Body Perturbation Theory

NCSM No-Core Shell Model

RPA Random Phase Approximation

ISM Isoscalar Monopole

IVD Isovector Dipole

ISQ Isoscalar Quadrupole
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& Co. KG, Berlin, 2nd edition, 1999.

171



[40] http://www.wolfram.com/products/mathematica/index.html.

[41] L. Chaos-Cador and E. Ley-Koo. Common generating functions of complete harmonic

oscillator wave functions and transformation brackets in D dimensions. Int. J. Quant.

Chem., 97:844–853, 2004.

[42] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii. Quantum Theory of Angular

Momentum. World Scientific, 1988.

[43] P. Navratil, J. P. Vary, and B. R. Barrett. Large basis ab initio no-core shell model and

its application to c-12. Phys. Rev., C62:054311, 2000.

[44] D. Vautherin and D. M. Brink. Hartree-Fock calculations with Skyrme’s interaction. 1.

Spherical nuclei. Phys. Rev., C5:626–647, 1972.

[45] M. Waroquier, K. Heyde, and H. Vincx. Antisymmetry in the three-nucleon interaction

matrix elements. Phys. Rev., C13:1664–1673, 1976.

[46] O. Bohigas, A. M. Lane, and J. Martorell. Sum Rules for Nuclear Collective Excitations.

Phys. Rept., 51:267, 1979.

[47] D. J. Rowe. Nuclear Collective Motion. Methuen and Co. Ltd., London, 1st edition,

1970.

[48] J. Suhonen. From Nucleons to Nucleus. Concepts of Microscopic Nuclear Theory.

Springer, Berlin, 1st edition, 2007.

[49] P. Ring and P. Schuck. The Nuclear Many-Body Problem. Springer, 1st edition, 1980.

[50] H. Hergert. personal communication.

[51] Y. W. Lui, H. L. Clark, and D. H. Youngblood. Giant resonances in 16O. Phys. Rev.,

C64:064308, 2001.

[52] D. H. Youngblood, Y. W. Lui, and H. L. Clark. Isoscalar E0, E1, and E2 strength in
40Ca. Phys. Rev., C63:067301, 2001.

[53] D. H. Youngblood, H. L. Clark, and Y. W. Lui. Incompressibility of Nuclear Matter

from the Giant Monopole Resonance. Phys. Rev. Lett., 82:691–694, 1999.

[54] S. F. LeBrun, A. M. Nathan, and S. D. Hoblit. Photon scattering in the giant dipole

resonance region of 16O. Phys. Rev., C35:2005–2010, 1987.

[55] A. Veyssière, H. Beil, R. Bergère, P. Carlos, A. Leprêtre, and A. De Miniac. A study of

the photoneutron contribution to the giant dipole resonance of s-d shell nuclei. Nucl.

Phys. A, 227(3):513 – 540, 1974.

172



[56] B. L. Berman et al. Photoneutron Cross Sections for 90Zr, 91Zr, 92Zr, 94Zr, and 89Y.

Phys. Rev., 162:1098–1111, 1967.

[57] A. Veyssière, H. Beil, R. Bergère, P. Carlos, and A. Leprêtre. Photoneutron cross

sections of 208Pb and 197Au. Nucl. Phys. A, 159(2):561 – 576, 1970.

[58] F. E. Bertrand, G. R. Satchler, D. J. Horen, and A. van der Woude. Systematics of

the isoscalar giant monopole resonance from 60 MeV inelastic proton scattering. Phys.

Lett. B, 80(3):198 – 202, 1979.

[59] S. Raman, C. W. G. Nestor, Jr, and P. Tikkanen. Transition probability from the

ground to the first- excited 2+ state of even-even nuclides. Atom. Data Nucl. Data

Tabl., 78:1–128, 2001.

[60] J. Heisenberg, Jechiel Lichtenstadt, Costas N. Papanicolas, and J. S. McCarthy. Exci-

tation of low lying natural parity levels in 208Pb by inelastic electron scattering. Phys.

Rev., C25:2292–2308, 1982.

[61] P. Papakonstantinou. personal communication.

[62] Robert Roth. Importance Truncation for Large-Scale Configuration Interaction Ap-

proaches. Phys. Rev., C79:064324, 2009.

[63] K. L. G. Heyde. The Nuclear Shell Model. Springer, Berlin, Heidelberg, 2nd edition,

1994.

[64] C. Stumpf. Entartete Vielteilchen-Störungstheorie und Padé-Resummation für Kern-
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An erster Stelle möchte ich mich bei Professor Robert Roth bedanken. Durch die

Arbeit in seiner Gruppe habe ich viel gelernt. Er hat es auf vorbildliche Weise vestanden,

den optimalen Mittelweg zu finden: Auf der einen Seite gewährte er ein selbst gewähltes
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