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We discuss the building blocks for a consistent inclusion of chiral three-nucleon (3N) interactions into ab

initio nuclear structure calculations beyond the lower p-shell. We highlight important technical developments,

such as the similarity renormalization group (SRG) evolution in the 3N sector, a JT -coupled storage scheme

for 3N matrix elements with efficient on-the-fly decoupling, and the importance truncated no-core shell model

with 3N interactions. Together, these developments make converged ab initio calculations with explicit 3N

interactions possible also beyond the lower p-shell. We analyze in detail the impact of various truncations of the

SRG-evolved Hamiltonian, in particular the truncation of the harmonic-oscillator model space used for solving

the SRG flow equations and the omission of the induced beyond-3N contributions of the evolved Hamiltonian.

Both truncations lead to sizable effects in the upper p-shell and beyond and we present options to remedy

these truncation effects. The analysis of the different truncations is a first step towards a systematic uncertainty

quantification of all stages of the calculation.
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I. INTRODUCTION

Ab initio nuclear structure theory has undergone an amaz-

ing development over the past few years, strengthening its

role for our understanding of nuclear structure properties on

the basis of the strong interaction physics. One of the most

active frontiers is the extension of ab initio theories towards

heavier nuclei, i.e., beyond the limit around mid p-shell that

was characteristic for ab initio approaches a decade ago [1–

5]. On the one hand, existing many-body frameworks, such

as the no-core shell model (NCSM) [6–8] or quantum Monte

Carlo methods [9–11], have been improved and extended to-

wards heavier systems. A specific example is the importance

truncated NCSM (IT-NCSM) [12, 13], which extends the

domain of NCSM-type calculations into the lower sd-shell.

On the other hand, a new generation of many-body meth-

ods have been introduced to ab initio nuclear theory, such as

coupled-cluster theory [14–17], self-consistent Green’s func-

tion methods [18–20], or the in-medium similarity renormal-

ization group [21–24], aiming directly at medium-mass nu-

clei. In many of the recent applications two-nucleon (NN)

and three-nucleon (3N) interactions from chiral effective field

theory (EFT) are being used as starting point and connection

to the underlying physics of the strong interaction [25, 26].

In comparison to the more phenomenological realistic Hamil-

tonians used a decade ago, chiral EFT offers a consistent and

systematically improvable approach to two-, three-, and multi-

nucleon interactions as well as the corresponding electromag-

netic and weak operators. From the point of view of nuclear

structure observables in light nuclei, already the present gen-

eration of chiral NN+3N interaction provides a quantitative

description comparable to the best previous realisitc Hamilto-

nians [27, 28].
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When pushing the ab initio frontier to nuclei beyond the

lower p-shell, a particular challenge is the proper inclusion of

the 3N interaction at all stages of the calculation. Part of this

challenge is the computation and handling of the 3N matrix

elements entering the many-body calculations for large model

spaces. The huge number of m-scheme 3N matrix elements

that need to be stored in memory limited the range of previ-

ous NCSM calculations [29–32]. New developments regard-

ing the computation and handling of 3N matrix elements are

mandatory to extend the ab initio frontier beyond the lower

p-shell. Similarly, the unitary transformations that are used

to enhance the convergence behavior of the many-body cal-

culations have to be extended to the 3N sector. In many of

the recent ab initio applications the similarity renormalization

group (SRG) is used, since its formal extension to 3N and

multi-nucleon interactions is straightforward [32, 33]. How-

ever, the various truncations, e.g., regarding the model spaces

used for the numerical solution of the SRG flow equations

or the particle rank of the induced many-body contributions,

need to be validated. The uncertainties associated with these

truncations are expected to become more significant with in-

creasing particle number. Finally, the many-body approach

has to be extended to efficiently include the 3N contributions.

In the case of the NCSM this step is straightforward, for meth-

ods like coupled-cluster theory it requires a non-trivial exten-

sion of the formalism [15, 34, 35]. Alternatively, one can re-

sort to controlled approximations, such as the normal-ordering

approximation discussed in Refs. [15, 36], to partially include

3N interactions while avoiding extensions of the formalism

beyond the level of two-body interactions.

In this technical paper we discuss a chain of key develop-

ments enabling the consistent inclusion of chiral 3N interac-

tions into ab initio calculations beyond the lower p-shell, by

addressing each of the challenges mentioned above. In Sec. II

we discuss the computation of 3N matrix elements starting

from a harmonic-oscillator (HO) basis formulated in three-

body Jacobi coordinates. We discuss the transformation of

the 3N matrix elements to the JT -coupled scheme first intro-

duced in Ref. [33], which is used as input for the many-body
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calculation in conjunction with an efficient on-the-fly decou-

pling to the m-scheme. In Sec. III we discuss the consistent

SRG evolution of the Hamiltonian at the three-body level. We

focus on the evolution in a HO representation and introduce

new tools, such as the frequency conversion, to overcome lim-

itations of the HO model space. In Sec. IV we discuss the

IT-NCSM with explicit 3N interactions and discuss threshold

extrapolations of energies and spectroscopic observables.

Utilizing these tools, in Sec. V, we critically assess the

role of various truncations introduced in the SRG-transformed

Hamiltonian. We show ways to remedy truncation errors re-

sulting from the SRG model space and analyze the emer-

gence and the origin of induced beyond-3N interactions. We

show that reducing the initial chiral cutoff of the 3N interac-

tion quickly suppresses the SRG-induced beyond-3N contri-

butions leading to an SRG-evolved Hamiltonian with accept-

able truncation uncertainties that was already adopted in sev-

eral applications to medium-mass nuclei [18, 19, 21, 22, 34–

36]. Finally, in Sec. VI we compare our results to a recent

NCSM study [30] using a more conventional toolchain and

discuss different model-space extrapolations.

II. THREE-BODY MATRIX ELEMENTS

A. Generalities

The basic input for any many-body approach using a basis

expansion within a truncated many-body Hilbert space are ap-

propriate matrix elements of the Hamiltonian. In the context

of the NCSM, the underlying basis is given by the eigenstates

of the spherical harmonic oscillator (HO), either in the form of

A-body Slater-determinants of single-particle HO states, the

so-called m-scheme, or in the form of relative HO states with

respect to A-body Jacobi coordinates. We will focus on the m-

scheme formulation, since it is much more convenient when

going beyond the lightest nuclei [6, 7]. Furthermore, it is more

universal and directly applies to other many-body schemes,

such as Hartree-Fock calculations, general configuration in-

teraction approaches, or the coupled-cluster method.

For an m-scheme calculation a Hamiltonian containing NN

and 3N interactions enters in terms of two- and three-body

matrix elements with respect to Slater determinants of two and

three HO single-particle states. A prerequisite for a many-

body calculation is that these matrix elements can be com-

puted and stored efficiently for sufficiently large basis sizes.

The computation of these m-scheme matrix elements typi-

cally involves a multi-step process, which is well established

for the two-body matrix elements of the NN interaction. The

starting point is an initial representation of the interaction.

Typically, one starts with either an operator representation

of the interaction or, more conveniently, with a basis repre-

sentation in a partial-wave decomposed relative-momentum

basis |q(LS )JM; T MT 〉a, where q is the relative momentum

of the nucleon pair and {(LS )JM; T MT } are the standard LS -

coupled partial-wave quantum numbers including total isospin

T and isospin projection MT . This basis representation ap-

proach has been established as a standard for the chiral NN

interactions [37–39]. In a first step, we compute relative HO

matrix elements for the basis |N(LS )JM; T MT 〉a with radial

HO quantum number N using a simple basis transformation.

In a second step, the relative HO matrix elements can be con-

verted through a Talmi-Moshinsky transformation plus angu-

lar momentum recouplings [40, 41] into m-scheme matrix el-

ements with respect to the antisymmetrized two-body states

|nala jamamta; nblb jbmbmtb〉a with single-particle HO quantum

numbers. In order to reduce the storage requirements for the

two-body matrix elements and to exploit the symmetries of the

two-body interaction, one generally does not store m-scheme

matrix elements directly, but a simple JT -coupled form with

respect to the basis states |nala; nblb; ( ja jb)JM; ( 1
2

1
2
)T MT 〉a.

The decoupling to pure m-scheme matrix elements is done on

the fly during the many-body calculation.

For the 3N interaction, we follow the exactly same route,

though each of the steps is significantly more involved. Again,

the 3N interaction is initially given in an operator form or

in a partial-wave decomposed Jacobi-momentum basis. In

a first step, the latter can be transformed into a partial-wave

Jacobi-coordinate HO basis, which also gives an easy handle

on antisymmetrization. Then in a second step, we could trans-

form from Jacobi to m-scheme HO matrix elements through

a sequence of two Talmi-Moshinsky transformations and re-

couplings. This strategy was used in previous large-scale

applications of chiral 3N interaction in the NCSM, see e.g.

Ref. [8, 32, 42]. We propose to use JT -coupled three-body

matrix elements for a more efficient storage and retrieval com-

bined with an on-the-fly decoupling during the many-body

calculation [33], in complete analogy to the standard proce-

dure for two-body matrix elements. We will discuss the de-

tails and the advantages of this scheme in the following.

B. Initial 3N matrix elements

For the chiral 3N interaction, the computation of initial

partial-wave decomposed relative matrix elements can be

challenging already. To be specific, we consider three-body

matrix elements with respect to the two Jacobi momenta ~π1

and ~π2 in the three-body system, defined by [43, 44]

~π1 =
1√
2
(~pa − ~pb) , ~π2 =

√

2
3

[

1
2
(~pa + ~pb) − ~pc

]

(1)

where ~pa,b,c are the single-particle momenta of the three nu-

cleons. The Jacobi momentum ~π0 characterizing the center-

of-mass motion is irrelevant for the description of the in-

trinsic dynamics. We systematically use numeric indices for

quantities defined with respect to relative Jacobi coordinates

and latin indices for quantities defined with respect to single-

particle coordinates. For example, L1 denotes a relative or-

bital angular-momentum quantum number with respect to the

first Jacobi coordinate ~π1, whereas la denotes a single-particle

orbital angular momentum. As a general rule, we use capi-

tal letters for angular momentum, spin and isospin quantum

numbers that involve more than one particle and lower-case

letters for single-particle quantum numbers.
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The starting point for the following calculation is a partial-

wave representation of the Jacobi-momentum basis in the

three-nucleon system. Using a J1 J2-coupling scheme for the

two total angular momenta J1 and J2 associated with the Ja-

cobi momenta π1 and π2 we write the basis states as

|π1π2;α〉 = |π1π2; [(L1S 1)J1, (L2
1
2
)J2]J12; (T1

1
2
)T12〉 (2)

with α = {[(L1S 1)J1, (L2
1
2
)J2]J12; (T1

1
2
)T12} as a collective

index for all angular momentum, spin and isospin quantum

numbers defining the partial wave. We omit the projection

quantum numbers M12 and MT12 for brevity. Note that these

basis states have a well-defined transposition symmetry only

with respect to the particles a and b, we will discuss the com-

plete antisymmetrization in the context of the Jacobi-HO ma-

trix elements in Sec. II C.

The computation of matrix elements of the chiral 3N in-

teraction in this basis is the first step. For 3N interactions

at N2LO there are only five different momentum-spin-isospin

structures, for which a partial wave decomposition can be per-

formed explicitly. This is discussed in detail in Refs. [45, 46]

and in Ref. [44] for different formulations of the regulators.

For the chiral 3N interaction at N3LO the situation changes

radically. Recently, the derivation of cartesian momentum-

space structures of the 3N interaction at N3LO was com-

pleted [47, 48]. In view of the many different momentum-

spin-isospin operators involved, a manual partial-wave de-

composition is hardly feasible. Therefore, an automa-

tized partial-wave decomposition was recently proposed by

Skibiński et al. [49], which uses numerical integrations

over five angular variables to extract partial-wave Jacobi-

momentum matrix elements. As a result tabulated numerical

values of the matrix elements on a four-dimensional grid of

Jacobi momenta will be available for subsequent calculations.

The partial-wave decomposition is computationally quite ex-

pensive and there is an ongoing collaborative effort within the

LENPIC [74] collaboration to generate those matrix elements

for the chiral interaction at N3LO for use in nuclear structure

calculations.

C. Jacobi-HO matrix elements

When aiming at many-body calculations using an HO ba-

sis, it is convenient to transform the three-body Jacobi ma-

trix elements into an HO representation right away. We use a

partial-wave Jacobi-HO basis of the form

|N1N2;α〉 = |N1N2; [(L1S 1)J1, (L2
1
2
)J2]J12; (T1

1
2
)T12〉 (3)

with radial HO quantum numbers N1 and N2 defined with re-

spect to the first and second Jacobi coordinate and the collec-

tive partial-wave index α as in the Jacobi-momentum repre-

sentation. The transformation of three-body matrix elements

from the |π1π2;α〉 to the |N1N2;α〉 basis is straight forward.

Within the Jacobi-HO representation we can also perform

the complete antisymmetrization of the three-body matrix el-

ements in a convenient manner. Following Refs. [44, 50] we

denote antisymmetrized Jacobi-HO states as |E12iJπ
12

T12〉a,

where E12 = (2N1+L1)+ (2N2+L2) is the principal HO quan-

tum number of the Jacobi-HO state, Jπ
12

is the total angular

momentum and parity of the relative motion and T12 the total

isospin. These are the only good quantum numbers of the anti-

symmetrized Jacobi-HO basis. The index i labels the different

antisymmetrized basis states that emerge for given E12, Jπ
12

,

and T12—it does not correspond to a physically meaningful

quantum number. The transformation to the antisymmetrized

Jacobi-HO basis can be written as

|E12iJπ12T12〉a =
∑

N′
1
,N′

2
,α′

δE12 ,(2N′
1
+L′

1
)+(2N′

2
+L′

2
)δJπ

12
,J′π
′

12
δT12,T

′
12

× Ci
N′

1
N′

2
α′ |N

′
1N′2;α′〉

(4)

where the overlap of the non-antisymmetrized and the anti-

symmetrized Jacobi-HO states defines so-called coefficients

of fractional parentage (CFP) [44, 50, 51]

Ci
N1N2α

= 〈N1N2;α|E12iJπ12T12〉a (5)

with E12 = (2N1 + L1) + (2N2 + L2). The numerical values of

the CFPs can be determined by solving the eigenvalue prob-

lem of the antisymmetrization operator A in the Jacobi-HO

basis |N1N2;α〉. This matrix exhibits a block structure in E12,

Jπ
12

, and T12, indicating that these are good quantum numbers

in both representations. The eigenvectors of the matrix in each

(E12, J
π
12
, T12) block that belong to the degenerate subspace to

the eigenvalue 1 define the CFPs with i as a degeneracy in-

dex [43]. The Kronecker deltas in Eq. (4) reduce the summa-

tions to the (E12, J
π
12
, T12) block defined through the left-hand

side.

Transformation (4) is a highly efficient way to project the

Jacobi-HO states |N1N2;α〉 onto a complete orthonormalized

basis of antisymmetric states. The numerical simplicity of the

transformation to the antisymmetrized basis is the main ad-

vantage of working with a Jacobi-HO basis as compared to

the Jacobi-momentum representation [52].

D. Transformation to JT -coupled matrix elements

The most demanding step in the preparation of three-body

matrix elements for many-body calculations is their transfor-

mation from the Jacobi-HO basis into a three-body Slater-

determinant basis of HO single-particle states, also called m-

scheme states. We are interested in matrix elements with

respect to an antisymmetrized JT -coupled three-body basis

composed of HO single-particle states

|ãb̃c̃; JabJ; TabT〉a =
= |nalanblbnclc; [( ja jb)Jab, jc]J; [( 1

2
1
2
)Tab,

1
2
]T〉a

(6)

where ã = {na, la, ja}, etc. is a short hand for the radial and

angular momentum single-particle quantum numbers and the

projection quantum numbers M and MT are omitted. These

antisymmetrized states can be generated from JT -coupled

product states by applying the antisymmetization operator A
explicitly

|ãb̃c̃; JabJ; TabT 〉a =
√

6 A |ãb̃c̃; Jab J; TabT 〉 , (7)
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where we introduce a normalization factor and, thus, defineA
as projection operator. To connect the non-antisymmetrized

JT -coupled basis with the center-of-mass frame relative

Jacobi-HO states, we have to augment the latter with an ex-

plicit center-of-mass component |NcmLcm〉 again using the

HO basis. Starting from the non-antisymmetrized Jacobi-HO

states (3) we define

|N1N2;α; NcmLcm; J〉 = { |N1N2;α〉 ⊗ |NcmLcm〉}J (8)

where J results from the coupling of J12 for the relative mo-

tion with Lcm for the center of mass. As before, all projection

quantum numbers are suppressed for brevity. The overlap of

the JT -coupled laboratory-frame states |ãb̃c̃; JabJ; TabT 〉with

the Jacobi states (8) defines the transformation coefficient

T
ãb̃c̃Jab J

N1N2αNcmLcm
= T

nala janblb jbnclc jc Jab J

N1L1S 1 J1 N2L2 J2 J12 NcmLcm
=

= 〈N1N2;α; NcmLcm; J|ã b̃ c̃; JabJ; TabT 〉 .
(9)

This overlap is independent of the isospin quantum num-

bers and non-vanishing only for T1 = Tab and T12 = T .

Through multiple angular-momentum recouplings and Talmi-

Moshinsky transformations one can work out the following

analytic form of the T coefficients, as discussed in Ref. [50]

T
nala janblb jbnclc jc Jab J

N1L1S 1 J1N2L2 J2 J12NcmLcm
=

=
∑

N ,L

∑

Lab

∑

L

∑

S 12

∑

L12

∑

Λ

δ2na+la+2nb+lb+2nc+lc ,2Ncm+Lcm+2N1+L1+2N2+L2

× (−1)lc+Λ+Lab+L+S 12+L1+J

× ̂a ̂b ̂c Ĵab Ĵ Ĵ1 Ĵ2Ŝ 1Ŝ 2
12L̂2

ab L̂2L̂2
12L̂2Λ̂2

× 〈〈NL,N1L1; Lab|nblb, nala〉〉1
× 〈〈NcmLcm,N2L2;Λ|NL, nclc〉〉2

×



















la lb Lab
1
2

1
2

S 1

ja jb Jab





































Lab lc L

S 1
1
2

S 12

Jab jc J





































L1 L2 L12

S 1 S 2 S 12

J1 J2 J12



















×
{

lc L Λ
L1 L Lab

} {

Lcm L2 Λ

L1 L L12

}{

Lcm L12 L

S 12 J J12

}

(10)

with the short-hand x̂ =
√

2x + 1. Due to the change

of the underlying coordinate system for the description of

the three nucleons, two harmonic-oscillator brackets (HOBs)

〈〈. . . | . . .〉〉1,2 appear [40]. The HOBs always require a cou-

pling of orbital angular momenta, which implies various

angular-momentum recouplings, resulting in the 6 j- and 9 j-

symbols. The N summation can be eliminated using the

energy-conservation property of the first HOB.

We now have all components to formulate the matrix el-

ements of the three-body operator V in the antisymmetrized

JT -coupled basis

a〈ãb̃c̃; Jab J; TabT |V |ã′b̃′c̃′; J′abJ; T ′abT 〉a =
= 6 〈ãb̃c̃; JabJ; TabT | AVA|ã′b̃′c̃′; J′abJ; T ′abT 〉 ,

(11)

where we again omit all projection quantum numbers. We

can express the antisymmetrization operator using the anti-

symmetrized Jacobi-HO basis, augmented by a HO center-of-

mass part analogously to Eq. (8),

A =
∑

E12 ,i,J
π
12
,T12

∑

Ncm ,Lcm

∑

J

|E12iJπ12T12; NcmLcm; J〉a a〈E12iJπ12T12; NcmLcm; J| .
(12)

Plugging this into Eq. (11) and inserting additional resolutions

of the unit operator in the non-antisymmetrized Jacobi-HO ba-

sis (3) using

〈N1N2;α; NcmLcm; J|E′12iJ′π12T ′12; N′cmL′cm; J′〉a = Ci
N1 N2α

× δ(2N1+L1)+(2N2+L2),E′
12
δJπ

12
,J′π
′

12
δT12,T

′
12
δNcm ,N

′
cm
δLcm ,L

′
cm
δJ,J′

(13)

as well as the definition of the T coefficients (9), we arrive at

the final transformation equation

a〈ãb̃c̃; JabJ; TabT |V |ã′b̃′c̃′; J′ab J; T ′abT 〉a =
= 6

∑

N1,N2,α

∑

N′
1
,N′

2
,α′

∑

Ncm,Lcm

∑

i,i′

δTab,T1
δT ′

ab
,T ′

1
δT,T12

δT,T ′
12
δJ12,J

′
12

× T
ã b̃ c̃ Jab J

N1N2αNcmLcm
T

ã′ b̃′ c̃′ J′
ab

J

N′
1
N′

2
α′NcmLcm

Ci
N1N2α

Ci′

N′
1
N′

2
α′

× a〈E12iJπ12T12|V |E′12i′Jπ12T12〉a

(14)

with E12 = (2N1+L1)+(2N2+L2) and E′
12
= (2N′

1
+L′

1
)+(2N′

2
+

L′
2
). The first four Kronecker deltas eliminate the isospin sum-

mations contained in the α, α′ sums and ensure T1 = Tab,

T12 = T , etc.

The transformation given by Eq. (14) is computationally

demanding, mainly because of the sheer number of relevant

T coefficients. Some of the computational aspects and lim-

itations for evaluating this transformation are discussed in

Sec. II F.

E. Decoupling to m-scheme

For many-body calculations using an m-scheme basis, it is

crucial to efficiently obtain the three-body matrix elements in

a corresponding uncoupled or m-scheme representation

|abc〉a = |nala jam jamta; nblb jbm jbmtb; nclc jcm jcmtc〉a , (15)

where a = {nala jam jamta} is a short hand for the single-

particle quantum numbers, including all projection quantum

numbers. Thus, the final step in the computational scheme is

the complete decoupling of the antisymmetrized JT -coupled

matrix elements to obtain pure antisymmetrized m-scheme
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FIG. 1: (color online) Memory required to store the T -

coefficients (◆), as well as the three-body matrix elements in the

antisymmetrized-Jacobi (�), JT -coupled (▲), and m-scheme (●)

representation as function of the maximum three-body energy quan-

tum number E3max. All quantities are assumed to be single-precision

floating point numbers.

matrix elements

a〈abc|V |a′b′c′〉a =
∑

Jab,J
′
ab
,J

∑

Tab,T
′
ab
,T

×
(

ja jb
mamb

∣

∣

∣

∣

∣

Jab

Mab

) (

Jab jc
Mabmc

∣

∣

∣

∣

∣

J

M

) (

1
2

1
2

mtamtb

∣

∣

∣

∣

∣

∣

Tab

MTab

) (

Tab
1
2

MTabmtc

∣

∣

∣

∣

∣

∣

T

MT

)

×
(

j′a j′
b

m′am
′
b

∣

∣

∣

∣

∣

J′
ab

M′
ab

) (

J′
ab

j′c
M′

ab
m′c

∣

∣

∣

∣

∣

J

M

) (

1
2

1
2

m′tam
′
tb

∣

∣

∣

∣

∣

∣

T ′
ab

M′
Tab

) (

T ′
ab

1
2

M′
Tab

m′tc

∣

∣

∣

∣

∣

∣

T

MT

)

× a〈ãb̃c̃; JabJ; TabT |V |ã′b̃′c̃′; J′abJ; T ′abT 〉a
(16)

with all M and MT quantum numbers determined by sums of

the single-particle m and mt quantum numbers, e.g., Mab =

ma +mb. This decoupling is trivial and requires only Clebsch-

Gordan coefficients. Therefore, the decoupling can be easily

and efficiently done on the fly during the many-body calcula-

tion.

F. Computational strategy

After discussing the formal steps for the calculation of the

three-body matrix elements entering NCSM-type many-body

calculations, we would like to address a few computational

aspects, since they are crucial for practical applications and

set the limits for present ab initio calculations.

The calculation of three-body matrix elements is a prime

example for the ’recompute versus store’ paradigm. In many

NCSM applications including chiral 3N interactions [8, 30,

42], the complete set of m-scheme matrix elements (16) was

computed and stored before the actual many-body calcula-

tion. As mentioned earlier, the sheer number of three-body m-

scheme matrix elements sets a severe limit to the model-space

sizes that are accessible with this approach. This is illustrated

in Fig. 1 which shows the memory needed to store m-scheme

matrix elements of the 3N interaction exploiting all basic sym-

metries as function of the maximum total energy quantum

number E3 max of the three-body states. For a NCSM calcu-

lation of a mid p-shell nucleus in Nmax = 8, corresponding to

E3 max = 11, about 33 GB are needed to store the necessary

3N matrix elements in single precision exploiting all symme-

tries [29]. Moreover, disk-I/O and memory access is nontriv-

ial for these huge sets. In order to extend the NCSM model

space to Nmax = 12 or even 14 for mid p-shell nuclei, we

have made a first step towards a ’recompute instead of store’

strategy in Ref. [33]. Instead of precomputing m-scheme ma-

trix elements, we only precompute and store the JT -coupled

matrix elements defined by Eq. (14). All the computationally

demanding steps of the transformation are still done in the

precompute phase. However, as illustrated in Fig. 1, the stor-

age needed for the JT -coupled matrix elements is reduced by

up to three orders of magnitude. For an Nmax = 8 p-shell cal-

culation only 0.4 GB of storage is needed for the three-body

matrix elements in single precision.

The price to pay for this gain is the on-the-fly decou-

pling (16) of the three-body matrix elements during the many-

body calculation. We have optimized the storage scheme for

the JT -coupled matrix elements to facilitate a fast and cache-

optimized on-the-fly decoupling: we store the values of the

matrix elements in a one-dimensional vector. The order and

position of the matrix elements is defined via a fixed loop-

order for all quantum numbers of the JT -coupled matrix ele-

ments. The six outer loops are defined by the quantum num-

bers ã, b̃, c̃, ã′, b̃′, c̃′ of the single-particle orbitals, where we

exploit antisymmetry and hermeticity. The six inner loops are

defined by the coupled quantum numbers Jab, J′
ab

, J and Tab,

T ′
ab

, T in this specific order. The three innermost isospin loops

run over all 5 possible combinations of the isospin quantum

numbers and can be unrolled manually. We do not exploit

antisymmetry constraints for matrix elements with identical

single-particle orbitals to keep a fixed stride for this inner seg-

ment. The angular-momentum loops use the triangular con-

straints defined through the single-particle quantum numbers.

To evaluate a specific m-scheme matrix element we jump to

the position in the vector defined by the orbital quantum num-

bers and then evaluate the decoupling loops as a linear sweep

over a contiguous segment of the storage vector. Thus, the de-

coupling operation is very simple and highly cache efficient.

This simplicity and its moderate memory footprint makes the

decoupling routine an excellent candidate for porting to ac-

celerator cards and first developments along these lines have

been successful already [53]. The standard implementation of

the JT -coupled scheme has already been adopted in various

many-body methods [18, 21, 22, 29, 34–36].

One could consider to push the boundary further towards

recompute in order to save even more memory. Presently we

compute and store the JT -coupled matrix elements via the

transformation (14) before the many-body calculation. The

T coefficients as well as the HOBs, 6 j and 9 j symbols that

enter Eq. (10) are cached for performance reasons. Both, the

storage of the resulting JT -coupled matrix elements and the

caching of the T coefficients requires similar and substantial

amounts of memory, as illustrated in Fig. 1. Therefore, an

on-the-fly evaluation of the transformation (14) using precom-

puted T coefficients will not reduce the storage needs as com-
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pared to the simple decoupling starting from the JT -coupled

matrix elements as we use it now. In order to save more mem-

ory, one would have to evaluate the T coefficients on the fly

as well, which results in a significant increase of the compu-

tational cost. For present CPU-based architectures the storage

of JT -coupled matrix elements combined with the one-the-

fly decoupling to the m-scheme (16) seems to be the optimal

compromise.

III. SIMILARITY RENORMALIZATION GROUP

A. Generalities

Although the interactions from chiral EFT are compara-

tively soft due to the momentum-space cutoff used to regu-

larize the chiral interactions, it is still difficult to converge

NCSM-type calculations beyond the lightest nuclei. There-

fore, additional transformations are used to enhance the con-

vergence behavior of the many-body calculation. The two

transformation methods that have been successfully used with

3N interactions are the Okubo-Lee-Suzuki (OLS) similar-

ity transformation [54, 55] and the similarity renormaliza-

tion group (SRG) [56–59]. The OLS transformation aims

at a complete decoupling of a specific many-body model

space from the excluded space—as a result the similarity-

transformed Hamiltonian depends on basis, model-space size

and nucleus. The SRG transformation in its standard for-

mulation [56, 60–62] aims at a generic decoupling of low-

momentum or low-energy states from high-lying states and

leads to a universal, model-space- and nucleus-independent

Hamiltonian. This has significant practical advantages, since

the same transformed interaction can be used in different

many-body approaches, from simple Hartree-Fock-type ap-

proaches to coupled-cluster theory and the NCSM. Particu-

larly, within the NCSM the fact that the interaction is model-

space independent conserves the variational character of the

NCSM and enables robust extrapolations to the infinite model

space. Therefore, we focus on the SRG transformation in the

following.

The basic formulation of the SRG is simple. The Hamilto-

nian H and all other operators O of interest are subjected to a

continuous unitary transformation that can formally be written

as

Hα = U†αHUα , Oα = U†αOUα , (17)

with a unitary operator Uα depending on a continuous param-

eter α, the so-called flow parameter. For α = 0 we assume

Uα=0 = 1 and thus Hα=0 = H. Instead of attempting to eval-

uate the explicit form of the unitariy transformation, we take

the derivative of (17) with respect to the flow parameter α
and arrive at a first-order differential equation for the evolved

Hamiltonian

d

dα
Hα = [ηα,Hα] , (18)

with the initial condition Hα=0 = H. The anti-hermitean gen-

erator ηα is connected to the unitary operator Uα through an-

other first-order differential equation

d

dα
Uα = −Uαηα , (19)

with initial condition Uα=0 = 1.

At the heart of the SRG is the definition of the generator

ηα, which represents the physics encapsulated in the trans-

formation. Once the generator is fixed, the above equations

determine the evolved Hamiltonian and all other evolved op-

erators. A variety of SRG generators have been investigated

in different physics contexts [61, 63]. However, the majority

of nuclear structure applications of the SRG use the following

definition of the generator

ηα = (2µ)2 [Tint,Hα] , (20)

with the intrinsic kinetic energy Tint = T − Tcm and the re-

duced nucleon mass µ. Evidently, this generator vanishes if

the evolved Hamiltonian and the kinetic energy commute, i.e.,

if the Hamiltonian is diagonal in the eigenbasis of the kinetic

energy operator. This defines a trivial fixed point of the evo-

lution. With increasing flow parameter α the Hamiltonian ap-

proaches this fixed point and, thus, it is evolving into a band-

diagonal structure with respect to the eigenbasis of the kinetic

energy, i.e., momentum eigenstates. For this specific gener-

ator it makes sense to associate the flow parameter α with a

momentum scale λSRG = α
−1/4 as its often done in the litera-

ture [32, 61]. It is important to notice that the generator (20)

is not connected to a specific choice of nucleus or basis used

in the subsequent many-body calculations. It only reflects the

generic goal of decoupling low- and high-momentum compo-

nents of the model space through a unitary transformation that

preserves the complete information of the initial Hamiltonian.

Owing to its flexibility, the SRG framework can also be

adapted to other decoupling scenarios. Considering the A-

body ground state of a specific nucleus one can design SRG

generators that decouple a reference state, e.g., a simple

Hartree-Fock determinant representing the nucleus under con-

sideration, from all particle-hole excitations. Once a com-

plete decoupling is achieved, the energy expectation value of

the reference state yields the exact ground-state energy, since,

e.g., a full configuration interaction calculation would not ad-

mix any particle-hole excitation to this state anymore. In or-

der to handle the SRG evolution in A-body space, one can

use normal-ordering with respect to the reference state to de-

rive evolution equations for the normal-ordered zero- one- and

two-body terms of the Hamiltonian, which are an approxima-

tion to the full A-body evolution. This defines the so-called

in-medium SRG [21, 22, 24].

B. Cluster decomposition and basis representation

All the above equations are general operator relations in an

A-body Hilbert space or even Fock space. In order to solve

them numerically we have to switch to a basis representation

in a Hilbert space and we will typically not be able to handle

the solution in A-body space. We have to rely on solutions
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of the flow equations in few-nucleon spaces to construct the

evolved Hamiltonian.

This limitation becomes a potential problem since the uni-

tary transformation induces many-body contributions to the

evolved operators that go beyond the particle rank of the ini-

tial operator. If we assume an initial Hamiltonian containing

a two-nucleon interaction, then it is evident from Eqs. (18)

and (20) that an (infinitesimal) step of the flow evolution

will induce irreducible operator contributions beyond the two-

body level. At any finite flow parameter α the evolved Hamil-

tonian contains irreducible operator contributions to all parti-

cle numbers. This is a simple formal consequence of the fact

that the generator ηα is a two-body operator at least. The same

holds for any other evolved operator as well.

We can decompose the evolved Hamiltonian into contri-

butions to different particle ranks through a cluster expan-

sion [62, 64]

Hα = H[1]
α + H[2]

α + H[3]
α + H[4]

α + · · · (21)

where H
[k]
α is an irreducible k-body operator that can be for-

mulated in second quantization as

H[k]
α =

1

(k!)2

∑

α1,...,αk

∑

β1,...,βk

a〈α1...αk |H[k]
α |β1...βk〉a a†α1

...a†αk
aβk
...aβ1

.

(22)

The matrix elements of the irreducible k-body contribution

H
[k]
α in k-body space can be constructed from the matrix ele-

ments of the evolved Hamiltonian Hα in k-body space by sim-

ply subtracting the matrix elements of all irreducible operators

H
[n]
α with n < k:

a〈α1...αk|H[k]
α |β1...βk〉a =

= a〈α1...αk|Hα |β1...βk〉a −
k−1
∑

n=1

a〈α1...αk |H[n]
α |β1...βk〉a .

(23)

Thus, if we are able to solve the evolution equations in Hilbert

spaces of up to k particles, we can extract all irreducible con-

tributions up to the k-body level. Contributions of particle

ranks n with k < n ≤ A that formally emerge from the unitary

transformation in A-body space cannot be extracted—we have

to truncate the cluster expansion (21).

The truncation of the cluster expansion at the k-body level

(k < A) formally destroys the unitarity of the transformation

in A-body space. As long as we preserve unitarity, all eigen-

values of the Hamiltonian in A-body space are not changed

by the unitary transformation, in particular, all eigenvalues

will be independent of the flow parameter α. If we discard

higher-order terms of the cluster expansion, there is no guar-

antee that the eigenvalues of the Hamiltonian in A-body space

are invariant under the transformation. Stated differently, the

dependence of the eigenvalues on the flow parameter provides

a measure for the impact of the discarded higher-order terms.

We will use a systematic flow-parameter variation as a diag-

nostic for the significance of induced and discarded higher-

order contributions later on.

C. Evolution in three-body space

For the numerical solution of the flow equation for the

Hamiltonian one can use any computationally convenient ba-

sis representation. Two common choices are momentum or

HO eigenbases for the relative motion. The center-of-mass

degree of freedom can be separated from the beginning, since

the Hamiltonian and the generator only act on the relative part

of the many-body Hilbert space. Furthermore, in order to ex-

ploit the symmetries of the Hamiltonian we use a basis with

good total angular momentum, parity, and isospin.

In two-body space we, thus, use relative LS-coupled mo-

mentum or HO eigenstates, i.e., |q(LS )JT〉 or |N(LS )JT〉,
respectively. The resulting evolution equations in these rep-

resentations and their solutions are discussed in detail in

Refs. [56, 61, 62] and we will not repeat the details of the

two-body evolution here.

In three-body space we can use the antisymmetrized Jacobi-

momentum or Jacobi-HO states introduced in Secs. II B

and II C, respectively. For reasons of efficiency and technical

convenience we use the antisymmetrized Jacobi-HO states to

formulate the matrix representation of the evolution equations.

Because isospin breaking at the three-body level is expected

to have a minor effect, we omit the isospin projection quantum

number MT12 and use averaged initial three-body matrix ele-

ments [44]. Since neither the Hamiltonian nor the generator

connect states of different Jπ
12

and T12, the evolution equations

decouple for different (Jπ
12

, T12) channels. For each channel

we obtain, after expansion of the commutators and insertion

of two completeness relations,

d

dα
〈E12i|Hα |E′12i′〉 = (2µ)2

E′′
12
≤ESRG
∑

E′′
12
,i′′

E′′′
12
≤ESRG
∑

E′′′
12
,i′′′

(

〈E12i| Tint |E′′12i′′〉 〈E′′12i′′|Hα |E′′′12 i′′′〉 〈E′′′12 i′′′|Hα |E′12i′〉
−2〈E12i|Hα |E′′12i′′〉 〈E′′12i′′| Tint |E′′′12 i′′′〉 〈E′′′12 i′′′|Hα |E′12i′〉
+〈E12i|Hα |E′′12i′′〉 〈E′′12i′′|Hα |E′′′12 i′′′〉 〈E′′′12 i′′′| Tint |E′12i′〉) ,

(24)

where |E12i〉 = |E12iJπ
12

T12〉a for fixed Jπ
12

and T12. For the

completeness relations we of course have to truncate the sum-

mation over the infinite three-body basis to a finite model

spaces defined by the maximum energy quantum number

E′′
12
, E′′′

12
≤ ESRG. Note that this flow equation has to be solved

also for E12 and E′
12

up to ESRG, since the corresponding ma-

trix elements appear at the right hand side of Eq. (24). In prac-

tice we reduce the truncation parameter ESRG with increasing

J12 since the dimension of the Jacobi-HO basis grows rapidly

with J12 and since contributions for higher angular momenta

have less influence on low-energy nuclear structure observ-

ables. We will discuss the details and the impact of this trun-

cation in Sec. V A.

Within the finite three-body model space, the numerical

problem reduces to a system of coupled linear first-order dif-

ferential equations for the matrix elements of Hα. The right-

hand-side of the flow equation (24) consists of three-fold ma-

trix products that can be evaluated very efficiently using opti-

mized BLAS matrix multiplications. We use standard solvers
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FIG. 2: (color online) Matrix elements in the antisymmetrized HO Jacobi representation for the triton channel (Jπ
12

, T12)=(1/2+, 1/2) for

~Ω = 24 MeV. Plotted are the absolute values of the intrinsic kinetic-energy matrix elements (a) as well as the interaction part of the evolved

chiral NN+3N Hamiltonian for flow parameters α = 0 fm4 (b), α = 0.04 fm4 (c), and α = 0.16 fm4 (d). The dark grid lines separate blocks of

fixed energy quantum numbers E12 and E′
12

.

with adaptive step size control, e.g., embedded Runge-Kutta

methods, to evolve the Hamiltonian up to a given flow pa-

rameter α. In contrast to early implementations of the SRG

evolution in a Jacobi-HO basis [32], the numerical solution

of the evolution equations is performed very efficiently—the

evolution for the triton channel (Jπ
12

, T12)=(1/2+, 1/2) for a

typical value of α in a model space with ESRG = 40 takes less

than one hour on a standard desktop workstation.

An illustration of the SRG evolution of the three-

body matrix elements is presented in Fig. 2. We plot

the absolute values of the kinetic-energy matrix elements

a〈E12iJπ
12

T12| Tint |E′12
i′Jπ

12
T12〉a and interaction matrix ele-

ments a〈E12iJπ
12

T12|Hα − Tint |E′12
i′Jπ

12
T12〉a in the antisym-

metrized Jacobi-HO representation for the triton channel (Jπ
12

,

T12)=(1/2+, 1/2) starting from the chiral NN+3N Hamilto-

nian discussed in Sec. V for the flow parameters α = 0, 0.04,

and 0.16 fm4. The bare interaction shows sizable off-diagonal

contributions that are suppressed during the SRG evolution.

As a result the Hamiltonian is driven to a band-diagonal form

in the Jacobi-HO representation. This is expected from the

band-diagonal structure of the intrinsic kinetic energy in the

Jacobi-HO basis, which represents a trivial fixed point of the

evolution.

We note that this scheme can be generalized to the evolu-

tion in four-body space. The only formal change is the use of

an antisymmetrized four-body Jacobi-HO basis. Efforts along

these lines are currently under way.

Instead of representing the SRG equations in the Jacobi-HO

basis (4), one could also use the Jacobi-momentum represen-

tation (2) as shown in Ref. [52]. The momentum representa-

tion has obvious advantages when aiming at calculations of

homogeneous nuclear and neutron matter [65]. However, for

configuration-space nuclear structure calculations build on an

underlying HO basis, where one eventually has to provide HO

matrix elements, the Jacobi-HO basis has decisive advantages:

one can exploit all the benefits of a discrete orthonormal basis,

the antisymmetrization of three-body matrix elements is much

easier and more efficient, and the typical matrix dimensions

to be handled for the numerical solution of the flow-equations

are smaller.

A seeming disadvantage of the Jacobi-HO representations

is the explicit dependence on the HO oscillator frequency and

the need for separate SRG evolutions for each relevant fre-

quency. This and related issued are remedied by using the

so-called frequency conversion discussed in the following sec-

tion.

D. Frequency conversion

Since the evolution equations are solved in the Jacobi-HO

basis, we fix the HO frequency ~Ω from the beginning. Thus,

in order to perform many-body calculations for different fre-

quencies, we have to perform the SRG evolution for each fre-

quency separately. Depending on the frequency ~Ω, the model

space used for the SRG evolution spans different momentum

or energy ranges. At small frequencies ~Ω the momentum

range covered in the SRG model space might not be sufficient

to capture the relevant contributions of the initial Hamiltonian.

If relevant pieces of the Hamiltonian are discarded already be-

fore the SRG evolution due to the ESRG truncation, then the

many-body calculations will exhibit an artificial frequency de-

pendence.

There is a simple trick to circumvent this problem. We can

perform the SRG evolution for a fixed and sufficiently large

frequency ~ΩSRG and afterwards convert the evolved matrix-

elements to a smaller frequency ~Ω through a simple basis

transformation. For this unitary transformation we need the

overlaps of the antisymmetrized Jacobi-HO three-body states

|E12iJπ
12

T12〉a and |Ẽ12ĩJπ
12

T12〉a defined for frequency ~Ω and

~ΩSRG, respectively. These overlaps are given by

a〈E12iJπ12T12|Ẽ12 ĩJπ12T12〉a =
∑

N1,N2

∑

Ñ1,Ñ2

∑

α

δE12,2N1+L1+2N2+L2
Ci

N1N2α

∫

dπ1 π
2
1 RN1L1

(π1) R̃Ñ1L1
(π1)

× δẼ12 ,2Ñ1+L1+2Ñ2+L2
C ĩ

Ñ1 Ñ2α

∫

dπ2 π
2
2 RN2L2

(π2) R̃Ñ2L2
(π2) ,

(25)
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where RNL(π) and R̃ÑL(π) are the radial HO wave functions

associated with frequency ~Ω and ~ΩSRG, respectively, and

Ci
N1N2α

are the CFPs.

Obviously, this basis transformation also needs to be trun-

cated to a finite model space. However, as the frequency con-

version is performed after the SRG evolution the Hamiltonian

already has a band-diagonal structure and the low- and high-

momentum basis states are decoupled. The frequency trans-

formation, described by the matrix of overlaps (25), which

itself has a band-diagonal structure, will only mix matrix el-

ements from a limited region. The low-energy sector of the

Jacobi-HO matrix-elements that enters the many-body calcu-

lation later on is thus not affected by the truncation of the

model space during the frequency conversion.

We will investigate the effect of the frequency conversion

and the impact of the SRG model-space truncation in actual

many-body calculations in Sec. V A.

IV. IMPORTANCE-TRUNCATED NO-CORE SHELL

MODEL

A. Generalities

The no-core shell model (NCSM) is one of the standard ab

initio methods in nuclear structure theory [6, 7]. It is concep-

tually simple and very flexible: the eigenvalue problem of the

Hamiltonian is solved numerically in a finite many-body ba-

sis representation yielding the energy eigenvalues and eigen-

states, which give access to all observables. It obeys the vari-

ational principle and various extrapolation techniques to the

infinite Hilbert space can be used [66–69]. From the point

of view of general configuration interaction (CI) approaches,

the NCSM is based on two defining elements: (i) the many-

body basis is build from HO eigenstates formulated either in

single-particle or in Jacobi coordinates, and (ii) the many-

body model space is truncated with respect to the unperturbed

excitation energy Nmax~Ω of the HO many-body basis states.

One of the specific advantages resulting from (i) and (ii)

is the equivalence of the single-particle and the Jacobi co-

ordinate formulation of the NCSM [43]. As a practical

consequence an NCSM calculation with a translational in-

variant Hamiltonian using a basis of Slater determinants of

single-particle HO states leads to eigenstates that factorize

exactly into a center-of-mass and a relative component—this

is not the case for other choices of the single-particle basis

or many-body truncations. Another advantage of the many-

body truncation (ii) as compared to truncations with respect

to the single-particle basis is its computational efficiency. The

many-body basis dimension needed to approach the exact re-

sult to a given accuracy is much smaller for the Nmax trunca-

tion than for a truncation of the maximum single-particle en-

ergy quantum number emax. This indicates that the truncation

guided by the many-body energy is physically more adequate

than a truncation based on single-particle energies.

Still, the basic limitation of the NCSM results from the

combinatorial growth of the many-body basis dimension with

particle number A and truncation parameter Nmax. In order to

slow down this growth we have proposed an additional impor-

tance truncation of the NCSM model space in Refs. [12, 13].

The basic idea is to selectively remove basis states from the

full NCSM model space using an adaptive, state-specific, and

physics-guided truncation criterion.

Assume we target a small number of low-energy eigenstates

|Ψ(m)〉 for m = 1, ...,M in an NCSM calculation for a specific

Nmax. The full NCSM calculation would yield eigenvectors

representing the amplitudes C
(m)
ν for the expansion of the tar-

get eigenstates in terms of the many-body basis states |Φν〉:

|Ψ(m)〉 =
∑

ν

C(m)
ν |Φν〉 . (26)

Many of the amplitudes will have very small or vanishing val-

ues, i.e., the corresponding basis states do not contribute sig-

nificantly to the target states. If these amplitudes were known

a priori, we could have reduced the basis dimension signifi-

cantly by discarding those basis states and would still obtain

a good variational approximation of the target states.

In order to estimate the amplitudes a priori, we use initial

approximations of the target states, so-called reference states

|Ψ(m)

ref
〉, that are typically determined from a previous NCSM

calculation in a smaller model spaceMref

|Ψ(m)

ref
〉 =

∑

ν∈Mref

C
(m)

ref,ν
|Φν〉 . (27)

These reference states carry information about the physical

properties of the target eigenstates. Guided by first-order mul-

ticonfigurational perturbation theory we estimate the ampli-

tudes of the individual basis states |Φν〉 < Mref in the ex-

pansion of the target eigenstate. This first-order perturbative

correction for the amplitudes defines the so-called importance

measure

κ(m)
ν = −

〈Φν|H |Ψ(m)

ref
〉

∆ǫν
, (28)

where H is the full Hamiltonian of the NCSM calculation and

∆ǫν is an energy denominator which is taken to be the unper-

turbed HO excitation energy of the basis state |Φν〉 [12, 13].

The importance measure combines information about the

properties of the target states, carried by the reference states,

about the many-body basis, and about the Hamiltonian and

is the basis for the definition of a state-dependent adaptive

truncation of the model space, the so-called importance trun-

cation (IT). We define the importance-truncated model-space

MIT(κmin) spanned by all states of the reference space Mref

plus all basis states |Φν〉 < Mref with importance measure

|κ(m)
ν | ≥ κmin for at least one m ∈ {1, ...,M}. The impor-

tance threshold κmin provides an additional truncation param-

eter, which will be varied later on to probe the contribution

of the discarded basis states. Note, that the importance mea-

sure (28) is based on the first-order perturbative correction to

the states, not on the perturbative correction to the energies. It

is, therefore, not biased to an optimal description of energies,

but aims at an optimal description of the states and, thus, of

all observables.
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B. Construction of the IT-NCSM model space

There are different ways to embed the importance trunca-

tion into general CI-type calculations [12]. In the context of

the Nmax-truncated model space of the NCSM, a sequential

scheme has proven to be most efficient. In practice we are al-

ways interested in NCSM calculations for a sequence of Nmax

values in order to assess the convergence with respect to the

model-space size or to perform extrapolations to the infinite

space.

The increase Nmax → Nmax+2 to the next-larger same-parity

NCSM space can be elegantly combined with the importance-

truncation procedure: We use the eigenstates |Ψ(m)〉 obtained

in the Nmax-space to define the reference state for the construc-

tion of the importance-truncated Nmax + 2 space. Generally,

we do not keep the full eigenstate as reference state, but in-

troduce a second threshold parameter, the so-called reference

threshold Cmin. The reference spaceMref is spanned by all ba-

sis states of the Nmax space with amplitudes |C(m)
ν | ≥ Cmin for

at least one m ∈ {1, ...,M}. The reference states |Ψ(m)

ref
〉 are the

normalized projections of the eigenstates |Ψ(m)〉 onto the refer-

ence spaceMref. These reference states are used to construct

the importance-truncated Nmax + 2 space. Note that during the

importance selection, all basis states from the reference space

Mref are retained and all states from the full Nmax + 2 model

space that are not inMref are probed.

In order to efficiently generate a sequence of importance

thresholds κmin for an a posteriori extrapolation, we start with

constructing the importance-truncated space for the smallest

κmin in the sequence, corresponding to the largest model space.

The model spaces for the larger importance thresholds κmin are

then obtained by filtering out basis states based on the previ-

ously determined κν. Thus, the time-consuming importance

selection is performed only once for each κmin-set.

For accessing a sequence of Nmax spaces, we start with

full NCSM calculations up to a convenient Nmax, typically

Nmax = 4 or 6. Beyond that we use the sequential importance

update described above to increase Nmax in steps of 2. An

important formal property of this scheme is that in the limit

of vanishing thresholds (κmin,Cmin) → 0 we will recover the

sequence of full Nmax-spaces. This is the basis for the extrap-

olation procedures discussed in the next section.

Further details on the algorithm we developed for the im-

portance truncation can be found in Ref. [12]. A slightly

different implementation of this importance-truncation tech-

nique was recently presented in Ref. [70].

C. Threshold extrapolation & uncertainty quantification

The importance truncation is constructed to retain only the

physically important states of the many-body basis, where the

distinction between important and unimportant states is con-

trolled by the importance threshold κmin. Still, the discarded

states will have a quantitative effect on the many-body observ-

ables we aim to compute, and we have to try to recover their

contribution to arrive at an accurate result.

The simplest way to estimate the effect of the discarded ba-

sis states on the energy is through a second-order perturba-

tive correction. During the construction of the importance-

truncated space, we can evaluate a second-order estimate for

the energy contribution of the basis state |Φν〉 through

ξ(m)
ν = −

|〈Φν|H |Ψ(m)

ref
〉|2

∆ǫν
(29)

at no additional cost. Whenever basis states are discarded,

i.e., if |κν| ≤ κmin, we accumulate their second-order energy

contributions ξ
(m)
ν in an estimate for the energy contribution of

the excluded states ∆
(m)

excl
(κmin). This correction can be added a

posteriori to the energy eigenvalues E
(m)

eval
(κmin) obtained in the

importance-truncated space. Unfortunately, this correction is

not easily available for other observables than the energy.

Another way to assess the contributions of excluded ba-

sis states is through a variation of the importance threshold

κmin. The energy eigenvalues E
(m)

eval
(κmin) are smooth func-

tions of κmin and they decrease monotonically with decreas-

ing κmin as dictated by the variational principle. Other ob-

servables, which are evaluated via expectation values or ma-

trix elements with the energy eigenstates from an importance-

truncated spaces, also exhibit a smooth, but not necessarily

monotonic dependence on the importance threshold κmin. In

addition it is guaranteed that all observables will approach

their values in the full NCSM space in the limit of vanish-

ing thresholds (Cmin, κmin) → 0. Together, these properties

motivate the a posteriori extrapolation of the observables to

(Cmin, κmin) → 0 in order to recover the contributions of ex-

cluded configurations and thus the full NCSM result up to un-

certainties of the extrapolation.

In practical calculations we choose the reference threshold

Cmin small enough so that it does not affect the results. The

remaining extrapolation of the importance threshold κmin → 0

is performed using simple polynomials Pn(κmin) of different

orders n. It is important to note that this extrapolation is the

only source of systematic uncertainties in an IT-NCSM cal-

culation compared to the full NCSM result. Therefore, it is

important to quantify and control this uncertainty. We do this

on a case-by-case basis for each observable and state as a rou-

tine part of the many-body calculation. Starting from a set of

IT-NCSM calculations for a sequence of thresholds κmin, typ-

ically eight values in the range from 3 × 10−5 to 10 × 10−5, at

fixed Cmin, typically 2 × 10−4, we construct a family of fits.

The fit to the full data set with a polynomial Pn(κmin), typi-

cally of order n = 3, provides the κmin → 0 extrapolated value

of the observable. Additional extrapolations with orders n + 1

and n− 1 to the full data set, as well as extrapolations of order

n with lowest and the lowest two κmin-results dropped define

an uncertainty band for the extrapolation. The span of this un-

certainty band for κmin → 0 provides an individual measure of

the systematic uncertainty for each threshold-extrapolated ob-

servable extracted from an IT-NCSM calculation. The whole

analysis can be repeated for a different value of the reference

threshold Cmin in order to confirm that it does not affect the

threshold-extrapolated observables.

For the description of energies, we can combine the thresh-
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FIG. 3: (color online) Threshold dependence and extrapolation for

the ground-state energy of 16O with the chiral NN interaction evolved

at the two-body level to α = 0.04 fm4 at ~Ω = 20 MeV. Panel (a) and

(c) show the κmin-dependence of the ground-state energy for different

reference thresholds Cmin = 1× 10−4 (●), 2× 10−4 (◆), 3× 10−4 (▲),

and 5 × 10−4 (�) . Panels (b) and (d) illustrate the simple threshold

extrapolation for Cmin = 2×10−4 using a third-order polynomial with

uncertainty bands derived from the extrapolation protocol described

in the text. Red bars mark the full NCSM results obtained with the

Antoine code [71].

old extrapolation with information obtained for the second-

order energy correction due to the excluded states. We make

use of the trivial fact that the energy correction∆
(m)

excl
(κmin) van-

ishes in the limit κmin → 0. Therefore, we can construct a

family of improved energy curves

E
(m)

λ (κmin) = E
(m)

eval
(κmin) + λ ∆

(m)

excl
(κmin) (30)

with an auxiliary control parameter λ, that are guaranteed

to approach the same value E
(m)

λ (κmin) → E
(m)

0
in the limit

κmin → 0 independent of λ. Therefore, with a given set of

λ-parameters we can perform a simultaneous fit of a set of

polynomials to each of the E
(m)

λ (κmin)-curves under the con-

straint that E
(m)

λ (κmin = 0) = E
(m)

0
for all λ. Since the different

E
(m)

λ
(κmin) curves typically approach the common value E

(m)

0

from both directions we achieve a substantial stabilization of

the extrapolation.

We can use the same method to estimate the uncertainties

as in the simple extrapolation. In addition to varying the or-

der of the fit polynomials by ±1 and omitting the one or two

lowest-κmin points, we vary the set of λ values used for the si-

multaneous constrained extrapolation by omitting the largest

or smallest λ. We again arrive at an error band and an intrinsic

and state-specific estimate for the systematic uncertainty due

to the importance truncation and extrapolation.

A first set of examples for the threshold extrapolation are

shown in Figs. 3 and 4. For this demonstration we use the
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FIG. 4: (color online) Illustration of the constrained simultaneous

extrapolation for the ground-state energy of 16O with the chiral NN

interaction evolved at the two-body level to α = 0.04 fm4 at ~Ω =

20 MeV for Nmax = 12 and Cmin = 2 × 10−4.

chiral NN interaction at N3LO by Entem & Machleidt [37]

with an SRG evolution at the two-body level, later referred to

as NN-only Hamiltonian. We consider the ground-state en-

ergies of 16O obtained for Nmax = 8 and Nmax = 12. For

these IT-NCSM calculations we start with a full NCSM run

for Nmax = 4 and then use the sequential update scheme to

increase the model-space size in steps of 2 using the low-

est eigenstate from the previous model-space as reference

state. Figures 3(a) and (c) illustrate the effect of the refer-

ence threshold Cmin. The data sets for different Cmin were

obtained by computing the whole Nmax-sequence with differ-

ent but fixed values of Cmin. We find virtually no dependence

on the reference thresholds throughout the whole range from

Cmin = 1 × 10−4 to 5 × 10−4.

Figures 3(b) and (d) illustrate the simple threshold extrap-

olation with the error bands resulting from the protocol dis-

cussed above. For Nmax = 8 we have the exact NCSM re-

sult for the ground-state energy obtained with the Antoine-

code [71] for comparison. The simple extrapolation repro-

duces the exact value within the estimated extrapolation un-

certainty, which is very small. For Nmax = 12, where a full

NCSM calculation is not possible anymore, the extrapolation

uncertainties increase, but are still well under control.

In order to reduce the uncertainties for the Nmax = 12 ex-

trapolation, we can adopt the simultaneous constained extrap-

olation scheme making use of the perturbative corrections for

the excluded configurations. This is illustrated in Fig. 4 for the

Nmax = 12 calculation. The set of auxiliary λ-parameters is

chosen such that the Eλ(κmin) curves exhibit an approximately

symmetrical approach, which stabilized the extrapolation to

κmin → 0 significantly and also reduces the uncertainty band.

In practical applications, we use the simple extrapolation as

long as the uncertainties are in an acceptable range and switch

to the constrained extrapolation only if necessary to obtain a

stable extrapolation.

As a second set of examples for the threshold extrapolation

we consider the ground and the first excited 2+ state in 12C.

In Fig. 5 we show the threshold dependence of the ground-
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FIG. 5: (color online) Threshold dependence and extrapolation for

(a) the ground-state energy of 12C at Nmax = 8, (b) the excitation

energy of the first excited 2+ state, (c) the quadrupole moment of

the 2+ state, and (d) the B(E2) transition strength from the 2+ to

the ground state. We use the evolved chiral NN interaction at α =
0.04 fm4 and ~Ω = 20 MeV with Cmin = 2 × 10−4. The black lines

show third-order threshold extrapolations with the gray uncertainty

bands obtained from the extrapolation protocol. Red bars mark the

full NCSM results obtained with the Antoine code [71].

state energy, the excitation energy of the first 2+ state, the

quadrupole moment of the first 2+ and the B(E2) transition

strength from the 2+ to the ground state. In all cases we use

the simple threshold-extrapolation scheme with a third-order

polynomial and the uncertainty estimation discussed above.

Whereas the ground-state energy shows the same κmin depen-

dence as the previous cases, the excitation energy is practi-

cally independent of the threshold κmin, i.e., the threshold de-

pendence of the absolute energies of both states is very similar

and cancels when considering their difference. This enables us

to extract excitation energies with much smaller uncertainties

than absolute energies.

For other spectroscopic observables, in particular electric

quadrupole moments and transition strengths, the threshold

extrapolation is more difficult. These observables are very

sensitive to the long-range behavior of the wave functions,

which is typically determined by the small components of the

HO basis expansion. Therefore, the importance truncation af-

fects these quantities more severely than the energies. Further-

more, unlike the energy, these observables are not protected

by the variational principle and can exhibit a more compli-

cated non-monotonous threshold dependence. Together, these

properties lead to larger uncertainties in the threshold extrapo-

lation, which are evident from the examples shown in Fig. 5(c)

and (d). Nevertheless, for spectroscopic observables such as

magnetic dipole moments and transitions that do not exhibit

a pronounced dependence on the long-range behavior of the

wave function, the threshold extrapolations are simple and ac-

curate.

In addition to the systematic uncertainties resulting from

the importance truncation and threshold extrapolation, the IT-

NCSM faces the same uncertainties due to the model-space

truncation in terms of Nmax as the standard NCSM. We will

come back to these model-space extrapolations in Sec. VI.

V. PROPERTIES OF SRG-EVOLVED HAMILTONIANS

Using the IT-NCSM we now assess the properties of the

SRG-evolved Hamiltonians relevant for the application in

many-body calculations.

We start from the chiral NN interaction at N3LO by En-

tem and Machleidt [37] and the chiral 3N interaction at N2LO

in the local formulation by Navrátil [44]. If not stated other-

wise, the 3N interaction uses a cutoff Λ3N = 500 MeV/c and

low-energy constants cD and cE are fitted to the ground-state

energy of A = 3 systems and the β-decay half-life of 3H [72].

The initial 3N matrix elements in the antisymmetrized Jacobi-

HO basis are obtained directly from Petr Navrátil’s ManyEff

code [43].

We perform the SRG evolution of the NN interaction in

two-body space using momentum-space partial-wave matrix

elements on a sufficiently fine and large momentum grid.

The three-body part of the evolved Hamiltonian is deter-

mined from an evolution in the three-body Jacobi-HO basis

with a consistent subtraction of the two-body part evolved

in a HO basis of compatible size. Depending on which of

the three-body contributions are considered, we define the

following Hamiltonians [32, 33]: the NN-only Hamiltonian

only uses the initial chiral NN interaction and keeps only

two-body contributions throughout the SRG evolution. The

NN+3N-induced Hamiltonian starts from the initial NN inter-

action and keeps the SRG-evolved two- and three-body terms.

The NN+3N-full Hamiltonian starts from an initial NN+3N

Hamiltonian and again keeps SRG-evolved two- and three-

body terms. In all Hamiltonians induced four-body and multi-

nucleon contributions are omitted and we use the variation of

the SRG flow-parameter to assess the effect of these terms.

A. Role of the SRG model space

As a first technical aspect we discuss the details and inves-

tigate the impact of the truncation of the SRG model space

mentioned in Sec. III C. In Eq. (24) we have introduced the

truncation parameter ESRG for the three-body Jacobi-HO basis

used for solving the SRG evolution equations. For fixed ESRG

the basis dimension of a (Jπ
12

, T12) channel grows rapidly with

increasing J12. At the same time, channels with large J12 are

of lesser importance for the description of low-energy proper-

ties of light nuclei. Therefore, we introduce a J12-dependent

truncation parameter ESRG(J12) which decreases with increas-

ing J12.

Figure 6 illustrates three specific choices for ESRG(J12), the

so-called ramps, that we adopt in the following. Ramp A de-

fines our default choice for the SRG model space: all three-
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FIG. 7: (color online) Ground-state energy of 4He and 16O with the

NN+3N-full interaction for ~Ω = 16, 20 MeV and α = 0.08 fm4

as function of Nmax. The three curves correspond to the used SRG

model space truncations defined by ramp A (●), ramp B (◆), and

ramp C (▲).

body channels up to J12 = 5/2 use ESRG = 40, beyond that

we reduce ESRG in steps of 4 until J12 = 13/2 and beyond

we use ESRG = 24. Ramps B and C are used to study the

effect of the ESRG truncation on many-body observables—the

former starts reducing ESRG already for J12 = 5/2 and the lat-

ter uses ESRG = 36 for J12 ≤ 7/2. In a series of previous

publications [21, 22, 33, 35, 36] we have always used ramp

A, whereas other groups typically choose other schemes to

reduce ESRG with increasing J12 [30–32].

We first analyze the dependence of IT-NCSM ground-state

energies of 4He and 16O on the SRG model space. In Fig. 7

we show the Nmax-dependence of the ground-state energies
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FIG. 8: (color online) Excitation spectrum of 12C with the NN+3N-

full Hamiltonian for α = 0.08 fm4 and HO frequencies ~Ω = 16 MeV

(a) and 20 MeV (b). Three sets of calculations are shown (almost

always on top of each other) using SRG model-space truncations de-

fined by ramp A (solid bars), ramp B (dashed bars), and ramp C

(dotted bars).

obtained with the NN+3N-full Hamiltonian for α = 0.08 fm4

for two different HO frequencies. For ~Ω = 20 MeV, depicted

in Fig. 7 (b) and (d), we find that the energies of both nuclei

are independent of the choice of the SRG model space, i.e., the

results obtained with all three ramps are on top of each other.

However, when going to the lower frequency ~Ω = 16 MeV,

as shown in Fig. 7 (a) and (c), we observe a sizable depen-

dence of the ground-state energies on the SRG model-space.

For 4He the ramps A and B provide the same results but ramp

C gives 0.4% less binding. For 16O the results for ramps B and

C both differ from ramp A on a scale of up to 1.5%. Together,

this indicates that for ~Ω = 16 MeV the ESRG truncation of

low-J12 channels becomes visible and that for heavier nuclei

also the ramping-down of ESRG with increasing J12 affects the

absolute energies. We have confirmed this trend already in

coupled-cluster calculations extending into the mass A ∼ 50

region [35, 36].

The effect of the SRG model space on excitation energies

is much weaker, as illustrated in Fig. 8 for the excitation spec-

trum of 12C. Even for frequency ~Ω = 16 MeV the excitation

spectra obtained with the three different ramps are essentially

the same. Thus, the parts of the Hamiltonian that are not cap-

tured in the SRG-model space only cause a shift of the whole

spectrum without influencing details of its structure.

In order to eliminate truncation artifacts at small basis fre-

quencies ~Ω we use the frequency conversion introduced in

Sec. III D. By using a larger frequency ~ΩSRG for the SRG

evolution and converting the evolved matrix elements after-

wards to the nominal basis frequencies ~Ω, we can remedy

this problem completely. This is illustrated in Fig. 9, which

shows the ~Ω-dependence of the 16O ground-state energy at

fixed Nmax = 8 and α = 0.08 fm4 for the three different SRG

model spaces. For the left-hand panels the three-body SRG-

evolution is performed in an oscillator basis with the same

~ΩSRG = ~Ω, for the right-hand panels we perform the SRG-
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FIG. 9: (color online) Ground-state energy of 16O obtained at Nmax =

8 for the NN+3N-full Hamiltonian with α = 0.08 fm4 as function

of oscillator frequency ~Ω. We compare the standard SRG evolu-

tion with ~ΩSRG = ~Ω (left column) with an SRG evolution at fixed

~ΩSRG = 24 MeV and subsequent conversion of the matrix elements

to the respective basis frequencies ~Ω (right column). The three

curves correspond to the used SRG model space truncations defined

by ramp A (●), ramp B (◆), and ramp C (▲). In the upper panels the

absolute ground-state energies are plotted, while in the lower panels

the deviations to energies obtained with ramp A are shown.

evolution at fixed ~ΩSRG = 24 MeV and convert to the basis

frequency ~Ω of the many-body space subsequently. Note that

the frequency conversion is performed using the same model-

space truncation as for the solution of the SRG flow equa-

tions. The difference is obvious: Whereas a sizable depen-

dence of the ground-state energy on the SRG ramp appears for

the simple SRG evolution, the frequency-converted matrix el-

ements do not show any dependence on the three-body model

space, even when going to very low basis frequencies such as

~Ω = 12 MeV. The direct comparison of the ground-state en-

ergies obtained without and with frequency conversion at the

lowest frequency ~Ω = 12 MeV is particularly striking—the

binding energy is dramatically underestimated by the SRG-

transformed Hamiltonian without frequency conversion. Thus

components of the initial Hamiltonians that are not captured

by the three-body model space at ~Ω = ~ΩSRG = 12 MeV

yield a large contribution to the binding energy. Without

frequency conversion, calculations in this frequency domain,

which is relevant, e.g., when trying to optimize the conver-

gence of long-range operators, are not feasible.

With increasing mass number, the frequency range that is

accessible without frequency conversion is reduced. Again

we refer to our previous work in medium-mass nuclei, where

this effect was already identified [22, 35].

B. Emergence of induced 4N interactions

After validating several technical aspects of the SRG evo-

lution and the resulting Hamiltonians, we can now focus on
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FIG. 10: (color online) Ground-state energies of 8Be, 10Be, 12C,
14C, and 16O (top to bottom) obtained with the NN+3N-induced

(left column) and NN+3N-full Hamiltonian (right column) with

α = 0.04 fm4 (●), 0.08 fm4 (◆), and 0.16 fm4 (▲) as function of

Nmax for ~Ω = 20 MeV. The dashed horizontal lines show experi-

mental ground-state energies.

one of the important side-effects of the SRG transformation—

the emergence of induced many-body forces. The strong

impact of SRG-induced 3N interactions when using an ini-

tial NN interactions was clearly demonstrated in Refs. [31–

33, 36] and many of the following calculations through the

flow-parameter dependence of the NN-only results and the di-

rect comparison with NN+3N-induced calculations.
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We have pointed out in Ref. [33] and reconfirmed this ob-

servation in Refs. [35, 36] that beyond mid p-shell the cal-

culations using the NN+3N-full Hamiltonian show a flow-

parameter dependence of the ground-state energy, which is

absent in corresponding calculations with NN+3N-induced

Hamiltonians. The systematic emergence of the flow-

parameter dependence of the ground-state energy obtained

with the NN+3N-full Hamiltonian is demonstrated in Fig. 10

for isotopes in the mass range from A = 8 to 16. The left-hand

column shows results for the NN+3N-induced Hamiltonian,

the right-hand-column for the NN+3N-full Hamiltonian for

three different flow parameters α = 0.04, 0.08, and 0.16 fm4

as function of the model-space truncation parameter Nmax. For

all nuclei we are able to perform IT-NCSM calculations up to

Nmax = 12, which is sufficient to converge the ground-state

energy for the softer Hamiltonians. We perform a simple ex-

ponential extrapolation of the energy using the last four data

points to simplify the interpretation, the exponential fits are

shown in Fig. 10 as solid lines.

Though the rate of convergence is different, the ground-

state energies obtained with the NN+3N-induced Hamiltoni-

ans for different flow parameters all approach the same value

in the limit Nmax → ∞ to very good approximation. Thus,

there is no indication that SRG-induced 4N terms, which for-

mally exist, influence the ground-state energies—induced 4N

contributions are negligible when starting from an initial chi-

ral NN interaction.

The picture changes when including the initial chiral 3N in-

teraction. For 8Be and lighter isotopes, the calculations with

NN+3N-full Hamiltonians still do not exhibit a sizeable flow-

parameter dependence of the converged ground-state energies.

However, starting from mass A ≈ 10 a flow-parameter depen-

dence emerges, which increases systematically with A, both

in absolute terms and in terms of the energy per nucleon.

For 16O, the variation of the ground-state energy when go-

ing from α = 0.04 fm4 to 0.16 fm4 reaches 0.5 MeV per nu-

cleon. It is driven by the initial 3N interaction, because the

flow-parameter dependence is absent at the NN+3N-induced

level.

We stress that conclusions about the significance of induced

many-body forces are valid only if the results are converged

with respect to the relevant many-body truncations. For the

IT-NCSM discussed here, this is just the model-space size

Nmax. For other methods this may be more complicated as

we discussed previously in Refs. [21, 22, 35, 36]. However,

also these calculations confirm the aforementioned pattern for

heavier nuclei.

Keeping the influence of induced 4N interactions in mind,

we can compare the ground-state energies to experiment, in-

dicated by the dashed lines in Fig. 10. For the NN+3N-

induced Hamiltonian, i.e., including initial chiral NN inter-

actions only, we find an underbinding by 0.5 to 1.2 MeV

per nucleon. This missing binding is provided by the chiral

3N interaction, i.e., at the level of the NN+3N-full Hamilto-

nian. For 8Be and 10Be, where induced 4N interactions are

negligible, we find excellent agreement with the experimen-

tal binding energies. For 12C, 14C, and 16O the NN+3N-full

calculations show an increasing flow-parameter dependence

and an increasing overbinding. Although a sizable part of the

overbinding seems to be due to the missing SRG-induced 4N

contributions, based on these calculations, we cannot decide

whether all of the overbinding is of this origin or whether it is

resulting from deficiencies of the initial Hamiltonian.

We conclude that starting from mid-p-shell, SRG-induced

4N interactions (or even higher-order contributions) start to

have an impact on ground-state energies as soon as we include

the standard chiral 3N interaction in the initial Hamiltonian.

At this moment we have to discard these induced higher-order

many-body forces, but efforts to account for SRG-induced

4N interactions are currently under way. Excitation energies,

however, do not show a sizable flow-parameter dependence

once convergence with respect to Nmax is reached, as shown

in Refs. [29, 33, 73].

C. Origin of the induced 4N interactions

Having identified the initial chiral 3N interactions as the

origin of sizable SRG-induced 4N contributions, we further

analyze the role of the individual parts of the N2LO 3N inter-

action. The 3N interaction is usually split into a two-pion ex-

change, a two-nucleon contact one-pion exchange and a three-

nucleon contact term. The corresponding operator structures

are

∑

i, j,k

∑

α,β

1

2

(

gA

2Fπ

)2 (~σi · ~qi)(~σ j · ~q j)

(~q2
i
+ M2

π)(~q
2
j
+ M2

π)
F
αβ

i jk
ταi τ

β
j

(31)

with

F
αβ
i jk
= δαβ

[

−
4c1M2

π

F2
π

+
2c3

F2
π

~qi · ~q j

]

+
∑

γ

c4

F2
π

ǫαβγτ
γ
k
~σk · [~qi × ~q j]

(32)

for the two-pion exchange term depending on the low-energy

constants c1, c3, and c4 (or ci for short),

−cD

∑

i, j,k

gA

8F4
πΛχ

~σ j · ~q j

~q2
j
+ M2

π

(~τi · ~τ j)(~σi · ~q j) (33)

for the two-nucleon contact one-pion exchange term propor-

tional to low-energy constant cD, and

cE

∑

j,k

1

2F4
πΛχ

(~τ j · ~τk) (34)

for the three-nucleon contact term with strength cE . Here we

adopt the notation and constants of Ref. [46]. In order to as-

sess the impact of the various terms on the SRG-induced 4N

interactions we switch off the terms individually by setting the

respective low-energy constant to zero. For each case, we refit

cE to reproduce the 4He ground-state energy of −28.30 MeV

with an uncertainty below 10 keV in NCSM calculations with

the bare Hamiltonian. We keep cD = −0.2 as determined from

the triton β-decay half-life, except for the case with cE = 0

where cD is used to fit the 4He energy. The different sets of

low-energy constants obtained from the fit are summarized in
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FIG. 11: (color online) Ground-state energy of 16O obtained with the

NN+3N-full Hamiltonian with α = 0.04 fm4 (●), 0.08 fm4 (◆), and

0.16 fm4 (▲) as function of Nmax. Results for the standard Hamilto-

nian are shown in panel (a), and those for ci = 0, cD = 0, and cE = 0

in panels (b), (c), and (d) respectively.

Tab. I. The resulting Hamiltonians, which are still fixed en-

tirely in the three- and four-body system, are evolved con-

sistently in the SRG framework and enter into the IT-NCSM

calculations.

We apply these modified 3N interactions in a series of

ground-state calculations for 16O up to Nmax = 12 with the

three flow parameters α = 0.04, 0.08 and 0.16 fm4. The re-

sults for the modified Hamiltonians with ci = 0, cD = 0, and

cE = 0 are summarized in Fig. 11. In panel (a) the ground-

state energies obtained with the standard Hamiltonian, show-

ing the flow-parameter dependence discussed in the previous

TABLE I: Low-energy constants of the chiral 3N interaction at N2LO

for the standard interaction [72] and different variants described in

the text. All variants are refit in NCSM calculations with the bare

interactions to reproduce the experimental 4He ground-state energy.

Λ3N c1 c3 c4 cD cE

[MeV/c] [GeV−1] [GeV−1] [GeV−1]

standard 500 -0.81 -3.2 5.4 -0.2 -0.205

ci = 0 500 0 0 0 -0.2 0.444

cD = 0 500 -0.81 -3.2 5.4 0 -0.205

cE = 0 500 -0.81 -3.2 5.4 1.238 0

c1 = 0 500 0 -3.2 5.4 -0.2 -0.207

c3 = 0 500 -0.81 0 5.4 -0.2 -0.228

c4 = 0 500 -0.81 -3.2 0 -0.2 0.141

Λ3N = 450 450 -0.81 -3.2 5.4 -0.2 -0.016

Λ3N = 400 400 -0.81 -3.2 5.4 -0.2 0.098

Λ3N = 350 350 -0.81 -3.2 5.4 -0.2 0.205
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FIG. 12: (color online) Ground-state energy of 16O obtained with the

NN+3N-full Hamiltonian with α = 0.04 fm4 (●), 0.08 fm4 (◆), and

0.16 fm4 (▲) as function of Nmax. Results for the standard Hamilto-

nian are shown in panel (a), and those for c1 = 0, c3 = 0, and c4 = 0

in panels (b), (c), and (d), respectively.

section, are depicted for comparison. When switching off the

two-nucleon contact one-pion exchange contribution (cD = 0)

or the three-nucleon contact term (cE = 0) there is no siz-

able change of the flow-parameter dependence as compared

to the standard Hamiltonian, as seen in Fig. 11(c) and (d), re-

spectively. Thus, neither of these two terms of the chiral 3N

interaction drives the SRG-induced many-body forces. The

picture changes dramatically, if we switch off the two-pion

exchange terms (ci = 0). As depicted in Fig. 11(b), the flow-

parameter dependence of the converged ground-state energy

vanishes completely in this case. Thus, the long-range two-

pion terms in the chiral 3N interaction alone are responsible

for the emergence of sizable induced many-body contribu-

tions throughout the SRG evolution.

We can carry this analysis even further and investigate the

role of the three different two-pion exchange contributions by

switching-off the c1, c3, and c4 terms individually. The re-

sulting ground-state energies for 16O are depicted in Fig. 12.

The comparison with the flow-parameter dependence of the

standard Hamiltonian shows that the c1 contribution does not

affect the induced many-body terms. Also, switching off the

c4 term only causes minor changes in the flow-parameter de-

pendence. However, eliminating the c3 of the chiral 3N in-

teraction leads to a drastic reduction of the flow-parameter

dependence, as shown in Fig. 12(c). We conclude that the

c3 contribution is the major driver for the induced beyond-3N

terms in the SRG evolution.

Because of their complicated operator structure, including

intermediate-range tensor- and spin-orbit-type interactions,

the ci terms are likely candidates for causing many-body cor-
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relations that give rise to induced many-body interactions in

the SRG evolution—in analogy to the tensor interaction at the

NN-level as an important source of induced 3N contributions

[62]. However, it is not obvious why the c3 contribution is the

dominant source and the c4 term contributes so little. In con-

trast to the c1 term, which contributes very little to the ground-

state energies of 4He or 16O, the contribution of the c4 term to

the ground-state energy is not small. This can be seen from

the large change of cE that is necessary to reproduce the 4He

ground-state energy when c4 is set to zero.

These findings might prove useful for the design of alterna-

tive SRG generators which aim to suppress the induced many-

body terms. However, initial attempts along these lines were

not successful.

D. Reduced initial three-nucleon cutoff

Motivated by the observation that small modifications of

the structure of the initial chiral 3N interaction can eliminate

the SRG-induced many-body interactions, we study the be-

havior of the flow-parameter dependence of the 16O ground-

state energy as function of the three-body cutoff Λ3N used for

the regularization of the chiral 3N interaction at N2LO. As

outlined in the previous section, we refit the cE parameter for

each initial 3N cutoff to reproduce the 4He ground state en-

ergy in NCSM calculations with the bare Hamiltonian. The

resulting values of cE for cutoffs in the range from Λ3N = 350

to 500 MeV/c are summarized in Tab. I.

The IT-NCSM results for the ground-state energies of 16O

are presented in Fig. 13 for the different initial 3N cutoffs.

The flow-parameter dependence of the converged energies

shows a clear systematics: with decreasing cutoff Λ3N the

flow-parameter dependence is rapidly reduced. For Λ3N =

350 MeV/c the converged ground-state energies exhibit no

flow-parameter dependence in the range from α = 0.04 to

0.08 fm4 anymore. Already at Λ3N = 400 MeV/c the ground-

state energies only vary by about 2% over this flow-parameter

range. In combination with the analysis of Sec. V C, we can

conclude that the higher-momentum components, i.e., con-

tributions that are eliminated by lowering the 3N cutoff to

Λ3N = 350 MeV/c, of the two-pion terms of the 3N inter-

action are responsible for the emergence of SRG-induced 4N

interactions.

As the flow-parameter dependence decreases, the 16O

ground-state energy systematically approaches the experi-

mental binding energy. For both, Λ3N = 350 and 400 MeV/c

the calculated energies agree very well with experiment. This

is remarkable, since no experimental data beyond A = 4

was used to constrain these Hamiltonians. Since the flow-

parameter dependence and thus the contribution of induced

beyond-3N interactions is small, we can conclude that these

reduced-cutoffHamiltonians enable a parameter-free descrip-

tion of the 16O ground-state energy. This finding is confirmed

in a systematic study of the ground states of even oxygen iso-

topes from 12O to 26O using the IT-NCSM, coupled-cluster

theory, and the newly developed multi-reference in-medium

SRG [21]. We have shown that the chiral 3N interactions with

reduced cutoff can well reproduce the experimental ground-

state energies throughout the oxygen isotopic chain and de-

scribe the position of the dripline correctly without any phe-

nomenological adjustments. Furthermore, for medium-mass

nuclei, like calcium and nickel isotopes, the coupled-cluster

calculations discussed in Refs. [35, 36] indicate that these

interactions still provide a remarkably good description of

ground-state energies.

Of course, lowering the cutoff too far will eliminate phys-

ically important components of the interaction. First in-

dications are already seen for the interaction with Λ3N =

400 MeV/c in the spectroscopy of p-shell nuclei for observ-

ables that depend sensitively on the 3N interaction. A prime

example is the ordering of the lowest states in 10B: the stan-

dard chiral 3N interaction with Λ3N = 500 MeV/c predicts the

ground-state to be a 3+ with an approximately correct exci-

tation energy to the first 1+ state. Reducing the 3N cutoff to

Λ3N = 400 MeV/c gives almost degenerate 3+ and 1+ states

with a tendency for the 1+ to become the ground state. How-

ever, one should note that also the standard 3N interaction

has deficiencies regarding p-shell spectroscopy. The excita-

tion energy of the first 1+ state in 12C is underestimated by

about 4 MeV for Λ3N = 500 MeV/c, but is within 0.5 MeV

of the experimental value for Λ3N = 400 MeV/c. These and

related effects of the 3N interaction on the spectroscopy of

p-shell nuclei will be discussed in forthcoming publications

[73].

VI. COMPARISON AND EXTRAPOLATION

We close this discussion with a comparison of our results

for ground-state energies of p-shell nuclei with a set of sim-

ilar calculations by Jurgenson et al. [30]. These authors are

using the same standard chiral NN+3N Hamiltonian as start-

ing point and they also use the SRG evolution and the NCSM

to tackle the many-body problem. However, there are signif-

icant differences regarding (i) the model space for the SRG

evolution, (ii) the handling of the 3N matrix elements, and

(iii) the solution of the many-body problem:

(i) We employ a different truncation pattern for the three-

body Jacobi-HO model-space of the SRG evolution as

discussed in Sec. V A, allowing for larger spaces for

the J = 3/2 and 5/2 partial waves as compared to Ju-

rgenson et al. More importantly, we use the frequency

conversion discussed in Sec. III D, i.e., the SRG evolu-

tion is performed for fixed frequency ~ΩSRG = 24 MeV

and we convert the resulting matrix elements to all other

basis frequencies of interest. This eliminates the trun-

cation artifacts at low frequencies, as demonstrated in

Sec. V A.

(ii) We use the JT -coupled scheme for handling the 3N ma-

trix elements instead of the m-scheme storage used by

Jurgenson et al. This enables us to precompute and store

3N matrix-element sets for much larger spaces, as high-

lighted in Sec. II F. For an Nmax = 8 calculation of 12C,

corresponding to E3 max = 11, the m-scheme approach
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FIG. 13: (color online) Dependence on the cutoff of the 3N interaction Λ3N of the 16O ground-state energy obtained with the NN+3N-full

Hamiltonian with α = 0.04 fm4 (●), 0.05 fm4 (◆), 0.0625 fm4 (▲), and 0.08 fm4 (�). Results for the standard Hamiltonian are shown in panel

(a), and those for Λ3N = 450 MeV/c, 400 MeV/c, and 350 MeV/c in panels (b), (c) and (d), respectively.

requires about 33 GB for the 3N matrix elements in

single precision [29]. In the JT -coupled approach we

need only 0.4 GB with about the same performance for

retrieving individual m-scheme three-body matrix ele-

ments, because of our highly efficient decoupling algo-

rithm. We can routinely generate JT -coupled matrix

element sets up to E3 max = 16, which is sufficient for

Nmax = 13 calculations in 12C and requires only 10 GB

of storage.

(iii) We use the importance truncation to extend the reach of

the NCSM. The limit of full NCSM calculations with

NN+3N Hamiltonians for 12C today is at Nmax = 8 or 9

(see [73]). With the IT-NCSM we can easily extend the

ground-state calculations up to Nmax = 12 at a fraction

of the computational cost of full NCSM calculations at

Nmax = 8. In combination with SRG-evolved Hamilto-

nians, the gain from Nmax = 8 to Nmax = 12 is impor-

tant, since it brings us sufficiently close to convergence

so that different possible extrapolation schemes become

more robust and accurate.

Two examples for ground-state calculations that can be

compared directly to the work of Jurgenson et al. are pre-

sented in Figs. 14 and 15. In Fig. 14 we show the conver-

gence of of the ground-state energy of 7Li with increasing

Nmax = 4, 6, ..., 12 as function of the basis frequency ~Ω ob-

tained with the NN+3N-full Hamiltonian for α = 0.0625 fm4

— corresponding to Fig. 15 of Ref. [30]. We emphasize that

because of the frequency conversion, also the results at low

~Ω are accurate. It is evident that the Nmax = 12 results

are already very close to convergence and provide an excel-

lent starting point for robust and accurate extrapolations. The

corresponding ground-state energies for 12C are presented in

Fig. 15 and can be compared to Fig. 16 of Ref. [30]. Even for

this mid p-shell nucleus we can perform the IT-NCSM cal-

culations up to Nmax = 12 which is already very close to the

converged result. For completeness, we show in Fig. 16 the

results for 16O ground-state energies with the same Hamilto-

nian, which have not been discussed in Ref. [30], again reach-

ing up to Nmax = 12 and thus close to convergence.
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FIG. 14: (color online) Ground-state energy of 7Li as function of

basis frequency ~Ω obtained with NN+3N-full Hamiltonian with

α = 0.0625 fm4 and Λ3N = 500 MeV/c. We use frequency-converted

3N matrix-elements with an SRG evolution performed at ~ΩSRG =

24 MeV. The different symbols correspond to Nmax = 4 (●), 6 (◆), 8

(▲), 10 (�), and 12 (✚) with error bars extracted from the threshold

extrapolation. The solid lines show the IR-UV fit using the results

in the window from ~Ω = 20 to 26 MeV, the dashed horizontal line

shows the Nmax →∞ ground-state energy resulting from this fit. The

black stars show the results of simple extrapolations at fixed ~Ω (see

text).

Even the simplest extrapolation scheme, using the three-

parameter exponential ansatz E(Nmax) = E∞ + a exp(−bNmax)

and fitting to three or four large-Nmax results at a single fre-

quency ~Ω, provides robust results. In Tab. II we summarize

the extrapolated energies E∞ for various frequencies. Here

we use the four largest Nmax results for the fit in order to stabi-

lize the extrapolation against uncertainties resulting from the

threshold extrapolation of the individual IT-NCSM calcula-

tions for the different Nmax. There is a slight systematic depen-

dence of the results on the basis frequency in all cases, tend-

ing to reduce the binding energy with increasing ~Ω. How-
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FIG. 15: (color online) Same as Fig. 14 for the ground-state energy

of 12C.
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FIG. 16: (color online) Same as Fig. 14 for the ground-state energy

of 16O.

ever, comparing the results at the optimal frequency, which

provides the minimum energy in the largest model space,

with the neighboring frequencies we observe differences be-

low 0.5%. Keeping in mind the uncertainties that result from

the importance truncation and threshold extrapolation, which

are of similar magnitude, we consider this simple extrapola-

tion at fixed optimal frequency as sufficiently accurate once

the largest Nmax is close to convergence. The IT-NCSM is in-

strumental to reach these large Nmax values and we can limit

ourselves to the simple extrapolation scheme.

More sophisticated and theoretically better motivated ex-

trapolation schemes were proposed in several recent works

[67–69]. They take the high-momentum (UV) and long-range

(IR) truncations implied by a finite HO basis into account

for the construction of an extrapolation function in a frame-

work inspired by effective field theory. Though the quanti-

tative exploration of these extrapolation schemes is only be-

ginning, we employ the IR-UV extrapolation scheme for the

TABLE II: Extrapolated ground-state energies E∞ in [MeV] of 7Li,
12C, and 16O using the NN+3N-full Hamiltonian at α = 0.0625 fm4

for different extrapolation schemes and subsets of the IT-NCSM re-

sults presented in Figs. 14, 15, and 16 (see text).

Nmax ~Ω [MeV] 7Li 12C 16O

simple 6 − 12 16 -39.77 -97.76 -147.23

6 − 12 18 -39.59 -97.64 -147.22

6 − 12 20 -39.48 -97.47 -146.85

6 − 12 22 -39.30 -97.10 -145.98

IR-UV 6 − 12 14 − 26 -39.66 -97.04 -145.44

6 − 12 16 − 26 -39.61 -97.10 -145.78

6 − 12 18 − 26 -39.54 -97.26 -146.26

6 − 12 20 − 26 -39.45 -97.33 -146.59

IR-UV 2 − 8 14 − 26 -39.43 -97.28 -144.23

2 − 8 16 − 26 -40.19 -98.79 -148.61

2 − 8 18 − 26 -40.72 -99.92 -152.88

2 − 8 20 − 26 -40.98 -100.43 -158.13

energy in the formulation proposed in Ref. [69] for com-

parison. We use E(Nmax, ~Ω) = E∞ + a1 exp(−2b1ΛUV) +

a2 exp(−2b2L2), with ΛUV =
√

2(emax + 3/2)/aHO and L2 =

aHO

√
2(emax + 3/2 + 2), where aHO is the oscillator length and

emax the maximum single-particle energy quantum number

represented in the basis, i.e., emax = Nmax + 1 for p-shell nu-

clei. We note that all points of the selected subset enter our

fits with equal weight, while alternative extrapolation methods

[66] have employed increased weights for data points closer

to the converged results.

The results of the IR-UV extrapolation summarized in

Tab. II. Again we have to select a range in Nmax and ~Ω

for the data entering into the fit. As for the simple exponen-

tial extrapolation we use the four largest Nmax results and a

range of frequencies up to the maximum available frequency

of ~Ω = 26 MeV. Since the theoretical foundation of the ex-

trapolation scheme is more solid in the UV regime, i.e., to-

wards the high-frequency side of the energy minimum, we

vary the low-frequency end of the data set included in the fit

around the minimum to probe the stability of the extrapola-

tion.

Based on the same Nmax-range as input data, the IR-UV

extrapolation also exhibits as systematic dependence on the

frequency-range included in the fit. As expected, the depen-

dence is somewhat smaller than for the simple extrapolations

at a single frequency. The comparison of the simple extrapo-

lation at the optimal frequency, i.e., ~Ω = 18 MeV for 7Li and

~Ω = 20 MeV for 12C and 16O, with the IR-UV extrapolation

based on the high-frequency data ~Ω = 20 − 26 MeV, reveals

nice agreement. One should note, however, that the IR-UV

extrapolation for the heavier nuclei does not fully capture the

curvature of the energy as function of ~Ω at fixed Nmax, as

can be seen from the comparison of data and fit function in

Figs. 15 and 16. These deviations are getting worse as more

data points at lower ~Ω are included. Further investigations

into the these extrapolation methods in the upper p-shell are

certainly desirable.

Even for the IR-UV extrapolation, the availability of input

data close to convergence is important. If we ignore the results
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for Nmax = 10 and 12 and repeat the analysis using the range

from Nmax = 2 − 8 as input, the sensitivity of the extrapolated

energies on the choice of the frequency-range increases by an

order of magnitude as shown in the lower part of Tab. II. Thus,

even with improved extrapolation tools the additional steps in

Nmax that the IT-NCSM offers are vital to obtain robust results

within our fitting strategy.

The IR-UV extrapolation scheme using preferentially large

frequencies entails a significant increase in computational

cost, since the dimension of the importance-truncated model

space grows with increasing basis frequency, as many more

basis states with small amplitudes need to be superimposed to

build-up the net size of the nucleus. This makes the calcula-

tions for individual importance thresholds κmin more demand-

ing and increases the uncertainties of the threshold extrapola-

tions. Since the IT-NCSM allows us to reach sufficiently large

Nmax, we typically use the simple extrapolation at and around

the optimal frequency in practical applications.

VII. CONCLUSIONS

We have discussed a chain of developments enabling ab

initio nuclear structure calculations for light and medium-

mass nuclei using SRG-evolved chiral NN+3N Hamiltonians

in large many-body model spaces. By introducing a new JT -

coupled storage scheme for the 3N matrix elements together

with a fast on-the-fly decoupling in the many-body calcula-

tion, we are able to reach model spaces of unprecedented size

with explicit 3N interactions. It turns out that controlling the

truncation uncertainties of the SRG-evolved Hamiltonians is

one of the most critical elements for ab initio calculations be-

yond the lightest isotopes.

A first truncation uncertainty results from the finite Jacobi-

HO model space used to perform the SRG-evolution of the

3N interaction. The effect of this truncation is amplified with

increasing mass number and affects low basis frequencies in

particular. We introduced a simple frequency conversion of

the 3N matrix elements to fix this issue for nuclei in the p-

and sd-shell. However, one has to revisit the role of this trun-

cation when going to medium-mass and heavy nuclei. A sec-

ond truncation uncertainty results from the omission of SRG-

induced four- and multi-nucleon interactions, which become

significant beyond mid p-shell. Apart from the explicit inclu-

sion of SRG-induced 4N interactions, which is under inves-

tigation at the moment, one can remedy this issue by using

chiral interactions with lower initial cutoffs. It would be very

beneficial for applications of next generation chiral Hamilto-

nians, if a sequence of cutoffs extending as low as 400 MeV/c

would be available. Various attempts to design alternative

SRG-generators that suppress induced 4N terms but retain the

favorable convergence behavior of the standard generator have

not been successful so far.

When going beyond NCSM-type calculations, additional

truncations of the Hamiltonian have to be introduced. Present

medium-mass approaches, e.g., coupled-cluster theory, typ-

ically work in model spaces obtained from a finite set of

Hartree-Fock single-particle states, which are not compatible

with the E3 max truncation of the 3N matrix elements. Fur-

thermore, truncations of the normal-ordered Hamiltonian at

the two-body level are being used to avoid the generalization

of the formalism to explicit 3N contributions. These trunca-

tions cause additional uncertainties, as we have discussed in

Refs. [22, 35, 36].

In conclusion, a systematic quantification of the uncertain-

ties inherent to the Hamiltonian remains one of the prime

challenges of ab initio nuclear structure theory. Here we

have started to address uncertainties related to the SRG-

transformation and the various technical truncations of the

Hamiltonian. Now that these uncertainties are understood,

one can start to address the uncertainties related to the chiral

EFT input itself. A systematic propagation of the uncertainties

of the low-energy constants and uncertainties due to omissions

of higher-order contributions in the chiral power counting will

be the subject of future studies. It is evident already, that pro-

viding rigorous theoretical uncertainties for nuclear structure

observables is at least as challenging as performing the ab ini-

tio calculation in the first place.
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Phys. Rev. C 87, 021303 (2013).

[36] R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, and
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[38] E. Epelbaum, W. Glöckle, and Ulf-G. Meißner, Nucl. Phys. A

747, 362 (2005).

[39] A. Ekström, G. Baardsen, C. Forssén, G. Hagen, M. Hjorth-

Jensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, T. Papen-

brock, J. Sarich, et al., Phys. Rev. Lett. 110, 192502 (2013).

[40] G. P. Kamuntavicius, R. K. Kalinauskas, B. R. Barrett, S. Mick-

evicius, and D. Germanas, Nucl. Phys. A695, 191 (2001).

[41] R. Roth, P. Papakonstantinou, N. Paar, H. Hergert, T. Neff, and

H. Feldmeier, Phys. Rev. C 73, 044312 (2006).

[42] P. Maris, J. P. Vary, P. Navratil, W. E. Ormand, H. Nam, and

D. J. Dean, Phys. Rev. Lett. 106, 202502 (2011).

[43] P. Navrátil, G. P. Kamuntavicius, and B. R. Barrett, Phys. Rev.

C 61, 044001 (2000).

[44] P. Navratil, Few Body Syst. 41, 117 (2007).

[45] D. Huber, H. Witala, A. Nogga, W. Gloeckle, and H. Kamada,

Few Body Syst. 22, 107 (1997).

[46] E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, Ulf-
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