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Abstract

Nuclear Hamiltonians constructed within chiral effective field theory provide
an unprecedented opportunity to access nuclear phenomena based on low-energy
quantum chromodynamics and, in combination with sophisticated many-body
methods, allow for an ab initio description of nuclei without resorting to phe-
nomenology.

This work focuses on the inclusion of chiral two-, and in particular three-body
Hamiltonians into many-body calculations, with emphasis on the formal and com-
putational aspects related to the three-body interactions.

Through similarity renormalization group evolutions, the chiral Hamiltonians
are transformed into a form in which strong short-range correlations are tamed in
order to accelerate the convergence in the subsequent many-body calculations.

The many-body method mainly used is an angular-momentum coupled for-
mulation of coupled-cluster theory with an iterative treatment of singly and dou-
bly excited clusters, and two different approaches to non-iteratively include effects
of triply excited clusters. Excited nuclear states are accessed via the equation-of-
motion coupled-cluster framework.

The extension of coupled-cluster theory to three-body Hamiltonians is con-
sidered to verify the approximate treatment of three-nucleon interactions via the
normal-ordering two-body approximation as a highly efficient and accurate way
to include three-nucleon interactions into the many-body calculations, particu-
larly for heavier nuclei.

Using a single chiral Hamiltonian whose low-energy constants are fitted to
three- and four-body systems, a qualitative reproduction of the experimental trend
of nuclear binding energies, from 16O up to 132Sn, is achieved, which hints at the
predictive power of chiral Hamiltonians, even in the early state of development
they are at today.



Zusammenfassung

Nukleare Hamiltonoperatoren die aus chiraler effektiver Feldtheorie abgeleitet
werden bieten eine einzigartige Gelegenheit, nukleare Phänomene auf Grundlage
niederenergetischer Quantenchromodynamik zu untersuchen. In Verbindung mit
fortgeschrittenen Vielteilchenmethoden ermöglicht dies eine ab initio Beschrei-
bung von Atomkernen ohne auf Phänomenologie zurückzugreifen.

Die vorliegende Arbeit beschäftigt sich mit der Inklusion chiraler Zwei-, und
insbesondere Dreinukleonen-Hamiltonoperatoren in Vielteilchenrechnungen, mit
Schwerpunkt auf den formalen und rechnerischen Aspekten der Behandlung der
Dreinukleonenwechselwirkungen.

Durch Evolution mittels der Similarity Renormalization Group werden die
chiralen Hamiltonoperatoren derart transformiert, dass die starken kurzreichwei-
tigen Korrelationen gemildert werden um die Konvergenz in den anschließenden
Vielteilchenrechnungen zu beschleunigen.

Die hauptsächlich eingesetzte Vielteilchenmethode ist eine drehimpulsgekop-
pelte Formulierung von Coupled-Cluster-Theorie mit einer iterativen Behandlung
von ein- und zweifach angeregten Clustern, sowie einer nicht-iterativen Berück-
sichtigung dreifach angeregter Cluster. Angeregte Kernzustände werden über die
Coupled-Cluster Bewegungsgleichungsmethode bestimmt.

Es wird die Erweiterung von Coupled-Cluster-Theorie auf Dreiteilchen-Ha-
miltonoperatoren betrachtet um die Behandlung von Dreinukleonen-Wechselwir-
kungen in der Normalordnungsapproximation zu verifizieren als eine hochef-
fiziente und akkurate Methode diese Wechselwirkungen näherungsweise in Viel-
teilchenrechnungen einzubeziehen, insbesondere für schwere Kerne.

Ein einzelner Hamiltonoperator dessen Niederenergiekonstanten in Drei- und
Vierteilchensystemen bestimmt wurden genügt, um den experimentellen Trend
nuklearer Bindungsenergien von 16O bis 132Sn qualitativ zu reproduzieren was,
trotz ihres gegenwärtig frühen Entwicklungsstadiums, auf das Potential chiraler
Wechselwirkungen hinweist Vorhersagen zu ermöglichen.
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Introduction



Chapter 1. Introduction

1.1 Ab Initio Nuclear Structure

Nuclear physics is surprisingly complex. Starting around the 1950s, early micro-
scopic models of the atomic nucleus considered it as a compound of elementary
building blocks – the nucleons – where the large mean free path of these nucle-
ons inside the nucleus suggested that they form some sort of weakly interacting
gas. The nuclear interaction itself was quickly identified as being caused by me-
son exchange which helped the understanding of two-nucleon properties. There-
fore, this early picture of nuclear physics gave rise to the hope that the nuclear
many-body problem could be solved using meson-exchange interactions – such
as the one-boson exchange model [1], or the more recent CD-Bonn potential [2]
– in many-nucleon systems, and that, because of the apparent weak interaction
among the nucleons, these many-body problems could eventually be solved us-
ing perturbation-theory based methods.

The discovery of Quantum Chromodynamics (QCD) put the earlier insights into
perspective: Nucleons are not fundamental but are rather composed of quarks
and gluons. However, in retrospect, color confinement at low energies justifies an
approximate treatment of nucleons as being fundamental. Of course, a funda-
mental theory of the nuclear interaction necessarily has to be derived from QCD.
However, the non-perturbative nature of QCD in the low-energy regime relevant
for nuclear physics has defied any attempts of a direct derivation so far. There
are attempts to extract nuclear potentials from QCD calculations on the lattice,
but these calculations do not yet operate at the physical quark masses. Today, the
most promising path towards QCD-based nuclear interactions is via chiral effective

field theory [3–12], an effective theory in terms of low-energy degrees of freedom
constrained by the symmetries of the underlying theory. This leads to a set of con-

sistent QCD-based many-nucleon interactions which can be used in ab initio nu-
clear structure calculations. However, the practical treatment of such many-body
forces is far from trivial.

Once the Hamiltonian is known, the focus is on the solution of the many-
body problem. Here, the early weakly-interacting-gas picture of the nucleus turns
out to be too simplistic. Instead, the nuclear many-body problem has a complex
structure, particularly due to strong short-range correlations induced by the nu-
clear interaction (see [13] for a discussion based on the Argonne V18 [14] poten-
tial). In practice, in order to obtain realistic solutions for the many-body problem,
vast computational resources are required which have simply not been available

2 Coupled-Cluster Theory for Nuclear Structure



1.1. Ab Initio Nuclear Structure

in the past. The former sentiment towards the many-body problem is captured
in a quote by Igal Talmi from 1993 about the task of solving the non-relativistic
Schrödinger equation for a many-body system with strong interactions [15]:

"Such a problem cannot be treated exactly by many-body theory.

Not even useful approximation procedures have been developed."

Nowadays, considering the impressive advances that many-body theory has made,
this statement seems too pessimistic. By applying renormalization-group tech-
niques to the initial nuclear Hamiltonian, for instance in the framework of the
Similarity Renormalization Group (SRG) [16, 17], the troubling short-range correla-
tions can be weakened which then eases the burden on the many-body method.
But also nuclear many-body methods themselves have seen much progress in re-
cent years. For instance, using SRG-transformed interactions, the No-Core Shell

Model (NCSM) [18, 19] and its Importance-Truncated extension (IT-NCSM) [20, 21]
provide quasi-exact solutions of the Schrödinger equation for nuclei in the p -shell
and even beyond. For medium-mass and heavy closed-shell nuclei the Coupled-

Cluster Method [22–27] has been established as one of the most powerful approx-
imate schemes and the recently introduced In-Medium Similarity Renormalization

Group [28–30] approach has also been successfully applied in this mass region
even for open-shell nuclei.

In this work, non-relativistic configuration-space based ab initio approaches to
the nuclear many-body problem are considered in which all nucleonic degrees of
freedom {r i , ms i

, m t i
, . . . , r A , msA

, m tA
} are taken into account explicitly. All infor-

mation about the system is therefore contained in the A-body state |Ψ〉 that lives
in the Hilbert space V ,

V =

A∧

i=1

L 2

�

R
3⊗
¦

± 1

2

©

⊗
¦

± 1

2

©�

. (1.1)

Since the nucleus is a purely Fermionic system, the antisymmetric product
∧

en-
forces the Pauli exclusion principle on the many-body state. According to the
postulates of quantum mechanics, the stationary nuclear state |Ψ〉 is solution of
the nonrelativistic stationary Schrödinger equation

Ĥ |Ψ〉 = E |Ψ〉 , (1.2)

i.e., it is an eigenfunction of the nuclear Hamiltonian operator Ĥ ,

Ĥ =
1

A

A∑

i<j

(p̂ i − p̂ j )
2

2m
+

A∑

i<j

V̂ NN
i j
+

A∑

i<j<k

V̂ 3N
i j k
+λCM ĤCM . (1.3)
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Chapter 1. Introduction

In (1.3), for convenience a scalable (via the parameterλCM) center-of-mass harmonic-
oscillator potential

ĤCM =
1

2 A m
P̂

2

CM
+

1

2
(A m ΩCM)

2 R̂ CM−
3

2
ħhΩCM (1.4)

is added to suppress center-of-mass motion. Although the nuclear Hamiltonian
derived from chiral effective field theory formally contains up to A-nucleon in-
teractions, present-day nuclear applications consider only Hamiltonians of the
form (1.3), where only up to three-nucleon interactions are included. One strategy
for the numerical solution of the partial differential equation Ĥ |Ψ〉= E |Ψ〉 is to put
it into its weak form [31], in which |Ψ〉 has to satisfy the equation

〈Φ| (Ĥ − E ) |Ψ〉 = 0 , 〈Ψ|Ψ〉 = 1 , ∀ |Φ〉 ∈ V . (1.5)

The weak formulation is a common starting point for the application of Galerkin
methods for discretizing the original continuous operator eigenvalue problem.
Once the problem is discretized, approximate solutions (ES ,ΨS) may be obtained
from finite-dimensional subspaces VS ⊂ V . For instance, the Rayleigh-Ritz pro-
cedure for the ground-state energy and wavefunction – the foundation of many
nuclear many-body methods such as Hartree-Fock or configuration interaction –
may straightforwardly be applied to the finite-dimensional case,

ES = min
|Ψ〉∈VS , |Ψ〉6=0

〈Ψ|Ĥ |Ψ〉
〈Ψ|Ψ〉 , |ΨS〉 = argmin

|Ψ〉∈VS , |Ψ〉6=0

〈Ψ|Ĥ |Ψ〉
〈Ψ|Ψ〉 . (1.6)

In this work, the finite-dimensional model spacesVS are always spanned by a finite
set of A-body Slater determinant basis functions {|Φµ},

VS = span
n

|Φµ〉 :µ= 1, . . . , dimVS

o

, (1.7)

with

|Φµ〉 = Â |φµ1
. . .φµA

) (1.8)

=
1
p

A !

∑

π∈S(N )

sgn(π) |φπ(µ1) . . .φπ(µA )) , (1.9)

where |φµ1
. . .φµA

) denotes the tensor-product state constructed from the single-
particle states |φµ1

〉, . . . , |φµA
〉,

|φµ1
. . .φµA

) = |φµ1
〉⊗ · · ·⊗ |φµA

〉 , (1.10)

which is not subjected to antisymmetrization. A common choice for the single-
particle wavefunctions in nuclear structure calculations from which the Slater
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1.1. Ab Initio Nuclear Structure

determinants are build are l s -coupled harmonic-oscillator wavefunctions [32],
which in coordinate representation read

〈rστ|n (l s )j m j t m t 〉 (1.11)

=
∑

m l ms

�

l s j

m l ms m j

�

CG

Rnl (r ) Yl m l
(θ ,ϕ) χ (s )

ms
(σ) χ (t )

mt
(τ) ,

where Yl m l
(θ ,ϕ) are the spherical harmonics, χ (s )ms

(σ) are the spinor functions and
Rnl (r ) are the radial wavefunctions that satisfy the radial single-particle Schrödin-
ger equation [32, 33]

�

− ħh
2

2 m r 2

∂

∂ r

�

r 2 ∂

∂ r

�

+
ħh2l (l +1)

2 m r 2
+

1

2
m Ω2 r 2

�

Rnl (r ) = εnl Rnl (r ) , (1.12)

for a harmonic-oscillator potential of frequency Ω. Working in this framework,
what is left in order to solve the nuclear Schrödinger equation for an approximate
wavefunction, is to specify an Ansatz for the wavefunction and to choose a con-
venient Slater-determinant basis set.

Two ab initio many-body methods are considered in this work. The first one is
the (Importance-Truncated) No-Core Shell Model, employing a linear Ansatz

|Ψ〉 =
�

1̂+

A∑

n=1

Ĉ (NCSM)
n

�

|Φ〉 (1.13)

for the many-body state, where Ĉ
(NCSM)
n generates all possible n-particle-n-hole

(npnh) excitations of a single-determinant reference state |Φ〉. The second ab initio

many-body method is Coupled-Cluster theory, corresponding to an exponential
form of the wave operator,

|Ψ〉 = e

A∑

n=1

T̂n |Φ〉 , (1.14)

where the T̂n also are npnh excitation operators. The No-Core Shell Model is
widely used in nuclear structure calculations [34–54]. It is a universal tool to study
the nuclear system in which ground and excited states as well as properties are ac-
cessible in the same framework. The numerical solution of the Schrödinger equa-
tion is obtained from large-scale diagonalizations of the Hamiltonian projected
onto a finite space, which is a standard task in the calculation of quantum sys-
tems and benefits greatly from parallel computing architectures available nowa-
days. The curse of dimensionality of the No-Core Shell Model – which limits the

Coupled-Cluster Theory for Nuclear Structure 5



Chapter 1. Introduction

method to p -shell nuclei due to the exponential growth of the Slater-determinant
basis dimension – can be overcome by the Importance Truncation [21] which al-
lows to select the many-body basis states according to their importance for the
calculation at hand, allowing to incorporate basis states well out of reach of the
standard No-Core Shell Model while keeping its variational character and well
preserving the original translational invariance.

After the exponential Ansatz was introduced by Coester and Kümmel in the
late 1950s [22, 23], Čížek and Paldus laid the foundation for its application in
many-body Fermionic theory [24,55,56]. Nowadays, the Coupled-Cluster method
has emerged as one of the most powerful methods in high-precision quantum
chemistry calculations. In the quantum chemistry context, many variants of the
Coupled-Cluster method have been developed over the years, starting from Coup-

led-Cluster with Singles and Doubles excitations (CCSD), going to the perturbative
inclusion of triples- and even quadruples-excitations contributions [57–59], and
many more. Although introduced in nuclear physics, the Coupled-Cluster method
has not seen as much attention there as it has in the quantum chemistry commu-
nity. In the 1990s, Mihaila and Heisenberg [60] brought the method back to the fo-
cus of nuclear physicists, and more recently Dean, Hagen, Papenbrock, et al. made
significant progress in establishing the method particularly in medium-mass and
nuclear reaction calculations [27,61–75]. In this work, the Coupled-Cluster meth-
ods considered for ground-state calculations are the CCSD approximation, and
the ΛCCSD(T) as well as the CR-CC(2,3) method for the non-iterative inclusion of
triples contributions to the energy. Excited states are accessed with the EOM-
CCSD Ansatz [76]. The reason for employing these rather low-order approxi-
mations of the full Coupled-Cluster method lies in the rather hard interaction
encountered in the case of nuclear physics, which causes strong multi-nucleon
correlations. This results in the necessity of large basis sets in order to obtain con-
verged results with respect to the many-body model space size, which renders
the application of higher-order Coupled-Cluster approximations practically im-
possible. Even for the case of CCSD, the standard formulation of the method in
m -scheme basis representation proves to be not practical anymore beyond 40Ca.
Therefore, the spherical Coupled-Cluster scheme for closed-shell nuclei, originally
introduced by Hagen, Papenbrock, et al. [27] is used throughout this work. This
scheme achieves the required reduction of computational complexity which in
principle makes the method applicable for closed-shell nuclei across the nuclear
chart. Another substantial difference to quantum chemistry applications is the
aforementioned need to incorporate three-body forces. This can be achieved by ei-

6 Coupled-Cluster Theory for Nuclear Structure



1.1. Ab Initio Nuclear Structure

ther the approximate consideration through the use of effective two-body Hamil-
tonians, or by extending Coupled-Cluster theory to explicitly treat three-body
Hamiltonians. Both approaches have first been considered again by Hagen, Pa-
penbrock, et al. in 4He proof-of-principle calculations [63] and will be extended to
the medium-mass regime using the spherical formulation in this work.

This work is organized as follows: Basic aspects of ab initio nuclear structure
physics are reviewed in Chapter 1, such as the nuclear interaction and some auxil-
iary methods used in the calculations. Chapter 2 presents the traditional Coupled-
Cluster theory which is generalized for three-body Hamiltonians in Chapter 3.
The following chapter discusses the spherical formulation of Coupled-Cluster the-
ory and results are presented in Chapter 5. Finally, a conclusion is given in Chap-
ter 6. The Appendix provides results of proof-of-principle calculations, and a
compilation of diagrams and spherical equations that entered this work. Dia-
grams for many standard Coupled-Cluster method can also be found in [25, 26].
For documentational purposes, the spherical equations are presented exactly as
they are used in the computer implementation.

Coupled-Cluster Theory for Nuclear Structure 7
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1.2 Chiral Nuclear Interactions

The determination of the nuclear interaction is a long-standing problem in theo-
retical nuclear physics [10]. Although it is well-known that QCD is the underlying
theory, a direct derivation of the nuclear interaction from QCD is not possible yet,
due to the non-perturbative nature of QCD in the low-energy regime relevant for
nuclear physics.

Phenomenological approaches, such as the Argonne V18 potential [14, 77],
have been successful in describing two-nucleon (NN) properties. In the NN sector,
the nuclear interaction already has a rather complicated form built from all opera-
tor structures that can contribute [78], but the corresponding radial functions can
be determined from a large base of experimental data. However, the description of
finite nuclei beyond the two-nucleon system requires the incorporation of many-
nucleon forces, and these are difficult to deal with in such an approach. On the
one hand, with the number of nucleons involved the number of operator struc-
tures grows dramatically while, on the other hand, the experimental data base
shrinks. Furthermore, many-nucleon interactions need to be defined consistently

to the NN interaction [79].

Therefore, physical insight is needed to proceed. Such physical insight was
already inherent in the first attempts of a field-theoretic description of the nuclear
interaction based on Yukawa’s idea of pion exchange [80], but these were only
partly successful as well. While the one-pion exchange could be used to under-
stand NN scattering data, the multi-pion exchange picture failed. The discovery
of heavy mesons then led to the one-boson exchange model [81], which could ac-
curately describe the NN interaction. However, not for all of the bosons used in
this model experimental evidence exists. Finally, the discovery of QCD and the
introduction of the concept of effective field theories [3–12] allowed to formulate a
theory of nuclear interactions rooted in QCD. In order for an effective theory to
work, a separation of scales is required, each scale with its own set of relevant de-
grees of freedom. In the case of QCD, these scales are identified as the asymptotic
free and the hadronic phase, which makes hadrons the more appropriate choice
as degrees of freedom for low-energy QCD than quarks and gluons. Furthermore,
due to the large mass gap in the hadron spectrum between the pions and the heav-
ier mesons, the most relevant degrees of freedom for low-energy nuclear physics
clearly are the nucleons and pions.

According to Weinberg [3], an effective field theory can be obtained by con-
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structing the most general Lagrangian for these degrees of freedom which is con-
sistent with the symmetries of the underlying theory. Since such a Lagrangian
usually contains infinitely many terms and accompanying low-energy constants,
for practical applications a scheme has to be devised that allows to group and
select these terms according to their individual importance. Such characteriza-
tion is provided by a power counting scheme introduced by Weinberg for the La-
grangian in the chiral expansion, in which it is expanded in a power series in
Q/Λχ , where the soft scale Q is a momentum typical for the interaction and the
hard scale Λχ is the limit where the theory is expected to break down. In order to
make real progress over the old pion-exchange theories, which already had nu-
cleons and pions as degrees of freedom, chiral symmetry needs to be taken into
account as an important constraint on the theory. The resulting chiral effective field

theory (χEFT) then represents the solution to the problems mentioned above: It
is clearly connected to QCD via the effective field theory framework by retaining
all relevant symmetries of QCD. Furthermore, it not only gives rise to consistent
two- and many-body interactions, but through power-counting it also allows to
identify the most important of the many operator structures. Since nuclear inter-
actions from chiral effective field theory will be employed throughout this work,
a more detailed review in the spirit of Refs. [10–12] is given in the following.

Chiral symmetry is closely related to vanishing quark masses, and for the
energy scales relevant in the nuclear structure context, the up and down quark
masses may be considered approximately zero, which motivates to focus on chi-
ral symmetry in the up and down sector of QCD. The two-flavor QCD Lagrangian
has the form

LQCD = q̄ (i γµDµ−M )q − 1

4
Gµν ,a G µνa

, (1.15)

where q = (u , d )T are the quark fields, Dµ is the gauge-covariant derivative,M =

diag(mu , md ) denotes the quark mass matrix and Gµν ,a is the gluon field strength
tensor. Chiral symmetry is revealed when the Lagrangian is written in terms of
left- and right-handed quark fields qL and qR ,

LQCD = q̄L i γµDµqL + q̄R i γµDµqR

− q̄LM qR − q̄RM qL − 1

4
Gµν ,a G µνa

. (1.16)

From (1.16) follows that in the limit of vanishing quark masses – also referred to
as the chiral limit – left- and right-handed quark fields are decoupled andLQCD be-
comes invariant under separate flavor rotations among the left- and right-handed
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quark fields,

qL −→ q ′
L
= e−iθ L ·τ/2 qL (1.17)

qR −→ q ′
R
= e−iθ R ·τ/2 qR , (1.18)

generated by Pauli matrices τ in flavor space, resulting in the SU(2) chiral symme-

try group SU(2)L × SU(2)R 1. The corresponding conserved currents may also be
expressed in terms of axial and vector currents belonging to an axial and vector
subgroup of the chiral symmetry group, SU(2)A ,SU(2)V ⊂ SU(2)L×SU(2)R . In real-
ity, quarks possess non-vanishing masses and, consequently, chiral symmetry is
explicitly broken. However, the quark masses of the order of a few MeV are much
smaller than the typical hadronic mass scale of the order of 1 GeV and, there-
fore, chiral symmetry is expected to be at least approximately preserved. Chiral
symmetry should be manifest in the hadron spectrum in form of multiplets cor-
responding to SU(2)L×SU(2)R . However, only multiplets corresponding to SU(2)V
are observed in nature, hinting at a spontaneous breaking of SU(2)A . Since SU(2)A
has 3 generators, its spontaneous breaking gives rise to the existence of 3 Nambu-
Goldstone modes or, more precisely, pseudo-Nambu-Goldstone modes, due to the
small explicit chiral symmetry breaking. Indeed, in this case, the experimentally
observed hadron spectrum provides candidates for Nambu-Goldstone bosons in
form of the pions π= (π±,π0). Then, also the remarkable mass gap between these
unnaturally light pions and the other hadrons may simply be explained by the
Goldstone nature of the pions which are massless in the chiral limit but in real-
ity acquire a small mass from the explicit breaking of chiral symmetry due to the
small but non-vanishing quark masses.

The most general effective Lagrangian for pions and nucleons may be written
in the form

LχEFT = Lππ+LπN +LN N + . . . . (1.19)

Considering the pion-only part Lππ for illustration, the Lagrangian is given by

Lππ = L (2)
ππ
+L (4)

ππ
+O (π6) , (1.20)

where the superscript denotes the number of derivatives or pion-mass insertions
which has to be even for the pion-only Lagrangian. For example, the lowest-order

1Additional symmetries of the QCD Lagrangian which a not relevant for the present discussion
are U (1)V , corresponding to quark number conservation and U (1)A , broken on the quantum level
and therefore also referred to as the U (1) anomaly.
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contribution L (2)
ππ reads

L (2)
ππ
=

1

2
∂µπ · ∂ µπ+

1

2F 2
π

(∂µπ ·π)2+O (π6) , (1.21)

where Fπ is a low-energy constant related to the pion-decay constant which can
be determined experimentally to be Fπ = 92.4 MeV [6]. In order to apply a power
counting scheme, the effective Lagrangian has to be expanded in powers of a soft
scale over a hard scale Q/Λχ . Due to the Goldstone nature of the pions the soft
scale Q is associated with external momenta or the pion mass. The hard scale Λχ
is usually chosen around the mass of the ρmeson which is the lightest meson that
cannot be identified as a Goldstone boson associated with chiral symmetry break-
ing. Beyond Λχ the theory is expected to break down because the ρ dynamics
would have to be taken into account explicitly. This is why Λχ is also referred to as
chiral symmetry-breaking scale. Once the effective Langrangian has been expanded
in Q/Λχ , the Weinberg power counting scheme

ν = −4+2N +2L+
∑

i

∆i , ∆i = d i +
n i

2
−2 , (1.22)

is used to determine the power-counting order ν of a given Feynman diagram,
where N denotes the number of nucleon lines, L the number of pion loops, and
the sum runs over all vertices for which∆i is the dimension of vertex i that is calcu-
lated in terms of the number of derivatives d i and the number n i of nucleon lines
at this vertex. This perturbative treatment of the effective Lagrangian in powers of
Q/Λχ motivated by chiral symmetry is referred to as chiral perturbation theory [6,7].

The inclusion of nucleons in the effective Lagrangian poses a problem due to
the mass mN of the nucleon which is not small compared to the hard scale and,
therefore, does not allow for a perturbative treatment. This problem can be over-
come in the heavy-baryon formalism [82, 83] in which heavy baryons are treated
non-relativistically by further expanding in terms of 1/mN , so the nucleons are re-
garded as static sources of pions. A more detailed discussion is beyond the scope
of this section, however, it should be noted that for the chiral interactions used in
this work the power counting that is employed is the Weinberg power counting
scheme (1.22), whose validity has been questioned (see Ref. [84] for a discussion).

As a consequence of the chiral expansion approach, consistent nuclear forces
emerge as a hierarchy in the power-counting order ν , as depicted in Figure 1.1. At
leading order (LO) corresponding to ν = 0, for instance, the NN interaction is given
by two NN contact terms, represented by the diagram

Coupled-Cluster Theory for Nuclear Structure 11
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b (1.23)

and a one-pion-exchange contribution

b b (1.24)

which gives rise to a tensor force already at leading order. It should be noted that
for ν = 1 all terms vanish due to parity and time-reversal constraints. Therefore,
what is referred to as next-to-leading order (NLO) actually corresponds to ν = 2 and
from there, for any given ν > 2, the next order corresponds to an increase of ν by
one. Apparently, according to Figure 1.1, at LO and NLO only two-nucleon forces
exist. Three-nucleon forces arise at next-to-next-to-leading order (N2LO, etc.),= and
four-nucleon forces do not appear before N3LO. This way, chiral perturbation the-
ory reproduces the observed hierarchy of nuclear forces in which the importance
of many-nucleon forces decrease with the number of active nucleons involved.
The three-nucleon interaction at N2LO is represented by the three diagrams

b b b b b b (1.25)

in which the 5 low-energy constants c i , i = 1, 3, 4 and cD , cE enter. The c i , however,
are already determined in the two-nucleon and pion-nucleon sector, which leaves
only cD and cE , assigned to the two-nucleon-contact with one-pion-exchange and
the three-nucleon-contact diagrams respectively, as new low-energy constants that
have to be experimentally determined from the three-body system. At present,
the part of Figure 1.1 that is currently available for nuclear-structure calculations
is given by the NN interaction up to N3LO and the 3N interaction up to N2LO,
which constitute the interactions mainly used in this work. When being evalu-
ated, the diagrams have to be regularized by a cutoff momentum. For the NN
interaction, a regulator cutoff momentum of ΛNN = 500 MeV is used, while for the
3N interaction, the regulator cutoff momenta of Λ3N = 500 MeV or 400 MeV will
mainly be employed. 2

2The regularization cutoff momenta ΛNN and Λ3N should not be confused with the chiral break-
down scale Λχ .
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Figure 1.1: Nuclear forces from chiral perturbation theory based on the Weinberg power counting

[10]. Solid lines represent nucleon propagators, dashed lines pions. Different symbols

(small/large dots, etc.) denote different types of vertices [10].
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1.3 Similarity Renormalization Group

Nuclear structure calculations are severely complicated by the existence of the re-
pulsive core in the nucleon-nucleon potential. Nuclear structure theory aims at
the low-energy description of nuclei, but the short-range correlations from the
repulsive core introduce an energy scale that is not easily resolved by the set
of harmonic-oscillator Slater-determinant basis functions used in practical many-
body calculations, resulting in a slow convergence of these calculations with re-
spect to model-space size. These correlations manifest themselves in form of the
interaction operator coupling low- and high-momentum states. The approach of
the Similarity Renormalization Group (SRG) [16, 17, 85] is to unitarily transform the
initial interaction to a more diagonal form that suppresses the coupling between
low- and high-momentum states. Due to the unitary nature of the transformation,
in principle, no information is lost and low-energy nuclear structure may then be
described by low-energy degrees of freedom.

The initial Hamiltonian Ĥ0 is continuously unitarily transformed by the action
of a unitary operator Ûα depending on a continuous real parameter α,

Ĥα = Û †
α

Ĥ0 Ûα . (1.26)

The derivative of the transformed Hamiltonian with respect to α,

d
dα

Ĥα =
h

−Û †
α

dÛα

dα
, Ĥα

i

, (1.27)

motivates the definition of η̂α,

η̂α = −Û †
α

dÛα

dα
, (1.28)

as the generator of the transformation, such that the flow (1.27) of the Hamiltonian
along the unitary path reads

dĤα

dα
=

h

η̂α, Ĥα

i

, η̂†
α
= −η̂α . (1.29)

This equation is equivalent to the one-step unitary transformation (1.26) and, there-
fore, the focus may be shifted away from finding the explicit transformation op-
erators Ûα to finding anti-Hermitean generators η̂α that let the Hamiltonian flow
along an appropriate path for the problem at hand. The common choice for η̂α
in the context of nuclear structure calculations is given by the commutator of the
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intrinsic kinetic energy operator, T̂int = T̂ − T̂CM, with the SRG-evolved Hamilto-
nian [85],

η̂α =

�
2µ

ħh2

�2 h

T̂int, Ĥα

i

, (1.30)

in terms of the reduced nucleon mass µ. This generator lets the momentum-space
representation of the Hamiltonian flow towards band-diagonal form and thus, as
desired, leads to a decoupling of low- and high-momentum degrees of freedom.
As shown in the example of Figure 1.3, this in turn accelerates the convergence of
the many-body calculations with respect to model-space size.

In order to bring the operator flow equation (1.29) using generator (1.30) into
matrix-element representation in k -body space, resolutions of the k -body identity
of the form

1̂
(k ) =

∑

p

|φ(k )
p
〉〈φ(k )

p
| (1.31)

have to be inserted between adjacent operators, leading to

d
dα
〈φ(k )i |Ĥα|φ

(k )
j 〉 =

�
2µ

ħh2

�2
¨
∑

pq

〈φ(k )i |T̂int|φ(k )p
〉〈φ(k )

p
|Ĥα|φ(k )q

〉〈φ(k )
q
|Ĥα|φ(k )j 〉

−2
∑

pq

〈φ(k )i |Ĥα|φ(k )p
〉〈φ(k )

p
|T̂int|φ(k )q

〉〈φ(k )
q
|Ĥα|φ(k )j 〉

+
∑

pq

〈φ(k )i |Ĥα|φ(k )p
〉〈φ(k )

p
|Ĥα|φ(k )q

〉〈φ(k )
q
|T̂int|φ(k )j 〉

«

. (1.32)

Since the resolutions of the identities have to be truncated at some point in practi-
cal calculations this introduces errors which have to be monitored (see Section 5.9.3
and [86]).

At this point a crucial difference between the SRG transformation and other
renormalization group approaches, such as Vlow-k [87] should be mentioned. In
the latter, with increasing transformation parameter the UV cutoff of the interac-
tion is lowered and, therefore, removing the high-energy scale from the interac-
tion, as depicted in Figure 1.2. Therefore, for Vlow-k the transformation parameter
corresponds to a cutoff in the momentum scale. For the SRG on the other hand, as
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Figure 1.2: Comparison of different renormalization approaches for the initial Hamiltonian (see

text and [88]).

the flow parameter α increases, the Hamiltonian is driven to band-diagonal form
where α−1 is related to the width of the band. High-energy modes are still present
in the interaction, only their coupling to low-energy modes is suppressed. Conse-
quently, in the case of the SRG, the flow-parameter does not correspond to a cutoff
in the momentum scale – which is also clear from the unitary nature of the SRG
transformation.

A major drawback of the SRG transformation (and all other renormalization
treatments) is the induction of many-body interactions. From evaluation of the
commutators

dĤα

dα
=

�
2µ

ħh2

�2 hh

T̂int, Ĥα

i

, Ĥα

i

(1.33)

it becomes apparent that each infinitesimal evolution step generates operators
with particle ranks exceeding the original rank of the interaction. Therefore, at
the end of the evolution the transformed Hamiltonian will contain induced many-
body interactions up to the number of nucleons in the system,

Ĥα = Ĥ (1)
α
+ Ĥ (2)

α
+ Ĥ (3)

α
+ . . . + Ĥ (A)

α
. (1.34)

In order to preserve the unitarity of the transformation, if the evolved Hamilto-
nian is to be used in an A-body calculation, all induced operators up to the A-body
level would have to be maintained during and after the SRG flow. For practical
reasons, typically only operators up to the three-body level can be kept while the
others have to be discarded, resulting in a formal violation of unitarity of the trans-
formation. In many-body calculations this violation of unitarity will emerge as a
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Figure 1.3: Effect of the SRG evolution on the matrix elements of the NN+3N-full interaction for

the triton channel (J π, T ) = (1/2+, 1/2) in an antisymmetrized three-body harmonic-

oscillator Jacobi basis with ħhΩ = 28 MeV. Plotted are the absolute values of the matrix

elements, where light colors represent large values, and dark colors represent values

near zero (also see [89]). Embedded in the matrix plots are convergence patterns of

triton ground-state energies obtained from the NCSM.
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dependence of the observables on the flow parameter α. As long as the observ-
ables are independent of the flow parameter it is assumed that unitarity has not
been violated and, therefore, conclusions about the initial Hamiltonian may be
drawn from the transformed Hamiltonian. However, once unitarity is corrupted
so much that flow-parameter dependence sets in, this will no longer be possible.
In order to discuss the results obtained from the SRG framework described above,
it is convenient to define and investigate the following three Hamiltonians:

(i) NN-only : An initial two-body Hamiltonian Ĥ NN
0

is evolved and during the
flow only induced operators up to the two-body level are kept.

(ii) NN+3N-induced : An initial two-body Hamiltonian Ĥ NN
0

is evolved and dur-
ing the flow only induced operators up to the three-body level are kept.

(iii) NN+3N-full : An initial two- plus three-body Hamiltonian Ĥ NN+3N
0

is evolved
and during the flow only induced operators up to the three-body level are
kept.

In this way contributions of induced three- and higher-body interactions out of
the initial Hamiltonian can be quantified. The NN+3N-full Hamiltonian repre-
sents the most complete Hamiltonian considered in this work since it contains the
full currently available set of chiral interactions. A flow-parameter dependence of
the energy eigenvalues hints at significant four- and higher-body interaction con-
tributions stemming from the initial two- or three-body interaction. These con-
siderations are illustrated in Figure 1.4 (also see [17]): For 4He, the ground-state
energies obtained for the NN-only Hamiltonian show a strong flow-parameter de-
pendence, demonstrating the importance of SRG-induced many-body forces that
are not considered in this type of calculation. This flow-parameter dependence
does not allow to make any prediction of where the result of the untransformed
Hamiltonian would come out. However, when induced three-body forces are
taken into account using the NN+3N-induced Hamiltonian, this flow-parameter
dependence vanishes, indicating that unitarity of the transformation is already re-
stored by the inclusion of induced three-body interactions. This way a prediction
for the bare chiral NN Hamiltonian can be made, but the agreement with experi-
ment is rather poor. Including the initial chiral 3N interaction via the NN+3N-full
Hamiltonian still produces results that show no dependence on the flow param-
eter, and at the same time also significantly improve the agreement with experi-
ment. Therefore, chiral Hamiltonians are capable to provide an accurate descrip-
tion of the 4He system.
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For the heavier nucleus 12C, the situation is similar with the exception of an
emerging flow-parameter dependence for the NN+3N-full Hamiltonian. Since for
12C no flow-parameter dependence is observed for the NN+3N-induced Hamil-
tonian, the NN+3N-full results suggest the existence of sizable four- (or higher-)
body interactions out of the initial 3N interaction. At this point, this flow-para-
meter dependence prevents any attempts of making robust predictions, similar to
the NN-only case. In order to restore predictive capabilities for the NN+3N-full
Hamiltonian in calculations of medium-mass nuclei, a modified initial chiral 3N
interaction will be employed that has a reduced regulator cutoff momentum, as
discussed in more detail in Section 5.3.

1.4 Hartree-Fock Method

The fact that nucleons show properties of non-interacting Fermions, such as the
low density or the long mean free path of the nucleons within the nucleus [78],
suggests the applicability of independent-particle methods such as the Hartree-Fock

method that is widely used in many-body theory, such as atomic and nuclear
physics, or quantum chemistry [78, 90].

In the Hartree-Fock method the nuclear interaction is not neglected but re-
placed by a mean-field potential that is generated by the nucleons and in which
they are assumed to move independently. The independent-particle picture al-
lows to approximate the many-body wavefunction by a single Slater determinant,
which is then determined by minimizing its energy expectation value according
to the variational principle. This is achieved by optimizing the single-particle or-
bitals from which the Slater determinant is built. These orbitals have to be deter-
mined in a self-consistent manner because the orbitals determine the mean-field
the nucleons feel, which in turn determines the orbitals in which the nucleons
move.

The Hartree-Fock method typically serves two purposes: On the one hand,
it is used an approximate many-body method that provides the best approxi-
mation to a many-body wavefunction from the set of single Slater determinants.
On the other hand, it provides a set of optimized single-particle orbitals, which
can subsequently be used as starting point for a more sophisticated many-body
method such as Coupled Cluster. The latter is the main purpose of the Hartree-
Fock method in this work. Most of the time, the single-particle orbitals used in the
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Figure 1.4: IT-NCSM ground-state energies for 4He and 12C for the NN-only, NN+3N-induced,

and NN+3N-full Hamiltonian for a sequence of SRG flow parameters [17]. Both nu-

clei the energies show no flow-parameter dependence for the NN+3N induced Hamilto-

nian, indicating no relevant induced four- or higher-body interactions out of the initial

NN interaction. The flow-parameter dependence for the NN+3N-full Hamiltonian in
12C suggests the emergence of significant induced higher-body interactions out of the

initial 3N interaction.
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normal-ordering and Coupled-Cluster calculations have been determined from a
preceding Hartree-Fock calculation.

The Hartree-Fock method is well covered in the literature, a standard treat-
ment of this matter can be found in [33, 78, 90], and the extension to incorporate
three-body Hamiltonians is discussed in [91].

1.5 Normal-Ordering Approximation

As already discussed in the previous section, for accurate ab initio nuclear-structure
calculations the inclusion of three-body interactions is mandatory [17, 29, 30, 70,
92, 93]. Along with it comes an array of formal and technical difficulties, such
as the increased complexity of the equations to be solved, or the treatment of in-
tractably large Hamiltonian matrix representations. On the other hand, ab initio

calculations using only two-body Hamiltonians are a standard practice and do not
suffer from one of the aforementioned problems. Therefore, the construction of
effective lower-rank interactions that approximate the original three-body interac-
tion represents an economic way to include three-body effects in nuclear-structure
calculations using the standard two-body Hamiltonian framework.

The effective lower-rank interaction used in this work is obtained from the
normal-ordered two-body approximation [63, 92]. The idea behind this approx-
imation is based on the observation that when a three-body operator ĥ3 that is
given in normal order with respect to the vacuum 3,

ĥ3 =
1

36

∑

pqr s t u

〈pqr |ĥ3|s t u 〉 â †
p

â †
q

â †
r
â u â t â s , (1.35)

is represented in normal order with respect to some single-determinant A-body
reference state |Φ〉, the resulting operator has non-vanishing components also at

3The vacuum |0〉 is understood as the state containing no nucleons such that â p |0〉= 0.
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lower particle ranks,

ĥ3 =
1

6

∑

i j k

〈i j k |ĥ3|i j k 〉

+
1

2

∑

pqi j

〈i j p |ĥ3|i j q 〉 {â †
p

â q}

+
1

4

∑

pqr s i

〈pqi |ĥ3|r s i 〉 {â †
p

â †
q

â s â r }

+
1

36

∑

pqr s t u

〈pqr |ĥ3|s t u 〉 {â †
p

â †
q

â †
r
â u â t â s } . (1.36)

Here, i , j , k denote orbitals occupied in |Φ〉 and {. . .} indicates normal ordering
with respect to |Φ〉. Since some contributions of the original three-body operator
have been demoted to lower particle ranks, the residual three-body interaction
operator

1

36

∑

pqr s t u

〈pqr |ĥ3|s t u 〉 {â †
p

â †
q

â †
r
â u â t â s } (1.37)

in (1.36) may be discarded, and yet still allowing to include three-body inter-
action effects in a computational framework capable of handling at most two-
body Hamiltonians. This particular scheme, in which the residual three-body
operator is discarded and the remaining zero-, one-, and two-body parts are in-
cluded in the calculation, is referred to as normal-ordered two-body approxima-
tion (NO2B) [63, 92], or normal-ordering approximation for short. Back in the
particle-vacuum representation, the three-body operator ĥ3 in NO2B approxima-
tion then reads [94] 4

ĥNO2B
3

=
1

6
w0−

1

2

∑

pq

〈p |ŵ1|q 〉 â †
p

â q +
1

4

∑

pqr s

〈pq |ŵ2|r s 〉 â †
p

â †
q

â s â r , (1.38)

with definitions of the matrix elements of the normal-ordered interaction opera-
tors

w0 =
∑

i j k

〈i j k |ĥ3|i j k 〉 , (1.39)

〈p |ŵ1|q 〉 =
∑

i j

〈i j p |ĥ3|i j q 〉 , (1.40)

4The negative sign in front of the one-body part is intended, see [94].
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and

〈pq |ŵ2|r s 〉 =
∑

i

〈pqi |ĥ3|r s i 〉 . (1.41)

A systematic study of the NO2B approximation using the IT-NCSM was per-
formed in [92] from which Figure 1.5 is taken. Results obtained from the NO2B
provide a good approximation to the ones obtained using explicit three-body
Hamiltonians, with deviations of about 2% for the case of 4He and about 1% for
16O. Together with results for 40Ca, the conclusion can be drawn that the NO2B
approximation works particularly well for heavier nuclei. This is also confirmed
by Coupled-Cluster calculations for medium-mass nuclei [95, 96] in Section 5.7
and 5.8.1.

Coupled-Cluster calculations usually employ a Hartree-Fock basis. The trans-
formation from the spherical harmonic-oscillator single-particle basis into the Har-
tree-Fock basis reads

|p m tp
〉(HF) =

∑

α

C α
p mtp
|αm tp

〉 , (1.42)

where p = {n p (l p sp )jp} is a shorthand notation for the set of all quantum numbers
except isospin, and the isospin tp = 1/2 will mostly be suppressed. Therefore, the
Hartree-Fock reference state |Φ〉 is given by a superposition of Slater determinants
built from harmonic-oscillator single-particle states,

|Φ〉 = Â | i m t i
〉(HF) ⊗ . . . ⊗ |k m tk

〉(HF)

=
∑

α

· · ·
∑

γ

C α
i mti

. . .C
γ

k mtk
|αm t i

. . . γm tk
〉 . (1.43)

Using angular-momentum coupled three-body matrix elements, the zero-body
result of the normal-ordering with respect to the Hartree-Fock reference state is
given by

w0 =
∑

i mti

∑

j mt j

∑

k mtk

∑

α

∑

β

∑

γ

∑

δ

∑

ε

∑

κ

∑

JJ

ˆJ 2

× C α
i mti

C
β

j mt j
C
γ

k mtk
C δ

i mti
C ε

j mt j
C κ

k mtk

× 〈αβγ, m t i
m t j

m tk
|ĥ3|δεκ, m t i

m t j
m tk
〉

J

JM

J

JM

, (1.44)
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Figure 1.5: Comparison of IT-NCSM ground-state energies of 4He and 16O for the SRG-evolved

NN+3N induced and NN+3N full Hamiltonians using explicit 3N interactions and

the NO2B approximation [92]. The calculations employed a HO basis with oscillator

frequency ħhΩ = 20 MeV.
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where here and in the following the summations
∑

i mti

,
∑

j mt j

, and
∑

k mtk

(1.45)

are understood to run only over orbitals |i m t i
〉, |j m t j

〉, and |k m tk
〉 that are occupied

in the reference state |Φ〉. The one-body contribution reads

〈p mp m tp
|ŵ1|qmq m tq

〉 = p̂−2
∑

i mti

∑

j mt j

∑

α

∑

β

∑

γ

∑

δ

∑

JJ

ˆJ 2

× C α
i mti

C
β

j mt j
C
γ

i mti
C δ

j mt j

× 〈αβp , m t i
m t j

m tp
|ĥ3|γδq , m t i

m t j
m tq
〉

J

JM

J

JM

, (1.46)

and the normal-ordered two-body matrix elements are given by

〈pq , tp tq |ŵ2|r s , tr ts 〉
J M J MT M T T M T

= Ĵ −2
∑

i mti

∑

α

∑

β

∑

J

ˆJ 2

× C α
i mti

C
β

i mti
〈pqα, tp tq m t i

|ĥ3|r sβ , tr ts m t i
〉

J

JM

J

JM

T M T T M T

. (1.47)

The normal-ordered one- and two-body matrix elements – as given above – are
still given in the harmonic-oscillator basis and, therefore, need to be transformed
to the HF basis after the normal ordering.

1.6 Configuration Interaction and No-Core Shell
Model

The No-Core Shell Model (NCSM) [21, 51, 54] is an ab initio approach to the nuclear
many-body problem. All A nucleons are considered active, i.e., no degrees of free-
dom of the system are combined into effective ones as it is for example done in
the traditional single-particle shell model. The nuclear wavefunction is expanded
in a set of Slater determinant basis functions, where the expansion coefficients are
obtained from a large-scale Hamiltonian matrix diagonalization. The method is
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fully variational and yields the exact solution for the model space under consid-
eration. Therefore, this method always provides an upper bound for the ground-
state energy and, once convergence is reached with respect to model space size,
constitutes an ideal tool against which other many-body methods may be bench-
marked.

The NCSM belongs to the class of the Configuration Interaction (CI) methods.
Since the CI methods and its common truncated variants CISD, CISDT etc. (see
Section 1.6.2) also share more formal analogies than the NCSM with the Coupled-
Cluster method, it is worthwhile to briefly review these methods as well and to
introduce basic conventions and notations.

1.6.1 Full Configuration Interaction

In the CI scheme, the continuous Hamiltonian eigenproblem is Galerkin-discre-
tized and converted into a finite-dimensional approximation scheme by introduc-
ing a finite set ΛSP of discrete single-particle basis functions |φk 〉 5

ΛSP =
n

|φk 〉 : k = 1, . . . , dimΛSP

o

. (1.48)

As discussed in Section 1.1, a common choice for these single-particle basis func-
tions are the harmonic-oscillator wavefunctions |n k (l k sk )jk m jk

tk m tk
〉 (or linear com-

binations of these, if canonical orbitals obtained from the Hartree-Fock method
are used). For the purpose of deriving appropriate truncation schemes for the
many-body basis it is important to note that to each single-particle basis state |φk 〉
a quantum number ek may be assigned, which characterizes the energy of the single-

particle state |φk 〉, and is defined by

ek = 2n k + l k . (1.49)

For the Full Configuration Interaction (FCI) method, the constraint in the total num-
ber of single-particle states, dimΛSP <∞, is the only truncation for the model space
that is introduced. Consequently, the FCI many-body basis ΛFCI consists of all
Slater determinants constructed from the single-particle basis set ΛSP, which are
not equivalent in the sense that they only differ by single-particle index permuta-
tions. So the many-body basis may be constructed as

Λ(FCI) =
n

|Φk 〉= Â |φk1
. . .φkA

) : k1 < · · ·< kA = 1, . . . , dimΛSP

o

, (1.50)

5The single-particle basis is assumed to be orthonormal throughout this work.
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with Â being the antisymmetrization operator (1.8), and the FCI model space
V (FCI) is then given by

V (FCI) = span
n

Λ(FCI)
o

. (1.51)

For this model space the matrix representation (Hk l ) of the Rayleigh-Ritz projec-
tion of the Hamiltonian is calculated,

Hk l = 〈Φk |Ĥ |Φl 〉 , (1.52)

from which, via diagonalization, the expansion of the Hamiltonian eigenstates in
the basis Λ(FCI) may be obtained,

∑

l

Hk l C l = E Ck ⇒ |Φ(FCI)〉 =
∑

k

Ck |Φk 〉 . (1.53)

Since the Hamilton matrix (Hk l ) is obtained from orthogonal projection techniques
it is guaranteed that the FCI wavefunction |Ψ(FCI)〉 is the best approximation to the
exact wavefunction that, in the sense of residual minimization, can be computed
from the model space V (FCI). This is also the reason why the FCI method is fully
variational. The main limitation of the method is due to the rapid growth of the
many-body basis which goes as

dimV (FCI) =
(dimΛSP)!

A ! (dimΛSP−A)!
, (1.54)

and, thus, is scaling factorially with particle number A and single-particle basis
size dimΛSP.

Regarding truncations of the FCI scheme, it is common practice to introduce a
parametrization of the FCI wavefunction using the concept of the reference state
and corresponding excitation operators. The reference state

|Φ〉 = Â |φi 1
. . .φi A

) (1.55)

is a single Slater determinant build from the set of single-particle orbitals {φi 1
}

that minimize the energy functional

Eref
�
{φi 1

, . . . ,φi A
}
�
= min

i 1< ...< i A

�
e i 1
+ · · ·+ e i A

	
, (1.56)

with the constraint that the index set {i 1, . . . , i A} has of course the correct number
of proton and neutron states for the nucleus under consideration. The reference
state may, therefore, serve as zero-order approximation to the wavefunction with
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corresponding zero-order energy Eref. Once the reference state is determined, the
single-particle basis index set is divided into the orbitals occupied by the refer-
ence state (referred to as hole states) and the unoccupied (particle) states, with the
following notational convention :

hole states : i , j , k , . . . ∈ occupied in |Φ〉
particle states : a ,b , c , . . . ∈ unoccupied in |Φ〉
any state : p ,q , r, . . .

(1.57)

The n-particle-n-hole (npnh) excitation |Φa 1...a n

i 1...i n
〉 of the reference determinant is de-

fined as the Slater determinant in which, relative to the reference state, n hole
states have been replaced by n particle states, i.e.,

|Φa 1...a n

i 1...i n
〉 = (â †

a 1
â i 1
)(â †

a 2
â i 2
) . . . (â †

a n
â i n
) |Φ〉

= â †
a 1

. . . â †
a n

â i n
. . . â i 1

|Φ〉 , (1.58)

and the corresponding npnh excitation operator generating all possible npnh ex-
citations reads

Ĉn =
1

(n !)2

∑

i 1,...,i n
a 1,...,a n

c
a 1...a n

i 1...i n
â †

a 1
. . . â †

a n
â i n

. . . â i 1
. (1.59)

In terms of excitation operators (1.59), the FCI wavefunction can be parametrized
by the linear Ansatz

|Ψ(FCI)〉 = (1̂+ Ĉ (FCI)) |Φ〉 , Ĉ (FCI) =

A∑

n=1

Ĉ (FCI)
n

. (1.60)

Since Ĉ
(FCI)
m |Φ〉 vanishes for excitation ranks m > A, the FCI wave operator Ĉ natu-

rally terminates at the ApAh level.

1.6.2 Truncated Configuration Interaction

A natural way to truncate the full CI Ansatz (1.60) is to truncate the excitation
level X (Ĉ (FCI)) of the FCI wave operator at some value M , i.e., X (Ĉ (CIM)) = M < A.
The corresponding truncated CI variant is then referred to as CIM, or as CI with

Singles and Doubles excitations (CISD) for M = 2, as CI with Singles, Doubles and

Triples excitations (CISDT) for M = 3, and so on. This truncation is justified by the
expectation that in the expansion (1.60) higher excitation ranks are less relevant
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than lower ones, provided that the reference state is sufficiently close to |Ψ(FCI)〉.
Therefore, using the CIM Ansatz the Schrödinger equation reads

Ĥ
�

1̂+

M∑

n=1

Ĉ (CIM)
n

�

|Φ〉 = E (CIM)
�

1̂+

M∑

n=1

Ĉ (CIM)
n

�

|Φ〉 . (1.61)

In analogy to the Coupled-Cluster method, a set of coupled equations for the
energy E (CIM) and the amplitudes c

a 1...a k

i 1...1k
can be obtained by left-projecting the

CIM Schrödinger equation (1.61) onto the reference |Φ〉 and excited determinants
|Φa 1...a k

i 1...i k
〉,
























〈Φ| Ĥ
�

1̂+
M∑

n=1

Ĉ
(CIM)
n

�

|Φ〉 = E (CIM)

〈Φa 1

i 1
| Ĥ

�

1̂+
M∑

n=1

Ĉ
(CIM)
n

�

|Φ〉 = E (CIM) c
a 1

i 1
, ∀ a 1, i 1

...
...

〈Φa 1...a M

i 1...i M
| Ĥ

�

1̂+
M∑

n=1

Ĉ
(CIM)
n

�

|Φ〉 = E (CIM) c
a 1...a M

i 1...i M
, ∀ a 1, . . . , i M .

(1.62)

It is noteworthy that in a specific line of (1.62) not all excitation ranks of Ĉ (CIM)

contribute, because

〈Φa 1...a k

i 1...i k
|Ĥ
�

1̂+

M∑

n=1

Ĉ (CIM)
n

�

|Φ〉 = 〈Φa 1...a k

i 1...i k
|Ĥ
�

1̂+

nmax∑

n=nmin

Ĉ (CIM)
n

�

|Φ〉, (1.63)

with

nmin = max
¦

1 , k −X (Ĥ )
©

(1.64)

nmax = min
¦

M , k +X (Ĥ )
©

. (1.65)

Particularly, the energy has an explicit dependence on the Ĉ (CIM) coefficients of the
form

E (CIM) = E (CIM)
�n

c
a 1

i 1

o

, . . . ,
n

c
a 1...a X (Ĥ )

i 1...i X (Ĥ )

o�

, (1.66)

while, due to the coupled nature of (1.62), there is of course an implicit depen-
dence on all coefficients. From a physical point of view, the presence of the CI
energy in the truncated CI amplitude equations is troubling. This is because, for
the truncated CI case, an unequal scaling of both sides of the amplitude equations
is introduced as the number of particles in the system is increased. The energy and
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the CIM coefficients scale differently, leading to violation of size extensivity [25]. In
quantum-chemistry applications, this violation of size extensivity of the truncated
CI method poses a serious problem which makes the size-extensivity preserving
Coupled-Cluster method more favorable there.

1.6.3 No-Core Shell Model

An alternative truncation of the FCI parametrization which aims not at excita-
tion rank but rather on excitation energy is employed by the No-Core Shell Model

(NCSM). If the excitation energy of a Slater determinant relative to the unperturbed
reference state is defined by

e
a 1...a n

i 1...i n
≡

n∑

k=1

�
ea k
− e i k

�
, (1.67)

then the NCSM again uses a linear parametrization of the wavefunction similar
to the FCI parametrization,

|Ψ(NCSM)〉 =
�

1̂+

A∑

n=1

Ĉ (NCSM)
n

�

|Φ〉 , (1.68)

with excitation operators Ĉ
(NCSM)
n

Ĉ (NCSM)
n

=
1

(n !)2

∑′

i 1,...,i n
a 1,...,a n

c
a 1...a n

i 1...i n
â †

a 1
. . . â †

a n
â i n

. . . â i 1
(1.69)

where the summations
∑′

i 1,...,i n
a 1,...,a n

(1.70)

are constrained to maximum excitation energies, generated by the operator string
â †

a 1
. . . â †

a n
â i n

. . . â i 1
acting on the reference state, according to

e
a 1...a n

i 1...i n
≤ Nmax . (1.71)

This Nmax truncation is of particular significance in NCSM calculations using a
harmonic-oscillator basis, since despite of the use of single-particle coordinates
this truncation allows for any choice of Nmax an exact factorization of the NCSM
wavefunction into a center-of-mass and a relative part [97],

|Ψ(NCSM)〉 = |Ψint〉 ⊗ |ΨCM〉 , (1.72)

and, therefore, avoiding mixing center-of-mass and intrinsic excitations. This is
the reason why the harmonic-oscillator basis, although exhibiting an undesired
asymptotic behavior [98], is commonly preferred over other basis sets.
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1.6.4 Importance-Truncated No-Core Shell Model

Despite its heavy use and long history of success in nuclear structure calculations,
the NCSM becomes intractable for nuclei beyond 16O, even on massively parallel
computational architectures. This is because the NCSM requires unmanageably
large Nmax-parametrized model spaces in order to obtain model-space converged
results. A more sophisticated truncation scheme is introduced by the Importance-

Truncated No-Core Shell Model (IT-NCSM) [20, 21].

The IT-NCSM is motivated by the observation that many of the basis states of
a NCSM model space do not significantly contribute to the expansion of a specific
wavefunction. Therefore, an a priori criterion is introduced that estimates the im-
portance of specific basis states for the expansion of some eigenstate |Ψ〉. This way
only the most relevant basis states can be selectively incorporated in the many-
body basis, allowing to go to larger values of Nmax than would be accessible in the
standard NCSM.

In order to do so, a small reference space Vref (typically a full NCSM model space
with small Nmax) is specified from which a first approximation, the reference state

|Ψref〉 (not to be confused with the reference state |Φ〉, which does not enter the
considerations in this section ), is calculated,

Ĥ |Vref
|Ψref〉 = εref |Ψref〉 . (1.73)

With this information at hand, the importance κµ of a basis state |Φµ〉 6∈Λref outside
the reference space can be estimated from perturbation theory in first order as

κµ = −
〈Φµ|Ĥ |Ψref〉
εµ−εref

(1.74)

(a detailed review can be found in [21]). Obviously, regarding preserving transla-
tionally invariance, |Φµ〉 are taken from full NCSM model spaces of large enough
Nmax to guarantee Vref ⊂ V (NCSM). The IT-NCSM model space is consequently de-
fined as the reference space and its extension spanned by all determinants which
have an importance measure larger than some fixed κmin,

V (IT-NCSM) = span
n

|Φµ〉 ∈ V (NCSM) : κµ ≥ κmin

o

. (1.75)

The IT-NCSM is clearly a variational approach, converging to the exact result as
κmin goes to zero,

|Ψ(NCSM)〉 = lim
κmin→0

|Ψ(IT-NCSM)〉 , (1.76)
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as well as all observables computed from the wavefunction which typically show
a smooth κmin-dependence and usually can successfully be extrapolated to the
κmin = 0 limit.
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Chapter 2. Coupled-Cluster Theory

2.1 Introduction

Violation of size extensivity and exponential scaling of the model space have pro-
ven to be the main limitations of CI-like methods in quantum-chemistry appli-
cations. In the nuclear context the importance of size extensivity has not been
established yet but the unfortunate scaling behavior has limited ab initio methods
to the regime of p -shell nuclei anyway. By abandoning the variational princi-
ple, however, the Coupled-Cluster method [22–27, 99–103] overcomes these ob-
stacles, being size extensive in all truncation orders and exhibiting a polynomial,
rather than exponential, scaling of the model space size. In this and the follow-
ing sections two-body Hamiltonians are considered exclusively. The generalization
Coupled-Cluster theory to three-body Hamiltonians is postponed to Chapter 3.

2.2 The Exponential Ansatz

Seeking for alternative ways to solve the many-body Schrödinger equation, in-
stead of focusing on truncations of the linear CI-like scheme, more general, and
this nonlinear, parametrizations may be considered. Among these, the exponen-

tial Ansatz for the Coupled-Cluster wavefunction is probably the most powerful
known to date,

|Ψ〉 = e T̂ |Φ〉 , T̂ =

A∑

n=1

T̂n , (2.1)

where the cluster operator T̂ is defined in close analogy to the CI case, with com-
ponents

T̂1 = =
1

(1!)2

∑

a i

t a
i
{â †

a
â i } (2.2)

T̂2 = =
1

(2!)2

∑

ab i j

t ab
i j
{â †

a
â †

b â j â i } (2.3)

...

T̂n = =
1

(n !)2

∑

a 1...a n
i 1...i n

t
a 1...a n

i 1...i n
{â †

a 1
. . . â †

a n
â i n

. . . â i 1
} . (2.4)

As in Eqs. (2.2)-(2.4), regarding the diagrammatic treatment of CC equations, it is
customary to work with operators that are in normal order relative to the reference
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state, indicated by {. . .}, where it is understood that all particle creation or hole an-
nihilation operators â †

a
, â i are to the left of all particle annihilation or hole creation

operators â a , â †
i . Then, as for the standard normal-ordering prescription, expec-

tation values of normal-ordered operator products in the reference state, which
serves as new vacuum, vanish, for example

〈Φ|{â †
a

â †
b â j â i }|Φ〉 = 〈Φ|Φab

i j
〉 = 0 . (2.5)

In the case of pure excitation operators, such as T̂n , or pure de-excitation operators,
the operator string is automatically in normal order with respect to the reference
state and the brackets {. . .} may be dropped. The Hamiltonian operator is put in
normal-ordered form as well. A general two-body Hamiltonian in standard form
reads

Ĥ = ĥ0+ ĥ1+ ĥ2 (2.6)

= h0+
∑

pq

〈p |ĥ1|q 〉 â †
p

â q +
1

4

∑

pqr s

〈pq |ĥ2|r s 〉 â †
p

â †
q

â s â r , (2.7)

where antisymmetrized two-body matrix elements 〈pq |ĥ2|r s 〉 are introduced,

〈pq |ĥ2|r s 〉 = (pq |ĥ2|r s )− (pq |ĥ2|s r ) . (2.8)

In normal-ordered form, the operator is given by

Ĥ = h0+
∑

i

〈i |ĥ1|i 〉+
∑

pq

〈p |ĥ1|q 〉 {â †
p

â q}+
1

2

∑

i j

〈i j |ĥ2|i j 〉

+
∑

pqi

〈p i |ĥ2|qi 〉 {â †
p

â q}+
1

4

∑

pqr s

〈pq |ĥ2|r s 〉 {â †
p

â †
q

â s â r } , (2.9)

where it is conventional to introduce the reference expectation value 〈Φ|Ĥ |Φ〉, the
one-body Fock operator F̂N , and the two-body interaction operator V̂N , leading to

Ĥ = 〈Φ|Ĥ |Φ〉+
∑

pq

f p
q
{â †

p
â q}+

1

4

∑

pqr s

v pq
r s
{â †

p
â †

q
â s â r } (2.10)

≡ 〈Φ|Ĥ |Φ〉+ F̂N + V̂N , (2.11)

for which the diagrammatic representations used in this work are shown in Fig-
ure 2.1, and whose matrix elements are given by

〈Φ|Ĥ |Φ〉 = h0+
∑

i

〈i |ĥ1|i 〉+
1

2

∑

i j

〈i j |ĥ2|i j 〉 , (2.12)

f p
q
≡ 〈p | f̂ |q 〉 = 〈p |ĥ1|q 〉+

∑

i

〈p i |ĥ2|qi 〉 , (2.13)

v pq
r s
≡ 〈pq |v̂ |r s 〉 = 〈pq |ĥ2|r s 〉 . (2.14)
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FN : b l b l b l b l

VN : b b b b b b b b

b b b b b b

Figure 2.1: Goldstone diagrams representing the Fock operator F̂N and antisymmetrized Goldstone

diagrams for V̂N that come from distinct corresponding Hugenholtz diagrams.

Anticipating the treatment of three-body Hamiltonians later on, the matrix ele-
ments v

pq
r s are understood as the antisymmetrized matrix elements of the two-

body part V̂N of the normal-ordered Hamiltonian, which for two-body Hamiltoni-
ans coincide with the ordinary antisymmetrized matrix elements of the two-body
Hamiltonian ĥ2 in standard form.

Using the normal-ordered Hamiltonian,

ĤN = Ĥ −〈Φ|Ĥ |Φ〉 , (2.15)

and after subtracting the zero-body contribution, the Schrödinger equation can
be written in the form

ĤN e T̂ |Φ〉 = ∆E e T̂ |Φ〉 , (2.16)

in which the quantity

∆E ≡ E −〈Φ|Ĥ |Φ〉 (2.17)

is called the correlation energy. Since 〈Φ|Ĥ |Φ〉 is the expectation value of the Hamil-
tonian in the reference state, it is also referred to as reference energy Eref,

Eref ≡ 〈Φ|Ĥ |Φ〉 . (2.18)
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Clearly, the total energy is then given by the sum of reference and correlation en-
ergy. An alternative formulation of (2.16) is obtained by left-multiplication with
e−T̂ , arriving at

Ĥ |Φ〉 = ∆E |Φ〉 , (2.19)

where the (normal-ordered) Coupled-Cluster effective Hamiltonian Ĥ is defined as

Ĥ ≡ e−T̂ ĤN e T̂ . (2.20)

The form (2.19) of the Schrödinger equation is of particular importance and will be
the starting point for the derivation of the Coupled-Cluster equations. It is con-
venient since all the complicated exponential structure of the Coupled-Cluster
Ansatz is absorbed in Ĥ . By left-multiplication with e−T̂ in (2.16), the ampli-
tudes of the cluster operator have been separated from the energy so that the en-
ergy will not appear in the amplitude equations. Since it was the presence of the
energy in the CI amplitude equations which caused violation of size extensivity
there, Coupled-Cluster theory circumvents this problem by introducing the effec-
tive Hamiltonian [25].

Since T̂ † 6= −T̂ , the transformation (2.20) is not unitary, resulting in a non-
Hermitean effective Hamiltonian. The transformation is, however, a similarity
transformation (which is why (2.19) is also referred to as similarity transformed

Schrödinger equation) and, therefore, the spectrum of the original Hamiltonian is
not altered. But the non-Hermitecity leads to an asymmetric expression for the
energy,

〈Φ| e−T̂ ĤN e T̂ |Φ〉 = ∆E , (2.21)

which is not subject to variational conditions, causing truncated Coupled-Cluster
methods not to give an upper bound for the exact energy, contrary to methods for
which the variational principle is fulfilled.

The exponential form (2.1) of the wavefunction is exact in the sense that for the
untruncated case it reproduces the Full CI wavefunction. In fact, the CI excitation
operators may be expressed by the Coupled-Cluster cluster operators by the one-
to-one correspondence

Ĉ1 = T̂1 (2.22)

Ĉ2 =
1

2!
T̂ 2

1
+ T̂2 (2.23)

Ĉ3 =
1

3!
T̂ 3

1
+ T̂1T̂2+ T̂3 , (2.24)

Coupled-Cluster Theory for Nuclear Structure 37



Chapter 2. Coupled-Cluster Theory

or, for general excitation operators,

Ĉn =

n∑

k=1

1

k !

∑

m1...mk

δm1+...+mk , n

k∏

j=1

T̂m j
, (2.25)

which elucidates the relationship between Coupled Cluster and CI. However, the
Coupled-Cluster Ansatz performs differently to CI when the cluster operator is
truncated to some excitation rank M ,

T̂ (M ) =

M∑

n=1

T̂n . (2.26)

As in the CI case, the corresponding Coupled-Cluster method is called CCM, or
for M = 2 CCSD, and so on. Due to its nonlinear nature, the Coupled-Cluster
Ansatz allows to generate higher-order excitations from products of lower-order
excitation operators (Figure 2.2).

The individual importance of the terms in (2.22)-(2.25) may be roughly esti-
mated using simple considerations. For Hartree-Fock bases, the T̂1 operator is
small 1 and, therefore, (2.22) is expected to contribute little. Since T̂ 2

1
is even

smaller than T̂1, the first term in (2.23) will, consequently, also contribute very lit-
tle, leaving T̂2 in (2.23) as the dominant term. Analogously, the only term in (2.24)
that does not involve T̂1 is the triples excitations cluster operator T̂3, which is ex-
pected to be dominant. However, going to higher excitation types Ĉ4,5,..., the con-
nected cluster operators T̂4,5,... are expected to become less relevant, since they rep-
resent a simultaneous correlation of the corresponding number of nucleons. For
that reason, T̂2 is typically already significantly more important than T̂3. In sum-
mary, for a general excitation operator (2.25), the contributions from T̂2 and T̂3

clusters are expected to have most relevance.

2.3 Coupled-Cluster Equations

Analogously to the exact case (2.21), for a given (truncated) CCM methods with

T̂ ≈ T̂ (M) = T̂1 + T̂2 + . . . + T̂M , (2.27)

the expression for the correlation energy∆E (M) =∆E (t (M)) as function of the cluster
amplitudes

t (M ) ≡
nn

t a
i

o

,
n

t ab
i j

o

, . . . ,
n

t
a 1...a M

i 1,...,i M

oo

, (2.28)

1Here, an operator is called small if its matrix elements have small absolute values.

38 Coupled-Cluster Theory for Nuclear Structure



2.3. Coupled-Cluster Equations

b b
b b b b
bC bC bC bC bC

bC bC bC bC bC bC
bC bC bC bC bC bC bC
bC bC bC bC bC bC bC

|Φ〉

b b
b bC b b
bC bC bC bC bC

bC bC bC bC bC bC
bC bC b bC bC bC bC
bC bC bC bC bC bC bC

T̂1 |Φ〉

b bC
bC b b b
bC bC bC bC bC

bC bC bC bC bC bC
bC bC b bC bC bC bC
bC bC bC bC bC bC b

T̂2 |Φ〉

bC bC
bC bC bC b
bC bC bC bC bC

bC bC b bC bC bC
b b bC b bC bC bC
bC bC bC bC bC bC b

T̂1 T̂2 T̂2 |Φ〉

Figure 2.2: Illustration of excitation types in the CC ansatz.

can be derived by left-projecting the similarity-transformed Schrödinger equation

Ĥ (M) |Φ〉 = ∆E (M) |Φ〉 (2.29)

with

Ĥ (M) ≡ e−T̂ (M) ĤN e T̂ (M) , (2.30)

onto the reference state. In analogy to the CI case, a coupled set of algebraic equa-
tions for the determination of the amplitudes t (M) is obtained by left-projecting
the similarity-transformed Schrödinger equation onto the excited determinants
|Φa 1...a n

i 1...i n
〉 with n ≤M , i.e.,

〈Φ| Ĥ (M) |Φ〉 = ∆E (M) (2.31)

〈Φa
i
| Ĥ (M) |Φ〉 = 0 , ∀ a , i (2.32)

〈Φab
i j
| Ĥ (M) |Φ〉 = 0 , ∀ a ,b , i , j (2.33)

...

〈Φa 1...a M

i 1...i M
| Ĥ (M) |Φ〉 = 0 , ∀ a 1, . . . , a M , i 1, . . . , i M . (2.34)

In the case of CCSD, for example, the T̂1 and T̂2 amplitudes can be determined by
solving the system given by (2.32) and (2.33). Above expressions can be signifi-
cantly simplified once it is recognized that the expansion of the effective Hamilto-
nian Ĥ (M), containing two exponentials of the cluster operator, actually terminates
at finite expansion order. This is due to T̂ (M) being an excitation operator, and the
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finite expression for Ĥ (M) in case of two-body Hamiltonians ĤN reads 2

Ĥ (M) = ĤN +
1

1!

�

ĤN , T̂ (M)
�

+
1

2!

��

ĤN , T̂ (M)
�

, T̂ (M)
�

+
1

3!

���

ĤN , T̂ (M)
�

, T̂ (M)
�

, T̂ (M)
�

+
1

4!

����

ĤN , T̂ (M)
�

, T̂ (M)
�

, T̂ (M)
�

, T̂ (M)
�

. (2.35)

This commutator expansion of the effective Hamiltonian can be further simplified
to the form

Ĥ (M) =
�

ĤN e T̂ (M)
�

C
, (2.36)

where the subscript C restricts the expressions inside the brackets to connected

terms, where the Hamiltonian has at least one contraction with each cluster oper-
ator. Consequently, since a two-body Hamiltonian can be contracted with a max-
imum number of 4 operators, the expansion of the exponential can be restricted
to terms containing not more than 4 cluster operators. Therefore, the most conve-
nient form of the general Coupled-Cluster amplitude equations reads

〈Φa 1...a n

i 1...i n
|
�

ĤN e T̂ (M)
�

C
|Φ〉 = 0 , n = 1, . . . , M . (2.37)

For CCSD [61, 65, 66, 70, 105–114], where the cluster operator is truncated at the
singles and doubles excitations,

T̂ (CCSD) = T̂1 + T̂2 , (2.38)

the energy and amplitude equations, after expansion of the exponential, are then
given by

∆E (CCSD) = 〈Φ|
h

ĤN

�

T̂1+ T̂2+
1

2!
T̂ 2

1

�i

C
|Φ〉 (2.39)

0 = 〈Φa
i
|
h

ĤN

�

1+ T̂1+ T̂2+
1

2!
T̂ 2

1
+ T̂1T̂2+

1

3!
T̂ 3

1

�i

C
|Φ〉 (2.40)

0 = 〈Φab
i j
|
h

ĤN

�

1+ T̂1+ T̂2+
1

2!
T̂ 2

1
+ T̂1T̂2

+ 1

2!
T̂ 2

2
+ 1

3!
T̂ 3

1
+ 1

2!
T̂ 2

1
T̂2+

1

4!
T̂ 4

1

�i

C
|Φ〉 . (2.41)

2Proving the non-terminating form of the commutator expansion is an easy exercise [104]:
Setting Ĥ (M) = e−αT̂ (M)ĤN e αT̂ (M) , for the derivate holds dĤ (M)/dα = e−αT̂ (M) [ĤN , T̂ (M)]e αT̂ (M) and
consequently d2Ĥ (M)/dα2 = e−αT̂ (M) [[ĤN , T̂ (M)], T̂ (M)]e αT̂ (M) and so on. Plugging into Ĥ (M) =
∑

n

1

n !
αn
�

dn Ĥ (M)

dαn

��
�
�
α=0

and setting α to 1 gives the commutator expansion.
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(SA)

+ f a
i

(SB a )

+
∑

c k

f k
c t a c

i k

(SBb )

+ 1
2

∑

c d k

v a k
c d t c d

i k

(SBc )

− 1
2

∑

c k l

v k l
i c t a c
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∑

c
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−
∑

i

f k
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k

(SC c )

+
∑
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i c t c

k
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2

∑

c d k l

v k l
c d t a d

k l t c
i
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− 1
2

∑
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k
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+
∑
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c d t d a

l i t c
k
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−
∑

c k

f k
c t c

i t a
k

(SEb )

+
∑

c d k

v a k
c d t c

i t d
k

(SE c )

−
∑

c k l

v k l
i c t a

k t c
l

(SF )

−
∑

c d k l

v k l
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k t c
i t d

l

= 0 , ∀ a , i

Figure 2.3: Algebraic expressions for the CCSD T̂1 amplitude equations.

Cluster operator products, such as 1

4!
T̂ 4

2
, have already been left out in (2.39)–(2.41)

since their excitation rank is too high for the Hamiltonian to de-excite the resulting
determinants to the state the equation is projected on. Therefore, for a Hamilto-
nian with excitation rank X (Ĥ ), in the T̂n amplitude equation only cluster operator
products P (T̂ (M)) may appear with excitation ranks X (P (T̂ (M))) ≤ X (ĤN ) + X (T̂n ).
Evaluating Eqs. (2.39)-(2.41) in terms of matrix elements of the operators involved
is a standard task using diagrammatic techniques [25,26]. The diagrams are listed
in Appendix C.1, and the corresponding algebraic expressions are given in Fig-
ures 2.3 and 2.4. In front of each term the assigned diagram is indicated where
the naming convention has been taken from [26] 3. This facilitates the identifica-
tion of the corresponding spherical expression presented later in this work. The
expression for the correlation energy reads

∆E (CCSD) =
(E A)

+
1

4

∑

ab i j

v
i j

ab t ab
i j

(E B )

+
∑

a i

f i
a

t a
i

(EC )

+
1

2

∑

ab i j

v
i j

ab t a
i

t b
j

, (2.42)

and it is noteworthy that the expression above is also valid for all higher-order
Coupled-Cluster methods such as CCSDT, CCSDTQ, etc., provided that two-body
Hamiltonians are used. This stems from the obvious fact that it is not possible to
form closed diagrams using a two-body interaction and cluster operators beyond
T̂2. The correlation energy depends on all cluster operator amplitudes, of course,
but the T̂3, T̂4, . . . amplitudes enter implicitly through the solution of the Coupled-
Cluster amplitude equations.

3In Ref. [26], the algebraic expression for (DHa) has an incorrect sign.
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(DA)

+ v ab
i j

(D B a )

+ P̂ab

∑

c

f b
c t a c

i j

(D Bb )

− P̂i j

∑

k

f k
j t ab

i k

(D Bc )

+ 1
2

∑

c d
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c d t c d

i j

(D Bd )

+ 1
2
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k

v k l
i j t ab

k l
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+ P̂ab P̂i j

∑

c k
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i k
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4
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k l
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j l
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Figure 2.4: Algebraic expressions for the CCSD T̂2 amplitude equations.
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The Coupled-Cluster amplitude equations, which are of the form

G (t ) = 0 (2.43)

are usually converted into a fixed-point problem

I (t (n )) = t (n+1) , I (t ∗) = t ∗ , (2.44)

and solved iteratively. A common choice for the iteration scheme is






(0)t
a 1...a n

i 1...i n
= 0

(n+1)t
a 1...a n

i 1...i n
=

〈Φa 1...a n
i 1...i n

| (ĤN e T̂ )C(t
(n )) |Φ〉

f
i 1
i 1
+ ...+ f

i n
i n
− f

a 1
a 1
− ...− f

a n
a n

, F̂N → F̂ o
N ,

(2.45)

where in the amplitude equations the Fock operator F̂N is replaced by its off-
diagonal F̂ o

N part [26]. An alternative iteration scheme that leads to more stable
iterations is considered in Section 4.8.

2.4 Effective Hamiltonian

Once the CCSD amplitude equations have been solved, the effective Hamiltonian

Ĥ (CCSD) = e−T̂ (CCSD)

ĤN e T̂ (CCSD)

(2.46)

may be constructed explicitly from the cluster amplitudes t (CCSD). Recalling the
commutator expansion of the effective Hamiltonian (2.20), it is apparent that the
CCSD effective Hamiltonian Ĥ (CCSD) will contain up to six-body operator terms,

Ĥ (CCSD) = Ĥ0+ Ĥ1+ Ĥ2+ Ĥ3+ Ĥ4+ Ĥ5+ Ĥ6 , (2.47)

which are generated by the four-fold commutator (2.35). Since each Ĥk is assumed
to be in normal-ordered form, Ĥ (CCSD) can directly be written as

Ĥ (CCSD) = H0+
∑

pq

H p
q
{â †

p
â q}+

1

4

∑

pqr s

H pq
r s
{â †

p
â †

q
â s â r }

+
1

36

∑

pqr s t u

H pqr
s t u {â †

p
â †

q
â †

r
â u â t â s }+ . . . ,

≡ H0+ Ĥopen , (2.48)

again employing the short-hand notation

H p1...pn

q1...qn
≡ 〈p1 . . . pn |Ĥn |q1 . . .qn 〉 (2.49)
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Ĥ1 : b r b r b r b r

Ĥ2 : b b b b b b b b

b b b b b b

Ĥ3 : b b b b b b b b b . . .

Ĥ4 : b b b b . . .

Figure 2.5: Antisymmetrized Goldstone diagrams for Ĥ1 and Ĥ2 as well as selected Ĥ3 and Ĥ4

diagrams that arise from distinct corresponding Hugenholtz diagrams.

for antisymmetrized matrix elements, and where Ĥopen denotes the part of the
effective Hamiltonian with open Fermion lines, as opposed to the closed effective
Hamiltonian diagrams H0. It should be noted that the non-Hermitecity of the
effective Hamiltonian implies that

H pq ...
r s ...
6=
�

H r s ...
pq ...

�∗
. (2.50)

For the Coupled-Cluster methods considered in this work that only involve two-
body Hamiltonians, only the one- and two-body parts of Ĥ (CCSD) will be needed.
The expressions for the matrix elements depend on the particle-hole character
of the orbitals and, therefore, the Hamiltonian is split into different particle-hole
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H0 = ∆E (CCSD)
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Figure 2.6: Algebraic expressions for the effective Hamiltonian matrix elements. For the defini-

tions of the intermediates χ see Figure 2.7.
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Figure 2.7: Intermediates used in Figure 2.6.
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topologies, for the one-body part Ĥ1

Ĥ1 =
∑

i j

H i
j
{â †

i
â j }+

∑

i a

H i
a
{â †

i
â a }+

∑

a i

H a
i
{â †

a
â i }+

∑

ab

H a
b
{â †

a
â b}

(2.51)

and analogous for Ĥ2, where the algebraic expressions of the corresponding ma-
trix elements are listed in Figures 2.6 and 2.7. In effective Hamiltonian terms the
CCSD T̂1 and T̂2 amplitude equations may be represented as

H a
i
= 0 , ∀ a , i (2.52)

H ab
i j

= 0 , ∀ a ,b , i , j (2.53)

emphasizing that theH p
h andH pp

hh matrix elements of Ĥ (CCSD) vanish if the CCSD
equations are satisfied by the cluster amplitudes.

Having the effective Hamiltonian in explicit form allows to formulate further
applications like ΛCCSD(T) or EOM-CCSD – basically being a diagonalization of
Ĥ (CCSD) – in terms of effective Hamiltonian matrix elements which results in more
compact expressions.

2.5 The ΛCCSD Equations

The Coupled-Cluster Λ̂ operator appears on several occasions in Coupled-Cluster
theory, as in the expression for the the energy derivative in the context of response
treatment of properties,

d
dλ
∆E (λ) = 〈Φ|

�

1̂+Λ̂
� dĤ (λ)

dλ
|Φ〉 , (2.54)

or in the fundamental energy functional,

E (CC)(Λ̂, T̂ ) = 〈Φ|
�

1̂+Λ̂
�

Ĥ |Φ〉 , (2.55)

which, when stationary, gives the Coupled-Cluster correlation energy. From there,
it attains importance in the calculation of higher-order contributions to the en-
ergy. Furthermore, because the Λ̂ operator is determined from solving the left-
eigenfunction equation for Ĥ , the Λ̂ equations are to a large extent equivalent to
equations encountered in Equation-of-Motion Coupled-Cluster theory. Since the
main motivation for the Λ̂ operator is from the properties treatment which is of
minor interest in this work, only a very brief review is given in the following.
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The Λ̂ operator parametrizes the bra counterpart 〈Ψ̃| of the Coupled-Cluster
ground state |Ψ〉 according to

〈Ψ̃| = 〈Φ| ( 1̂+Λ̂) e−T̂ , (2.56)

which satisfies the biorthonormality condition

〈Ψ̃|Ψ〉 = 1 (2.57)

and where

Λ̂ =

A∑

n=1

Λ̂n (2.58)

is a sum of npnh de-excitation operators Λ̂n ,

Λ̂1 = =
1

(1!)2

∑

a i

λi
a
{â †

i
â a } (2.59)

Λ̂2 = =
1

(2!)2

∑

ab i j

λ
i j

ab {â †
i
â †

j
â b â a } (2.60)

...

Λ̂n = =
1

(n !)2

∑

a 1...a n
i 1...i n

λi 1...i n

a 1...a n
{â †

i 1
. . . â †

i n
â a n

. . . â a 1
} . (2.61)

The corresponding amplitude equations can be obtained by considering the
Schrödinger equation

〈Ψ̃|ĤN = ∆E 〈Ψ̃| (2.62)

and using Ansatz (2.56)

〈Φ| ( 1̂+Λ̂) e−T̂ ĤN = ∆E 〈Φ| ( 1̂+Λ̂) e−T̂ . (2.63)

Right-multiplication with e T̂ leads to a formulation in terms of the effective Hamil-
tonian,

〈Φ| ( 1̂+Λ̂) Ĥ = ∆E 〈Φ| ( 1̂+Λ̂) , (2.64)

which, using

Ĥ = H01̂+ Ĥopen , (2.65)
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can be cast in the energy-independent form

〈Φ| ( 1̂+Λ̂) Ĥopen = 0 . (2.66)

In the case of ΛCCSD, where the Λ̂ operator is approximated as

Λ̂ ≈ Λ̂(CCSD) = Λ̂1+Λ̂2 , (2.67)

and the effective Hamiltonian Ĥopen is replaced by Ĥ (CCSD)
open , the Λ̂1 and Λ̂2 ampli-

tudes can be obtained from solving the system of linear equations [76, 115–121]

〈Φ| ( 1̂+Λ̂1+Λ̂2 ) Ĥ (CCSD)
open

|Φa
i
〉 = 0 (2.68)

〈Φ| ( 1̂+Λ̂1+Λ̂2 ) Ĥ (CCSD)
open

|Φab
i j
〉 = 0 . (2.69)

Since these systems of equations are typically very large, they are also solved it-
eratively, and a similar iteration scheme as for CCSD, Eq. (2.45), can be set up.
From excitation rank considerations follows that only one-, two- and three-body
components of Ĥ (CCSD)

open enter the above system which also can be written as [96]

0 = 〈Φ|
n �

(1̂+Λ̂1) Ĥ1

�

C
+
�

(Λ̂1+Λ̂2) Ĥ2

�

C
+
�

Λ̂2 Ĥ3

�

C

o

|Φa
i
〉 (2.70)

0 = 〈Φ|
n �

(1̂+Λ̂1+Λ̂2) Ĥ2

�

C
+
�

Λ̂2 Ĥ1

�

C

+
�

Λ̂1 Ĥ1

�

DC
+
�

Λ̂2 Ĥ3

�

C

o

|Φab
i j
〉 . (2.71)

where the label DC represents disconnected operator products. As for the T̂ (CCSD)

amplitude equations, these expressions can be evaluated using standard diagram-
matic techniques (for diagrams see Appendix E.1). The resulting equations for the
Λ̂1 and Λ̂2 amplitudes in terms of effective Hamiltonian matrix elements are listed
in Figure 2.8 and the corresponding spherical expressions are appended in Ap-
pendix E.2. In Figure 2.8, the matrix elements of the three-body operator Ĥ3 have
been expressed in terms of matrix elements of lower-rank operators according
to [26, 96]

H c d i
k l a

= −P̂k l

∑

m

H i m
a l

t c d
k m
+ P̂c d

∑

e

H i d
a e

t c e
k l

(2.72)

H i j c

k b l = −
∑

d

t c d
k l

v
i j

d b (2.73)

H c j d

ab k = −
∑

l

t c d
k l

v
l j

ab (2.74)
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Figure 2.8: Algebraic expressions for the ΛCCSD Λ̂1 and Λ̂2 amplitude equations.

in order to avoid the use of six-index quantities. Therefore, it should be noted that
in effective Hamiltonian terms it can be written

(Λ1G)+ (Λ1H) =
b b b

=
1

4

∑

c d k l

λk l
c d
H c d i

k l a
, (2.75)

(Λ2J) =
b b b

=
1

4
P̂ab P̂i j

∑

c k l

λk l
c a
H i j c

k b l , (2.76)
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and

(Λ2K) =
b b b

=
1

4
P̂ab P̂i j

∑

c d k

λk i
c d
H c j d

ab k . (2.77)

2.6 Expectation Values

The evaluation of expectation values

¬

Ĝ
¶

≡ 〈Ψ| Ĝ |Ψ〉
〈Ψ|Ψ〉 =

〈Φ| e T̂ †
Ĝ e T̂ |Φ〉

〈Φ| e T̂ †
e T̂ |Φ〉

(2.78)

is inherently more complicated in Coupled-Cluster theory than in methods that
employ a linear parametrization of the wavefunction. The reason is that the ex-
pression 〈Φ|e T̂ †

ĜN e T̂ |Φ〉, in which both excitation and de-excitation type operators
appear, does not terminate as for instance the expression 〈Φ|e−T̂ ĜN e T̂ |Φ〉 does, in
which only excitation operators appear.

As for the Coupled-Cluster energy, which in the untruncated case must of course
be the same as the Hamiltonian expectation value, any expectation value may be
separated into its reference and correlation part,

¬

Ĝ
¶

= 〈Φ|Ĝ |Φ〉+
¬

ĜN

¶

, (2.79)

with the correlation part being the non-trivial task in the expectation value cal-
culation. However, the denominator cancels against the disconnected parts from
the nominator [100],

¬

ĜN

¶

=
〈Φ| e T̂ †

ĜN e T̂ |Φ〉
〈Φ| e T̂ †

e T̂ |Φ〉
= 〈Φ|

�

e T̂ †

ĜN e T̂
�

C
|Φ〉 , (2.80)

leaving a connected form for the correlation part. In order to detach the general
problem of the expectation value evaluation from the specific operator Ĝ , the n-

body reduced density operator

γ̂
(n )
N =

∑

p1...pn
q1...qn

|q1 . . .qn 〉
�
γN

�q1...qn

p1...pn
〈p1 . . .pn | (2.81)

with matrix elements
�
γN

�q1...qn

p1...pn
= 〈Φ|

h

e T̂ † {â †
p1

. . . â †
pn

â qn
. . . â q1

} e T̂
i

C
|Φ〉 (2.82)
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Figure 2.9: Algebraic expressions for the one-body response density matrix elements.

is introduced. It is clearly independent from the operator under consideration,
and the expectation value of any n-body operator in normal order may be ex-
pressed as the contraction of the operator matrix elements with the density matrix
elements,

¬

ĜN

¶

=

n∑

k=1

1

(k !)2

∑

p1...pk
q1...qk

〈p1 . . . pk |ĝ N |q1 . . .qk 〉
�
γN

�q1...qk

p1...pk
. (2.83)

For the case of one-body operators Ô, the reference part of the expectation value
may directly be incorporated in the contraction by the use of a modified density
matrix γp

q ,

¬

Ô
¶

=
∑

pq

〈p |ô|q 〉 γq
p

, γq
p
≡
¨

(γN )
q
p +δpq : p ,q ∈ holes

(γN )
q
p : else .

(2.84)

For a two-body operator V̂ in vacuum normal order, a formulation of the expecta-
tion value involving only the two-body matrix elements 〈pq |v̂ |r s 〉 is easily found
as [26]

¬

V̂
¶

=
1

4

∑

pqr s

〈pq |v̂ |r s 〉
�
γN

�r s

pq
+
∑

pq





∑

i

〈p i |v̂ |qi 〉



�
γN

�q

p
+

1

2

∑

i j

〈i j |v̂ |i j 〉 .

(2.85)
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Figure 2.10: Algebraic expressions for the two-body response density matrix elements.
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Figure 2.11: Algebraic expressions for the two-body response density matrix elements, continued.
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By solving the Λ̂ equations an alternative form of the density matrix elements

(γN )
q1...qn

p1...pn
= 〈Φ|

h�

1̂+Λ̂
��

{â †
p1

. . . â †
pn

â qn
. . . â q1

}e T̂
�

C

i

C
|Φ〉 (2.86)

may be used, which, unlike (2.82) leads to terminating expressions. The CCSD
one- and two-body matrix elements of the reduced density matrix derived from
(2.86) are listed in Figures 2.9-2.11, and the spherical expressions can be found in
Appendix F.

2.7 The ΛCCSD(T) Energy Correction

While the CCSD equations are rather easy to solve, the solution of the full CCSDT
equations is far out of reach for all but the lightest nuclei. Nonetheless, higher-
order excitations may be included in the calculations via a combination of the iter-
ative, infinite-summation techniques obtained from solving the Coupled-Cluster
equations for low-rank clusters, with an a posteriori non-iterative correction due
to higher-rank clusters, typically based on perturbation-theory considerations.
There is an abundance of different methods that have emerged in the field of
quantum chemistry, such as CCSD[T] [122,123], CCSD(T) [124], CCSD(TQf) [125],
ΛCCSD(T) [57, 126], ΛCCSD(TQf) [127], CCSD(2)T [128–131], CCSD(2) [128–131],
CR-CCSD(T) [132–136], CR-CCSD(TQ) [132–136], CR-CC(m ,m ′) [117,119,121,137,
138], CR-CC(2,3)+Q [139], LR-CCSD(T) [140], or LR-CCSD(TQ) [140]. In this work,
besides the CR-CC(2,3) correction, the main focus will be on the ΛCCSD(T) non-
iterative energy correction [57,126] due to its rather simple structure but yet accu-
rate results. However, in this section only a brief overview is given, because the
method is discussed in more detail in the context of three-body Hamiltonians, see
Section 3.4.

Starting point for the derivation of the ΛCCSD(T) correction is an expansion
of the Coupled-Cluster energy functional

E (CC) = 〈Φ| (1̂+Λ̂) Ĥ |Φ〉 (2.87)

for CCSDT up to fourth order perturbative contributions relative to the CCSD
ground-state wavefunction, which can be formulated in converged CCSD T̂1, T̂2

and ΛCCSD Λ̂1, Λ̂2 amplitudes, and by determining the corresponding energy cor-
rection from this functional [57, 58]. This results in an expression for the energy
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δE (ΛCCSD(T)) =
1

(3!)2

∑

ab c
i j k

λ̃
i j k

ab c

1

εab c
i j k

t̃ ab c
i j k

λ̃
i j k

ab c
= P̂a/b c P̂k/i j

∑

d

v d k
b c λ

i j

a d
− P̂c/ab P̂i/j k

∑

l

v
j k

l c
λi l

ab

+ P̂i/j k P̂a/b c λ
i
a v b c

j k + P̂i/j k P̂a/b c f i
a λ

j k

b c

t̃ ab c
i j k = P̂a/b c P̂k/i j

∑

d

v b c
d k t a d

i j − P̂c/ab P̂i/j k

∑

l

v l c
j k t ab

i l

P̂p/qr = 1̂− T̂pq − T̂p r

Figure 2.12: Algebraic expressions for the computation of δE (ΛCCSD(T)).

correction of the form

δE (ΛCCSD(T)) (2.88)

=
1

(3!)2

∑

ab c
i j k

〈Φ| Λ̂
�

F̂ od
N
+ V̂N

�

|Φab c
i j k
〉 1

εab c
i j k

〈Φab c
i j k
|
�

V̂N T̂2

�

C
|Φ〉 ,

where F̂ od
N is the off-diagonal part of the normal-ordered Fock operator F̂N and the

energy denominator εab c
i j k is defined as

εab c
i j k

≡ f i
i
+ f

j

j + f k
k
− f a

a
− f b

b
− f c

c
. (2.89)

The corrected total energy is therefore given by

E (ΛCCSD(T)) = Eref+∆E (CCSD)+δE (ΛCCSD(T)) . (2.90)

Explicit expressions for the evaluation of (2.88) can be found in Figure 2.12. Be-
cause the enormous number 4, namely h3p3, of six-index amplitudes cannot be
stored at once, it is common practice to organize the calculation according to

δE (ΛCCSD(T)) =
∑

i<j<k




1

3!

∑

ab c

λ̃
i j k

ab c

1

εab c
i j k

t̃ ab c
i j k



 (2.91)

where the bracket is evaluated for each i , j , k index combination separately, re-
quiring only the storage of p3 tensors. The particle index sum is not restricted to
a < b < c in order to use optimized BLAS [141] routines for the calculation of the
λ̃

i j k

ab c and t̃ ab c
i j k tensors.

4The number of hole orbitals is denoted by h and p is the number of particle orbitals.
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2.8 The Completely-Renormalized Coupled-Cluster
Method CR-CC(2,3)

The completely renormalized Coupled-Cluster methods (CR-CC) and particular
the CR-CC(2,3) version [114, 117, 119, 120, 137, 138] are promising alternatives to
the ΛCCSD(T) approach, since they are more complete, and, therefore, expected
to be more accurate. The CR-CC(m , m ′) methods are based on asymmetric energy
expressions and the moment expansion of the full CI energy, defining the method
of moments of the Coupled-Cluster equations [132–136, 142, 143]. This frame-
work encompasses all sorts of energy corrections and its comprehensive structure
greatly facilitates the theoretical discussion. In this work, for instance, this feature
is exploited by using CR-CC(2,3) as the base from which theΛCCSD(T) method for
three-body Hamiltonians is derived in Section 3.4. Apart from the theoretical con-
text, the CR-CC(2,3) method will also be used in practical applications because it
is worthwhile to have multiple triples correction methods at hand. This is because
as long as full CCSDT calculations remain too expensive, the quality of triples cor-
rection approaches has to be estimated from the comparison of different methods.
Furthermore, it is encouraging to note that the final CR-CC(2,3) equations are ac-
tually not significantly more complex than theirΛCCSD(T) counterparts, resulting
in a similar implementational effort.

Using the definitions of the left and right Coupled-Cluster eigenstates,

〈Ψ̃| = 〈Φ| (1̂+Λ̂)e−T̂ and |Ψ〉 = e T̂ |Φ〉 , (2.92)

the exact correlation energy

∆E = 〈Ψ̃|ĤN |Ψ〉 (2.93)

may be expressed in terms of the Λ̂ operator and the effective Hamiltonian,

∆E = 〈Φ|
�

1̂+Λ̂
�

Ĥ |Φ〉 . (2.94)

Of course, in practice neither Λ̂ nor Ĥ are known. However, the exact correlation
energy can still be obtained if in (2.94) the CCSD effective Hamiltonian is used,
provided that an appropriate redefinition of the operator acting on the left refer-
ence state is employed,

∆E = 〈Φ| L̂ Ĥ (CCSD) |Φ〉 , (2.95)
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with L̂ being a de-excitation operator of the form

L̂ =

A∑

n=1

L̂n , L̂n =
1

(n !)2

∑

i 1...i n
a 1...a n

l i 1...i n

a 1...a n
â †

i
â †

j
â †

k â c â b â a . (2.96)

Indeed, if L̂ is determined such that 〈Φ|L̂ represents the lowest-energy left eigen-
state 5 of Ĥ (CCSD),

〈Φ| L̂ Ĥ (CCSD) = ∆E 〈Φ| L̂ , (2.97)

and assuming the normalization

〈Φ|L̂ |Φ〉 = 1 , (2.98)

it is easy to check that (2.95) holds. The ultimate goal is to split (2.95) into the
information provided by CCSD and the information for the contributions beyond
CCSD, which can be completely absorbed in the operator L̂ . In order to do so, it
is convenient to insert a resolution of the identity of the form

1̂ = |Φ〉〈Φ|+ P̂ +Q̂ , (2.99)

with projection operators

P̂ = P̂1+ P̂2 (2.100)

Q̂ = P̂3+ · · ·+ P̂A (2.101)

where

P̂n =
∑

i 1<···<i n
a 1<···<a n

|Φa 1...a n

i 1...i n
〉〈Φa 1...a n

i 1...i n
| , (2.102)

between the L̂ and Ĥ (CCSD) operators in (2.95). This allows to make use of the
properties of Ĥ (CCSD)

〈Φ| Ĥ (CCSD) |Φ〉 = ∆E (CCSD) , (2.103)

〈Φa
i
| Ĥ (CCSD) |Φ〉 = 0 , (2.104)

〈Φab
i j
| Ĥ (CCSD) |Φ〉 = 0 , (2.105)

which immediately allows to write (2.95) in the form

∆E = ∆E (CCSD) + 〈Φ| L̂ Q̂ Ĥ (CCSD) |Φ〉 (2.106)

= ∆E (CCSD) + δE . (2.107)

5Since Ĥ (CCSD) is given by a similarity transformation of ĤN , both operators exhibit the same
spectrum and, consequently, the lowest eigenvalue of Ĥ (CCSD) is ∆E .
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Thus, the exact energy correction δE for the contributions beyond CCSD is given
by

δE = 〈Φ| L̂ Q̂ Ĥ (CCSD) |Φ〉 (2.108)

and the only unknown in this expression is L̂ . Consequently, in the following
it is L̂ for which approximations are introduced in order to derive manageable
expressions.

Since the goal is to derive an energy correction δE (T) due to triply excited clus-
ters, the projector Q̂ is approximated by the space spanned by the triply excited
determinants,

Q̂ ≈ P̂3 , (2.109)

which projects the L̂3 component out of L̂ in the expression 6

L̂Q̂ = L̂3 P̂3 . (2.110)

Thus, the triples energy correction δE (T) reads

δE (T) = 〈Φ| L̂3 P̂3 Ĥ (CCSD) |Φ〉 . (2.111)

Introducing the matrix elements of L3,

l
i j k

ab c = 〈Φ| L̂3 |Φab c
i j k
〉 , (2.112)

and using the definition of the so-called generalized moments of the CCSD equa-
tions [132,133, 135, 136, 144]

M
ab c
i j k

= 〈Φab c
i j k
| Ĥ (CCSD) |Φ〉 , (2.113)

the triples energy correction can be cast into a form given as contraction of the L̂3

amplitudes with the moments,

δE (T) =
1

(3!)2

∑

ab c
i j k

l
i j k

ab c M
ab c
i j k

. (2.114)

Still, the moments M
ab c
i j k only carry CCSD information, while all information be-

yond CCSD is contained in the yet unknown operator L̂3. In the CR-CC(2,3)

6An alternative point of view is of course to approximate L3 by its three-body part L3.

Coupled-Cluster Theory for Nuclear Structure 59



Chapter 2. Coupled-Cluster Theory

method [114, 117, 119, 120, 137, 138], the L̂3 operator is determined in a quasi-
perturbative manner, using the expression [117,119]

〈Φ| L̂3 = 〈Φ|
�

1̂+Λ̂(CCSD)
�

Ĥ (CCSD) R̂ (CCSD)
3 , (2.115)

which exploits the formal similarity between the L̂ and the Λ̂ operators [117,119],
and where

R̂ (CCSD)
3 =

P̂3

∆E (CCSD)−Ĥ (CCSD)
(2.116)

is the reduced resolvent of Ĥ (CCSD) in the subspace spanned by the triply excited
determinants, which has the property

P̂3

∆E (CCSD)−Ĥ (CCSD)
P̂3

�

∆E (CCSD)−Ĥ (CCSD)
�

P̂3 = P̂3 . (2.117)

This allows to write the triples correction in the form

δE (T) = 〈Φ|
�

1̂+Λ̂(CCSD)
�

Ĥ (CCSD) R̂ (CCSD)
3 Ĥ (CCSD) |Φ〉 . (2.118)

In order to avoid the explicit construction of the reduced resolvent R̂ (CCSD)
3 in the

above expression, by right-multiplication with

P̂3

�

∆E (CCSD)−Ĥ (CCSD)
�

P̂3 (2.119)

making use of (2.117) and projecting onto |Φab c
i j k 〉, the CR-CC(2,3) Ansatz (2.115) for

L̂3 may be written as
∑

l<m<n
d<e< f

〈Φd e f

l m n |
�

∆E (CCSD)−Ĥ (CCSD)
�

|Φab c
i j k
〉 l l m n

d e f

= 〈Φ|
�

1̂+Λ̂(CCSD)
�

Ĥ (CCSD) |Φab c
i j k
〉 , (2.120)

which can be cast into the energy-independent form

−
∑

l<m<n
d<e< f

〈Φd e f

l m n | Ĥ (CCSD)
open

|Φab c
i j k
〉 l l m n

d e f
= 〈Φ|

�

1̂+Λ̂(CCSD)
�

Ĥ (CCSD)
open

|Φab c
i j k
〉 . (2.121)

This formulation of CR-CC(2,3) is invariant under arbitrary rotations of occupied
and unoccupied orbitals. This requirement can be lifted due to the fact that the
calculations in this work use Hartree-Fock, and thus fixed, orbitals. Then, the sys-
tem of equations (2.120) or (2.121) can be replaced by a non-iterative expression,
such as [117,119, 137, 138]

l
i j k

ab c = 〈Φ|
�

1̂+Λ̂(CCSD)
�

Ĥ (CCSD)
open

|Φab c
i j k l
〉
�

Dab c
i j k

�−1

, (2.122)
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δE (CR−CC(2,3)) =
1

(3!)2

∑

ab c
i j k

l
i j k

ab c M
ab c
i j k

M
ab c
i j k

= P̂ab c T
ab c
i j k

T
ab c
i j k

= P̂i j /k



 1

2

∑

e

H ab
k e

t e c
i j
− 1

2

∑

m

J m c
i j

t ab
k m





l
i j k
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i j k

ab c /Dab c
i j k

N
i j k
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i j k
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Γ
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h
1

2
λk

c
H i j
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2
λ
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ab H k
c

+ 1

2

∑

e

λi j
e c
H k e
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2

∑

m

λk m
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H i j

m c

i

Dab c
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= H i
i
+H j

j +H k
k
−H a

a
−H b

b
−H c

c

−H a i
a i
−H b i
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−H a c k
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∑

m
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i m
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∑

e
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a e

t a e
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−
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e

H m
e

t e c
i j

Figure 2.13: Algebraic expressions for the calculation of the CR-CC(2,3) energy correction for

ground states [138].
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employing the denominator

Dab c
i j k

= ∆E (CCSD)−〈Φab c
i j k
| Ĥ (CCSD) |Φab c

i j k
〉 (2.123)

= −
3∑

n=1

〈Φab c
i j k
| Ĥ (CCSD)

n
|Φab c

i j k
〉 . (2.124)

The working equations for the CR-CC(2,3) method can be found in [138], where
they are presented in a form that also includes excited-state corrections. In Fig-
ure 2.13, the simplified version of these equations is given that only considers
the ground-state triples correction. Some minor modifications have already been
made for convenience later on regarding the angular-momentum coupled formu-
lation.

2.9 Equation-of-Motion Coupled Cluster

In addition to ground-state wavefunctions and properties, excited states and their
properties can be accessed within the Coupled-Cluster framework. In this work,
the Equation-of-Motion CCSD (EOM-CCSD) [26,76] approach is employed, where
for excited states |Ψ(CCSD)

µ 〉 a linear and thus CI-like excitation operator, truncated at
the 2p2h excitation level,

R̂
(CCSD)
µ

= R̂µ,0+ R̂µ,1+ R̂µ,2 (2.125)

= R̂µ,0+ + (2.126)

=
�

rµ
�

0
+
∑

a i

�

rµ
�a

i
{â †

a
â i }+

∑

ab i j

�

rµ
�ab

i j
{â †

a
â †

b â j â i } (2.127)

is used to generate the excited state from the CCSD ground state,

|Ψ(CCSD)
µ

〉 = R̂
(CCSD)
µ

e T̂ (CCSD) |Φ〉 . (2.128)

For the excited state |Ψ(CCSD)
µ 〉 the Schrödinger equation reads

ĤN R̂
(CCSD)
µ

e T̂ (CCSD) |Φ〉 = ∆E (CCSD)
µ

R̂
(CCSD)
µ

e T̂ (CCSD) |Φ〉 , (2.129)

which, due to the commutation relation [R̂(CCSD)
µ , T̂ (CCSD)] = 0 can, analogously to

the ground-state case, be formulated as an eigenvalue problem of the effective
Hamiltonian,

Ĥ (CCSD)
R̂
(CCSD)
µ

|Φ〉 = ∆E (CCSD)
µ

R̂
(CCSD)
µ

|Φ〉 . (2.130)
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Disconnected terms can further be removed from this equation by subtracting the
ground-state equation Ĥ (CCSD) |Φ〉=∆E (CCSD) |Φ〉,

h

Ĥ (CCSD),R̂(CCSD)
µ

i

|Φ〉 = ω(CCSD)
µ

R̂
(CCSD)
µ

|Φ〉 , (2.131)

where

ω(CCSD)
µ

≡ ∆E (CCSD)
µ

−∆E (CCSD) (2.132)

is the excitation energy relative to the ground state. Since the effective Hamil-
tonian Ĥ (CCSD) = H0 + Ĥ (CCSD)

open , with H0 = ∆E (CCSD), consists of two parts – with

and without external lines – and the commutator [H0,R̂
(CCSD)
µ ] clearly vanishes,

the EOM-CCSD eigenvalue equation can be put into the convenient form
�

Ĥ (CCSD)
open R̂

(CCSD)
µ

�

C
|Φ〉 = ω(CCSD)

µ
R̂
(CCSD)
µ

|Φ〉 , (2.133)

serving as starting point for the derivation of algebraic expressions for the R̂
(CCSD)
µ

amplitudes. By left-projecting (2.133) onto singly and doubly excited determi-
nants, an eigenvalue problem for the amplitudes (rµ)ai and (rµ)ab

i j is obtained

〈Φa
i
|
�

Ĥ (CCSD)
open R̂

(CCSD)
µ

�

C
|Φ〉 = ω(CCSD)

µ

�

rµ
�a

i
(2.134)

〈Φab
i j
|
�

Ĥ (CCSD)
open R̂

(CCSD)
µ

�

C
|Φ〉 = ω(CCSD)

µ

�

rµ
�ab

i j
. (2.135)

The constant amplitude
�

rµ
�

0
may afterwards be calculated separately from the

solution of (2.134) and (2.135) according to

〈Φ|
�

Ĥ (CCSD)
open R̂

(CCSD)
µ

�

C
|Φ〉 = ω(CCSD)

µ

�

rµ
�

0
. (2.136)

The corresponding diagrams can be found in Appendix H.1, and the algebraic ex-
pressions are listed in Figure 2.14. The last 4 terms in the R̂2 amplitude equations
stem from contributions of the three-body part Ĥ3 of the effective Hamiltonian to
the R̂2 equations which have been explicitly expressed in terms of cluster ampli-
tudes and in order to avoid storing the three-body matrix elements of Ĥ3 [76] (for
a similar discussion, see Section 3.3).

The excited bra state 〈Ψ̃(CCSD)
µ |may be parametrized as [76]

〈Ψ̃(CCSD)
µ

| = 〈Φ| L̂(CCSD)
µ

e−T̂ (CCSD)

, (2.137)
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∑

a i

r a
i H

i
a

(R0B)
+ 1

4

∑

ab i j

r ab
i j H

i j

ab

〈Φa
i |
�
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Figure 2.14: Algebraic expressions for the R̂(CCSD) amplitude equations. The index µ has been

dropped.
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where L̂
(CCSD)
µ is a de-excitation operator

L̂
(CCSD)
µ

= L̂µ,0+ L̂µ,1+ L̂µ,2 (2.138)

= L̂µ,0+ + (2.139)

=
�

lµ
�

0
+
∑

a i

�

lµ
�i

a
{â †

i
â a }+

∑

ab i j

�

lµ
�i j

ab
{â †

i
â †

j
â b â a } . (2.140)

Since 〈Ψ̃(CCSD)
µ | satisfies the Schrödinger equation

〈Φ| L̂(CCSD)
µ

e−T̂ (CCSD)

ĤN = ∆E (CCSD)
µ

〈Φ| L̂(CCSD)
µ

e−T̂ (CCSD)

(2.141)

it follows that 〈Φ| L̂(CCSD)
µ is also eigenfunction of the effective Hamiltonian,

〈Φ| L̂(CCSD)
µ

Ĥ (CCSD) = ∆E (CCSD)
µ

〈Φ| L̂(CCSD)
µ

. (2.142)

As for the right eigenproblem, the left one can be formulated in a way that directly
provides the excitation energy ω(CCSD)

µ ,

〈Φ| L̂(CCSD)
µ

Ĥ (CCSD)
open =

�

∆E (CCSD)
µ

−H0

�

〈Φ| L̂(CCSD)
µ

, (2.143)

and thus, recalling thatH0 =∆E (CCSD),

〈Φ| L̂(CCSD)
µ

Ĥ (CCSD)
open = ω(CCSD)

µ
〈Φ| L̂(CCSD)

µ
. (2.144)

Unlike the right eigenvalue equation, the left one has no restriction to connected
diagrams. Furthermore, it has the same structure as the ΛCCSD equations, and,
therefore, the corresponding diagrams are identical. The only difference is in di-
agrams (Λ1A) and (Λ2A), which for the EOM-CCSD case translate into

b

=
�

lµ
�

0
χ i

a
,

b b

=
�

lµ
�

0
v

i j

ab .
(2.145)

However, it can be shown that
�

lµ
�

0
=δµ0 [26] and, therefore, these diagrams van-

ish for excited states and are consequently left out in the equations. In conclusion,
the effective Hamiltonian matrix, being of non-Hermitean nature, possesses two

sets of normalized eigenvectors
n

L
(CCSD)
µ

o

and
n

R
(CCSD)
µ

o

,

L
(CCSD)
µ

≡
��

lµ
�

0
,
n�

lµ
�i

a

o

,
n�

lµ
�i j

ab

o�

(2.146)

R
(CCSD)
µ

≡
��

rµ
�

0
,
n�

rµ
�a

i

o

,
n�

rµ
�ab

i j

o�T

, (2.147)
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with

L
(CCSD)
µ

· L(CCSD)
µ

= 1 (2.148)

R
(CCSD)
µ

· R(CCSD)
µ

= 1 , (2.149)

which share the same eigenvalues but are otherwise distinct. As is well-known
from the theory of non-Hermitean eigenvalue problems [145], the eigenvectors
n

L
(CCSD)
µ

o

and
n

R
(CCSD)
µ

o

are not orthogonal among themselves but satisfy a biorthog-

onality relation

L
(CCSD)
µ

· R(CCSD)
ν

= δµν (2.150)

where the originally normalized left eigenvector L(CCSD)
µ

has to be rescaled accord-
ing to

L
(CCSD)
µ

→ 1

L
(CCSD)
µ

· R(CCSD)
µ

L
(CCSD)
µ

(2.151)

to achieve unit overlap with the corresponding right eigenvector

〈Ψ̃(CCSD)
µ

|Ψ(CCSD)
ν

〉 = 〈Φ| L̂(CCSD)
µ

e−T̂ (CCSD)

e T̂ (CCSD)

R̂
(CCSD)
ν

|Φ〉 = δµν . (2.152)

In order to achieve unit overlap, the choice of L(CCSD)
µ

as the vector to be scaled is
of course arbitrary. However, to be consistent with the ground-state solution the
right vector is normalized to unity and the left vector is rescaled [76].

2.9.1 Reduced Density Matrices

Properties of excited states as well as transition properties can be calculated within
the EOM-CCSD approach from the left and right solutions of the effective Hamil-
tonian eigenproblem by means of a reduced density matrix (ρµνN )

q1...qn
p1...pn

defined sim-
ilarly to its ground-state counterpart (2.82),

(ρ
µν
N )

q1...qn

p1...pn
= 〈Φ|

h

L̂
(CCSD)
µ

�

â †
p1

. . . â †
pn

â qn
. . . â q1

e T̂ (CCSD)
�

C
R̂
(CCSD)
ν

i

C
|Φ〉 . (2.153)

The quantity of interest is a generalized expectation value of a n-body operator Ĝ ,
¬

Ĝ
¶

µν
= 〈Ψ̃(CCSD)

µ
| Ĝ |Ψ(CCSD)

ν
〉

= 〈Ψ̃(CCSD)
µ

|Ψ(CCSD)
ν

〉 〈Φ| Ĝ |Φ〉+
¬

ĜN

¶

µν
, (2.154)
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which is evaluated analogously to (2.83) in terms of the reduced density matrix as

¬

ĜN

¶

µν
=

n∑

k=1

1

(k !)2

∑

p1...pk
q1...qk

〈p1 . . .pk |ĝ N |q1 . . .qk 〉 (ρµνN )
q1...qk

p1...pk
. (2.155)

Again, the one-body operator expectation value may be written in the compact
form

¬

Ô
¶

µν
=

∑

pq

〈p |ô|q 〉 (ρµν )q
p

, (2.156)

(ρµν )q
p
≡

¨

(ρ
µν
N )

q
p +δµν δpq : p ,q ∈ holes

(ρ
µν
N )

q
p : else ,

(2.157)

where the orthogonality of the left and right eigenstates of the effective Hamilto-
nian has been taken into account. This approach works for excited states as well as
for ground states, provided that the operators L̂

(CCSD)
0 ,R̂

(CCSD)
0 and vectors L

(CCSD)
0 ,

R
(CCSD)
0 , defined as

L̂
(CCSD)
0 ≡ 1̂+Λ̂ , L

(CCSD)
0 =

�

1,{λi
a
},{λi j

ab}
�

(2.158)

R̂
(CCSD)
0 ≡ 1̂ , R

(CCSD)
0 =

�

1,{0},{0}
�

, (2.159)

are assigned to the ground state solutions. As is discussed in Ref. [76], transition
moments 〈Ψ̃(CCSD)

µ |Ψ(CCSD)
ν 〉 are not well defined due to the non-Hermitecity of the

effective Hamiltonian. Therefore, products of left and right transition moments
¬

Ô
¶

µν

¬

Ô
¶

νµ
= 〈Ψ̃(CCSD)

µ
| Ô |Ψ(CCSD)

ν
〉 〈Ψ̃(CCSD)

ν
| Ô |Ψ(CCSD)

µ
〉 (2.160)

are computed instead since these products correspond to the squares of the tran-
sition moments which are the only observables in the first place.

Reduced density matrices are not used in actual calculations in this work, con-
sequently no equations are presented, but in later sections useful remarks about
the spherical treatment of reduced density matrixes as well as the appropriate
normalization (2.152) of the left and right eigenvectors are given.
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3.1 CCSD for Three-Body Hamiltonians

3.1.1 Introduction

The normal-ordering approximation discussed in Section 1.5 represents an effec-
tive way for the approximate incorporation of three-, or even higher-nucleon in-
teraction effects in many-body calculations that are able to handle effective in-
teractions up to the two-body level. Nevertheless, the desire to include the full
three-body interaction still persists, at least for the purpose to benchmark possi-
ble approximation schemes.

The inclusion of higher-body interactions into the NCSM framework is – con-
ceptually – relatively simple. A highly efficient implementation of the three-body
interaction matrix element handling in the IT-NCSM allows for computations of
nuclei even beyond the p shell. The treatment of the full three-body force in the
Coupled-Cluster framework comes along with a significant increase of diagrams
to be evaluated, resulting in a larger implementational effort. But once imple-
mented, the CCSD method for three-body Hamiltonians benefits greatly from its
gentle scaling behaviour as well as from efficient matrix element handling [86] to
go beyond the s d shell.

A first derivation of the corresponding CCSD equations in a factorized form
was published in 2007 [63]. Here, in this work, the unfactorized derivation is pre-
sented, resulting in less compact but structurally simpler expressions. Diagram
factorization often comes along with increased memory requirements since in-
termediates have to be stored. On the other hand, the computational runtime is
usually strongly dominated by only a few diagrams that need to be singled out to
receive special implementational care.

70 Coupled-Cluster Theory for Nuclear Structure



3.1. CCSD for Three-Body Hamiltonians

3.1.2 The CCSD Equations for Three-Body Hamiltonians

The derivation of the three-body CCSD equations requires the same formal steps
as for the two-body case. The Hamiltonian in second-quantized standard form
reads

Ĥ = ĥ0+ ĥ1+ ĥ2+ ĥ3 (3.1)

= h0+
∑

pq

〈p |ĥ1|q 〉 â †
p

â q +
1

4

∑

pqr s

〈pq |ĥ2|r s 〉 â †
p

â †
q

â s â r

+
1

36

∑

pqr s t u

〈pqr |ĥ3|s t u 〉 â †
p

â †
q

â †
r
â u â t â s . (3.2)

In terms of normal-ordered operator strings the Hamiltonian is represented by

Ĥ = h0+
∑

i

〈i |ĥ1|i 〉+
∑

pq

〈p |ĥ1|q 〉 {â †
p

â q}+
1

2

∑

i j

〈i j |ĥ2|i j 〉

+
∑

pqi

〈p i |ĥ2|qi 〉 {â †
p

â q}+
1

4

∑

pqr s

〈pq |ĥ2|r s 〉 {â †
p

â †
q

â s â r }

+
1

6

∑

i j k

〈i j k |ĥ3|i j k 〉+ 1

2

∑

pqi j

〈i j p |ĥ3|i j q 〉 {â †
p

â q}

+
1

4

∑

pqr s i

〈pqi |ĥ3|r s i 〉 {â †
p

â †
q

â s â r }

+
1

36

∑

pqr s t u

〈pqr |ĥ3|s t u 〉 {â †
p

â †
q

â †
r
â u â t â s } , (3.3)

which again can be cast into the compact form

Ĥ = 〈Φ|Ĥ |Φ〉+
∑

pq

f p
q
{â †

p
â q}+

1

4

∑

pqr s

v pq
r s
{â †

p
â †

q
â s â r }

+
1

36

∑

pqr s t u

w
pqr
s t u {â †

p
â †

q
â †

r
â u â t â s } , (3.4)

or ,

Ĥ = 〈Φ|Ĥ |Φ〉+ F̂N + V̂N + ŴN . (3.5)

In (3.5), 〈Φ|Ĥ |Φ〉 is the reference state expectation value

〈Φ|Ĥ |Φ〉 = h0+
∑

i

〈i |ĥ1|i 〉+
1

2

∑

i j

〈i j |ĥ2|i j 〉+ 1

6

∑

i j k

〈i j k |ĥ3|i j k 〉 , (3.6)
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and the following definitions are analogous to the two-body CCSD case,

f p
q
≡ 〈p | f̂ |q 〉 = 〈p |ĥ1|q 〉+

∑

i

〈p i |ĥ2|qi 〉+ 1

2

∑

i j

〈i j p |ĥ3|i j q 〉 , (3.7)

v pq
r s
≡ 〈pq |v̂ |r s 〉 = 〈pq |ĥ2|r s 〉+

∑

i

〈pqi |ĥ3|r s i 〉 , (3.8)

w
pqr
s t u ≡ 〈pqr |ŵ |s t u 〉 = 〈pqr |ĥ3|s t u 〉 . (3.9)

Apart from the normal-ordered three-body part ŴN , the Hamiltonian (3.5)

Ĥ = 〈Φ|Ĥ |Φ〉+ ĤN (3.10)

has the same topology as for the two-body case, leading to the exact same equa-
tions with replaced definitions for the matrix elements of the normal-ordered op-
erators F̂N , V̂N and reference expectation value 〈Φ|Ĥ |Φ〉. Therefore, all new expres-
sions are generated from ŴN and will consequently always involve the matrix el-
ements 〈pqr |ŵ |s t u 〉. This observation also allows to write any quantity, such as
the correlation energy or amplitude expressions, for instance, in the form

∆E (CCSD) = ∆E
(CCSD)
NO2B + ∆E

(CCSD)
3B (3.11)

0 = T
(CCSD)
1,NO2B + T

(CCSD)
1,3B (3.12)

0 = T
(CCSD)
2,NO2B + T

(CCSD)
2,3B , (3.13)

where the quantity with label "NO2B" denotes the usual algebraic expressions al-
ready known from the Coupled-Cluster theory for two-body Hamiltonians, but
with implied usage of the re-definitions of the normal-ordered Hamiltonians ma-
trix elements Eref, f

p
q , and v

pq
r s , Eqs. (3.6), (3.7) and (3.8), whereas the quantity with

label "3B" denotes all the new terms due to the presence of the residual normal-
ordered three-body interaction operator ŴN .

The expansion for the effective Hamiltonian for an arbitrary CC method trun-
cated at the MpMh excitation level,

Ĥ (M) = e−T̂ (M)ĤN e T̂ (M) , (3.14)

again terminates, this time, due to the six external lines of ŴN , after the six-fold
commutator at the lastest,

Ĥ (M) = ĤN +

6∑

n=1

1

n !

h

. . .
h

︸︷︷︸

n times

ĤN , T̂ (M)
i

, . . . , T̂ (M)
i

︸ ︷︷ ︸

n times

. (3.15)
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From this clearly follows that no more than six T̂ (M) operators will appear in indi-
vidual diagrams for the effective Hamiltonian, and consequently in any Coupled-
Cluster equations. For CCSD, as can be seen below, the maximum number of
T̂ (CCSD) operators appearing in the equations is actually only five instead of six.

The Coupled-Cluster equations then follow from left-projection of the similar-
ity transformed Schrödinger equations onto the reference state and corresponding
excited determinants,

〈Φa 1...a n

i 1...i n
| Ĥ (M) |Φ〉 = 〈Φa 1...a n

i 1...i n
|
�

ĤN e T̂ (M)
�

C
|Φ〉 , n = 0, . . . , M . (3.16)

As mentioned before, the operator parts F̂N and V̂N produce the exact same ex-
pressions as for the two-body case, which contributions to the CCSD energy and
amplitude equations are abbreviated as ∆E

(CCSD)
NO2B resp. T(CCSD)

1,NO2B and T(CCSD)
2,NO2B and are

not written explicitly. Excitation rank considerations 1

X
�

〈Φa 1...a n

i 1...i n
|
�

+X
�

ŴN

�

+X
�

e T̂ (CCSD)
� !
= 0 (3.17)

yield the following operator expression for the CCSD energy equation

∆E (CCSD) = ∆E
(CCSD)
NO2B + 〈Φ|

h

ŴN

�

T̂1+ T̂2+
1

2!
T̂ 2

1
+ T̂1T̂2+

1

3!
T̂ 3

1

�i

C
|Φ〉 (3.18)

and for the T̂1 and T̂2 amplitude equations

0 = T(CCSD)
1,NO2B

+ 〈Φa
i
|
h

ŴN

�

1+ T̂1+ T̂2+
1

2!
T̂ 2

1
+ T̂1T̂2

+ 1

2!
T̂ 2

2
+ 1

3!
T̂ 3

1
+ 1

2!
T̂ 2

1
T̂2+

1

4!
T̂ 4

1

�i

C
|Φ〉 (3.19)

0 = T(CCSD)
2,NO2B

+ 〈Φab
i j
|
h

ŴN

�

1+ T̂1+ T̂2+
1

2!
T̂ 2

1
+ T̂1T̂2+

1

2!
T̂ 2

2
+ 1

3!
T̂ 3

1
+ 1

2!
T̂ 2

1
T̂2

+ 1

3!
T̂ 3

1
T̂2+

1

2!
T̂1T̂ 2

2
+ 1

4!
T̂ 4

1
+ 1

5!
T̂ 5

1

�i

C
|Φ〉 (3.20)

The energy equation may be simplified right away due to the requirement of
producing closed diagrams which is clearly only possible for the cluster operator
products 2 T̂1T̂2 and T̂ 3

1 , so that

∆E (CCSD) =∆E
(CCSD)
NO2B + 〈Φ|

h

ŴN

�

T̂1T̂2+
1

3!
T̂ 3

1

�i

C
|Φ〉 . (3.21)

1The excitation ranks of |Φa 1...a n

i 1...i n
〉 and 〈Φa 1...a n

i 1...i n
| are understood to be n and −n , respectively.

2This is because their number of external lines match the number of external lines of the resid-
ual normal-ordered three-body interaction operator ŴN .
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b b b b b b b b b b b b

X = 0 X = 0 X = 0 X = 0

b b b b b b b b b b b b

X = 1 X = 1 X = 1 X =−1

b b b b b b b b b b b b

X =−1 X =−1 X = 2 X = 2

b b b b b b b b b b b b

X =−2 X =−2 X = 3 X =−3

excitation level X (ŴN ) 3 2 1 0 -1 -2 -3
naming convention T̂1 — — — — T1A T1B T1C
naming convention T̂2 — — T2A T2B T2C T2D T2E

Figure 3.1: Topology and excitation level of the three-body part ŴN of the normal-ordered Hamilto-

nian. The table introduces the diagram naming convention that characterizes diagrams

by the excitation level of the ŴN operator part involved. There are no X (ŴN )≥ 2 con-

tributions to the CCSD T̂1 and T̂2 equations since this would require at least 5 external

lines from the bra determinant.
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Analogous considerations lead to minor simplifications of the T̂1 and T̂2 amplitude
equations,

0 = T(CCSD)
1,NO2B

+ 〈Φa
i
|
h

ŴN

�

T̂2+
1

2!
T̂ 2

1
+ T̂1T̂2+

1

2!
T̂ 2

2
+ 1

3!
T̂ 3

1
+ 1

2!
T̂ 2

1
T̂2+

1

4!
T̂ 4

1

�i

C
|Φ〉 (3.22)

and

0 = T(CCSD)
2,NO2B

+ 〈Φab
i j
|
h

ŴN

�

T̂1+ T̂2+
1

2!
T̂ 2

1
+ T̂1T̂2+

1

2!
T̂ 2

2
+ 1

3!
T̂ 3

1
+ 1

2!
T̂ 2

1
T̂2

+ 1

3!
T̂ 3

1
T̂2+

1

2!
T̂1T̂ 2

2
+ 1

4!
T̂ 4

1
+ 1

5!
T̂ 5

1

�i

C
|Φ〉 . (3.23)

The evaluation of (3.21)-(3.23) in terms of matrix elements is straightforward using
standard diagrammatic techniques. In order to catch all topologically distinct dia-
grams it is recommended to do a Hugenholtz analysis first before translating each
Hugenholtz diagram in one equivalent antisymmetrized Goldstone diagram [26].
These diagrams are listed in Section C.3 and the corresponding algebraic expres-
sions are listed in Figures 3.2-3.4. The naming convention has been chosen ac-
cording to the excitation level of the ŴN operator part involved in the diagram.
The topology of ŴN along with the corresponding excitation level is given in Fig-
ure 3.1. Unlike for two-body Hamiltonians, where the algebraic expression for
∆E (CCSD) is also valid for all higher-order Coupled-Cluster method, in the case of
three-body Hamiltonians this expression only holds for the CCSD approximation.
This is because a three-body interaction also allows to form a closed diagram via
contraction with a T̂3 operator,

〈Φ|
�

ŴN T̂3

�

C
|Φ〉 =

b b b

=
1

(3!)2

∑

ab c
i j k

w
i j k

ab c t ab c
i j k

. (3.24)

Also, it should be noted that the total CCSD ground-state energy reads

E (CCSD) = Eref + ∆E
(CCSD)
NO2B + ∆E

(CCSD)
3B , (3.25)

where from the definition of Eref as a reference-state expectation value it is clear
that it is not affected, compared to the NO2B treatment, by including the residual
normal-ordered three-body interaction in the calculations.
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∆E (CCSD) = ∆E
(CCSD)
NO2B

(ED)
+ 1

4

∑

c d e k l m

w k l m
c d e t c

k t d e
l m

(EE)
+ 1

6

∑

c d e k l m

w k l m
c d e t c

k t d
l t e

m
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+ 1
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∑

c d k l

w k l a
c d i t c

k t d
l

(T1Ab)
+ 1

4

∑

c d k l

w k l a
c d i t c d

k l

(T1Ba)
+ 1

2

∑

c d e k l

w k l a
c d e t c

k t d
l t e

i

(T1Bb)
+ 1

4

∑

c d e k l

w k l a
c d e t c d

k l t e
i

(T1Bc)
+ 1

2

∑

c d e k l

w k l a
c d e t c

k t d e
l i

(T1Bd)
− 1

2

∑

c d k l m

w k l m
c d i t c

k t d
l t a

m

(T1Be)
− 1

4

∑

c d k l m

w k l m
c d i t c d

k l t a
m

(T1Bf)
− 1

2

∑

c d k l m

w k l m
c d i t c

k t d a
l m

(T1Ca)
− 1

2

∑

c d e k l m

w k l m
c d e t c

k t d
l t a

m t e
i

(T1Cb)
− 1

4

∑

c d e k l m

w k l m
c d e t c d

k l t a
m t e

i

(T1Cc)
− 1

2

∑

c d e k l m

w k l m
c d e t c

k t d e
l i t a

m

(T1Cd)
− 1

2

∑

c d e k l m

w k l m
c d e t c

k t d a
l m t e

i

(T1Ce)
+ 1

2

∑

c d e k l m

w k l m
c d e t c

k t d
l t e a

m i

(T1Cf)
+ 1

4

∑

c d e k l m

w k l m
c d e t c d

k l t e a
m i

(T1Cg)
− 1

4

∑

c d e k l m

w k l m
c d e t c a

k l t d e
i m + t a

i (NO2B) = 0 , ∀ a , i

Figure 3.2: Algebraic expressions for ∆E (CCSD) and the CCSD T̂1 amplitude equations for three-

body Hamiltonians.
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P̂ab P̂i j

n

(T2Aa)
+ 1

4

∑

c k

w k ab
c i j t c

k

(T2Ba)
+ 1

2

∑

c d k

w ab k
c j d t c

i t d
k
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Figure 3.3: Algebraic expressions for the CCSD T̂2 amplitude equations for three-body Hamilto-

nians.
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Figure 3.4: Algebraic expressions for the CCSD T̂2 amplitude equations for three-body Hamilto-

nians, continued.
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3.2 Effective Hamiltonian

As already stated in Section 3.1.2, the expression for the effective Hamiltonian for
an arbitrary CC method truncated at the MpMh excitation level,

Ĥ (M) = e−T̂ (M) ĤN e T̂ (M) , (3.26)

terminates after the six-fold commutator with the cluster operator

Ĥ (M) = F̂N +

2∑

n=1

1

n !

h

F̂N , T̂ (M)
i(n )

+ V̂N +

4∑

n=1

1

n !

h

V̂N , T̂ (M)
i(n )

+ ŴN +

6∑

n=1

1

n !

h

ŴN , T̂ (M)
i(n )

, (3.27)

where [·, ·](n ) denotes the n-fold commutator. From (3.27) it is evident that all new
contributions are given by the last line of (3.27),

ŴN +

6∑

n=1

1

n !

h

ŴN , T̂ (M)
i(n )

=
�

ŴN e T̂ (M)
�

C
, (3.28)

again stemming from ŴN alone, which may be emphasized by the expression

Ĥ (M) = Ĥ (M)
NO2B +

�

ŴN e T̂ (M)
�

C
. (3.29)

In the case of CCSD, Ĥ (CCSD) now contains up to nine-body operators, as is appar-
ent from the example

b b b

. (3.30)

If the cluster operator amplitudes have been determined from the CCSD equations
including the residual normal-ordered three-body interaction ŴN , then the zero-
body matrix element H0 of Ĥ (CCSD) is again given by the corresponding CCSD
correlation energy (3.21),

H0 = ∆E (CCSD) , (3.31)

and the H p
h and H pp

hh matrix elements vanish because they correspond to the
CCSD T̂1 and T̂2 equations. Expressions for the complete one- and two-body part
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b b b b b b

b b b

b b b b

Figure 3.5: Selected topologies of Ĥ3 and Ĥ4, generated by the residual normal-ordered three-body

interaction ŴN , that enter the ΛCCSD equations.

of Ĥ (CCSD) are listed in Figures 3.6-3.9, and the corresponding diagrams and spher-
ical expressions can be found in Appendices D.2 and D.3. For the three- and four-
body part of Ĥ (CCSD), expressions have been evaluated only for the selected topolo-
gies shown in Figure 3.5, which are the only diagrams required for ΛCCSD using
three-body Hamiltonians, as can be seen in Figures 3.10-3.12.
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Figure 3.6: Algebraic expressions for the effective Hamiltonian one- and two-body matrix elements

for three-body Hamiltonians.
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Figure 3.7: Algebraic expressions for the effective Hamiltonian two-body matrix elements for three-

body Hamiltonians, continued.
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Figure 3.8: Algebraic expressions for the effective Hamiltonian two-body matrix elements for three-

body Hamiltonians, continued.
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Figure 3.9: Algebraic expressions for the effective Hamiltonian two-body matrix elements for three-

body Hamiltonians, continued.
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Figure 3.10: Algebraic expressions for selected three-body effective Hamiltonian matrix elements

for three-body Hamiltonians.
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Figure 3.11: Algebraic expressions for selected three-body effective Hamiltonian matrix elements

for three-body Hamiltonians, continued.
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Figure 3.12: Algebraic expressions for selected four-body effective Hamiltonian matrix elements

for three-body Hamiltonians, continued.

3.3 The ΛCCSD Equations for Three-Body
Hamiltonians

The ΛCCSD equations for three-body Hamiltonians can straightforwardly be de-
rived in analogy to the two-body case. In terms of the Λ̂(CCSD) and Ĥ (CCSD) opera-
tors, the ΛCCSD equations may again be cast in the form

〈Φ| ( 1̂+Λ̂1+Λ̂2 ) Ĥ (CCSD)
open

|Φa
i
〉 = 0 (3.32)

〈Φ| ( 1̂+Λ̂1+Λ̂2 ) Ĥ (CCSD)
open

|Φab
i j
〉 = 0 , (3.33)

now using Eq. (3.27) as the underlying definition for the effective Hamiltonian.
When evaluated in terms of the Λ̂n and Ĥn operators, such as in Eq. (2.70)-(2.71),
the projection onto the singly excited determinants is identical to (3.34), but the
projection onto the doubly excited determinants obtains two new terms, resulting
in [96]
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The two new terms are

〈Φ|
�

Λ̂1 Ĥ3

�

C
|Φab

i j
〉 =

b b b

(3.36)

and
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〈Φ|
�

Λ̂2 Ĥ4

�

C
|Φab

i j
〉 =

b b b b

(3.37)

which require a three-body interaction vertex in order to comply with the con-
nectedness condition, for instance

〈Φ|
�

Λ̂2 Ĥ4

�

C
|Φab

i j
〉 =

b b b
+

b b b

+
b b b

+
b b b

. (3.38)

It is important to realize that only the ŴN -contributions to Ĥ3 and Ĥ4 enter (3.36)
and (3.37), i.e.,

〈Φ|
�

Λ̂1 (Ĥ3,NO2B+ Ĥ3,3B)
�

C
|Φab

i j
〉 = 〈Φ|

�

Λ̂1 Ĥ3,3B

�

C
|Φab

i j
〉 (3.39)

〈Φ|
�

Λ̂2 (Ĥ4,NO2B+ Ĥ4,3B)
�

C
|Φab

i j
〉 = 〈Φ|

�

Λ̂2 Ĥ4,3B

�

C
|Φab

i j
〉 . (3.40)

As before, in order to circumvent storage of the three- and four-body effective
Hamiltonian matrix elements, the ŴN contributions to H pph

hhp , H hhp
hph , H php

pph and
H pppp

pppp in terms of interaction matrix elements and cluster amplitudes are directly
inserted into the ΛCCSD equations. The resulting ΛCCSD equations for three-
body Hamiltonians are listed in Figures 3.13-3.14 and the spherical expressions
can be found in Appendix E.3. It should be noted that once the expressions for
the effective Hamiltonian are inserted into the contractions, the permutation op-
erators P̂k l and P̂c d may each be replaced by a factor of 2 because, for example,
orbitals k and l are always summed over and additionally always appear as an
index pair in antisymmetrized matrix elements.
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Figure 3.13: Algebraic expressions for the ΛCCSD Λ̂1 amplitude equations for three-body Hamil-

tonians.
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Figure 3.14: Algebraic expressions for the ΛCCSD Λ̂2 amplitude equations for three-body Hamil-

tonians.
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3.4 The ΛCCSD(T) Energy Correction for Three-Body
Hamiltonians

The derivation of the ΛCCSD(T) method given in [57] is not quite transparent,
making it difficult to extend it to three-body Hamiltonians in an analogous way as
it is derived for two-body Hamiltonians. Furthermore, the way the method is pre-
sented in [57] also makes it difficult to realize the types of approximations that lead
to the final result. Therefore, in this section the ΛCCSD(T) method is rederived as
an approximation to the superior CR-CC(2,3) method [114,117,119,120,137,138],
this way facilitating the identification of new terms corresponding to the inclusion
of three-body interactions, and helping to understand the approximate nature of
ΛCCSD(T).

Starting from the CR-CC(2,3) method, ΛCCSD(T) is easily derived as a series of
approximations to CR-CC(2,3). The generalized moments of the CCSD equations

M
ab c
i j k

= 〈Φab c
i j k
|
�

ĤN e T̂ (CCSD)
�

C
|Φ〉 (3.41)

are approximated by restricting to terms at most linear in the cluster operator,

M
ab c
i j k

≈ 〈Φab c
i j k
|
�

ĤN

�

1̂+ T̂1+ T̂2

��

C
|Φ〉 . (3.42)

Since the main focus of this section is the extension of ΛCCSD(T) to three-body
Hamiltonians and to identify new terms arising from the presence of the resid-
ual normal-ordered three-body interaction operator ŴN in the normal-ordered
Hamiltonian ĤN , the moments are split into the contributions from the normal-
ordered two-body approximation, in the following denoted as M

ab c
i j k (NO2B), and

the contributions due to ŴN , denoted as M
ab c
i j k (3B),

M
ab c
i j k

= M
ab c
i j k
(NO2B) + M

ab c
i j k
(3B) . (3.43)

The expressions for Mab c
i j k (NO2B) and M

ab c
i j k (3B) in terms of interaction and cluster

operators are given by

M
ab c
i j k
(NO2B) = 〈Φab c

i j k
|
��

F̂N + V̂N

� �

1̂+ T̂1+ T̂2

��

C
|Φ〉 (3.44)

= 〈Φab c
i j k
|
�

V̂N

�

1̂+ T̂1+ T̂2

��

C
|Φ〉 (3.45)

and

M
ab c
i j k
(3B) = 〈Φab c

i j k
|
�

ŴN

�

1̂+ T̂1+ T̂2

��

C
|Φ〉 , (3.46)
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and programmable expressions in terms of matrix elements of the operators in-
volved can be found in Figure 3.15.

In order to simplify the CR-CC(2,3) expression for L̂3 to the form used in
ΛCCSD(T), the reduced resolvent R̂3 is replaced by its simplified Møller-Plesset
form [57,58],

R (CCSD)
3 = − P̂3

Ĥ (CCSD)
open

≈ − P̂3

F̂N

(3.47)

=
∑

i<j<k
a<b<c

�

εab c
i j k

�−1

|Φab c
i j k
〉〈Φab c

i j k
| (3.48)

where εab c
i j k is defined for the two-body Hamiltonian case,

εab c
i j k
= f i

i
+ f

j

j + f k
k
− f a

a
− f b

b
− f c

c
. (3.49)

The latter approximation is equivalent to replacing the Ĥ (CCSD)
open on the left-hand

side of system (2.121) corresponding to CR-CC(2,3), by the F̂N operator. Further-
more, in order to arrive at ΛCCSD(T), the effective Hamiltonian Ĥ (CCSD)

open on the
right-hand side of system (2.121) is approximated by its leading contribution,
which is ĤN . These approximations allow to replace system (2.121) by the sim-
plified form

−
∑

l<m<n
d<e< f

〈Φd e f

l m n | F̂N |Φab c
i j k
〉 = 〈Φ|

�

1̂+Λ̂(CCSD)
�

ĤN |Φab c
i j k
〉 , (3.50)

which immediately leads to a convenient expression for the L̂3 amplitudes,

l
i j k

ab c =
�

εab c
i j k

�−1

〈Φ|
�

1̂+Λ̂(CCSD)
�

ĤN |Φab c
i j k
〉 . (3.51)

Again, in order to identify new terms arising from the presence of ŴN in the
normal-ordered Hamiltonian, the L̂3 amplitudes are split into their NO2B part
and their part due to ŴN ,

l
i j k

ab c = l
i j k

ab c (NO2B) + l
i j k

ab c (3B) , (3.52)

which are given by

l
i j k

ab c (NO2B) =

�

〈Φ|
�

Λ̂1 V̂N

�

DC
|Φab c

i j k
〉+ 〈Φ|

�

Λ̂2 F̂N

�

DC
|Φab c

i j k
〉

+ 〈Φ|
�

Λ̂2 V̂N

�

C
|Φab c

i j k
〉
�
�

εab c
i j k

�−1

(3.53)
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and

l
i j k

ab c (3B) =

�

〈Φ|ŴN |Φab c
i j k
〉+ 〈Φ|

�

Λ̂1 ŴN

�

C
|Φab c

i j k
〉 (3.54)

+〈Φ|
�

Λ̂2 ŴN

�

C
|Φab c

i j k
〉
�
�

εab c
i j k

�−1

, (3.55)

and a similar splitting, analogously to (3.25), is done for the energy correction
δE (ΛCCSD(T)),

δE (ΛCCSD(T)) = δE
(ΛCCSD(T))
NO2B + δE

(ΛCCSD(T))
3B , (3.56)

where the individual parts are given by

δE
(ΛCCSD(T))
NO2B =

1

(3!)2

∑

ab c
i j k

l
i j k

ab c (NO2B)Mab c
i j k
(NO2B) (3.57)

and

δE
(ΛCCSD(T))
3B =

1

(3!)2

∑

ab c
i j k

�

l
i j k

ab c (NO2B)Mab c
i j k
(3B)

+ l
i j k

ab c (3B)Mab c
i j k
(NO2B) + l

i j k

ab c (3B)Mab c
i j k
(3B)

�

. (3.58)

The final programmable expressions for the L̂3 amplitudes and the energy cor-
rection are listed in Figure 3.15 and the corresponding spherical expression can
be found in Appendix G.2. In summary, the total ΛCCSD(T) ground-state energy
consists of several parts

E (ΛCCSD(T)) = Eref + ∆E
(CCSD)
NO2B + δE

(ΛCCSD(T))
NO2B

+ ∆E
(CCSD)
3B + δE

(ΛCCSD(T))
3B , (3.59)

where the 3B contributions are only present if the residual normal-ordered three-
body interaction is included in the calculations. Furthermore, as it is discussed
in [96], it is interesting to note that from the many-body perturbation (MBPT)
point of view, the significance of the contributions due to the T̂3 clusters changes by
including the three-body interaction ŴN . In the NO2B approximation, T̂3 contri-
butions show up at second MBPT order for the wavefunction and at fourth order
in the energy δE (ΛCCSD(T)), but the inclusion of ŴN moves these contributions to first
order for the wavefunction and second order for the energy.
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One appealing aspect of the ΛCCSD(T) correction the simple structure that
makes the method efficient and easy to implement. However, the degree of ap-
proximations that enter the method makes it necessary to examine the perfor-
mance of the method compared to more accurate approaches such as CR-CC(2,3).

δE (ΛCCSD(T)) =
1

(3!)2

∑

ab c
i j k

l
i j k

ab c
M

ab c
i j k

l
i j k

ab c
=

¨

l
i j k

ab c
(NO2B)
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− P̂ab/c

∑

l

w
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ab l
λl

c
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+ P̂i j /k

∑

d

w
i j d
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λk

d
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2
P̂i j /k

∑

d e

w d e k
ab c λ

i j

d e
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2
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∑

l m
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l m c
λl m
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M
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Figure 3.15: Algebraic expressions for the calculation of theΛCCSD(T) energy correction for three-

body Hamiltonians. See Figure 2.12 for the expressions for t̃ ab c
i j k

and λ̃
i j k

ab c
.
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4.1 Introduction

The m -scheme formulation of Coupled-Cluster theory used in previous chapters
allows for CCSD computations for 40Ca up to about 8 oscillator shells using mod-
erate computational resources, whereas the ΛCCSD(T) correction is already out of
reach even for smaller numbers of oscillator shells. Manageable three-body calcu-
lations in the m -scheme framework are restricted to 4He and even there to small
model spaces [63].

Of course, the best way to reduce the computational expense is by exploitation
of symmetries. In this work, only closed-shell nuclei are considered for which the
nucleons fill complete (sub-) shells shown in Figure 4.1. For such nuclei the clus-
ter operator is a rank-zero spherical tensor operator and spherical symmetry may
be exploited using angular-momentum algebra. Spherical Coupled-Cluster the-
ory was first discussed in 2010 [27]. For two-body Hamiltonians, the spherical
formulation significantly extends the region of the nuclear chart accessible with
Coupled-Cluster theory up to the heavy nuclei regime. Calculations involving
three-body Hamiltonians can be performed up to medium-mass nuclei, where
they benefit particularly from the efficient matrix element handling using a J T -
coupled scheme [86]. The price to be paid for this decrease of computational de-
mand by exploiting symmetries is an increased complexity of the initially rather
simple Coupled-Cluster equations and the corresponding computer implementa-
tion.

For the following discussion of the spherical formulation, a convenient change
in notation is introduced: Single-particle m -scheme states are denoted with a bar
or with separated angular-momentum projection quantum number as

|p̄ 〉 ≡ |p mp 〉 ≡ |n p (l p sp ) jp mp tp m tp
〉 (4.1)

while a complete angular-momentum shell is represented by

|p 〉 ≡ |n p (l p sp ) jp tp m tp
〉 . (4.2)

The approach followed in this work to obtain spherical Coupled-Cluster equations
is by angular momentum coupling of the corresponding m -scheme diagrams.
Therefore, a brief summary of the relevant aspects of angular-momentum alge-
bra and definitions used in this work is given in the following sections.
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Figure 4.1: Schematic odering of single-particle states [146] used to generate the spherical reference

state. Magic nucleon numbers are marked as (M ).
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4.2 Spherical Tensor Operators

An irreducible spherical tensor operator M̂(J ) of rank J is defined as the set of 2J+1 op-
erators {M̂(J )

M=−J ,...,J } that transform under rotations R the same way as the spherical
harmonics do, i.e.,

D̂(R) M̂
(J )
M D̂†(R) =

J∑

M ′=−J

D
(J )

M ′M M̂
(J )

M ′ , (4.3)

where D̂(R) is the rotation operator corresponding to the rotation R acting on the
Hilbert space and D

(J )

M ′M are the Wigner D functions. However, the Hermitean
adjoint operator (M̂(J ))† does not transform as an irreducible tensor operator ac-
cording to (4.3), its components rather transform as

(M̂
(J )
M )

† ∼ (−1)J−M
M̂
(J )
−M . (4.4)

It is, therefore, customary to define the generalized Hermitean adjoint of an irre-
ducible spherical tensor operator according to,

( ˆ̃M†)(J ) =
n

( ˆ̃M†)
(J )
M=−J ,...,J

o

(4.5)

with

( ˆ̃M†)
(J )
M ≡ (−1)J+M (M̂

(J )
−M )

† , (4.6)

which transforms the same way as the original spherical tensor operator does,

( ˆ̃M†)
(J )
M ∼ M̂

(J )
M . (4.7)

This difference in transformation property of spherical tensor operators and its
Hermitean adjoints has to be taken into account when they are subjected to angular-
momentum coupling. When coupling angular momenta, the M component K̂(J )M

of an irreducible tensor operator K̂(J ) may be constructed from the direct product
of two irreducible tensor operators M̂(JM) and N̂(JN) using Clebsch-Gordan coeffi-
cients,

K̂
(J )
M =

∑

MMMN

�

JM JN J

MM MN M

�

CG

M̂
(JM)
MM

N̂
(JN)
MN

, (4.8)

which may be written in a short-hand tensor product notation as

K̂
(J )
M =

¦

M̂
(JM) ⊗ N̂

(JN)
©(J )

M
. (4.9)
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Since generalized Hermitean adjoint operators also transform as irreducible spher-
ical tensor operators, mixed couplings between these and standard spherical tensor
operators are allowed. Coupling Hermitean adjoint operators by the prescrip-
tion (4.8) is also meaningful because the operators involved have the same trans-
formation properties. It yields an operator that transforms as the Hermitean ad-
joint of an irreducible spherical tensor operator of rank J ,

∑

MMMN

�

JM JN J

MM MN M

�

CG

�

M̂
(JM)
MM

�† �

N̂
(JN)
MN

�†
(4.10)

= (−1)J−M
∑

MMMN

�

JM JN J

MM MN −M

�

CG

�
ˆ̃
M

†
�(JM)

MM

�
ˆ̃
N

†
�(JN)

MN

(4.11)

= (−1)J−M

��
ˆ̃
M

†
�(JM)

⊗
�
ˆ̃
N

†
�(JN)

�(J )

−M

. (4.12)

When working with matrix representations of spherical tensor operators the
Wigner-Eckart theorem is particularly valuable. It allows for a factorization of ma-
trix elements of spherical tensor operators into a geometric part that depends on
the projection quantum numbers but does not depend on the actual operator un-
der consideration, and a reduced matrix element that is operator-specific and inde-
pendent of the projections. Therefore, if K̂(J ) is an irreducible spherical two-body
tensor operator of rank J , for matrix elements of its components K̂

(J )
M holds 1

〈pq |K̂(J )M |r s 〉

Jpq M pq Jr s M r s

= (−1)Jpq−M pq

�

Jpq J Jr s

−M pq M M r s

�

3j

〈pq ||K̂(J )||r s 〉

Jpq Jr s

, (4.14)

where

〈pq ||K̂(J )||r s 〉

Jpq Jr s

(4.15)

is the reduced matrix element of K̂(J ). Since the geometric part is already known for
all operators, all operator-specific information is encoded in the reduced matrix
elements. Furthermore, many problems may be formulated in reduced matrix
elements exclusively, thus avoiding the geometric part completely. Two important

1For one-body operators the Wigner-Eckart theorem analogously reads

〈p mp |K̂(J )|q mq 〉 = (−1)jp−mp

�
jp J jq

−mp M mq

�

3j
〈p ||K̂(J )||q 〉 . (4.13)
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properties of spherical tensor operators immediately follows from (4.14) due to the
presence of the Wigner 3j symbol: The angular momenta involved have to satisfy
the triangular condition

|Jpq − Jr s | ≤ J ≤ Jpq + Jr s , (4.16)

and the projections have to fulfill the condition

−M pq +M r s +M = 0 . (4.17)

4.3 Angular-Momentum Coupling

The concept of irreducible spherical tensor operators may be applied to the cre-
ation and annihilation operators of second quantization. The 2jp +1 operators

â †
p
≡

n

â †
p ,mp=−jp ,...,jp

o

(4.18)

transform as components of an irreducible spherical tensor operator of rank jp .
They may, therefore, be subjected to angular-momentum coupling, e.g.,

n

â †
p
⊗ â †

q

o(J )

M
=

∑

mp mq

�

jp jq J

mp mq M

�

CG

â †
p ,mp

â †
q ,mq

. (4.19)

When (4.19) is applied to the vacuum, it gives an antisymmetrized two-particle
state coupled to good angular momentum J and projection M ,

∑

mp mq

�

jp jq J

mp mq M

�

CG

|p mp q mq 〉 ≡ |p q

J M

〉 . (4.20)

The coupled bra state is defined as the Hermitean adjoint of the coupled ket state
2, i.e.,

〈p q

J M

| =
∑

mp mq

�

jp jq J

mp mq M

�

CG

〈p mp q mq | =
�

|p q

J M

〉
�†

. (4.21)

It is important to note that the coupling line always denotes the coupling of the
states and not the coupling of the operators that create them, which makes a differ-
ence because of the inverted order of the positions of the operators and the Slater
determinant entries for bra determinants, as can be seen from

〈p mp q mq | = 〈0| â q ,mq
â p ,mp

. (4.22)

2If the Clebsch-Gordan coefficients are chosen to be real.
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The generalized Hermitean adjoint of â †
p ,mp

is given by

ˆ̃a p ,mp
≡ (−1)jp−mp

�

â †
p ,−mp

�†

(4.23)

= (−1)jp−mp â p ,−mp
(4.24)

and states created by the action of this operator will be denoted as

〈p̃ m̃p | ≡ 〈0| ˆ̃a p ,mp
= (−1)jp−mp 〈p −mp | . (4.25)

These bra states may be coupled among themselves or also to ket states, e.g.,

〈p̃ | . . . |q 〉

J M

=
∑

mp mq

�

jp jq J

mp mq M

�

CG

〈p̃ m̃p | . . . |q mq 〉 (4.26)

=
∑

mp mq

(−1)jp−mp

�

jp jq J

−mp mq M

�

CG

〈p mp | . . . |q mq 〉 (4.27)

where the rules of angular-momentum algebra hold and no distinction between
bra and ket states has to be made any more. Equation (4.27) may also be reversed,
i.e.,

〈p mp | . . . |q mq 〉 =
∑

J M

(−1)jp−mp

�

jp jq J

−mp mq M

�

CG

〈p̃ | . . . |q 〉

J M

. (4.28)

A coupled standard bra state can easily be expressed in terms of states generated
by the generalized Hermitian adjoints by

〈p q

J M

| = (−1)J−M 〈p̃ q̃

J−M

| . (4.29)

Angular-momentum algebra is well-known and exhaustively documented [147],
so no details such as orthogonality relations for coupling coefficients and recou-
pling transformations etc. are given here. However, one particularly useful rela-
tion that is easily confirmed is listed for future reference

∑

mp mq

�

jp jq J

−mp mq M

�

CG

�

jp J ′ jq

−mp M ′ mq

�

3j

= (−1)2jp (−1)J+M Ĵ −1 δJ J ′ δM−M ′ , (4.30)

where hat factors ̂ are defined by

̂ =
p

2j +1 . (4.31)
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It should be noted that in the definition of coupled antisymmetric states (4.20)
no normalization factor has been introduced, as it often is in the literature [33,
78]. Therefore, these states are unnormalized, and the normalized states would
be given by

|p q

J M

〉norm ≡ Npq |p q

J M

〉 , (4.32)

with normalization factor

Npq ≡
p

1+(−1)J δn p nq
δl p lq

δjp jq
δmtp mtq

1+δn p nq
δl p lq

δjp jq
δmtp mtq

. (4.33)

Consequently, if p and q represent two like nucleons in the same shell, this factor
prevents coupling to odd angular momenta which is a feature also shared by the
unnormalized states.

In most parts of this work the X coefficients [148]






jp jq Jpq

jr js Jr s

Jp r Jqs J







X

= Ĵpq Ĵr s Ĵp r Ĵqs







jp jq Jpq

jr js Jr s

Jp r Jqs J







9j

(4.34)

are used in favor of Wigner 9j symbols for angular momentum recouplings of
four angular momenta in order to keep the expressions short. It is convenient to
introduce a similar definition also for Wigner 6j symbols,

¨

jp jq jr

js j t ju

«

X

= ̂p ̂q ̂r

¨

jp jq jr

js j t ju

«

6j

, (4.35)

in order to shorten the equations encountered in the spherical formulation of
ΛCCSD(T) (see. Appendix G.1).

4.4 One-Body Operators

The purpose of this section is to define coupled one-body matrix elements which
are inevitably encountered when Coupled-Cluster diagrams are evaluated in the
spherical scheme. For a one-body spherical tensor operator component K(J )M the
definition of coupled matrix elements used in this work is

〈p̃ |K(J )M |q 〉

J ′M ′

=
∑

mp mq

(−1)p−mp

�

jp jq J ′

−mp mq M ′

�

CG

〈p mp |K(J )M |q mq 〉 .

(4.36)
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The decoupling employs the same phase factor, i.e.,

〈p mp |K(J )M |q mq 〉 =
∑

J ′M ′

(−1)p−mp

�

jp jq J ′

−mp mq M ′

�

CG

〈p̃ |K(J )M |q 〉

J ′M ′

.

(4.37)

The coupled one-body matrix elements may be expressed in terms of reduced
one-body matrix elements as

〈p̃ |K(J )M |q 〉

J−M

= (−1)2jp (−1)J−M Ĵ −1 〈p ||K(J )||q 〉 , (4.38)

and, furthermore,

〈p̃ |K(J )M |q 〉

J ′M ′

= δJ J ′ δM−M ′ 〈p̃ |K(J )M |q 〉

J−M

.

(4.39)

So the only non-vanishing coupling corresponds to the rank J and the negative
projection −M of the spherical tensor operator. This can be seen as follows. Re-
placing the m -scheme matrix elements in

〈p̃ |K(J )M |q 〉

J ′M ′

=
∑

mp mq

(−1)p−mp

�

jp jq J ′

−mp mq M ′

�

CG

〈p mp |K(J )M |q mq 〉

(4.40)

by their reduced matrix elements according to the Wigner-Eckart theorem leads
to

〈p̃ |K(J )M |q 〉

J ′M ′

=
∑

mp mq

(−1)p−mp

�

jp jq J ′

−mp mq M ′

�

CG

× (−1)p−mp

�

jp J jq

−mp M mq

�

3j

〈p ||K(J )||q 〉 , (4.41)

where the phases cancel and the useful relation (4.30) can be applied to give

〈p̃ |K(J )M |q 〉

J ′M ′

= (−1)2jp (−1)J
′+M ′

( Ĵ ′)−1 δJ J ′ δM−M ′ 〈p ||K(J )||q 〉 . (4.42)

This is equivalent to (4.39) and (4.38) follows immediately.
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4.5 Cross-Coupled Matrix Elements

4.5.1 Scalar Case

Matrix elements of scalar two-body spherical tensor operatorsK(0)0 such as the two-
body Hamiltonian are routinely used in the J -coupled representation

〈pq |K(0)0 |r s 〉
J M J M

=
∑

mp mq
mr ms

�

jp jq J

mp mq M

�

CG

�

jr js J

mr ms M

�

CG

× 〈p mp q mq | K(0)0 |r mr s ms 〉 (4.43)

which will be referred to as standard coupling. For the Hamiltonian, being a rank-
zero spherical tensor operator, the matrix elements are diagonal in J and M .

An alternative coupling scheme that appears naturally in the derivation of
spherical Coupled-Cluster equations is the cross-coupled scheme. Following [148]
3, two types of cross-coupled matrix elements may be defined, referred to as cross-

coupled scheme A (CCA)

〈p̃ q̃ |K(0)0 |r s 〉

J M

J M

≡ (−1)J−M 〈p̃ q̃ |K(0)0 |r s 〉

J−M

J M

(4.44)

= (−1)J−M
∑

mp mq
mr ms

(−1)jp−mp

�

jp jr J

−mp mr −M

�

CG

× (−1)jq−mq

�

jq js J

−mq ms M

�

CG

〈p mp q mq | K(0)0 |r mr s ms 〉 (4.45)

and cross-coupled scheme B (CCB)

〈p̃ q̃ |K(0)0 |r s 〉

J M

J M

≡ (−1)J−M 〈p̃ q̃ |K(0)0 |r s 〉

J−M

J M

(4.46)

= (−1)J−M
∑

mp mq
mr ms

(−1)jp−mp

�

jp js J

−mp ms −M

�

CG

× (−1)jq−mq

�

jq jr J

−mq mr M

�

CG

〈p mp q mq | K(0)0 |r mr s ms 〉 (4.47)

3However, a different style for the cross-coupling lines is used in order to avoid confusion with
standard coupling lines.
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where the coupling line runs across the operator. According to the original defi-
nition in [148], in both cases the phase (−1)J−M and the negative projection are as-
sociated with the coupling involving the state p̃ , although the choice is arbitrary
for the scalar case. However, this assignment is convenient for the general case
as well, which is why the original choice from [148] is kept in this work. As the
standard coupled matrix elements, cross-coupled matrix elements are diagonal in
the angular momenta and projections, i.e.,

〈p̃ q̃ |K(0)0 |r s 〉

J M

J ′M ′

= δJ J ′ δM M ′ 〈p̃ q̃ |K(0)0 |r s 〉

J M

J M

(4.48)

〈p̃ q̃ |K(0)0 |r s 〉

J M

J ′M ′

= δJ J ′ δM M ′ 〈p̃ q̃ |K(0)0 |r s 〉

J M

J M

, (4.49)

as is proven for the general case in the next section. The transformation equations
between the standard coupling and the cross-coupled schemes are listed in Fig-
ure 4.2. The transformations for the reduced matrix elements follow directly from
the simple relation between reduced and standard matrix elements for the case of
scalar spherical tensor operators,

〈pq |K(0)|r s 〉
J M J M

= Ĵ −1 〈pq ||K(0)0 ||r s 〉
J J

(4.50)

and analogously for the cross-coupled matrix elements. Of course, these transfor-
mations are only a special case of the more general transformations in Figure 4.3,
but they are more efficient because for the Wigner 9j symbols appearing in the
general transformations may be replaced by 6j symbols as in Figure 4.2.

4.5.2 General Case

For applications involving spherical tensor operators of rank different from zero
the previous definition of cross-coupled matrix elements has to be generalized.
Cross-coupled matrix elements of general spherical tensor operators are straight-
forwardly defined in analogy to the scalar case by

〈p̃ q̃ |K̂(J )M |r s 〉

Jp r M p r

Jqs Mqs

≡ (−1)Jp r−M p r 〈p̃ q̃ |K̂(J )M |r s 〉

Jp r−M p r

Jqs Mqs

(4.51)
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〈p̃ q̃ |K(0)0 |r s 〉

J M

J M

=
∑

J ′
( Ĵ ′)2 (−1)jq+jr+J+J ′

¨

jp jr J

js jq J ′

«

6j

〈pq |K(0)0 |r s 〉

J ′M ′ J ′M ′

〈p̃ q̃ |K(0)0 |r s 〉

J M

J M

= −
∑

J ′
( Ĵ ′)2 (−1)jq+jr−J

¨

jp js J

jr jq J ′

«

6j

〈pq |K(0)0 |r s 〉

J ′M ′ J ′M ′

〈pq |K(0)0 |r s 〉

J M J M

=
∑

J ′
( Ĵ ′)2 (−1)jq+jr+J+J ′

¨

jp jr J ′

js jq J

«

6j

〈p̃ q̃ |K(0)0 |r s 〉

J ′M ′

J ′M ′

≡ CCAtoStd

�

pq

r s
J ; J ′

�

〈p̃ q̃ |K(0)0 |r s 〉

J ′M ′

J ′M ′

〈pq |K(0)0 |r s 〉

J M J M

= −
∑

J ′
( Ĵ ′)2 (−1)jq+jr−J ′

¨

jp js J ′

jr jq J

«

6j

〈p̃ q̃ |K(0)0 |r s 〉

J ′M ′

J ′M ′

≡ CCBtoStd

�

pq

r s
J ; J ′

�

〈p̃ q̃ |K(0)0 |r s 〉

J ′M ′

J ′M ′

Figure 4.2: Transformations between the standard and cross-coupled schemes for scalar spherical

tensor operators.
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4.5. Cross-Coupled Matrix Elements

and

〈p̃ q̃ |K̂(J )M |r s 〉

Jp s M p s

Jqr Mqr

≡ (−1)Jp s−M p s 〈p̃ q̃ |K̂(J )M |r s 〉

Jp s−M p s

Jqr Mqr

. (4.52)

The cross-coupled matrix elements as defined in (4.51) and (4.52) also allow
a factorization into a geometric part and a reduced matrix element in the usual
sense

〈p̃ q̃ |K̂(J )M |r s 〉

Jp r M p r

Jqs Mqs

= (−1)Jp r−M p r

�

Jp r J Jqs

−M p r M Mqs

�

3j

〈p̃ q̃ ||K̂(J )||r s 〉

Jp r

Jqs

(4.53)

and

〈p̃ q̃ |K̂(J )M |r s 〉

Jp s M p s

Jqr Mqr

= (−1)Jp s−M p s

�

Jp s J Jqr

−M p s M Mqr

�

3j

〈p̃ q̃ ||K̂(J )||r s 〉

Jp s

Jqr

. (4.54)

Only the cross-coupled A case (4.53) is derived in the following. By means of
angular-momentum recouplings the cross-coupled matrix element may be writ-
ten in terms of standard coupled matrix elements as

〈p̃ q̃ |K̂(J )M |r s 〉

Jp r M p r

Jqs Mqs

= (−1)Jp r−M p r

∑

JM

�

Jp r Jqs J
−M p r Mqs M

�

CG

×
∑

Jpq Jr s







jp jr Jp r

jq js Jqs

Jpq Jr s J







X

∑

M pq M r s

(−1)Jpq−M pq

�

Jpq Jr s J
M pq M r s M

�

CG

× 〈pq |K̂(J )M |r s 〉

Jpq−M pq Jr s M r s

(4.55)
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Replacing the standard coupled matrix element by its reduced matrix element,

〈p̃ q̃ |K̂(J )M |r s 〉

Jp r M p r

Jqs Mqs

= (−1)Jp r−M p r

∑

JM

�

Jp r Jqs J
−M p r Mqs M

�

CG

×
∑

Jpq Jr s







jp jr Jp r

jq js Jqs

Jpq Jr s J







X

∑

M pq M r s

�

Jpq Jr s J
M pq M r s M

�

CG

�

Jpq J Jr s

M pq M M r s

�

3j

× 〈pq ||K̂(J )||r s 〉

Jpq Jr s

, (4.56)

allows application of the useful relation (4.30) to give

∑

M pq M r s

�

Jpq Jr s J
M pq M r s M

�

CG

�

Jpq J Jr s

M pq M M r s

�

3j

= (−1)J+M Ĵ −1 δJ J δM−M

(4.57)

which in turn eliminates the JM summations, leading to

〈p̃ q̃ |K̂(J )M |r s 〉

Jp r M p r

Jqs Mqs

= (−1)Jp r−M p r (−1)J+M Ĵ −1

�

Jp r Jqs J

−M p r Mqs −M

�

CG

×
∑

Jpq Jr s







jp jr Jp r

jq js Jqs

Jpq Jr s J







X

〈pq ||K̂(J )||r s 〉

Jpq Jr s

. (4.58)

By introducing a Wigner 3j symbol and introducing the short-hand notation for
the reduced cross-coupled matrix element,

〈p̃ q̃ ||K̂(J )||r s 〉

Jp r

Jqs

≡
∑

Jpq Jr s







jp jr Jp r

jq js Jqs

Jpq Jr s J







X

〈pq ||K̂(J )||r s 〉

Jpq Jr s

(4.59)

Eq. (4.58) can be written as

〈p̃ q̃ |K̂(J )M |r s 〉

Jp r M p r

Jqs Mqs

= (−1)Jp r−M p r

�

Jp r J Jqs

−M p r M Mqs

�

3j

〈p̃ q̃ ||K̂(J )||r s 〉

Jp r

Jqs

, (4.60)
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arriving at (4.53).

The non-vanishing cross-coupled A matrix elements

〈p̃ q̃ |K̂(J )M |r s 〉

Jp r M p r

Jqs Mqs

(4.61)

of a spherical tensor operator component K̂(J )M fulfill the triangular and projection
conditions

|Jp r − Jqs | ≤ J ≤ Jp r + Jqs , −M p r +Mqs +M = 0 , (4.62)

and an analogous statement holds for the cross-coupled scheme B. This follows
immediately from the presence of the Wigner 3j symbol in (4.60).

Figure 4.3 summarizes the transformation formulas from standard to cross
coupling and vice versa for the case of reduced matrix elements, which are more
compact than for the standard matrix elements because the trivial geometrical
factor does not appear any more.
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〈p̃ q̃ ||K̂(J )||r s 〉

Jp r

Jqs

=
∑

Jp r Jqs







jp jr Jp r

jq js Jqs

Jpq Jr s J







X

〈pq ||K̂(J )||r s 〉

Jpq Jr s

〈p̃ q̃ ||K̂(J )||r s 〉

Jp r

Jqr

= (−1)jr+js−Jr s

∑

Jp s Jqr







jp js Jp s

jq jr Jqr

Jpq Jr s J







X

〈pq ||K̂(J )||r s 〉

Jpq Jr s

〈pq ||K̂(J )||r s 〉

Jpq Jr s

=
∑

Jp r Jqs







jp jq Jpq

jr js Jr s

Jp r Jqs J







X

〈p̃ q̃ ||K̂(J )||r s 〉

Jp r

Jqs

≡ CCAtoStd

�

pq Jpq ; Jp r

r s Jr s ; Jqs

�

〈p̃ q̃ ||K̂(J )||r s 〉

Jp r

Jqs

〈pq ||K̂(J )||r s 〉

Jpq Jr s

= (−1)jr+js−Jr s

∑

Jp s Jqr







jp jq Jpq

js jr Jr s

Jp s Jqr J







X

〈p̃ q̃ ||K̂(J )||r s 〉

Jp s

Jqr

≡ CCBtoStd

�

pq Jpq ; Jp s

r s Jr s ; Jqr

�

〈p̃ q̃ ||K̂(J )||r s 〉

Jp s

Jqr

Figure 4.3: Transformations between the standard and cross-coupled schemes for reduced matrix

elements of general spherical tensor operators K̂(J ).
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4.6 Diagram Coupling

The aim of this section is the evaluation of angular-momentum coupled diagrams. An
outstanding review of this matter is given in [148] and thus only a brief review is
given here. A coupled diagram is obtained by coupling the external lines of the
corresponding m -scheme diagrams to good angular momentum, i.e., as schemat-
ically indicated below,

(4.63)∑

ma mb

�

ja jb J

ma mb M

�

CG

ā b̄

≡
a b

J M

.

If these m -scheme diagrams represent matrix elements of some operator, the cou-
pled diagrams clearly represent coupled matrix elements of this operator. For exam-
ple, the (DBc) contribution (see Figure 2.4) to the coupled T̂2 matrix elements may
be written as

a i b j

J M

J M

= 〈 a b | t̂2 | i j 〉

J M J M

(D Bc )←−
∑

ma mb

∑

m i m j

�

ja jb J

ma mb M

�

CG

�

j i j j J

m i m j M

�

CG

× 1

2

∑

c̄ d̄

〈ā b̄ |v̂ |c̄ d̄ 〉 〈c̄ d̄ |t̂2|ī j̄ 〉 . (4.64)

This expression is not quite satisfactory yet since for its evaluation still m -scheme
matrix elements of the operators involved are required. The purpose of the cou-
pling techniques to be presented below is to replace m -scheme matrix elements
and the corresponding summations over angular momentum projection quantum
numbers by products of coupled matrix elements. For instance, the above contri-
bution may in the end be written in a fully angular-momentum-coupled formula-
tion as

〈 a b | t̂2 | i j 〉

J M J M

(D Bc )←− 1

2

∑

c d

∑

J M

〈 a b | v̂ | c d 〉

J M J M

〈 c d | t̂2 | i j 〉

J M J M

. (4.65)
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Since the external lines are already explicitly coupled, the focus is on coupling
of the internal lines. An internal line consists of a bra and a ket part which are
summed over, i.e.,

∑

p mp

〈p mp | . . . |p mp 〉 or
∑

p mp

|p mp 〉〈p mp | . (4.66)

It is the projection quantum number summation that is of main interest in the fol-
lowing, so the angular momentum summation will be ignored. Since an internal
line typically corresponds to the outgoing part of some operator and the ingo-
ing part of another operator, the bra and ket states will belong to different matrix
elements. Internal lines may be coupled right away to zero angular momentum
using

∑

mp

〈p mp | . . . |p mp 〉 = (−1)2jp ̂p 〈p̃ | . . . |p 〉
00

, (4.67)

∑

mp

|p mp 〉〈p mp | = ̂p |p 〉〈p̃ |
00

. (4.68)

The simple proof is given in [148] but it is instructive to repeat it here. Using
the identity

(−1)jp−mp ̂p

�

jp jp 0

mp −mp 0

�

CG

= 1 , (4.69)

(4.67) is easily verified
∑

mp

〈p mp | . . . |p mp 〉

= ̂p

∑

mp

(−1)jp−mp

�

jp jp 0

mp −mp 0

�

CG

〈p mp | . . . |p mp 〉 (4.70)

= (−1)2jp ̂p

∑

mp

(−1)jp−mp

�

jp jp 0

−mp mp 0

�

CG

〈p mp | . . . |p mp 〉 (4.71)

= (−1)2jp ̂p 〈p̃ | . . . |p 〉
00

(4.72)

and (4.68) follows similarly.
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By coupling the internal lines, example (4.64) becomes

〈 a b | t̂2 | i j 〉

J M J M

(D Bc )←− 1

2

∑

c d

̂c ̂d 〈 a b | v̂ | c d 〉〈 c̃ d̃ | t̂2 | i j 〉

J M J M00

00

. (4.73)

The projection summation has been eliminated in favor of coupling lines, but the
above form still has the disadvantageous property of coupling lines connecting
different matrix elements. However, these matrix elements can be disentangled
by recoupling transformations of the internal lines for which an example is given
in the below:

Matrix elements connected by scalar coupled internal lines of the form

|pq 〉〈p̃ q̃ |
00

00

(4.74)

may be disentangled by the transformation

̂p ̂p |pq 〉〈p̃ q̃ |
00

00

=
∑

J M

|pq 〉〈pq |
J M J M

. (4.75)

In order to prove this, the idea is to couple the two internal lines to good total
angular momentum. Since both angular momenta involved are zero the result is
trivial,

̂p ̂q |pq 〉〈p̃ q̃ |
00

00

= ̂p ̂q

n

|pq 〉〈p̃ q̃ |
0

0

o(0)

0
. (4.76)

Having arrived at a fully coupled expression, the disentanglement of the matrix
element is only a matter of one standard recoupling transformation of the angular
momenta,

̂p ̂q

n

|pq 〉〈p̃ q̃ |
0

0

o(0)

0
= ̂p ̂q

∑

J J ′







jp jp 0

jq jq 0

J J ′ 0







X
︸ ︷︷ ︸

̂−1
p ̂

−1
q Ĵ δJ J ′

n

|pq 〉〈p̃ q̃ |
J J ′

o(0)

0
(4.77)

=
∑

J

Ĵ
n

|pq 〉〈p̃ q̃ |
J J

o(0)

0
. (4.78)
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̂p ̂q |pq 〉〈p̃ q̃ |

00

00

=
∑

J M

|pq 〉〈pq |

J M J M

̂p ̂q 〈p̃ q̃ | . . . |pq 〉

00

00

=
∑

J M

〈pq | . . . |pq 〉

J M J M

̂p ̂q 〈p̃ | . . . |q 〉〈q̃ | . . . |p 〉

00

00

=
∑

J M

(−1)J−M (−1)jp+jq−J 〈p̃ | . . . |q 〉〈q̃ | . . . |p 〉

J M J−M

̂p ̂q 〈p̃ | . . . |q 〉 . . . |p 〉 . . . 〈q̃ |

00

00

= (−1)2jq

∑

J M

(−1)J−M (−1)jr+js−J 〈p̃ | . . . |q 〉 . . . |p 〉 . . . 〈q̃ |

J M J−M

Figure 4.4: Internal line recoupling transformations involving two scalar coupled lines.

Breaking up the scalar coupling leads to

∑

J

Ĵ
n

|pq 〉〈p̃ q̃ |
J J

o(0)

0
=

∑

J

Ĵ
∑

M M ′

�

J J 0

M M ′ 0

�

CG

|pq 〉〈p̃ q̃ |
J M J M ′

(4.79)

=
∑

J M

(−1)J−M |pq 〉〈p̃ q̃ |
J M J−M

(4.80)

since
�

J J 0
M M ′ 0

�

CG
= (−1)J−M Ĵ −1δM−M ′ . By means of (4.29) the final result is obtained,

∑

J M

(−1)J−M |pq 〉〈p̃ q̃ |
J M J−M

=
∑

J M

|pq 〉〈pq |
J M J M

. (4.81)

Internal line recouplings for other situations may be derived analogously. The
most frequent cases are summarized in Figure 4.4. The example (4.64) can still
be further simplified since the matrix elements involved do not depend on the
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total projection quantum numbers and thus the corresponding summation may
be replaced by a factor,

〈 a b | t̂2 | i j 〉

J M J M

(D Bc )←− 1

2

∑

c d

∑

J

Ĵ 2 〈 a b | v̂ | c d 〉

J M 0 J M 0

〈 c d | t̂2 | i j 〉

J M 0 J M 0

, (4.82)

where M 0 is an arbitrary, physically allowed value for the projection. More compli-
cated diagrams than example (4.64) require other transformations to disentangle
individual matrix elements because non-scalar coupled internal lines may appear
or the external lines need to be recoupled. The most convenient way to evaluate
such diagrams is to chose recouplings of lines that involve at least one scalar cou-
pled line since the transformations clearly become more simple with the number
of scalar lines.

For a simple demonstration of such transformations, let [p ] denote either |p 〉 or
〈p̃ |. Matrix elements connected by one scalar and one non-scalar coupled internal
lines may be disentangled by the transformation

[p ][q ][r ][s ]

00

J M

= (−1)jp+js ̂−1
p

∑

J ′M ′

∑

J ′′M ′′

(−1)J+J ′ Ĵ ′ Ĵ ′′

×
¨

J J ′ J ′′

jr js jq

«

6j

�

J ′ J ′′ J

M ′ M ′′ M

�

CG

[p ][q ][r ][s ]

J ′M ′ J ′′M ′′

(4.83)

To see this, coupling the expression to total angular momentum JM is again
trivial due to the zero angular momentum involved,

[p ][q ][r ][s ]

00

J M

=
∑

JM

�

0 J J
0 M M

�

CG

n

[p ][q ][r ][s ]

0

J

o(J )

M
(4.84)

=
n

[p ][q ][r ][s ]

0

J

o(J )

M
. (4.85)

This can then be recoupled using X coefficients and the total coupling may again
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be broken up, arriving at

[p ][q ][r ][s ]

00

J M

=
∑

J ′ J ′′







jp jq J ′

jr js J ′′

0 J J







X

n

[p ][q ][r ][s ]

J ′ J ′′

o(J )

M
(4.86)

=
∑

J ′M ′

∑

J ′′M ′′

�

J ′ J ′′ J

M ′ M ′′ M

�

CG







jp jq J ′

jr js J ′′

0 J J







X

[p ][q ][r ][s ]

J ′M ′ J ′′M ′′

. (4.87)

Finally, from the simplification of X coefficients involving one zero angular mo-
mentum,







jp jq J ′

jr js J ′′

0 J J







X

= (−1)jp+js ̂−1
p
(−1)J+J ′ Ĵ ′ Ĵ ′′

¨

J J ′ J ′′

jr js jq

«

6j

, (4.88)

Eq. (4.83) follows immediately.

Again, other transformations of this kind are equally easy to derive and the
most commonly encountered ones are summarized in Figure 4.5 for reference.
These rules simplify significantly if for the final coupling of two states only the
scalar coupling is allowed, for instance if these states belong to the bra and ket
states of a scalar one-body operator, as discussed in Section 4.4. The transforma-
tion rules for the case in which states [r ] and [s ] are allowed to scalar coupling
only is given in the bracketed expressions in Figure 4.5.

4.6.1 Antisymmetrized Diagram Coupling

As for the CCSD T̂2 m -scheme equations, some expressions are antisymmetrized
by the action of permutation operators, such as

〈p̄ q̄ |ĝ |r̄ s̄ 〉 = P̂p̄ q̄ P̂r̄ s̄ (p̄ q̄ |ĝ |r̄ s̄ )

= (1̂− T̂p̄ q̄ ) (1̂− T̂r̄ s̄ ) (p̄ q̄ |ĝ |r̄ s̄ ) , (4.89)

where 〈p̄ q̄ |ĝ |r̄ s̄ 〉denotes the antisymmetrized expression obtained from the action
of the permutation operators on some non-antisymmetric expression (p̄ q̄ |ĝ |r̄ s̄ ).
For instance, for the (DBe) contribution to the CCSD T̂2 amplitudes,

〈ā b̄ |t̂2|ı̄ ̄ 〉
(D B e )← P̂ā b̄ P̂ı̄ ̄

∑

c̄ k̄

〈k̄ b̄ |v̂ |c̄ ̄ 〉 t ā c̄

ı̄ k̄
, (4.90)
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[p ][q ][r ][s ]

00

J M

= (−1)jp+js ̂−1
p

∑

J ′M ′

∑

J ′′M ′′
(−1)J+J ′ Ĵ ′ Ĵ ′′

×
¨

J J ′ J ′′

jr js jq

«

6j

�

J ′ J ′′ J

M ′ M ′′ M

�

CG

[p ][q ][r ][s ]

J ′M ′ J ′′M ′′

�

= − ̂−1
p ̂−1

s (−1)jp+jq−J [p ][q ][r ][s ]

J M 00

�

[p ][q ][r ][s ]

00

J M

= ̂−1
p

∑

J ′M ′

∑

J ′′M ′′
(−1)J+J ′+J ′′ Ĵ ′ Ĵ ′′

×
¨

J J ′ J ′′

js jr jq

«

6j

�

J ′ J ′′ J

M ′ M ′′ M

�

CG

[p ][q ][r ][s ]

J ′M ′ J ′′M ′′

�

= ̂−1
p ̂−1

r (−1)jq+jr−J [p ][q ][r ][s ]

J M 00

�

[p ][q ][r ][s ]

00

J M

= ̂−1
q (−1)jp+jq+jr+js

∑

J ′M ′

∑

J ′′M ′′
(−1)J Ĵ ′ Ĵ ′′

×
¨

J J ′ J ′′

jr js jp

«

6j

�

J ′ J ′′ J

M ′ M ′′ M

�

CG

[p ][q ][r ][s ]

J ′M ′ J ′′M ′′

�

= − ̂−1
q ̂−1

s [p ][q ][r ][s ]

J M 00

�

[p ][q ][r ][s ]

00

J M

= ̂−1
q (−1)jp+jq

∑

J ′M ′

∑

J ′′M ′′
(−1)J+J ′′ Ĵ ′ Ĵ ′′

×
¨

J J ′ J ′′

js jr jp

«

6j

�

J ′ J ′′ J

M ′ M ′′ M

�

CG

[p ][q ][r ][s ]

J ′M ′ J ′′M ′′

�

= ̂−1
q ̂−1

r [p ][q ][r ][s ]

J M 00

�

Figure 4.5: Internal line recoupling transformations for one scalar and one non-scalar coupling

lines. The expressions in brackets correspond to the case in which only a scalar coupling

of [r ] and [s ] is allowed.
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the non-antisymmetric part would be

(ā b̄ |t̂2|ı̄ ̄ ) =
∑

c̄ k̄

〈k̄ b̄ |v̂ |c̄ ̄ 〉 t ā c̄

ı̄ k̄
. (4.91)

In practice, the expression (p̄ q̄ |ĝ |r̄ s̄ ) is calculated for the whole index range, which
allows to access elements with swapped indices, (q̄ p̄ |ĝ |r̄ s̄ ), for instance. The anti-
symmetrized expression is then simply obtained by

〈p̄ q̄ |ĝ |r̄ s̄ 〉 = (p̄ q̄ |ĝ |r̄ s̄ ) − (q̄ p̄ |ĝ |r̄ s̄ ) − (p̄ q̄ |ĝ |s̄ r̄ ) + (q̄ p̄ |ĝ |s̄ r̄ ) . (4.92)

For the spherical case, an antisymmetrized coupled diagram is obtained by cou-
pling the antisymmetrized m -scheme expressions,

〈 p q | ĝ | r s 〉

Jpq M pq Jr s M r s

=
∑

mp mq
mr ms

�

jp jq Jpq

mp mq M pq

�

CG

�

jr js Jr s

mr ms M r s

�

CG

〈p̄ q̄ |ĝ |r̄ s̄ 〉 (4.93)

Formally, the evaluation requires the coupling of each individual index permuta-
tion of the m -scheme expression,

〈 p q | ĝ | r s 〉

Jpq M pq Jr s M r s

=
∑

mp mq
mr ms

�

jp jq Jpq

mp mq M pq

�

CG

�

jr js Jr s

mr ms M r s

�

CG

×
�

(p̄ q̄ |ĝ |r̄ s̄ )− (q̄ p̄ |ĝ |r̄ s̄ )− (p̄ q̄ |ĝ |s̄ r̄ )+ (q̄ p̄ |ĝ |s̄ r̄ )
�

(4.94)

= ( p q | ĝ | r s )

Jpq M pq Jr s M r s

− ( q p | ĝ | r s )

Jpq M pq Jr s M r s

− ( p q | ĝ | s r )

Jpq M pq Jr s M r s

− ( q p | ĝ | s r )

Jpq M pq Jr s M r s

. (4.95)
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Reversing the couplings that go from the right to the left introduces phases,

〈 p q | ĝ | r s 〉

Jpq M pq Jr s M r s

= ( p q | ĝ | r s )

Jpq M pq Jr s M r s

− (−1)jp+jq−Jpq ( q p | ĝ | r s )

Jpq M pq Jr s M r s

− (−1)jr+js−Jr s ( p q | ĝ | s r )

Jpq M pq Jr s M r s

+ (−1)jp+jq−Jpq (−1)jr+js−Jr s ( q p | ĝ | s r )

Jpq M pq Jr s M r s

. (4.96)

This result suggests the definition of a permutation operator

P̂pq (Jpq ) ≡ 1̂− (−1)jp+jq−Jpq T̂pq (4.97)

so that the antisymmetrized coupled expression can be written as

〈 p q | ĝ | r s 〉

Jpq M pq Jr s M r s

= P̂pq (Jpq ) P̂r s (Jr s ) ( p q | ĝ | r s )

Jpq M pq Jr s M r s

. (4.98)

In the m -scheme, if an expression 〈p̄ q̄ |ĝ |r̄ s̄ ) is already antisymmetric in the orbital
pair p̄ q̄ , an additional antisymmetrizer P̂p̄ q̄ corresponds to a factor of 2, e.g.,

〈p̄ q̄ |ĝ |r̄ s̄ ) =
1

2
P̂p̄ q̄ 〈p̄ q̄ |ĝ |r̄ s̄ ) , (4.99)

which is sometimes used to write the equations in a more symmetric form. The
same holds for the spherical case for the operators P̂pq (Jpq ), i.e., for an expression
that is already antisymmetric in the sense that

T̂pq 〈 p q | ĝ | r s )

Jpq M pq Jr s M r s

= − (−1)jp+jq−Jpq 〈 p q | ĝ | r s )

Jpq M pq Jr s M r s

, (4.100)

an additional antisymmetrization operator may introduced by

〈 p q | ĝ | r s )

Jpq M pq Jr s M r s

=
1

2
P̂pq (Jpq ) 〈 p q | ĝ | r s )

Jpq M pq Jr s M r s

. (4.101)

The above results, that for the spherical case an original m -scheme permuta-
tion operator P̂p̄ q̄ can simply be replaced by the operator P̂pq (Jpq ), only holds if
the states that are permuted also are the states that are coupled together to angu-
lar momentum Jpq . This is typically the case for diagrams that are evaluated in
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the standard coupling scheme, but not if a diagram is first evaluated in the cross-
coupled scheme and then transformed to standard coupling. In the latter case, for
a component K̂(J )M of a spherical tensor operator, the transformation that generates
an antisymmetrized standard coupled reduced matrix element from a non-antisymmetric

cross-coupled A expression is given by

〈pq ||K̂(J )||r s 〉

Jpq Jr s

=
∑

Jp r Jqs

¨







jp jq Jpq

jr js Jr s

Jp r Jqs J







X

− (−1)jr+js−Jr s







jp jq Jpq

js jr Jr s

Jp s Jqr J







X

T̂r s

+ (−1)jp+jq−Jpq (−1)jr+js−Jr s







jq jp Jpq

js jr Jr s

Jqs Jp r J







X

T̂pq T̂r s

− (−1)jp+jq−Jpq







jq jp Jpq

jr js Jr s

Jqr Jp s J







X

T̂pq

«

(p̃ q̃ ||K̂(J )||r s )

Jp r

Jqs

≡ CCAtoStd(A)
�

pq Jpq ; Jp r

r s Jr s ; Jqs

�

(p̃ q̃ ||K̂(J )||r s )

Jp r

Jqs

. (4.102)

Since this transformation depends on the rank of the spherical tensor operator,
simplifications are possible for the case of scalar tensor operators. For these, the
transformation for the standard matrix elements reads 4

〈pq |K̂(0)0 |r s 〉
J M J M

=

¨
∑

J ′

( Ĵ ′)2 (−1)jq+jr+J+J ′

¨

jp jr J ′

js jq J

«

6j

�

1̂+ T̂pq T̂r s

�

+
∑

J ′

( Ĵ ′)2 (−1)jq+jr+J ′

¨

jp js J ′

jr jq J

«

6j

�

T̂pq + T̂r s

�
«

(p̃ q̃ |K̂(0)0 |r s )

J ′M ′
0

J ′M ′
0

(4.103)

4For half-integer values of jp , jq , jr , js .
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for which the shorthand notation

〈pq |K̂(0)0 |r s 〉
J M J M

= CCAtoStd(A)
�

pq

r s
J ; J ′

�

(p̃ q̃ |K̂(0)0 |r s )

J ′M ′
0

J ′M ′
0

(4.104)

is used. For the scalar case, this transformation may easily be written in terms of
the non-antisymmetric cross-coupling transformations as

CCAtoStd(A)
�

pq

r s
J ; J ′

�

= CCAtoStd

�

pq

r s
J ; J ′

�
�

1̂+ T̂pq T̂r s

�

−CCBtoStd

�

pq

r s
J ; J ′

�
�

T̂pq + T̂r s

�

. (4.105)

For partial antisymmetrizations in which, e.g., only orbitals p and q are to be an-
tisymmetrized, the corresponding transformation may be obtained from (4.102)
or (4.103) simply by setting the other permutation operator T̂r s to 0.

4.6.2 Cross-Coupled Evaluation

As mentioned in the previous chapter, it is sometimes advantageous to evaluate a
diagram in the cross-coupled scheme first, before transforming it to the standard
coupling. This is because in order to obtain a cross-coupled matrix element less
internal and external recouplings may be required than for the standard coupling
and, thus, less summations over intermediate angular momenta and coupling co-
efficients may be required.

For instance, the (R2G) contribution

b b (4.106)

to the EOM-CCSD R̂2 amplitudes, when directly evaluated in standard coupled
evaluation, is given by
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〈ab ||R̂(J )2 ||i j 〉

Jab Ji j

(R2G)←− (−1)Jab−M ab

�

Jab J Ji j

−M ab M M i j

�−1

3j

P̂ab (Jab ) P̂i j (Ji j )

× (−1)j i+j j−Ji j

∑

c k

∑

J J ′ J ′′

¨

J ′ J ′′ Jab

jb ja jc

«

6j

¨

J ′′ J ′′′ Ji j

j i j j jk

«

6j

Ĵ ′ ( Ĵ ′′)2 Ĵ ′′′

×
∑

M ′M ′′

(−1)J
′+M ′

�

J ′ J ′′ Jab

M ′ −M ′′ −M ab

�

CG

�

J ′′′ J ′′ Ji j

−M ′ M ′′ M ab

�

CG

×
�

J ′ J J ′′′

M ′ M −M ′

�

3j

〈c a ||R̂(J )2 ||i k 〉
J ′ J ′′′

〈b̃ k̃ |Ĥ2|c j 〉

J ′′M ′′

J ′′M ′′

, (4.107)

where the triple sum over angular momenta and the product of two coupling coef-
ficients cannot be factorized in any way. This is the result of the many recouplings
that are required in order to disentangle the two matrix elements.

On the other hand, if the m -scheme expression is first transferred into cross-
coupled form A, that requires the couplings

ã i b̃ j

Ja i Jb j

= 〈ã b̃ ||R̂(J )2 ||i j 〉

Ja i

Jb j

,

then it becomes apparent that in this case the (ã i ) and (b̃ j ) coupling lines already
belong to distinct matrix elements, requiring recoupling transformations for the
c and k internal lines only. Therefore, the resulting expression for the standard
coupled reduced matrix element is much simpler,

〈ab ||R̂(J )2 ||i j 〉

Jab Ji j

(R2G)←− CCAtoStd(A)
�

ab Jab ; Ja i

i j Ji j ; Jb j

�

×
∑

c k

(−1)jc+jk−Jb j 〈ã c̃ ||R̂(J )2 ||i k 〉

Ja i

Jb j

〈b̃ k̃ |Ĥ2|c j 〉

Jb j Mb j

Jb j Mb j

, (4.108)
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and it is more efficient because the only sums over total angular momenta are
the ones in the transformation from the cross-coupled to the standard coupling
scheme. Furthermore, the problem factorizes into first evaluating the expression
in cross-coupled form, which cost is basically determined by

∑

c k
and the transfor-

mation to standard coupling afterwards. Another inconvenience of the form (4.107)
is that it can not longer solely be evaluated using optimized matrix multiplication
routines, which is due to the appearance of orbital indices in both matrix elements
and coupling coefficients.

4.7 Spherical CCSD

Using the techniques described in previous sections, the spherical Coupled-Cluster
equations are easily obtained. For CCSD, the m -scheme amplitude equations are
of the form

0 = + . . . , ∀ ā , ı̄
b l

ı̄ā
(4.109)

0 = + . . . , ∀ ā , b̄ , ı̄ , ̄ .
b b

ı̄ā ̄b̄
(4.110)

Therefore, coupling both sides of these equations by taking linear combinations
of m -scheme expressions, the coupled formulation follows immediately,

0 = + . . . , ∀ a , i
b l

ia

00

(4.111)

0 = + . . . , ∀ a ,b , i , j , J , M ,
b b

ia jb

J M J M

(4.112)

where the right hand side diagrams have to be evaluated according to diagram
coupling techniques. In (4.111) and (4.112), the scalar character of the cluster op-
erator T̂ has already been taken into account by constraining the coupling of exter-
nal lines to total angular momenta and projection to 00 for the T̂1 matrix elements
and J M for bra and ket coupling in the T̂2 matrix elements. The energy expression

E =

b b

+

b l

+

b b
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consists of closed diagrams only, and is, therefore, not subjected to external line
coupling, but the internal lines will have to be coupled in order to get an expres-
sion in terms of coupled matrix elements only. The result for the spherical energy
expression is

∆E (CCSD) =
(E A)

+
1

4

∑

c d k l

∑

J

Ĵ 2 〈c d |t̂2|k l 〉

J M J M

〈k l |v̂ |c d 〉

J M J M

(E B )

+
∑

c k

〈c̃ |t̂1|k 〉

00

〈k̃ | f̂ |c 〉

00

(EC )

+
1

2

∑

c d k l

̂−1
c
̂−1

d

∑

J

Ĵ 2 〈c̃ |t̂1|k 〉

00

〈d̃ |t̂1|l 〉

00

〈k l |v̂ |c d 〉

J M J M

, (4.113)

and the spherical CCSD T̂1 and T̂2 amplitude equations are listed in Appendix C.2.

The matrix elements of the normal-ordered Hamiltonian (2.10) should also be
expressed in terms of coupled matrix elements. Using the identity

̂p ̂q 〈p̃ q̃ |v̂ |pq 〉
00

00

= ̂p ̂q 〈p̃ q̃ |v̂ |pq 〉
00

00

=
∑

J

Ĵ 2 〈pq |v̂ |pq 〉
J M J M

, (4.114)

the corresponding expressions are straightforwardly found to be

〈Φ|Ĥ |Φ〉 = h0−
∑

i

̂ i 〈ı̃ |ĥ1|i 〉
00

+
1

2

∑

i j

∑

J

Ĵ 2 〈i j |v̂ |i j 〉

J M J M

(4.115)

〈p̃ | f̂ |q 〉
00

= 〈p̃ |ĥ1|q 〉
00

− ̂−1
p

∑

i

∑

J

Ĵ 2 〈p i |v̂ |qi 〉

J M J M

. (4.116)

The spherical CCSD equations be written as

〈Φ|Ĥ (CCSD)|Φ〉 = ∆E (CCSD) (4.117)

〈ã |Ĥ (CCSD) |i 〉
00

= 0 , ∀ a , i (4.118)

〈ab |Ĥ (CCSD)|i j 〉

J M J M

= 0 , ∀ a ,b , i , J , M . (4.119)
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Using this notation, the spherical analogue to the standard iterative scheme (2.45)
for the self-consistent solution of the CCSD equations reads































(0)〈ã |t̂1|i 〉
00

= (0)〈ab |t̂2|i j 〉

J M J M

= 0

(n+1)〈ã |t̂1|i 〉
00

= 〈ã |Ĥ (CCSD)(t (n ))|i 〉
00

�

〈ã | f̂ |a 〉
00

−〈ı̃ | f̂ |i 〉
00

�−1

(n+1)〈ab |t̂2|i j 〉

J M J M

= 〈ab |Ĥ (CCSD)(t (n ))|i j 〉

J M J M

×
�

̂−1
a
〈ã | f̂ |a 〉

00

+ ̂−1
b 〈b̃ | f̂ |b 〉

00

− ̂−1
i 〈ı̃ | f̂ |i 〉

00

− ̂−1
j 〈 ̃ | f̂ |j 〉

00
�−1

(4.120)

where, as in the m -scheme case, F̂N → F̂ o
N is set in the amplitude equations. The

n = 1 amplitudes are then easily obtained from the relations

〈ã |Ĥ (CCSD)(t (0))|i 〉
00

= ̂a 〈ã | f̂ |i 〉
00

(4.121)

〈ab |Ĥ (CCSD)(t (0))|i j 〉

J M J M

= 〈ab |v̂ |i j 〉

J M J M

. (4.122)

4.8 Convergence Acceleration

In practical applications the iteration schemes (2.45) or (4.120) for solving the
CCSD amplitude equations or the analogous scheme for solving the ΛCCSD am-
plitude equations is not sufficient due to slow convergence, or even divergence, of
the iterations. Consequently, the iterations have to be accelerated and stabilized.
There are mainly two possibilities to improve the situation. On the one hand,
the iteration scheme (2.45) may be used and the resulting sequence of vectors
{t (k )} may be used to construct an improved, faster converging vector sequence.
Methods like the simple mixing [149], the Anderson mixing [150], or the Broyden

mixing [149] achieve such a stabilized and accelerated convergence. On the other
hand, the standard iteration scheme (2.45) itself may be modified, which may then
again be combined with convergence accelerators such as the Broyden mixing.
Both approaches are considered in the following.

According to (2.44), the Coupled-Cluster amplitude equations are converted
into a fixed-point problem

t (n+1) = I (t (n )) , t ∗ = I (t ∗) . (4.123)
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If the iterations are divergent, the simple mixing method, in which the new vector
is given by

t (n+1) = α I (t (n )) + (1−α) t (n ) , (4.124)

may help to bring the sequence to convergence. By mixing the new vector I (t (n ))

with the old one, regulated by the mixing parameter α, this mixing guarantees
that the iteration scheme does not depart too far from the initial guess, which
slows the overall convergence down but at the same time makes it more robust
against poor choices of the start vector.

The Anderson and Broyden mixing presented Figures 4.6 and 4.7 are more
sophisticated convergence acceleration methods based on the multidimensional
Newton method and they are widely used in the quantum chemistry context. De-
tailed reviews can be found in [149–151] and only the practical application is dis-
cussed in the following. As for the simple mixing, the Anderson and Broyden
mixings also have a mixing parameter α but both methods have an additional
backward range parameter M which determines the number of previous vectors
t (n ) that should be taken into consideration for constructing the new vector t (n+1).
It can be easily verified that the simple mixing is contained in the Anderson mix-
ing if for the latter M = 0 is chosen.

Figure 4.8 shows an illustration of the convergence rates of the Anderson, Broy-
den and simple mixing and for the case of no mixing at all. Convergence is mon-
itored in terms of the norm of the residual vector, i.e.,

residual(k) =
�
�
�
� I (t (k ))− t (k )

�
�
�
�

2
. (4.125)

The no-mixing case exhibits a slow divergence, making the use of convergence-
enhancing methods mandatory. The simple mixing, with an for all methods uni-
versally chosen mixing parameter α= 0.6 leads to convergence, however, at a very
slow rate. Therefore, as mentioned above, mixing methods do not only improve
the convergence, they may also be vital for the iterations to converge at all. The
Anderson and Broyden show a very similar performance which is far superior to
the previous scenarios, leading to residuals below 10−7 within 20–30 iterations.
Of course, the convergence is improved as the backward range parameter M is
increased, i.e., more information about previous iterations is used in order to de-
termine the new vector.

Figure 4.9 shows the influence of the mixing parameter α for the Anderson and
Broyden mixing for fixed range M . In the cases presented in Figure 4.9, where the
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t (1) = I (t (0))

For k = 1, 2, . . .

mk =min{k , M }

F (k ) = I (t (k ))− t (k )

Determine β (k ) =
�

β
(k )
0 , . . . ,β

(k )
mk

�T
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min
β=(β0,...,βmk )

T

�
�
�

�
�
�

�

F (k−mk ), . . . , F (k )
�

β

�
�
�

�
�
�

2
,

mk∑

i=0

βi = 1

t (k+1) = (1−α)
mk∑

i=0

β
(k )
i t (k−mk+i )+α

mk∑

i=0

β
(k )
i I (t (k−mk+i ))

Figure 4.6: The Anderson convergence acceleration method [150].

vector series is nicely converging, αmay be chosen large since there is no need to
slow the convergence down. As can be seen in in Figure 4.9, fastest convergence
is achieved at α= 0.6. Therefore, the combination of parameters M ≈ 8 and α≈ 0.6

typically is a good choice for obtaining fast and robust convergence.

As already mentioned above, another possibility – which does not seem to
have been paid much attention in the past – to enhance the convergence of the
Coupled-Cluster amplitude equations is by introducing a new iteration scheme,
alternative to (2.45), which is used to generate the vector sequence used in the
mixing methods. In the following, an improved iteration scheme is proposed. In
order to do so, it is instructive to review how the standard iteration scheme (2.45)
is constructed. Using the T̂1 amplitude equations

0 = . . .
(SC a )

+
∑

c

f a
c

t c
i

(SC b )

−
∑

k

f k
i

t a
k

(SC c )

+
∑

c k

v a k
i c

t c
k
+ . . . (4.126)

as an example, the amplitude t a
i may be introduced on the left-hand side by adding

t a
i Da

i on both sides and diving by Da
i , arriving at

t a
i
=

1

Da
i

n

. . .
(SC a )

+
∑

c

f a
c

t c
i

(SC b )

−
∑

k

f k
i

t a
k

(SC c )

+
∑

c k

v a k
i c

t c
k
+ · · ·+ t a

i
Da

i

o

. (4.127)
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t (1) = I (t (0))

For m = 1, 2, . . .

t (m+1) = t (m )+α F (m )−
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Figure 4.7: The (modified) Broyden algorithm [149].
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Figure 4.8: Comparison of the Anderson and Broyden method to the simple mixing or with no

mixing at all, for fixed mixing parameter α and varying backward range M , for the

CCSD amplitude equations.
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Figure 4.9: Comparison of the Anderson and Broyden mixing for fixed backward range M and

varying mixing parameter α, for the CCSD amplitude equations.
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The denominator Da
i is chosen to be

Da
i
= f i

i
− f a

a
. (4.128)

As a result of this choice of Da
i , the t a

i amplitudes are removed from the expression
involving the contractions with the Fock operator,

(SC a )

+
∑

c

f a
c

t c
i

(SC b )

−
∑

k

f k
i

t a
k
+ t a

i
Da

i
=

∑

c 6=a

f a
c

t c
i
−
∑

k 6=i

f k
i

t a
k

. (4.129)

Thus, another way to describe this procedure is to move the terms involving a
single t a

i and a single Fock matrix element to the left side and to divide by the
prefactor Da

i in order to isolate t a
i . For the T̂2 equations, there is an analogous

procedure. Equation (4.127) is then used as starting point to set up the standard
iterative scheme,

(n+1)t a
i
=

1

Da
i

n

. . .
(SC a )

+
∑

c

f a
c
(n )t c

i

(SC b )

−
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k

f k
i
(n )t a

k

(SC c )

+
∑

c k

v a k
i c

(n )t c
k
+ · · ·+ t a

i
Da

i

o

. (4.130)

The definition of the denominator Da
i eliminates the specific amplitude t a

i on the
right-hand side from the terms (SCa) and (SCb), which involve a contraction of the
T̂1 operator with the Fock operator, but in other terms such as (SCc) the t a

i remain.
It would be more natural, as it is done in the Jacobi scheme for linear systems, to
eliminate t a

i completely from the right-hand side. For the example contributions
considered in (4.127), this is achieved simply by using the modified denominator

Da
i
= f i

i
− f a

a
− v a i

i a
. (4.131)

Unlike this example, it is not possible to remove all occurrences of t a
i from the

right-hand side, as can be seen, for instance, for the diagram

(SEb )

+
∑

c d k

v a k
c d

t c
i

t d
k

. (4.132)

In such cases, the strategy followed here is to simply pick one of these t a
i and move

it to the left-hand side. One possible realization of the improved iteration scheme,
in terms of spherical denominators Da

i and Dab
i j (J ), is given in Figures 4.10 and 4.11.

Diagrams of the T̂2 amplitude equations that are evaluated in cross-coupled form
are not easy to deal with and have been excluded from the considerations 5. Since
this iteration scheme is analogous to the Jacobi scheme for linear systems, it will
be referred to as Jacobi iteration scheme in the following.
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Figure 4.10: Denominator for the Jacobi iteration for the CCSD T̂1 amplitude equations.
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( Ĵ ′)2 〈k i |v̂ |c d 〉

J ′M ′ J ′M ′

〈c d |t̂2|k i 〉

J ′M ′ J ′M ′

δj i j l

(DC d )

− 1

4
̂−2

a

∑

c k l

∑

J ′
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( Ĵ ′)2 〈c̃ |t̂1|k 〉

00

〈k i |v̂ |c i 〉

J ′M ′ J ′M ′

(DG a )

+ 1

8
̂−1

b
̂−1

c

∑

k l
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Figure 4.11: Denominator for the Jacobi iteration for the CCSD T̂2 amplitude equations.
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Figure 4.12 shows a comparison of the standard and Jacobi iteration scheme
combined with the Broyden mixing for 68Ni CCSD calculations at the HO frequen-
cies ħhΩ= 24 MeV and 40 MeV, where the former frequency corresponds to the op-
timal frequency at which the convergence of the CCSD equations is typically also
the best. At the optimal frequency (Figure 4.12 top), both iteration schemes per-
form similarly, where the Jacobi scheme converges a little faster. The real use of the
Jacobi scheme, however, is when the equations do not converge quickly or do even
diverge. This is illustrated in Figure 4.12 at the bottom, where for the not optimal
frequency the standard iteration scheme converges slower, but the convergence
rate of the Jacobi scheme remains unchanged. Even in cases where the equations
are highly divergent in the standard iteration scheme, a combination of the Ja-
cobi scheme with a low-α Broyden mixing often leads to convergence. Of course,
evaluating the denominators in Figures 4.10 and 4.11 is significantly more expen-
sive than for the standard scheme. However, particularly in CCSD calculations
for three-body Hamiltonians where the iteration steps become quite costly, using
these improved denominators saves a significant amount of computing time.

5These are the diagrams (DBe), (DCb), (DEc), (DEd), (DGc), and (DGd).
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Figure 4.12: Comparison of the standard and the Jacobi iteration scheme for the CCSD amplitude

equations.
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4.9 Spherical CCSD for Three-Body Hamiltonians

4.9.1 Three-Body Matrix Elements

The J T -coupled matrix element scheme [86] provides fast access to matrix ele-
ments of the form 6

〈 a b c | ŵ | d e f 〉

Jab Tab Jd e Td e

JMTMT JMTMT

, (4.133)

whereas for Coupled-Cluster applications matrix elements of the form

〈 a m ta
b m tb

c̃ m tc
| ŵ | d m td

e m te
f m t f

〉

Jab M ab Jd e M d e

Jc f M c f

(4.134)

are required 7. In (4.134), the isospin projections are written explicitly in order
to stress that the isospin is not coupled there. However, the matrix elements that
are stored will be reduced matrix elements that correspond to the more compact
isospin-coupled form,

〈 a b c̃ | ŵ | d e f 〉

Jab Mab
Tab MTab

Jd e Md e
Td e MTd e

Jc f Mc f
Tc f MTc f

. (4.135)

Ignoring isospin for the moment, the matrix elements (4.135) can be expressed

6Total angular momentum and isospin projectionsM andMT have a fixed value of 1/2 because
the interaction is independent ofM due to rotational invariance, and through the an isospin av-
eraging the interaction also becomes independent ofMT .

7It is actually the reduced matrix elements that are required.
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in terms of the standard coupled matrix elements (4.134) as

〈 a b c̃ | ŵ | d e f 〉

Jab M ab Jd e M d e

Jc f M c f

= (−1)Jab−M ab

�

Jab Jd e Jc f

−M ab M d e M c f

�

3j

×
∑

J
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ˆJ 2

¨

Jab Jd e Jc f

j f jc J

«

6j

〈 a b c | ŵ | d e f 〉

Jab Jd e

JM JM

.

(4.136)

To proof this, straightforward recouplings lead to

〈 a b c̃ | ŵ | d e f 〉

Jab M ab Jd e M d e
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=
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〈 a b c | ŵ | d e f 〉

Jab Jd e
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,

(4.137)

where the diagonality of the three-body matrix elements in J andM can be ex-
ploited to arrive at

〈 a b c̃ | ŵ | d e f 〉

Jab M ab Jd e M d e

Jc f M c f

=
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J
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Then, the relation [147]
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(4.139)

can be written in the form
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∑
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which allows to simplify Ω to give

Ω = (−1)J−jc+Jab Ĵ −1
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Plugging this into (4.138),
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(4.143)

gives the desired expression (4.136).

It is clear that the above result holds for the isospin as well. Furthermore, since
all projection-quantum-number dependence is in the prefactor

(−1)Jab−M ab

�

Jab Jd e Jc f

−M ab M d e M c f

�

3j

, (4.144)
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the corresponding reduced matrix elements may immediately be defined as

〈ab c̃ ||ŵ ||d e f 〉
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(4.145)

or, including isospin,

〈ab c̃ ||ŵ ||d e f 〉

Jab Tab Jd e Td e
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.

(4.146)

The prefactor (4.144) looks similar to the geometric part of the traditional defini-
tion of reduced matrix elements (4.14), however, the rank of the tensor, which is
zero in this case, does not appear in the Wigner 3j symbol any more. Instead, the
third total angular momentum appears in the 3j symbol, resulting in the require-
ments

|Jab − Jd e | ≤ Jc f ≤ Jab + Jd e , (4.147)

and

|Tab −Td e | ≤ Tc f ≤ Tab +Td e (4.148)

for non-vanishing matrix elements.

When needed, the isospin m -scheme matrix elements are calculated from the
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isospin-coupled ones by straightforward decoupling,

〈 a m ta
b m tb

c̃ m tc
| ŵ | d m td

e m te
f m t f

〉

Jab M ab Jd e M d e

Jc f M c f

=
∑

Tab M Tab

∑

Td e M Td e

∑

Tc f M Tc f

(−1)Tab−M Tab

�

Tab Td e Tc f

−M Tab
M Td e

M Tc f

�

3j

×
�

ta tb Tab

m ta
m tb

M Tab

�

CG

�

td te Td e

m td
m te

M Td e

�

CG

× (−1)tc−mtc

�

tc t f Tc f

m tc
m t f

M Tc f

�

CG

〈ab c̃ ||ŵ ||d e f 〉

Jab Tab Jd e Td e

Jc f Tc f

. (4.149)

Since the total projections M Tab
, M Td e

, M Tc f
are fixed by the m -scheme isospin pro-

jections, the corresponding summations may be removed. The 29 transformation
coefficients T [. . . ]may easily be precomputed and stored, so that the transforma-
tion simply reads

〈 a m ta
b m tb

c̃ m tc
| ŵ | d m td

e m te
f m t f

〉

Jab M ab Jd e M d e

Jc f M c f

=
∑

Tab

∑

Td e

∑

Tc f

T







m ta
m tb

m tc

m td
m te

m t f

Tab Td e Tc f






〈ab c̃ ||ŵ ||d e f 〉

Jab Tab Jd e Td e

Jc f Tc f

. (4.150)

Due to the coupling running across the operator, these matrix elements are not
Hermitean. Nevertheless, they fulfill the symmetry relation

〈d e f̃ ||ŵ ||ab c 〉

Jd e Td e Jab Tab

Jc f Tc f

= (−1) (−1)Jab+Jd e+Jc f (−1)jc+j f −Jc f

× (−1) (−1)Tab+Td e+Tc f (−1)tc+t f −Tc f 〈ab c̃ ||ŵ ||d e f 〉

Jab Tab Jd e Td e

Jc f Tc f

(4.151)

that still allows to exploit the original Hermitecity of the Hamiltonian in standard
coupling.
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4.9.2 Conversion to Reduced Format

In theJ T -coupled scheme, the matrix elements (4.133) are stored for orbital index
combinations of the form

a ≥b ≥ c ,

d ≤ a , e ≤
¨

b : for a = d

d : else
, f ≤

¨

c : for a = d ∧b = d

e : else
. (4.152)

This does not permit to directly access matrix elements with arbitrary orbital in-
dices. Since the purpose of the J T -coupled scheme is the calculation of m -
scheme matrix elements which have simple index permutation relations, this is
not a drawback there. On the other hand, for the reduced matrix elements (4.146)
that enter the spherical Coupled-Cluster equations, it is important to have fast ac-
cess to all possible index combinations. Therefore, only the trivial index swaps
in the first two orbitals in bra and ket as well as Hermitecity are exploited in the
storage scheme for the reduced matrix elements, i.e.,

a ≥b , d ≤ a , e ≤
¨

b : for a = d

d : else
. (4.153)

In order to calculate reduced matrix elements of arbitrary orbital index combina-
tions, standardJ T -coupled matrix elements with the same orbital indices are re-
quired. As mentioned before, these are not directly accessible in the J T -coupled
scheme, so they have to be expressed in terms of index combinations that are avail-
able. Two examples are given by

| p q r 〉

Jpq

JM

= −
∑

Jp r

(−1)jq+jr+Jpq+Jp r Ĵpq Ĵp r

¨

jq jp Jpq

jr J Jp r

«

6j

| p r q 〉
Jp r

JM

(4.154)

and

| p q r 〉

Jpq

JM

= −
∑

Jqr

(−1)jq+jr−Jqr Ĵpq Ĵqr

¨

jp jq Jpq

jr J Jqr

«

6j

| q r p 〉

Jqr

JM

(4.155)
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which can be shown as follows: For (4.154), straightforward angular-momentum
recoupling leads to

| p q r 〉

Jpq

JM

=
∑

Jp r

(−1)jq+jr+Jpq+Jp r Ĵpq Ĵp r

¨

jq jp Jpq

jr J Jp r

«

6j

n

| p r q 〉

Jpq

o(Jpq r )J
.

(4.156)

Exchanging the positions of q and r results in a sign from antisymmetry. There
are no further phases because by exchanging q and r no angular momentum cou-
plings are affected. Therefore, (4.154) follows immediately.

For (4.155), again, straightforward angular-momentum recoupling leads to

| p q r 〉

Jpq

JM

=
∑

Jqr

(−1)jp+jq+jr+J Ĵpq Ĵqr

¨

jp jq Jpq

jr J Jqr

«

6j

| p q r 〉

Jqr

JM

. (4.157)

Using the relation

| p q r 〉

Jqr

JM

= (−1)2 (−1)jp+Jqr−J | q r p 〉

Jqr

JM

, (4.158)

Eq. (4.155) is reproduced.

From each of these two relations another trivial relation can be derived regard-
ing permutations of the first two orbitals on the right-hand side, giving a phase
from antisymmetry and reversion of the coupling direction.

It should be noted that the sign in (4.154) stems from antisymmetry when or-
bitals q and r have been exchanged. It does not stem from angular-momentum
considerations. Therefore, this sign arises only once, even if isospin is considered
as well. On the other hand, the sign in (4.155) does origin from angular-momentum
considerations and will, therefore, cancel with the one from arising in the isospin
transformation. The complete set of relevant transformation expressions, includ-
ing isospin, is given in Figure 4.13.
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| p q r 〉

Jpq Tpq

JMTMT

= − (−1)jp+jq−Jpq (−1)1−Tpq | q p r 〉

Jpq Tpq

JMTMT

| p q r 〉

Jpq Tpq

JMTMT

= −
∑

Jp r

(−1)jq+jr+Jpq+Jp r Ĵpq Ĵp r

¨

jq jp Jpq

jr J Jp r

«

6j

×
∑

Tp r

(−1)1+Tpq+Tp r T̂pq T̂p r

¨
1/2 1/2 Tpq

1/2 T Tp r

«

6j

| p r q 〉

Jp r Tp r

JMTMT

| p q r 〉

Jpq Tpq

JMTMT

=
∑

Jp r

(−1)jp+jq+Jpq Ĵpq Ĵp r

¨

jq jp Jpq

jr J Jp r

«

6j

×
∑

Tp r

(−1)1+Tpq T̂pq T̂p r

¨
1/2 1/2 Tpq

1/2 T Tp r

«

6j

| r p q 〉

Jp r Tp r

JMTMT

| p q r 〉

Jpq Tpq

JMTMT

=
∑

Jqr

(−1)jq+jr−Jqr Ĵpq Ĵqr

¨

jp jq Jpq

jr J Jqr

«

6j

×
∑

Tqr

(−1)1−Tqr T̂pq T̂qr

¨
1/2 1/2 Tpq

1/2 T Tqr

«

6j

| q r p 〉

Jqr Tqr

JMTMT

| p q r 〉

Jpq Tpq

JMTMT

= −
∑

Jqr

Ĵpq Ĵqr

¨

jp jq Jpq

jr J Jqr

«

6j

×
∑

Tqr

T̂pq T̂qr

¨
1/2 1/2 Tpq

1/2 T Tqr

«

6j

| q r p 〉

Jqr Tqr

JMTMT

Figure 4.13: Transformations between different index permutations for the angular momentum

coupling used in the J T -coupled scheme.
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4.9.3 Spherical CCSD Equations for Three-Body Hamiltonians

Apart from the three-body matrix element handling, the spherical formulation
of CCSD for three-body Hamiltonians does not require any new techniques. The
three-body contributions to the normal-ordered Hamiltonian in terms of angular-
momentum-coupled matrix elements read

〈Φ|Ĥ |Φ〉 = 〈Φ|Ĥ |Φ〉2B−
1

6

∑

i j k

̂k

∑

J

Ĵ 〈i j k̃ ||ŵ ||i j k 〉

J J

0

, (4.159)

〈p̃ | f̂ |q 〉
00

= 〈p̃ | f̂ |q 〉
00

2B+
1

2

∑

i j

∑

J

Ĵ 〈i j p̃ ||ŵ ||i j q 〉

J J

0

, (4.160)

and

〈pq |v̂ |r s 〉
J M J M

= 〈pq |v̂ |r s 〉
J M J M

2B− Ĵ −1
∑

i

̂ i 〈pq ı̃ ||ŵ ||r s i 〉
J J

0

, (4.161)

where 〈. . . 〉2B denote the already known contributions from the two-body Hamil-
tonian. The algebraic expressions for the spherical ∆E CCSD, T̂1 and T̂2 amplitude
equations are listed in Appendix C.4. The computational runtime is dominated
by the two diagrams

(T2Dc)

− 1

4
P̂ab (J ) P̂i j (J ) Ĵ −1 ̂−1

i
̂−1

j
(−1)ja+jb−J

∑

c d e k l

∑

J ′ J ′′

(−1)J+J ′+J ′′ Ĵ ′ Ĵ ′′

×
¨

J ′ J ′′ J

ja jb je

«

6j

〈k l ã ||ŵ ||c d e 〉

J ′ J

J ′′

〈c̃ |t̂1|i 〉
00

〈d̃ |t̂1|j 〉

00

〈e b |t̂2|k l 〉

J ′M ′ J ′M ′

(4.162)

and
(T2Eo)

− 1

4
P̂ab (J ) P̂i j (J )

∑

c d e k l m

∑

J ′ J ′′

Ĵ ′ ( Ĵ ′′)2
¨

J ′ J ′′ J

ja jb jd

«

6j

¨

J ′ J ′′ J

ja jc jd

«

6j

× 〈k l m̃ ||ŵ ||c d e 〉

J ′ J ′

0

〈a c |t̂2|i j 〉
J M J M

〈b d |t̂2|k l 〉

J ′M ′ J ′M ′

〈ẽ |t̂1|m 〉
00

, (4.163)

which, therefore, require special attention in the implementation.
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4.10 Spherical ΛCCSD(T)

When attempting to derive the spherical expression for δE (ΛCCSD(T)) from the m -
scheme expression

δE (ΛCCSD(T)) =
1

(3!)2

∑

ā b̄ c̄
ı̄ ̄ k̄

λ̃
ı̄ ̄ k̄

ā b̄ c̄

1

εā b̄ c̄

ı̄ ̄ k̄

t̃ ā b̄ c̄

ı̄ ̄ k̄
, (4.164)

the presence of the denominator εā b̄ c̄

ı̄ ̄ k̄
is troubling at first glance. Each angular-

momentum projection appears in three instead of two matrix elements, and one of
them even appears in a denominator. It is clear that in general such an expression
cannot be disentangled into separate spherical matrix elements. However, εā b̄ c̄

ı̄ ̄ k̄
is

given by a sum of matrix elements of the Fock operator, which is a scalar one-
body spherical tensor operator. Since its matrix elements are independent of the
projection

〈p mp | f̂ |q mq 〉 = 〈p 0| f̂ |q0〉 = − ̂−1
p
〈p̃ | f̂ |q 〉

00

, (4.165)

the denominator may be drawn in front of the projection summations, thus al-
lowing the angular-momentum coupling techniques from the previous sections
to obtain the corresponding spherical expression 8. Setting

εā b̄ c̄

ı̄ ̄ k̄
= εab c

i j k
= − ̂−1

i
〈ı̃ | f̂ |i 〉

00

− ̂−1
j
〈 ̃ | f̂ |j 〉

00

− ̂−1
k
〈k̃ | f̂ |k 〉

00

+ ̂−1
a
〈ã | f̂ |a 〉

00

+ ̂−1
b
〈b̃ | f̂ |b 〉

00

+ ̂−1
c
〈c̃ | f̂ |c 〉

00

(4.166)

the δE (ΛCCSD(T)) correction reads

δE (ΛCCSD(T)) = − 1

(3!)2

∑

ab c
i j k

1

εab c
i j k

∑

J J ′ J ′′

(−1)jc+jk−J ′′

× (−1)J+J ′+J ′′ 〈i j k̃ ||ˆ̃λ||ab c 〉

J J ′

J ′′

〈ab c̃ ||ˆ̃t ||i j k 〉

J ′ J

J ′′

. (4.167)

8Other non-iterative energy corrections such as CR-CC(2,3) [138] also have a denominator
which, however, is not as simple as the one encountered for ΛCCSD(T) which then cannot be
treated exactly in a spherical formulation, see Sections 2.8 and 5.6.
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When evaluating the coupled expressions for the ˆ̃λ, ˆ̃t amplitudes, the permu-
tation operators pose a problem, as, e.g., for the contribution

λ̃
i j k

ab c ← P̂a/b c P̂k/i j

∑

d

v d k
b c
λ

i j

a d (4.168)

to the λ̃ amplitudes. Similar to Section 4.9.2, it is possible to couple the m -scheme
expression for a specific index combination and to work out the transformation
that leads to the antisymmetrized coupled expression. However, this transfor-
mation is quite memory-consuming in practical applications. The most straight-
forward approach for dealing with the permutations is to apply them before the
angular-momentum coupling, and simply couple each resulting term, i.e.,

λ̃
i j k

ab c ←
�

1̂− T̂ab − T̂a c

� �

1̂− T̂i k − T̂j k

� ∑

d

v d k
b c
λ

i j

a d (4.169)

=
�

1̂− T̂ab − T̂a c − T̂i k − T̂j k + T̂ab T̂i k + T̂ab T̂j k

+ T̂a c T̂i k + T̂a c T̂j k

� ∑

d

v d k
b c
λ

i j

a d

=
(λ̃A1)

+
∑

d

v d k
b c
λ

i j

a d

(λ̃ATab )−
∑

d

v d k
a c
λ

i j

b d

(λ̃ATa c )
− . . . . (4.170)

The corresponding spherical expressions are listed in Appendix G.1 9. These
expression make heavy use of X coefficients. Since there are too many of them to
pre-store, only X coefficients for fixed values of J , J ′, J ′′ are calculated and cached
at a time 10. In order to accelerate the computation of these X coefficients, the
relation for Wigner 9j symbols







a b c

d e f

g h j







9j

=
∑

x

(−1)2x (2x +1)

¨

a b c

f j x

«

6j

¨

d e f

b x h

«

6j

¨

g h j

x a d

«

6j

(4.171)

is used in order to compute the X coefficients from pre-cached Wigner 6j sym-
bols. Because of the presence of the coupling coefficients it is no longer possible

9The naming convention is such that, for example, (λ̃ATab
) is the first term contributing to λ̃

after the permutation operator T̂ab has been applied.
10This is of course because the energy correction contributions for fixed i , j , k , J , J ′, J ′′ are cal-

culated at a time.

146 Coupled-Cluster Theory for Nuclear Structure



4.11. Spherical ΛCCSD(T) for Three-Body Hamiltonians

to use optimized matrix-multiplication routines to compute the ˆ̃t , ˆ̃λ amplitudes
for given hole orbitals i , j , k . Therefore, there exists no longer a reason not to con-
strain the particle index summation in the energy formula. A spherical expression
for the energy correction with partially exploited antisymmetry that is used in the
implementation, is given by

δE (ΛCCSD(T)) = − 1

(3!)2

∑

a≥b ;c
i≥j ;k

(2−δab ) (2−δi j )
1

εab c
i j k

×
∑

J J ′ J ′′

(−1)jc+jk−J ′′ (−1)J+J ′+J ′′ 〈i j k̃ ||ˆ̃λ||ab c 〉

J J ′

J ′′

〈ab c̃ ||ˆ̃t ||i j k 〉

J ′ J

J ′′

, (4.172)

which may be confirmed by recognizing that εab c
i j k is invariant under permutations

of orbitals and, for instance,

∑

ab

|ab

Jab

〉 〈ab

Jab

| =
 
∑

a<b

+
∑

a=b

+
∑

a>b

!

|ab

Jab

〉 〈ab

Jab

| (4.173)

=

 
∑

a<b

+
∑

a=b

+
∑

a<b

�

(−1) (−1)ja+jb−Jab

�2

!

|ab

Jab

〉 〈ab

Jab

| (4.174)

=
∑

a≤b

(2−δab ) |ab

Jab

〉 〈ab

Jab

| . (4.175)

4.11 Spherical ΛCCSD(T) for Three-Body Hamiltonians

The ΛCCSD(T) expressions for three-body Hamiltonians are translated into the
spherical formulation analogous to the two-body Hamiltonian case. As before,
the treatment of permutation operators P̂ab/c etc. is not trivial. For the three-
body ΛCCSD(T) a more economic implementation has been chosen than straight-
forwardly expanding the permutation operator P̂ab/c in terms of transpositions,
P̂ab/c = 1̂− T̂a c − T̂b c . As an illustrative example, the expression

(LA)

− P̂ab/c

∑

l

w
i j k

ab l λ
l
c
= −

�

1̂− T̂a c − T̂b c

�∑

l

w
i j k

ab l λ
l
c

(4.176)

may also be written as

(LA1)−
∑

l

w
i j k

ab l λ
l
c

�

LATa c
Tb c

�

− P̂ab

∑

l

w
i j k

b c l λ
l
a

. (4.177)
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The permutation operator P̂ab is easy to deal with because in the spherical scheme
it may simply be replaced by P̂ab (J ) . As a second example, (LE)may be rewritten
as

(LE)

+ P̂ab/c P̂i j /k

∑

d l

w
i j d

ab l λ
k l
c d

=
(LE1)

+
∑

d l

w
i j d

ab l λ
k l
c d

�

LETa c
Tb c

�

+ P̂ab

∑

d l

w
i j d

b c l λ
k l
a d

(4.178)

�

LE
Ti k
Tj k

�

+ P̂i j

∑

d l

w
j k d

ab l λ
i l
c d

�

LE
Ti k ,Tj k
Ta c ,Tb c

�

+ P̂ab P̂i j

∑

d l

w
j k d

b c l λ
i l
a d

,

again involving permutation operators that are most convenient for the transla-
tion into the spherical scheme. The spherical expressions corresponding to these
representations of l

i j k

ab c and M
ab c
i j k can be found in Appendix G.2.

4.12 The CR-CC(2,3) Energy Correction

As reviewed in more detail in Section 2.8, the CR-CC(2,3) energy correction is of
the form

δE (CR−CC(2,3)) =
1

(3!)2

∑

ā b̄ c̄
ı̄ ̄ k̄

l
ı̄ ̄ k̄

ā b̄ c̄
M

ā b̄ c̄

ı̄ ̄ k̄
, (4.179)

where l
ı̄ ̄ k̄

ā b̄ c̄
are the amplitudes of the approximated left-eigenstate operator and

M
ā b̄ c̄

ı̄ ̄ k̄
are the generalized moments of the CCSD equations. As can be seen from

(2.122), the denominator

D ā b̄ c̄

ı̄ ̄ k̄
≡ D ā b̄ c̄

ı̄ ̄ k̄
(3) , (4.180)

where

D ā b̄ c̄

ı̄ ̄ k̄
(k ) = −

k∑

n=1

〈Φā b̄ c̄

ı̄ ̄ k̄
| Ĥ (CCSD)

n
|Φā b̄ c̄

ı̄ ̄ k̄
〉 , (4.181)

(or D(k ) for short) involving one-, two-, and three-body effective Hamiltonian ma-
trix elements, enters the definition of the l

ı̄ ̄ k̄

ā b̄ c̄
amplitudes, such that the energy

expression can be stated as

δE (CR−CC(2,3)) =
1

(3!)2

∑

ab c
i j k

∑

ma mb mc
mi m j mk

N
ı̄ ̄ k̄

ā b̄ c̄

1

D ā b̄ c̄

ı̄ ̄ k̄

M
ā b̄ c̄

ı̄ ̄ k̄
. (4.182)
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Such a denominator containing higher-than-one-body matrix elements is trou-
bling when the energy expression (4.179) is translated into the spherical formula-
tion, because the three-fold appearance of individual orbitals prevents the use of
traditional angular-momentum-coupling techniques. A projection-independent
denominator, on the other hand, may be pulled in front of the projection sum
in (4.182), and the contraction of the N

ı̄ ̄ k̄

ā b̄ c̄
and M

ā b̄ c̄

ı̄ ̄ k̄
elements can be formulated

in angular-momentum-coupled form. One possibility is to truncate the denomi-
nator at the k = 1 level,

D ā b̄ c̄

ı̄ ̄ k̄
≈ D ā b̄ c̄

ı̄ ̄ k̄
(1) = − 〈Φā b̄ c̄

ı̄ ̄ k̄
| Ĥ (CCSD)

1 |Φā b̄ c̄

ı̄ ̄ k̄
〉 , (4.183)

which has the same structure as the denominator encountered in ΛCCSD(T), with
the one-body effective Hamiltonian being replaced by the Fock operator, and is
independent from the projections. However, while D ā b̄ c̄

ı̄ ̄ k̄
(1) is the only denomi-

nator that can be treated exactly in spherical Coupled-Cluster theory, it should
also be attempted to include the higher-order denominators D ā b̄ c̄

ı̄ ̄ k̄
(2) and D ā b̄ c̄

ı̄ ̄ k̄
(3)

into the calculations, at least in an approximate form. The approach pursued in
this work to incorporate denominators beyond D ā b̄ c̄

ı̄ ̄ k̄
(1) is to replace the matrix

elements H p̄ q̄

p̄ q̄ and H p̄ q̄ r̄

p̄ q̄ r̄ entering the definition of D ā b̄ c̄

ı̄ ̄ k̄
(2) and D ā b̄ c̄

ı̄ ̄ k̄
(3) by their

projection-averaged counterpartsH pq

pq
andH pqr

pqr
, according to

H pq

pq
= ̂−2

p
̂−2

q

∑

mp mq

〈p̄ q̄ |Ĥ2|p̄ q̄ 〉 =
∑

J

Ĵ 2 〈pq |Ĥ2|pq 〉
J M J M

(4.184)

H pqr

pqr
= ̂−2

p
̂−2

q
̂−2

r

∑

mp mq
mr

〈p̄ q̄ r̄ |Ĥ3|p̄ q̄ r̄ 〉 (4.185)

=
∑

Jpq

∑

J

Ĵ 2 〈pqr |Ĥ3|pqr 〉

Jpq

J M

Jpq

J M

. (4.186)

The resulting denominators will correspondingly be referred to as D
ab c

i j k
(2) and

D
ab c

i j k
(3), or D(2) and D(3) for short. The coupled matrix elements entering (4.186)

can be obtained from

〈ab i |Ĥ3|ab i 〉

Jab

J M

Jab

J M

= − Ĵ 2
ab

∑

m

¨

jm j i Jab

J j i Jab

«

6j

〈ab | t̂2 |i m 〉

Jab M ab Jab M ab

〈i m |v̂ |ab 〉

Jab M ab Jab M ab

(4.187)
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and

〈i j a |Ĥ3|i j a 〉

Ji j

J M

Ji j

J M

= Ĵ 2
i j

∑

e

¨

je ja Ji j

J ja Ji j

«

6j

〈i j |v̂ |a e 〉

Ji j M i j Ji j M i j

〈a e |t̂2|i j 〉
Ji j M i j

Ji j M i j

. (4.188)

This approximative treatment of the higher-order denominators will be justified
by practical calculations in Section 5.6, where it is compared to results correspond-
ing to an exact treatment of the denominators obtained from an m -scheme imple-
mentation.

For the spherical derivation of the CR-CC(2,3) working equations, the coupling
strategy used for theΛCCSD(T) method in Section 4.10 is too cumbersome because
of the expansion of the permutation operators involved, resulting in many and
rather complex terms to consider in the final expressions. The advantage of this
approach is little memory consumption in actual calculations. For CR-CC(2,3),
an alternative route is followed, where the multi-index permutation operators are
applied to the coupled expressions. In order to do so, a different coupled form of
the energy-correction expression is more convenient, 11

δE (CR−CC(2,3))

=
1

(3!)2

∑

a≥b ;c
i≥j ;k

∑

Jab Ji j
J

(2−δab ) (2−δi j ) 〈i j k ||l̂ ||ab c 〉 〈ab c ||M̂||i j k 〉

JabJabJi j Ji j

J JJJ

, (4.189)

in which the orbitals connected via angular-momentum coupling that are also
the ones that are subject to permutation among each other. The application of
angular-momentum coupling and the permutation operators

P̂ab c = 1̂− T̂ab − T̂a c − T̂b c + T̂ab T̂a c + T̂a c T̂ab (4.190)

and

P̂i j /k = 1̂− T̂i k − T̂j k (4.191)

at orbitals as they occur in (4.189) may then be evaluated using the transforma-
tions P̂ab c (Jab , Jab c ) and P̂i j /k (Ji j , Ji j k ) listed in Figure 4.14. These transformations

11It should be noted that in (4.189) reduced matrix elements are used while the expressions
presented in the following result in the non-reduced matrix elements.

150 Coupled-Cluster Theory for Nuclear Structure



4.12. The CR-CC(2,3) Energy Correction

are quite simple, requiring only 6j coupling coefficients and orbital permutations.
However, all intermediate angular momenta and orbitals that are permuted have
to be held in memory in order to avoid to compute quantities more than once,
making this approach more memory consuming, as mentioned earlier, but on the
other hand more efficient.

Using the transformations from Figure 4.14 the generalized moments may then
be calculated as

〈ab c |M̂|i j k 〉

Jab

J M

Ji j

J M

= P̂ab c (Jab , J ) 〈ab c |T̂|i j k 〉

Jab

J M

Ji j

J M

, (4.192)

with

〈ab c |T̂|i j k 〉

Jab

J M

Ji j

J M

= P̂i j /k (Ji j , J )

¨

1

2
Ĵi j Ĵab

∑

m

(−1)jc+jm+Ji j

¨

jc jm Ji j

jk J Jab

«

6j

〈m c | Ĵ |i j 〉
Ji j M i j

Ji j M i j

〈ab |t̂2|k m 〉

Jab M ab Jab M ab

− 1

2
Ĵi j Ĵab

∑

e

(−1)je+jc+Ji j

¨

jc je Ji j

jk J Jab

«

6j

〈ab |Ĥ2|k e 〉

Jab M ab Jab M ab

〈e c |t̂2|i j 〉
Ji j M i j

Ji j M i j
«

(4.193)

and where the angular-momentum-coupled form of the J intermediate reads

〈m c | Ĵ |i j 〉
J M J M

= 〈m c |Ĥ2|i j 〉
J M J M

+ ̂−1
m

∑

e

〈e c |t̂2|i j 〉
J M J M

〈m̃ |Ĥ1|e 〉
00

. (4.194)

For the derivation of (4.193), the non-trivial identity
∑

mc mk
mm

∑

Mab Mi j
M

�

Jab jc J

M ab mc M

�

CG

�

Ji j jk J

M i j mk M

�

CG

×
�

jm jc Ji j

mm mc M i j

�

CG

�

jk jm Jab

mk mm M ab

�

CG

= − (−1)jc+jm+Ji j Ĵ 2 Ĵi j Ĵab

¨

jc jm Ji j

jk J Jab

«

6j

(4.195)
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∑

ma mb

�

ja jb Jab

ma mb M ab

�

CG

∑

M ab mc

�

Jab jc Jab c

M ab mc M ab c

�

CG

× P̂ab c |a ma b mb c mc 〉

=

¨

1̂− (−1)ja+jb−Jab T̂ab +
∑

J

ˆJ Ĵab

¨

jc jb J
ja Jab c Jab

«

6j

T̂a c T̂JabJ

−
∑

J
(−1)jb+jc+J +Jab ˆJ Ĵab

¨

jc ja J
jb Jab c Jab

«

6j

T̂b c T̂JabJ

−(−1)ja+jb+Jab

∑

J

ˆJ Ĵab

¨

jc ja J
jb Jab c Jab

«

6j

T̂ab T̂a c T̂JabJ

−
∑

J
(−1)jb+jc+J ˆJ Ĵab

¨

jc jb J
ja Jab c Jab

«

6j

T̂a c T̂ab T̂JabJ

«

| a b c 〉

Jab

Jab c M ab c

≡ P̂ab c (Jab , Jab c ) | a b c 〉

Jab

Jab c M ab c

∑

m i m j

�

j i j j Ji j

m i m j M i j

�

CG

∑

M i j mk

�

Ji j jk Ji j k

M i j mk M i j k

�

CG

× P̂i/j k | i m i j m j k mk 〉

=

¨

1̂ +
∑

J

ˆJ Ĵi j

¨

jk j j J
j i Ji j k Ji j

«

6j

T̂i k T̂Ji jJ

−
∑

J
(−1)jk+j j+J +Ji j ˆJ Ĵi j

¨

jk j i J
j j Ji j k Ji j

«

6j

T̂j k T̂Ji jJ

«

| i j k 〉

Ji j

Ji j k M i j k

≡ P̂i j /k (Ji j , Ji j k ) | i j k 〉

Ji j

Ji j k M i j k

Figure 4.14: Transformations required in to obtain angular-momentum coupled and antisym-

metrized expressions for P̂ab c |ā b̄ c̄ 〉 and P̂i j /k |ı̄ ̄ k̄ 〉, as needed in the CR-CC(2,3)

implementation. The action of, e.g., T̂JabJ is understood as replacing all occurences

of Jab on the right by J .
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is helpful. Similarly, the N̂ amplitudes may be calculated according to

〈i j k |N̂ |ab c 〉

Jab

J M

Ji j

J M

= P̂ab c (Jab , J ) 〈i j k |Γ̂|ab c 〉

Jab

J M

Ji j

J M

(4.196)

where

〈i j k |Γ̂|ab c 〉

Jab

J M

Ji j

J M

= P̂i j /k (Ji j , J )

¨

1

2
δJab Ji j

̂−1
k
(−1)jc+jk+Jab+Ji j

×
�

〈 i j |Ĥ2| a b 〉

Jab M ab Jab M ab

〈k̃ |λ̂1|c 〉

00

+ 〈 i j |λ̂2| a b 〉

Jab M ab Jab M ab

〈k̃ |Ĥ1|c 〉

00

�

− 1

2
(−1)jc+je+Ji j

∑

e

Ĵab Ĵi j

¨

jc je Ji j

jk J Jab

«

6j

〈i j |λ̂2|e c 〉

Ji j M i j Ji j M i j

〈k e |Ĥ2|ab 〉

Jab M ab Jab M ab

+ 1

2
(−1)jc+jm+Ji j

∑

m

Ĵab Ĵi j

¨

jc jm Ji j

jk J Jab

«

6j

〈i j |Ĥ2|m c 〉

Ji j M i j Ji j M i j

〈k m |λ̂2|ab 〉

Jab M ab Jab M ab«

.

(4.197)
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4.13 Spherical EOM-CCSD

Excited eigenstates of the Hamiltonian have good angular momentum and pro-
jection, so these quantum numbers may be used to label right eigenstates as

|Ψ(CCSD)
µ,J ,M 〉 (4.198)

and the corresponding left eigenstates as

〈Ψ̄(CCSD)
µ,J ,M | . (4.199)

As in the m -scheme case, these eigenstates will be generated by the action of cor-
responding excitation operators on the CCSD ground state. If T̂(J ) is a spherical
tensor operator, then the right eigenstate transforms as

|Ψ(CCSD)
µ,J ,M 〉 ∼ T̂

(J )
M , (4.200)

but the left eigenstate transforms differently, according to

〈Ψ̄(CCSD)
µ,J ,M | ∼ (−1)J−M

T̂
(J )
−M . (4.201)

Therefore, by introducing excitation operators R̂(CCSD)
µ,J ,M and de-excitation operators

L̂
(CCSD)
µ,J ,M that transform as spherical tensor operators,

R̂
(CCSD)
µ,J ,M , L̂

(CCSD)
µ,J ,M ∼ T̂

(J )
M , (4.202)

the spherical EOM-CCSD ansatz for the excited states then reads

|Ψ(CCSD)
µ,J ,M 〉 = R̂

(CCSD)
µ,J ,M e T̂ (CCSD) |Φ〉 (4.203)

〈Ψ̄(CCSD)
µ,J ,M | = 〈Φ| (−1)J−M

L̂
(CCSD)
µ,J ,−M e−T̂ (CCSD)

, (4.204)

where the excitation index µ will be dropped in this and the following sections.
As before, for EOM-CCSD, the excitation operator R̂(CCSD)

J ,M consists of a zero-, one-,
and two-body part,

R̂
(CCSD)
J ,M = R̂

(J )
0,M + R̂

(J )
1,M + R̂

(J )
2,M . (4.205)

It is clear that the zero-body part cannot generate any angular momentum and is
therefore of the form

R̂
(J )
0,M = δJ 0 δM 0 R0 1̂ (4.206)
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with R0 being a number. This is consistent with the statement that the zero-body
part of the excitation operator is only non-zero for excited states that have the same
symmetries as the ground state which is always a 0+ state in our case. Again, the
excitation operator satisfies an eigenvalue equation for the effective Hamiltonian
of the form

�

Ĥ (CCSD)
open R̂

(CCSD)
J ,M

�

C
|Φ〉 = ω R̂

(J )
M |Φ〉 . (4.207)

Projecting this equation onto the singly and doubly excited m -scheme Slater de-
terminants and coupling the resulting equations leads to the coupled form

〈ã |
�

Ĥ (CCSD)
open R̂

(CCSD)
J ,M

�

C
|i 〉

J−M

= ω 〈ã |R̂(CCSD)
J ,M |i 〉

J−M

(4.208)

〈ab |
�

Ĥ (CCSD)
open R̂

(J )
M

�

C
|i j 〉

Jab M ab Ji j M i j

= ω 〈ab |R̂(CCSD)
J ,M |i j 〉

Jab M ab Ji j M i j

(4.209)

which more conveniently can be formulated in terms of reduced matrix elements
as 12

〈a ||
�

Ĥ (CCSD)
open R̂

(CCSD)
J

�

C
||i 〉 = ω 〈a ||R̂(J )1 ||i 〉 (4.210)

〈ab ||
�

Ĥ (CCSD)
open R̂

(CCSD)
J

�

C
||i j 〉

Jab Ji j

= ω 〈ab ||R̂(J )2 ||i j 〉

Jab Ji j

. (4.211)

The corresponding equations are listed in Appendix H.2.

Analogous considerations for the left eigenvalue problem

〈Φ| (−1)J−M
L̂
(CCSD)
J ,−M Ĥ (CCSD)

open = 〈Φ| (−1)J−M
L̂
(CCSD)
J ,−M

lead to the spherical form

〈i ||L̂(CCSD)
J Ĥ (CCSD)

open ||a 〉 = ω 〈i ||L̂(J )1 ||a 〉 (4.212)

〈i j ||L̂(CCSD)
J Ĥ (CCSD)

open ||ab 〉

Ji j Jab

= ω 〈i j ||L̂(J )2 ||ab 〉

Ji j Jab

, (4.213)

for which the corresponding equations can be found in Appendix H.2.

12Since Ĥ (CCSD)
open is a scalar under rotation,

�

Ĥ (CCSD)
open R̂

(CCSD)
J

�

C
is a spherical tensor operator of

rank J .

Coupled-Cluster Theory for Nuclear Structure 155



Chapter 4. Spherical Coupled-Cluster Theory

The eigenstates of Ĥ (CCSD) are also parity eigenstates. In order to target a spe-
cific parity, the constraints

(−1)l a
!
= (−1)l i , for matrix elements of L̂(J )1 , R̂

(J )
1 (4.214)

(−1)l a+lb
!
= (−1)l i+l j , for matrix elements of L̂(J )2 , R̂

(J )
2 , (4.215)

may be enforced to obtain positive parity states 13, or

(−1)l a

!

6= (−1)l i , for matrix elements of L̂(J )1 , R̂
(J )
1 (4.216)

(−1)l a+lb

!

6= (−1)l i+l j , for matrix elements of L̂(J )2 , R̂
(J )
2 , (4.217)

in order to obtain access the negative parity spectrum.

If one is interested in the J = 0 spectrum only, R̂(CCSD)
0 and L̂

(CCSD)
0 are scalar ten-

sor operators and the spherical EOM-CCSD equations may significantly be sim-
plified. As for CCSD, these equations may be formulated without the use of cou-
pling coefficients except for cross-coupling transformations. Therefore, simpler
code structures and optimized matrix-multiplication routines may again be em-
ployed in order to accelerate the calculations. The scalar EOM-CCSD equations
have also been worked out and can be found in Appendix H.3.

4.14 Spherical Reduced Density Matrices

The m -scheme expression for the EOM-CCSD reduced density matrices in terms
of the spherical tensor operators R̂

(CCSD)
ν ,JR

and L̂
(CCSD)
µ,JL

reads

(ρ
µν
N )

q̄1...q̄n

p̄1...p̄n
= 〈Ψ̄(CCSD)

µ,JL ,M L
| { â †

p̄1
. . . â †

p̄n
â q̄n

. . . â q̄1
} |Ψ(CCSD)

ν ,JR ,M R
〉

= 〈Φ| (−1)JL−M L L̂
(CCSD)
µ,JL ,−M L

e−T̂ (CCSD)

{ â †
p̄1

. . . â †
p̄n

â q̄n
. . . â q̄1

} e T̂ (CCSD)

R̂
(CCSD)
ν ,JR ,M R

|Φ〉

= 〈Φ| (−1)JL−M L L̂
(CCSD)
µ,JL ,−M L

�

{ â †
p̄1

. . . â †
p̄n

â q̄n
. . . â q̄1

}e T̂ (CCSD)
�

C
R̂
(CCSD)
ν ,JR ,M R

|Φ〉 . (4.218)

13This is because the CCSD ground state is a 0+ state.
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This translates into the usual m -scheme expressions in terms of amplitudes r
ā 1...ā n

ı̄ 1...ı̄ n

and l
ı̄ 1...ı̄ n

ā 1...ā n
provided that the following identifications

r ā 1...ā n

ı̄ 1...ı̄ n
= 〈ā 1 . . . ā n |R̂(CCSD)

µ,JR ,M R
|ı̄ 1 . . . ı̄ n 〉 (4.219)

and

l ı̄ 1...ı̄ n

ā 1...ā n
= 〈ı̄ 1 . . . ı̄ n |(−1)JL−M L L̂

(CCSD)
µ,JL ,−M L

|ā 1 . . . ā n 〉 (4.220)

are implied.

The eigenvectors of the effective Hamiltonian need proper normalization in
order to compute the density. All vectors belong to the same excitation index
so this index will be dropped again. The vectors R

(CCSD)
JR

and L
(CCSD)
JL

are normal-
ized such they lead to the correct normalizations in the corresponding m -scheme
expressions for the operators R̂

(CCSD)
JR ,M R

and (−1)JL−M L L̂
(CCSD)
JL ,−M L

. Therefore, the right
eigenvector is rescaled according to

R
(CCSD)
JR

→ 1
p

NRR

R
(CCSD)
JR

(4.221)

with

NRR = (R0)
2+
∑

ā ı̄

〈ā |R̂(JR )

1,M R
|ı̄ 〉 〈ā |R̂(JR )

1,M R
|ı̄ 〉

+
1

4

∑

ā b̄ ı̄ ̄

〈ā b̄ |R̂(JR )

2,M R
|ı̄ ̄ 〉 〈ā b̄ |R̂(JR )

2,M R
|ı̄ ̄ 〉

= (R0)
2+
∑

a i

�

〈a ||R̂(JR )

1 ||i 〉
�2
+

1

4
Ĵ −2

R

∑

ab i j

∑

Jab Ji j

h

〈ab ||R̂(JR )

2 ||i j 〉

Jab Ji j

i2

(4.222)

which follows from
∑

ā ı̄

〈ā |R̂(JR )

1,M R
|ı̄ 〉 〈ā |R̂(JR )

1,M R
|ı̄ 〉 (4.223)

=
∑

a i



(−1)ja−ma

�

ja J i

−ma M m i

�

3j





2
�

〈a ||R̂(JR )

1 ||i 〉
�2

(4.224)

=
∑

a i

�

〈a ||R̂(JR )

1 ||i 〉
�2

(4.225)
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and

1

4

∑

ā b̄ ı̄ ̄

〈ā b̄ |R̂(JR )

2,M R
|ı̄ ̄ 〉 〈ā b̄ |R̂(JR )

2,M R
|ı̄ ̄ 〉 (4.226)

=
1

4

∑

ab i j

∑

Jab Mab
Ji j Mi j

∑

J ′
ab

M ′
ab

J ′
i j

M ′
i j

�

ja jb Jab

ma mb M ab

�

CG

�

j i j j Ji j

m i m j M i j

�

CG

×
�

ja jb J ′ab

ma mb M ′
ab

�

CG

�

j i j j J ′i j

m i m j M ′
i j

�

CG

× (−1)Jab−M ab

�

Jab JR Ji j

−M ab M M i j

�

3j

(−1)J
′
ab
−M ′

ab

�

J ′ab JR J ′i j

−M ′
ab M M ′

i j

�

3j

× 〈ab ||R̂(JR )

2 ||i j 〉

Jab Ji j

〈ab ||R̂(JR )

2 ||i j 〉

J ′
ab

J ′i j

(4.227)

=
1

4
Ĵ −2

R

∑

ab i j

∑

Jab Ji j

h

〈ab ||R̂(JR )

2 ||i j 〉

Jab Ji j

i2

. (4.228)

In a next step, L(CCSD)
JL

is rescaled in order to ensure unity of the state overlap

1 = NLR = 〈Ψ̄(J )M |Ψ
(J )
M 〉 , (4.229)

implying JL = JR ≡ J for the moment, which m -scheme expression is given in
terms of reduced matrix elements as

NLR = (−1)J−M
L0 R0+ (−1)J−M

∑

ā ı̄ ̄

〈ı̄ |L̂(J )1,−M |ā 〉 〈ā |R̂
(J )
1,M |ı̄ 〉 (4.230)

+
1

4
(−1)J−M

∑

ā b̄ ı̄ ̄

〈ı̄ ̄ |L̂(J )1,−M |ā b̄ 〉 〈ā b̄ |R̂(J )1,M |ı̄ ̄ 〉 , (4.231)

NLR = − Ĵ −2
∑

a i

(−1)ja+j i−J 〈i ||L̂(J )||a 〉 〈a ||R̂(J )||i 〉

+
1

4
Ĵ −2

∑

ab i j

∑

Ji j Jab

(−1)J+Ji j+Jab 〈i j ||L̂(J )2 ||ab 〉

Ji j Jab

〈ab ||R̂(J )2 ||i j 〉

Jab Ji j

. (4.232)

Since excited states are considered, L0 = 0 is implied, so the product L0R0 van-
ishes. Eq. (4.232) may also be used to check biorthonormality of the left and right
eigenvectors. A further check of the implementation, at least for JR = 0 states,
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may be done by computing the overlapNΛR of the Λ state with the right eigenvec-
tors [76],

NΛR = R0+δJR 0

∑

a i

〈i ||Λ̂1||a 〉 〈a ||R̂(JR )

1 ||i 〉

+
1

4
δJR 0

∑

ab i j

∑

J

〈i j ||Λ̂2||ab 〉

J J

〈ab ||R̂(JR )

2 ||i j 〉

J J

, (4.233)

which should vanish 14.

Using the spherical expression of the reduced density matrix, the expectation
value of a one-body spherical tensor operator Ô

(J )
M may be expressed as

¬

Ô
(J )
M

¶

µν
= − (−1)J−M Ĵ −2

∑

pq

(−1)jp+jq−J 〈p ||ô (J )||q 〉 〈q ||ρ̂µν (J )N ||p 〉 .

(4.234)

Since it depends on the projection simply by the phase, the calculations can be
simplified by setting

M L =M R =M = 0 . (4.235)

14It is of course always possible to compute the corresponding m -scheme vector from the spher-
ical solution and then check overlaps etc., which is a recommended way to verify things anyway.
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Chapter 5. Results

The overarching goal of this work is to extend the range of ab initio nuclear struc-
ture calculations to medium-mass and heavy nuclei. However, the computational
framework considered in this work has arrived at a level of complexity at which
the interpretation of results is not entirely straightforward. The initial Hamilto-
nian undergoes a renormalization treatment before it enters the many-body calcu-
lation, which itself is a multi-step procedure. Truncations are involved in each of
these steps and it is important to understand in which ways they affect the results
and to carefully monitor their impact in order to be able to estimate the overall
accuracy of the calculations.

Although the accuracy of the Coupled-Cluster method can be estimated from
an analysis of the contributions at different orders of the cluster expansion, a
more direct approach through a comparison of Coupled-Cluster results with ex-
act solutions is favorable, where possible. In Section 5.1, the quasi-exact results
for 16O from the IT-NCSM are compared to the various Coupled-Cluster ground-
state methods considered in this work, and it is concluded that CCSD approach
in combination with triples corrections can compete with the quasi-exact diago-
nalizations for this nucleus.

Using NN-only Hamiltonians eliminates all problems and difficulties related
to the treatment of 3N interactions and allows to demonstrate the capabilities of
the many-body methods detached from technical limitations imposed by the 3N
interactions. In Section 5.2 it is shown that at the two-body level Coupled-Cluster
calculations can be performed across the nuclear chart, and that the input inter-
action is the more limiting factor in such calculations.

In ground-state calculations beyond light nuclei, the standard chiral NN+3N-
full Hamliltonian exhibits strong contributions from SRG-induced beyond-3N in-
teractions which prevent any attempt to estimate the ground-state energies of the
bare NN+3N-full Hamiltonian. In Section 5.3 a reduced cutoff-momentum vari-
ant of the chiral 3N interaction is considered that exhibits a much reduced flow-
parameter dependence and which will then be used for all of the following calcu-
lations beyond light nuclei.

One of the most important truncations related to the inclusion of 3N interac-
tions is an energy-truncation E3max in the 3N matrix elements, which is considered
in Section 5.4.
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Triples corrections are indispensable in the Coupled-Cluster framework by
providing crucial contributions beyond CCSD, in particular for harder interac-
tions. But even for soft interactions, where the contributions are rather small,
triples corrections give important information about the convergence of the clus-
ter expansion. General aspects of triples corrections in nuclear structure calcula-
tions are discussed in Section 5.5 in the context of ΛCCSD(T), and the results for
the CR-CC(2,3) method, including a comparison to ΛCCSD(T), are presented in
Section 5.6.

In practical calculations, the normal-ordered two-body approximation is crit-
ical since, in particular for calculations involving heavy nuclei or triples correc-
tions, the NO2B approximation reduces the computing time by orders of magni-
tude. Since the calculations rely so heavily on this approximation it is worthwhile
to verify its validity for medium-mass nuclei using CCSD and ΛCCSD(T) calcula-
tions for three-body Hamiltonians in Sections 5.7 and 5.8.1.

Heavy nuclei are considered in Section 5.9. Advancing to larger mass num-
bers requires to revisit truncations of the SRG model space, and the generation
of large-Emax matrix element sets. Nevertheless, despite all technical difficulties,
it is shown that reliable ab initio calculations can be performed even for nuclei as
heavy as 132Sn.

Proof-of-principle calculations of excited states using the spherical EOM-CCSD
formalism are attached in Appendix A. In these calculations the EOM-CCSD
framework proves to be capable of describing selected low-lying states, making
it a more favorable approach to such states than the Random Phase Approxima-
tion approach, for instance.

Finally, to extend the calculations beyond common nuclei, in Appendix B neu-
trons trapped in an external potential are considered. These neutron systems al-
low to study the extreme-isospin component of the nuclear interactions and serve
as simple models for neutron-rich nuclei.
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5.1 Comparison of the IT-NCSM with the
Coupled-Cluster Method

Comparing CCSD ground-state energies with ones obtained from the IT-NCSM
allows to estimate the quality of the CCSD approximation to the exact wavefunc-
tion, because converged IT-NCSM results may for present purposes be regarded
as the quasi-exact solutions of the Schrödinger equation. This is not the case for
CCSD, since, even in the limit emax→∞, contributions from triple and higher-rank
excitations are missing in the wavefunction.

A direct comparison of the Nmax and emax model spaces for the IT-NCSM and
CCSD is not immediately possible. For CCSD, a rough estimate of the maximum
unperturbed excitation energy of the basis Slater determinants that is generated
by a operator product (T̂1)

n (T̂2)
m is given by (n+2m )emaxħhΩ, while for the IT-NCSM

the maximum excitation energy is NmaxħhΩ. Therefore, for emax = Nmax, the maxi-
mum excitation energy of CCSD exceeds the one of the IT-NCSM. This is why in
Figure 5.1 the CCSD results seem to converge more quickly. On the other hand,
only some determinants (those that are generated by certain products of excitation
operators) with such high energies are included in the CCSD model space while
the IT-NCSM includes all determinants 1 up to the maximum excitation energy
NmaxħhΩ.

Unlike the IT-NCSM, CCSD is not strictly variational but in practice non-
variational behavior is practically never encountered. Therefore, the CCSD re-
sults converge from above and the converged results are expected to lie somewhat
above the converged IT-NCSM because of the missing beyond-single-and-double
excitations in CCSD. These expectations are confirmed in Figure 5.1, where the
three types of Hamiltonians NN-only, NN+3N-induced, and NN+3N-full with
regular cutoff momentum Λ3N = 500 MeV are considered in a harmonic-oscillator
basis for a sequence of SRG flow parameters. For calculations involving three-
body Hamiltonians, the normal-ordered two-body approximation is used. The
nucleus 16O has been chosen because it is at the upper end of IT-NCSM capa-
bilities and at the same time marks the beginning of the medium-mass regime,
which is the primary interest of this work. Postponing the detailed discussion of
Coupled-Cluster results to later sections, good agreement of CCSD and the IT-
NCSM is apparent. In the model spaces that are considered, CCSD is converged

1More strictly speaking, all relevant determinants.
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beyond any doubt and for the IT-NCSM the extrapolations are trustworthy. For
the IT-NCSM, the largest sources of uncertainties come from the importance trun-
cation for non-vanishing κmin and the extrapolation to infinite model space sizes
Nmax, which are both of the order of 1 MeV. For the Coupled-Cluster calculations,
the truncation of the cluster operator at the T̂2 excitation level represents the major
source of uncertainty of the order of a few MeV, and, consequently, the observed
deviations from CCSD to the IT-NCSM are to a large extend attributable to this
approximative nature of CCSD. While the NCSM is translational invariant from
the outset and the IT-NCSM practically preserves this translational invariance,
spurious center-of-mass contaminations may occur in truncated Coupled-Cluster
calculations. However, these center-of-mass effects are expected to be small [152].

Conclusions about the bare Hamiltonians at SRG flow-parameter α = 0.0 fm4

can often be drawn by analyzing the flow-parameter dependence of ground-state
energies of SRG-evolved Hamiltonians. Here, the different quality of the IT-NCSM
and Coupled-Cluster results have to be considered. Since the IT-NCSM is a quasi-

exact method, the flow-parameter dependence may completely be attributed to
omitted SRG-induced many-body interactions. On the other hand, the truncations
inherent in the CCSD or ΛCCSD(T) approach may cause flow-parameter depen-
dence on their own. A simple example is given by truncation of the cluster opera-
tor: Since softer interactions are expected to induce less correlations, it is expected
that an approximate method such as CCSD performs better for softer interactions
than for harder ones. A second source of flow-parameter dependence is identified
as the E3max cut for three-body matrix elements, as discussed in later sections. In
principle, an E3max truncation should also cause a flow-parameter dependence in
the IT-NCSM, however, for all IT-NCSM model spaces Nmax ≤ 14 used in this work,
the full set of required matrix elements was included.

A more detailed comparison of IT-NCSM and Coupled-Cluster ground-state
energies for 16O – now also including triples corrections to the energy – can be
found in Figure 5.2. In all cases the IT-NCSM energies lie halfway between the
CCSD andΛCCSD(T) results. For the NN+3N-induced Hamiltonian atα= 0.04 fm4,
for instance, CCSD yields -120.2 MeV, the IT-NCSM gives -121.8 MeV andΛCCSD(T)
gives -123.6 MeV. From this follows that CCSD is even a little closer to the IT-
NCSM than is ΛCCSD(T). Thus, a naive look at Figure 5.2 suggests CCSD to be
the more accurate approximation than is ΛCCSD(T). However, due to its varia-
tional character, the true exact result is expected to lie below the IT-NCSM and in
quantum-chemistry applications ΛCCSD(T) tends to overshoot the exact result a
little [153], so the exact result is actually expected to lie in between the IT-NCSM
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Figure 5.1: Comparison of IT-NCSM and CCSD results for 16O and the three Hamiltonians

NN-only, NN+3N-induced, and NN+3N-full for a sequence of SRG flow parame-

ters. The single-particle basis is the harmonic-oscillator basis with oscillator frequency

ħhΩ= 20MeV. For the NN+3N Hamiltonians the NO2B approximation to the 3N in-

teraction was used with E3max = 12.
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Figure 5.2: Comparison of extrapolated IT-NCSM ground-state energies with converged CCSD,

ΛCCSD(T), and CR-CC(2,3) results for 16O. Parameters of the calculations as in

Figure 5.1.

and ΛCCSD(T) results. This expectation is further confirmed by the CR-CC(2,3)
results, which are the more accurate approximation to the exact triples correction,
and which lie halfway between the IT-NCSM and ΛCCSD(T) results, such that
in many cases the IT-NCSM and CR-CC(2,3) ground-state energies agree within
the remaining uncertainties. Furthermore, the spread between the results for the
different many-body methods for individual flow parameters becomes smaller
with increasing flow parameter. This is also expected, because, as already men-
tioned above, for softer interactions approximate many-body methods should per-
form better. In conclusion, for 16O, Coupled-Cluster theory with singles and dou-
bles excitations combined with a corrective treatment of triples is able to provide
ground-state energies that can compete with the quasi-exact diagonalizations that
can be performed within the IT-NCSM.
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5.2 CCSD with SRG-Transformed Chiral Two-Body
Hamiltonians

Calculations using SRG-transformed NN-only Hamiltonians do not provide much
useful physical information due to the strong violation of the unitarity of the SRG
transformation caused by the omission of SRG-induced three- and higher-body
interactions in the NN-only approach. However, by ignoring three-body inter-
actions for the moment, all additional complications related to the handling of
3N interactions are avoided, which for example will later restrict the calculations
using 3N interactions to the medium-mass regime. Furthermore, without 3N in-
teractions, CCSD calculations become inexpensive and, therefore, the NN-only
framework may be used to demonstrate basic capabilities and limitations of the
CCSD implementation itself, without being constrained by limitations of the input
Hamiltonian.

Figures 5.3 and 5.4 summarize NN-only results for the reference- and CCSD
energy for medium-mass and heavy nuclei ranging from 16O to 208Pb, using both,
the harmonic-oscillator (HO) and Hartree-Fock (HF) basis. Considering the refer-
ence energies in panel (a), it is apparent that for the HO basis it increases rapidly
as one departs from the optimal oscillator frequency, while for the HF case the
reference energy is absolutely stable for the whole frequency range considered. It
is, therefore, striking to find in panel (b) only small deviations in the final CCSD
results in the HO and HF case, for frequencies up to ħhΩ = 32MeV. An extreme
example for 208Pb is given in Table 5.1: The CCSD energies are all very similar
for the HO and HF basis and for both oscillator frequencies ħhΩ= 20 and 36 MeV.
The reference energy, however, differs by up to more than 7 GeV (!). So, at fre-
quency ħhΩ = 36 MeV, CCSD contributes about 8 GeV to the energy for the HO
basis, while for the HF basis it is only less than 900 MeV, both arriving at the same
result within about 200 MeV. This may be regarded as a demonstration of Thou-
less’ theorem [154].

The plots in panel (c) of Figures 5.3 and 5.4 show the convergence of CCSD
energies in HF basis with respect to the model space size emax at the optimal oscil-
lator frequency for the individual nuclei. All nuclei show a similar convergence
pattern, where at least in emax = 14 model spaces the results are finally fully con-
verged. Therefore, in the NN-only framework, it is possible to obtain converged
CCSD results all over the nuclear chart. This is made possible by the spherical
formulation of CCSD. For the 208Pb calculations at emax = 14, for example, the m -
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Figure 5.3: Reference energy and CCSD ground-state energy per nucleon for the nuclei 16O, 40Ca

and 56Ni, using SRG-transformed chiral N3LO two-nucleon interactions for a range

of flow parameters. Plots (a) and (b) are obtained from an emax = 14 model space, while

for (c) the optimal HO frequencies ħhΩ= 20 MeV (for 16O) and ħhΩ= 24 MeV (for 40Ca,
56Ni) are used, which correspond to minima in both, the HO and the HF basis. Open

symbols represent the results for the results harmonic-oscillator basis, full symbols the

Hartree-Fock basis.
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Figure 5.4: As in Figure 5.3 for nuclei 114Sn, 132Sn and 208Pb. In each case the optimal oscillator

frequency is ħhΩ= 24 MeV.
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208Pb :
ħhΩ(HO) [MeV] Eref [MeV] E (CCSD) [MeV]

20 -1819 -3130
36 +5025 -2950

ħhΩ(HF) [MeV] Eref [MeV] E (CCSD) [MeV]
20 -2300 -3157
36 -2171 -3035

Table 5.1: Reference energies and CCSD ground-state energies for 208Pb for oscillator frequencies

ħhΩ = 20 MeV and 36 MeV, highlighting Thouless’ theorem.

scheme formulation would require to solve the CCSD equations for about 300 bil-
lion T̂ amplitudes – which is way beyond present capabilities. For the spherical
scheme, on the other hand, the number of amplitudes totals to about 600 million,
which can be dealt with using modern computers. As mentioned above, compar-
ison with the experimental values at this stage is pointless because of the massive
flow-parameter dependence of the energies that does not allow to draw any con-
clusion about the bare Hamiltonian.

In summary, spherical CCSD with SRG-transformed NN-only Hamiltonians
has been demonstrated to be practically applicable to nuclei over a large mass
range. This is due to the fact that the interactions considered here are quite soft
and well-behaved from a computational point of view. Obviously, (at least) SRG-
induced 3N interactions have to be included in the calculation in order to possibly
get rid of the flow-parameter dependence and it is expected that at least the chiral
3N interaction needs to be included in any quantitative calculation. However, once
3N interactions are included, the resulting interactions get more difficult to deal
with compared to the NN-only case. For example, the CCSD equations usually
do not converge for the HO basis if the oscillator frequency does not coincide with
the optimal frequency, making using the HF basis mandatory.
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5.3 Reduced-Cutoff Chiral Three-Body Interaction

The chiral 3N interaction [155] with regulator cutoff-momentum Λ3N = 500 MeV
can successfully be employed to describe light nuclei [17]. For example, IT-NCSM
results for 4He ground-state energies are presented in Figure 5.5 (top). For the
NN-only Hamiltonian, the converged energies show a strong dependence on the
flow parameter. Therefore, it can be concluded that the unitarity of the SRG trans-
formation is strongly violated by omitting all induced three-and higher-body in-
teractions during the SRG flow. The systematics of the flow-parameter depen-
dence is such that the energy moves downwards for increasing flow parameter.
So, from the NN-only plot in Figure 5.5, the bare (untransformed) result for the
chiral NN interaction is expected to lie well above the experimental value but the
strong flow-parameter dependence prohibits any more detailed prediction. Once
the SRG-induced 3N interactions are included in the calculations by using the
NN+3N-induced Hamiltonian, the flow-parameter dependence of the converged
energies practically vanishes. This implies that – for the range of flow param-
eters considered here – induced four-body interactions are not relevant for the
description of the 4He ground state. Consequently, the NN+3N-induced calcula-
tions can be seen as unitarily equivalent to calculations with the chiral NN inter-
action, which, however, misses the experimental value considerably. The chiral
N3LO two-nucleon interaction is, therefore, not sufficient for reproducing the 4He
ground-state energy. This is not too surprising since chiral 3N interactions al-
ready appear at N2LO in the Weinberg power counting, which have not yet been
taken into account. Once these chiral 3N interactions are included via the NN+3N-

full Hamiltonian, the ground-state energies still show no flow-parameter depen-
dence which allows to make a prediction for the bare NN+3N-full Hamiltonian
and which also shows good agreement with the experimental value. The flow-
parameter independence of the NN+3N-full results provide the important infor-
mation that SRG-induced four-body interactions out of the initial 3N interaction
are not relevant in this case.

For the heavier nucleus 12C shown in Figure 5.5 (middle), the situation is sim-
ilar. The results for the NN-only Hamiltonian show a strong flow-parameter de-
pendence and thus do not allow for any predictions for the bare chiral NN in-
teraction. Inclusion of the induced 3N interaction eliminates the flow-parameter
dependence but as in the case of 4He, the prediction for the chiral NN interac-
tion is clearly underbound with respect to experiment. The effect of the initial
chiral 3N interaction moves the results towards the experimental value, with a
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Figure 5.5: IT-NCSM ground-state energies for the nuclei 4He, 12C and 16O for the three Hamil-

tonians NN-only, NN+3N-induced, and NN+3N-full. For 16O, also the results for

the 400 MeV cutoff-momentum NN+3N-full Hamiltonian are shown (open symbols),

which exhibit a much reduced flow-parameter dependence. The calculations were per-

formed using a HO basis with ħhΩ = 20 MeV and with full inclusion of 3N interactions.
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slight overbinding for the flow-parameter values considered here. But since for
12C there is an emerging flow-parameter dependence for the NN+3N-full results,
no safe statement can be made for the bare NN+3N-full Hamiltonian. It is clear
that the violation of unitarity of the SRG transformation is caused by the omission
of induced 4N interactions out of the initial 3N – the initial NN interaction can be
ruled out as a source of sizeable induced 4N because of the absent flow-parameter
dependence of the energies for the NN+3N-induced Hamiltonian.

This flow-parameter dependence of the NN+3N-full results is enhanced for
increasing mass number. Considering 16O, in Figure 5.5 (bottom), the results for
the standard NN+3N-full Hamiltonian (full symbols in the NN+3N-full plot), with
the Λ3N = 500 MeV cutoff momentum in the regularization function [155], shows
a flow-parameter dependence of about 10 MeV for the particular range of flow
parameters considered here. As for 12C, the flow-parameter dependence is eas-
ily found to be caused by at least 4N interactions induced out of the initial 3N.
At this point all predictive capabilities for the NN+3N-full Hamiltonian are lost
within the framework used so far. The inclusion of induced 4N interactions in
order to reduce the flow-parameter dependence is computationally too demand-
ing and, therefore, a modified interaction is used in the following: The NN+3N-full
plot for 16O also shows results for a reduced-cutoff interaction (open symbols), in
which the regulator cutoff-momentum of the chiral 3N has been lowered from
its standard value Λ3N = 500MeV to Λ3N = 400MeV and the low-energy constant
cE has been refitted to reproduce the 4He binding energy, while the other LEC
that is exclusively related to chiral 3N interactions at N2LO, cD , which is fitted to
the triton half-life, remains unchanged. The reason why cD has not to be adapted
to the new parameters of the interaction is that altering the 3N cutoff or cE does
not affect the results for the triton half-life. The values of the LECs for various
choices of Λ3N can be found in Table 5.2. The main motivation for lowering the
cutoff momentum is the observation that this way off-diagonal matrix elements
in the 3N interaction, which are a major source of induced many-body interac-
tions, get suppressed (a detailed discussion can be found in [156,157]). Using this
400 MeV cutoff interaction, the 16O ground-state energies show a much reduced
flow-parameter dependence, which is the purpose of reducing the 3N cutoff in
the first place, as discussed below. Furthermore, the ground-state energies now
lie on top of the experimental value. Later on, for calculations of heavy nuclei in
Section 5.9.3, also theΛ3N = 350MeV interaction will be used to study SRG-induced
many-body interactions.
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Λ3N c1 c3 c4 cD cE

[MeV] [GeV−1] [GeV−1] [GeV−1]
500 –0.81 –3.2 5.4 –0.2 –0.205
450 –0.81 –3.2 5.4 –0.2 –0.016
400 –0.81 –3.2 5.4 –0.2 0.098
350 –0.81 –3.2 5.4 –0.2 0.205

Table 5.2: Low-energy constants that parametrize the chiral 3N interaction, for various choices of

the 3N regular momentum cutoffΛ3N [86]. The constants c1, c3, and c4 are fixed through

the chiral NN interaction where they enter as well, and cD also remains unchanged

because it is fitted to the triton halflife which is not affected by altering Λ3N. The final

LEC cE is fitted to reproduce the 4He ground-state energy.

Since for the nucleus 16O and beyond only the reduced-cutoff interaction al-
lows to obtain more or less flow-parameter independent ground-state energies, it
will be the customary choice for medium-mass nuclei. In Figures 5.6 and 5.7 still
both, the standard and reduced-cutoff interaction are used for comparison, but in
the following sections only the reduced-cutoff interaction will be considered. Fig-
ures 5.6 and 5.7 show CCSD ground-state energies for the medium-mass closed-
shell nuclei 16,24O and 40,48Ca, using a harmonic-oscillator basis at fixed oscillator
frequency ħhΩ= 20MeV. The 3N interactions are included via NO2B, but the large
model spaces considered here require an additional cutoff parameter E3max in the
three-body matrix elements, as discussed in more detail in Section 5.4. For the
present results E3max = 14 was used. Although this cut is in principle expected to
affect the results – particularly for the heavier nuclei 40,48Ca – on the large scales
used for the plots such E3max-effects do not play a significant role. Figures 5.6
and 5.7 show essentially the same qualitative behavior as the IT-NCSM results for
16O, only on a larger scale. In all cases, the NN+3N-induced Hamiltonian pro-
vides results that are practically flow-parameter invariant and tend to underbind.
The NN+3N-full Hamiltonian with standard 500 MeV regularization of the chiral
3N interaction (full symbols in the NN+3N-full plot) shows a very strong flow-
parameter dependence and for the flow parameters considered here, the evolved
NN+3N-full Hamiltonians show massive overbinding compared to experiment,
which is even comparable to the NN-only case. On the other hand, the NN+3N-
full Hamiltonian with the reduced-cutoff 3N interaction (open symbols in the
NN+3N-full plot) provides results with a much reduced flow-parameter depen-
dence at the level of the NN+3N-induced results, even for the heaviest nucleus
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Figure 5.6: Ground-state energies from CCSD for 16O and 24O for the NN-only, NN+3N-induced,

and NN+3N-full Hamiltonians. For the NN+3N-full Hamiltonian, the standard reg-

ularization (Λ3N = 500 MeV) and the low-cutoff variant (Λ3N = 400 MeV, open sym-

bols) are shown. The underlying single-particle basis is the harmonic-oscillator basis

and for all 3N Hamiltonians the NO2B approximation with E3max = 14 is used. Figure

taken from [92].
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Figure 5.7: As in Figure 5.6 for the nuclei 40Ca and 48Ca.

Coupled-Cluster Theory for Nuclear Structure 177



Chapter 5. Results

under consideration. Therefore, it is possible to use these results to make predic-
tions for the reduced-cutoff NN+3N-full Hamiltonian. Furthermore, the agree-
ment with the experimental values is impressive: Except for 40Ca, for which the
NN+3N-induced energies already lie on top of experiment, all theoretical values
are very close to the experimental ones, highlighting the predictive power of chi-
ral Hamiltonians, even in the medium-mass regime. The good performance of
the reduced-cutoff interaction is remarkable, considering the fact that no infor-
mation beyond 4He went into its construction. In the following sections various
aspects of this interaction are investigated, also using more advanced many-body
techniques.

5.4 Relevance of the E3max Cut

Calculations using three-body Hamiltonians are challenging because of the enor-
mous number of matrix elements involved. In most cases, a full representation of
the three-body Hamiltonian in an emax-truncated single-particle basis can neither
be handled in the many-body calculation nor can it be generated in the first place.
Therefore, an additional truncation parameter is required in order to reduce the
representation of the Hamiltonian to a manageable size. As already mentioned
in Section 5.3, the representation of the three-body Hamiltonian is constrained to
matrix elements 〈pqr |ŵ |s t u 〉 satisfying an energy truncation of the form

max
�

ep + eq + er , es + e t + er

�

≤ E3max (5.1)

where E3max is the truncation parameter and e i = 2n i+l i denotes the single-particle
harmonic-oscillator energy quantum number. Current typical values of E3max are
at the order of 14. Since for an emax = 12 calculation the maximum allowed value
of ep + eq + er would be 36, E3max = 14 represents a potentially serious cut whose
impact on the results of many-body calculations requires careful inspection.

It should be noted that the following discussion is based on 3N matrix elements
evolved in the SRG model space corresponding to the so-called 40C parametriza-
tion (see Section 5.9.2) used for most of the medium-mass calculations presented
in this work or in calculations of other research groups [17, 29, 30, 86, 92, 96, 158],
which makes it worthwhile to investigate the properties of these matrix elements.
However, as discussed in Section 5.9.2, the 40C model space is not sufficient any
more for heavier nuclei. As a consequence, for the 40C SRG model space parame-
trization, the E3max effect is artificially enhanced for the heavier nuclei considered
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Figure 5.8: Comparison of CCSD ground-state energies for the nuclei 16O, 40Ca, 48Ca, and 56Ni for

the NN+3N-induced and NN+3N-full Hamiltonians in NO2B approximation with

E3max = 12 and E3max = 14. The calculations were performed in a HF basis with

ħhΩ = 24 MeV and emax = 12.
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in this section. This issue is again addressed in Section 5.9.2, where results for
considerably larger SRG model spaces are presented.

Figure 5.8 shows a compilation of CCSD ground-state energies for medium-
mass nuclei ranging from 16O to 56Ni, for the NN+3N-induced and NN+3N-full
Hamiltonians in NO2B approximation and the usual range of SRG flow parame-
ters. The calculations have been performed for E3max = 12 as well as E3max = 14, and
the effect of the E3max cut is estimated by the deviation of the two sets of results.
The effect of E3max clearly depends on how far the Hamiltonian has been evolved:
Considering the softest (α= 0.08 fm4) Hamiltonians, for all but the heaviest nuclei
56Ni the impact of E3max is practically negligible. For 56Ni, the E3max cut has an ef-
fect of about of 3 MeV, so it is still small compared to the total energy scale of about
500 MeV. For the harder interactions, the E3max cut shows sizeable effects already
for the lighter nuclei, where the hardest interactions show the largest change in
the energies. For 56Ni and α= 0.02 fm4, for instance, the ground-state energies for
the NN+3N-induced Hamiltonian change about 12 MeV, which corresponds to
about 2.5 % of the total binding energy.

For the CCSD ground-state energies, there is also an interesting systematic ef-
fect of E3max on the flow-parameter dependence. As is apparent from Figure 5.8,
for the NN+3N-induced Hamiltonian the flow-parameter dependence decreases
when E3max is increased and it is an interesting question how much the flow-
parameter dependence will be eventually reduced in the E3max→∞ limit. For the
NN+3N-full Hamiltonians, on the other hand, the flow-parameter dependence
even gets increased. This behavior is a consequence of the ordering of the CCSD
ground-state energies with respect to the SRG flow parameter. According to Fig-
ure 5.7, for instance, the three-body parts of the NN+3N-induced and NN+3N-full
Hamiltonians are repulsive. Consequently, the ground-state energies are expected
to move upwards as more of the 3N interactions is included by increasing E3max.
Furthermore, since for the NN+3N-induced Hamiltonian the CCSD energies for
smaller flow parameters lie below the energies for larger flow parameters and
harder Hamiltonians imply larger E3max effects, the flow-parameter dependence is
reduced. For the NN+3N-full Hamiltonian, on the other hand, the CCSD energy
ordering is such that the energies for the harder Hamiltonians already lie above
the energies for the softer Hamiltonians and, therefore, increasing E3max only en-
larges the flow-parameter dependence. As can exemplarily be seen in Figure 5.7,
the contribution of the induced 3N is much larger than it is for the low-cutoff ini-
tial 3N. Therefore, it might be assumed that relative changes in the induced 3N
may be much more visible than relative changes in the initial 3N. Consequently,
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∆(E3max) ∆(E3max)

α [fm4
] NN+3N-induced NN+3N-full

[%] [%]
0.02 0.5 0.7

16O 0.04 0.2 0.4
0.08 0.0 0.1
0.02 1.2 1.1

48Ca 0.04 0.5 0.5
0.08 0.2 0.0

Table 5.3: Comparison of the difference in the CCSD ground-state energies for E3max = 12 and

E3max = 14 for the NN+3N-induced and NN+3N-full Hamiltonian in NO2B approxi-

mation, for the nuclei 16O and 48Ca. The calculations were performed using a HF basis

with ħhΩ = 24 MeV and at emax = 12.

ground-state energies for the NN+3N-induced and the NN+3N-full Hamiltonian
should show a similar behavior, since the induced 3N interaction is of course also
included in the latter. And in fact, the changes in the ground-state energies with
increasing E3max for NN+3N-induced and NN+3N-full are almost identical, as is
evident from Table 5.3, hinting at the induced 3N as the driving cause.

The absolute values of the difference of the ground-state energies correspond-
ing to E3max = 12 and E3max = 14 grow with increasing mass number, but so do
the overall energy scales. Thus, it cannot immediately be determined from Fig-
ure 5.8 how the relative effect of E3max to the ground-state energies evolves with
mass number. To this end, Figure 5.9 shows the relative size ∆(E3max) of the E3max

effect normalized to the E3max = 14 ground-state energy, given by

∆(E3max) =
|E (E3max = 14)− E (E3max = 12)|

E (E3max = 14)/100
% . (5.2)

The relative E3max effect ∆(E3max) shows a systematic increase with mass number
so that relative accuracy is increasingly lost as one goes to larger masses. For
the hardest (α = 0.02 fm4) NN+3N-induced Hamiltonian, the relative E3max effect
ranges from 0.5 % for 16O to 2.5 % for 56Ni, which is already twice as large as for
48Ca (1.2 %). For the NN+3N-full Hamiltonian, the relative size grows from 0.5 %
for 16O to about 2 % for 56Ni. For the NN+3N-full Hamiltonian at α = 0.02 fm4,
there is no such drastic increase compared to the NN+3N-induced case, but there
is for α= 0.04 fm4, which triples its size going from 48Ca to 56Ni. Therefore, using
hard interactions beyond the mass region A ≈ 60, the E3max = 14 cut is expected to
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Figure 5.9: Change of CCSD ground-state energies for the NN+3N-induced and the NN+3N-

full Hamiltonian in NO2B approximation when increasing E3max = 12 to E3max = 14,

normalized to the E3max = 14 ground-state energy. The calculations were performed

using a HF basis with ħhΩ = 24 MeV and at emax = 12.

become a major source of uncertainty 2. The soft α = 0.08 fm4 Hamiltonians also
show a systematic increase but the effect itself is considerably smaller so that even
for 56Ni the relative E3max effect does not exceed 0.5 %.

5.5 The ΛCCSD(T) Energy Correction

At the level of CCSD, the cluster expansion is not yet sufficiently converged in or-
der for higher-excitation rank effects to be negligible. In this section, ΛCCSD(T) is
used to assess the size of triples corrections. Since ΛCCSD(T) tends to overshoot
the actual triples correction [153], it gives a more conservative estimate of triples-
and higher-excitation contributions than, e.g., CR-CC(2,3) would do. Neverthe-
less, ΛCCSD(T) and CR-CC(2,3) give sufficiently similar results so that the conclu-
sions drawn in this section do not depend on the actual triples correction method
used.

Figure 5.10 shows the convergence of ground-state energies from CCSD (open
symbols) and ΛCCSD(T) (full symbols), for medium-mass nuclei for the NN+3N-
induced and low-cutoff NN+3N-full Hamiltonian with respect to the model-space
size. As in the case of CCSD, the ΛCCSD(T) energies are sufficiently converged in

2In Section 5.5 it is shown that the relative importance of ΛCCSD(T) grows with a slower rate
than the relative E3max effect, so E3max is presumably the more limiting factor for A > 60 nuclei
regarding accuracy.
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order to allow extrapolations to the emax→∞ limit. In Figure 5.11, the CCSD and
ΛCCSD(T) results from the largest model spaces are compared. For the NN+3N-
full Hamiltonian at α = 0.02 fm4, the ΛCCSD(T) correction provides 6 MeV more
binding energy for 16O, and 25 MeV for 48Ca. For the soft Hamiltonians at α =
0.08 fm4, the binding energy is increased by 1.5 MeV for 16O and 10 MeV for 48Ca.
Therefore, in all cases – even for the softest Hamiltonians – the ΛCCSD(T) energy
correction gives significant contributions. Since for the NN+3N-induced Hamil-
tonian the CCSD energies corresponding to smaller values of α already lie below
energies for larger α, and smaller α cause even larger ΛCCSD(T) energy correc-
tions, the flow-parameter dependence is increased after including the ΛCCSD(T)
correction. On the other hand, for the NN+3N-full Hamiltonian the ordering of
the CCSD results regarding flow parameter is reversed and the flow-parameter
dependence is decreased by ΛCCSD(T). So the triples excitations correction has
the opposite effect on the flow-parameter dependence than increasing the E3max

cut has.

Assuming fast convergence of the cluster expansion, which is justified by, e.g.,
Figure 5.19 in Section 5.8.1, δE (ΛCCSD(T)) dominates over higher-order corrections,
i.e.,

�
�δE (ΛCCSD(T))

�
� ≫

�
�Eexact− E (ΛCCSD(T))

�
� . (5.3)

Therefore, the size of δE (ΛCCSD(T)) may be used to estimate the size of the contribu-
tion of the neglected higher excitation ranks of the cluster operator. Figure 5.12
shows the relative importance of the ΛCCSD(T) correction normalized to the total
energy according to

∆(ΛCCSD(T)) =

�
�δE (ΛCCSD(T))

�
�

E (ΛCCSD(T))/100
% . (5.4)

For all nuclei considered, δE (ΛCCSD(T))makes up 3-6 % of the total binding energy for
the α = 0.02 fm4 Hamiltonians while its contributions for the α = 0.08 fm4 Hamil-
tonians are only about 1-2 %. Thus, using soft Hamiltonians, quite accurate cal-
culations can be performed, even for the heavier nuclei. Unlike the E3max cut, the
relative uncertainties due to the cluster truncation seem not to increase strongly
with mass number. So the method should be applicable with similar relative ac-
curacy even in the A > 60 mass region.

The ΛCCSD(T) correction may also be used to study the feasibility of CCSDT.
Unlike ΛCCSD(T), including the full triple excitations via CCSDT leads to the non-
linear CCSDT equations which have to be solved iteratively, which requires to store
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The calculations employed a HF basis. Figure taken from [92].
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Figure 5.12: Relative importance of the ΛCCSD(T) energy correction, normalized to the total en-

ergy E (ΛCCSD(T)).

all T̂3 amplitudes. Since there are too many of them – even in the spherical scheme
– some kind of truncation has to be introduced. An obvious choice is an E3max(T̂3)

cut, analogous to the E3max used for three-body matrix elements. This way the
part of T̂3 that generates the energetically lowest excitations would be considered
which are also expected to be the most relevant for a ground-state description.
Since δE (ΛCCSD(T)) is given by

δE (ΛCCSD(T)) =
1

(3!)2

∑

ab c
i j k

λ̃
i j k

ab c

1

εab c
i j k

t̃ ab c
i j k

, (5.5)

where t̃ ab c
i j k are approximations to the amplitudes t ab c

i j k of T̂3, the effect of the E3max(T̂3)

cut can be simulated inΛCCSD(T) by constraining the t̃ ab c
i j k accordingly. IfΛCCSD(T)

is a good approximation to CCSDT, one may assume that both methods show a
similar E3max(T̂3)-dependence,

E (CCSDT)
�

E3max(T̂3)
�

≈ E (ΛCCSD(T))
�

E3max(T̂3)
�

(5.6)

and so E (ΛCCSD(T))(E3max(T̂3)) may be used to find the relevant E3max(T̂3) range. Fig-
ure 5.13 shows the E3max(T̂3)-dependence of δE (ΛCCSD(T)) for 16O with the NN+3N-
full Hamiltonian which is already very soft at α = 0.08 fm4. The energy correc-
tion is sufficiently converged for E3max(T̂3)-values of about 25 which is beyond
present capabilities to store the corresponding amplitudes. Very optimistic es-
timates would allow for E3max(T̂3) = 20 calculations, which captures a significant
portion of the correction but would not allow to detect convergence, even for this
light nucleus and large SRG flow parameter.
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5.6 The CR-CC(2,3) Energy Correction

Nuclear Coupled-Cluster calculations rely heavily on the spherical formulation of
the theory. Therefore, as already discussed in Section 4.12, the presence of two-
and three-body matrix elements of the effective Hamiltonian that enter the defi-
nition of the denominator appearing in the CR-CC(2,3) energy expression (4.182)
does not immediately allow a spherical formulation. However, as pointed out in
Section 4.12, the use of projection-averaged matrix elements (4.184) and (4.186) is
a promising way to overcome this problem.

Therefore, it is important to estimate the errors introduced by the approximate
treatment of the denominator. Figure 5.14 illustrates the accuracy of the proposed
approximation, where a m -scheme implementation, in which the denominator
can be treated exactly, is used for comparing the results for the exact denomina-
tors D(2) and D(3)with their projection-averaged counterparts D(2) and D(3). The
left panels show for 16O and the NN-only as well as the NN+3N-full Hamilto-
nian the CR-CC(2,3) energy corrections δE (CR−CC(2,3)) for the different denomina-
tors including up to one- (D(1)), two- (D(2)), or three-body (D(3)) effective Hamil-
tonian matrix elements. For the present discussion it is sufficient to note that the
size of δE (CR−CC(2,3)) is about –0.3 MeV and –1.5 MeV for the NN-only Hamilto-
nian at emax= 2 and emax= 4, respectively, and about –0.8 MeV and –2.0 MeV for
the NN+3N-full Hamiltonian at emax= 2 and emax= 4, respectively. The error in-
troduced by the projection average, defined as the difference of δE (CR−CC(2,3)) using
the exact and the projection-averaged denominator, is much smaller, as shown
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Deviations introduced by using the angular-momentum-projection averaged vari-

ants D(2) and D(3) of the denominators D(2) and D(3). These deviations are com-

pletely negligible compared to the size of δE (CR−CC(2,3)), consequently, the CR-CC(2,3)

method can be accurately formulated in the spherical scheme. The calculations were

performed in a HF basis with ħhΩ = 24 MeV, and the 3N interactions were included

via NO2B with E3max = 14.
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in the right panels of Figure 5.14, with deviations of about –0.02 MeV for the
NN-only Hamiltonian and about –0.04 MeV for the NN+3N-full Hamiltonian, for
both model space sizes considered. In conclusion, the projection-averaged form
of the denominator in (4.182) constitutes a legitimate approximation to the exact
treatment and opens the possibility for a spherical formulation of the CR-CC(2,3)
method.

Figure 5.15 shows on the left a comparison of CR-CC(2,3) results to theΛCCSD(T)

energy correction. Both methods give comparable results but also show noticeable
deviations for harder interactions. For instance, for α = 0.02 fm4 these deviations
are about 1 MeV for 16O and 2 MeV for 24O, while the total ΛCCSD(T) energy cor-
rection is –5.4 MeV and –8.2 MeV, respectively. The degree of deviation of both
methods is not unexpected, considering the approximative nature of ΛCCSD(T)

compared to the CR-CC(2,3) approach. Furthermore, the observation that the re-
sults for δE (ΛCCSD(T)) lie below δE (CR−CC(2,3)) is consistent to findings in quantum-
chemistry, where ΛCCSD(T) tends to overshoot the exact triples correction [153].
A similar comparison of ΛCCSD(T) and CR-CC(2,3) for heavier nuclei can be found
in Figure 5.26 in Section 5.9.3. On the right of Figure 5.15 the CR-CC(2,3) energy
correction, using different choices of the denominator, is compared to ΛCCSD(T)

in the emax= 12 model space. Most strikingly, the three-body effective Hamilto-
nian matrix elements in the denominator have no measurable effect on the triples
correction and may safely be neglected. The CR-CC(2,3) results using the denom-
inator D(1), involving one-body matrix elements only, lie between the D(2) results
and ΛCCSD(T). Thus, it may be speculated that one of the reasons why ΛCCSD(T)

overshoots the exact triples correction may be the absence of contributions com-
parable to the two-body effective Hamiltonian matrix elements in the CR-CC(2,3)
denominator. Additional comparisons of CR-CC(2,3) ground-state energies with
ΛCCSD(T) for heavier nuclei can be found in Section 5.9.3.
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Figure 5.15: Left: Comparison of the CR-CC(2,3) (full symbols) ground-state energies for 16O

and 24O to ΛCCSD(T) (open symbols) ground-state energies. CCSD energies for

emax = 12 are denoted as arrows. Right: Comparison of CR-CC(2,3) energies for

various denominators to the the ΛCCSD(T) results. All calculations were performed

in a HF basis with ħhΩ = 24 MeV, and 3N interactions were included via NO2B with

E3max = 14.
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5.7 CCSD with Explicit 3N Interactions

In previous sections the NO2B approximation to three-body interactions has been
used throughout for Coupled-Cluster calculations. This approximation drasti-
cally accelerates the calculations, and the IT-NCSM results for light nuclei shown
in Figure 1.5 suggest that the NO2B approximation already captures a large por-
tion of the relevant 3N information. However, as the focus moves from light
to medium-mass or even heavy nuclei, the validity of the NO2B approximation
should be verified in these mass range. Another reason for performing Coupled-
Cluster calculations with explicit 3N interactions rather than using the NO2B ap-
proximation is simply that the explicit 3N calculations eliminate the errors intro-
duced by the NO2B approximation which is relevant in cases where such errors
may not be neglected, as discussed in the following sections.

Including explicit 3N interactions in Coupled-Cluster calculations results in a
dramatic increase of the computational expense. Not only the Coupled-Cluster
equations get much more complex, it is mostly the large number of 3N matrix
elements that quickly renders explicit 3N calculations unfeasible. To some ex-
tent this is caused by special requirements of the Coupled-Cluster implementa-
tion used in this work. Compared to the J T -coupled storage scheme [86] for 3N
matrix elements in the HO basis, the 3N format (4.135) used here requires about 10
times more fast memory. Since the J T -coupled storage for 3N matrix elements
requires about 1 GB memory for E3max = 12, and about 5 GB for E3max = 14, the
storage scheme used in the Coupled-Cluster implementation requires 10 and 50
GB fast memory to store the E3max = 12 and E3max = 14 matrix elements in the HO
basis, respectively. In the HF basis representation the 3N matrix elements acquire
an isospin dependence which translates into a 6 times larger storage requirement
compared to the HO basis. Therefore, for explicit 3N Coupled-Cluster calcula-
tions in HF basis, the total set of E3max = 12 and E3max = 14 matrix elements require
about 60 and 300 GB memory, respectively. Two ways to cope with this problem
have been implemented. The first way holds the matrix elements (4.135) in HO
basis in memory and performs the HF transformation of individual matrix ele-
ments on the fly when they are requested, and discards them afterwards. This
reduces the memory requirements but is rather slow due to the six-fold sum over
HF coefficients and HO matrix elements that result in a single 3N matrix element
in HF basis. Alternatively, the total index range of the 3N matrix elements may
be distributed over a range of computer nodes. Each node holds the J T -coupled
or (4.135) matrix elements in HO basis and calculates the matrix elements of the
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index range assigned to the nodes in HF basis when they are needed, but is now
also able to store them for later re-use. In applications where individual matrix
elements are needed several times during a calculation, such as the iterative solu-
tion of Coupled-Cluster equations, the second strategy saves a significant amount
of computing time. It should also be noted that in general not the full set of matrix
elements is needed in the calculations and, therefore, only those that are actually
used should be transformed to the HF basis. For example, in all CC applications
discussed in this work, the largest set of 3N matrix elements 〈ab c |ŵ |d e f 〉, with
particle orbitals only, does not enter anywhere. In order to keep the computa-
tional runtime reasonable for Coupled-Cluster calculations using explicit 3N in-
teractions, the cutoff E3max = 12 is used in the following. The first application of
CCSD for three-body Hamiltonians can be found in [63] but due to the use of an m -
scheme implementation, these considerations were limited to proof-of-principle
calculations for 4He in the harmonic-oscillator basis and small model spaces. The
spherical scheme finally allows to move on to the medium-mass regime. Using
an E3max = 12 cut, medium-mass CCSD calculations at emax = 12 using three-body
Hamiltonians are comparable in cost to a ΛCCSD(T) NO2B calculation in the same
emax = 12 model space.

Figure 5.16 shows the convergence of CCSD ground-state energies with ex-
plicit 3N (full symbols) and for the NO2B approximation (open symbols) for the
medium-mass nuclei 16,24O, 40,48Ca and 56Ni using the NN+3N-induced and NN-
+3N-full Hamiltonian. The agreement of the NO2B approximation with the ex-
plicit 3N is remarkable. The normal-ordering approximation provides very accu-
rate results and it seems that this accuracy is rather independent of the model-
space size, the mass number, or even the SRG flow parameter. Furthermore, Fig-
ure 5.17 indicates that the quality of the approximation is also independent of
the oscillator frequency of the basis. The unnatural increase of the energies for
smaller values of ħhΩ in Figure 5.17 is due to the use of unsufficiently large SRG
model spaces, as discussed in Section 5.9.3. However, for the optimal frequencies
determined from Figure 5.17, the effects of insufficient SRG model spaces are less
than 1 % of the total energy.

The relative contribution of the residual 3N interaction normalized to the CCSD
ground-state energies according to

∆(3B) =
|E (CCSD)− E

(CCSD)
NO2B |

E (CCSD)/100
% (5.7)

is shown in Figure 5.18. It should be stressed that E
(CCSD)
NO2B was calculated in a pure
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Figure 5.16: Comparison of CCSD with NO2B approximation (open symbols) and CCSD with

explicit 3N interaction (full symbols) for the nuclei 16,24O, 40,48Ca and 56Ni for

the NN+3N-induced and NN+3N-full Hamiltonian in NO2B approximation with

E3max = 12. The optimal oscillator frequencies ħhΩ have been determined from Fig-

ure 5.17. Figure taken from [92].
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basis with emax = 12 model spaces. Figure taken from [92].

NO2B scheme, where residual 3N information entered in neither in the determi-
nation of the cluster amplitudes nor in the energy expression. Therefore, ∆(3B)
measures the total effect of the residual 3N interaction in the CCSD calculation,
without discrimination between its effect on amplitudes or energy. This issue is
further addressed in Section 5.8.1. There is no definite systematics of the relative
contribution with mass number or the SRG flow parameter. For all nuclei the rel-
ative contribution is well below 1 % and in particular for the heavier nuclei it is
a little smaller with values around 0.6 %. This confirms the earlier findings that
the NO2B approximation seems to perform better for heavier nuclei. However,
one reason for this might be that the ground-state energies for the heavier nuclei
are not fully converged with respect to E3max and, therefore, not the full relevant
information about the 3N interaction was used from the beginning. Furthermore,
it seems that the relative contributions tend to be a little more important for larger
flow parameters, but these effects lie in the range of 0.1 % and have no practical
significance.
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as in Figure 5.16.

5.8 ΛCCSD(T) with Explicit 3N Interactions

5.8.1 Benchmark of the NO2B Approximation

For CCSD, the contribution of the residual 3N interaction to the total ground-
state energy of medium-mass nuclei was shown to be less than 1%. A similar
result for ΛCCSD(T) would be desirable in order to keep the error introduced by
the NO2B approximation at the 1% level. The alternative – routinely including
explicit 3N interactions in ΛCCSD(T) calculations – is not an option due to the
extreme computational costs.

A natural approach to assess the relevance of the residual normal-ordered
three-body interaction ŴN in CCSD and ΛCCSD(T) calculations is to modify the
total energy expression

E (ΛCCSD(T)) = Eref + ∆E
(CCSD)
NO2B + δE

(ΛCCSD(T))
NO2B + ∆E

(CCSD)
3B + δE

(ΛCCSD(T))
3B , (5.8)

to either include or not include the contributions ∆E
(CCSD)
3B and δE

(ΛCCSD(T))
3B due to

ŴN . However, this discussion is complicated by the fact that the energy values
are not only determined by their expressions in terms of the T̂ (CCSD) and Λ̂(CCSD)

amplitudes, but also by the type of equation – with or without inclusion of the ŴN

terms – used to determine the amplitudes in the first place. This leads to various
possible and reasonable combinations to consider.

In Figure 5.19, where for 16O, 24O, and 40Ca, and both, the NN+3N-induced
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Figure 5.19: Anatomy of the individual contributions from CCSD and ΛCCSD(T) to the total

binding energy of 16O, 24O and 40Ca for the two types of three-body Hamiltonians and

SRG flow parameters α= 0.02, 0.04, and 0.08 fm4. For 16O and 24O, a Hartree-Fock

basis with emax = 12 model space and oscillator frequency ħhΩ = 20 MeV was used,

whereas for 40Ca an emax = 10 model space with ħhΩ = 24 MeV was employed. The

shorthand notationδE
(T)
NO2B andδE

(T)
3B is used to denoteδE

(ΛCCSD(T))
NO2B andδE

(ΛCCSD(T))
3B ,

respectively.
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and NN+3N-full Hamiltonians results are shown for a series of increasingly com-
plete calculations of the ground-state energies. The energy E

(CCSD)
NO2B is calculated

in NO2B approximation, where the ŴN terms are neglected in both, the determi-
nation of the cluster amplitudes as well as the calculation of the energy. For the
calculation of all other energies presented in Figure 5.19, the T̂ (CCSD) and Λ̂(CCSD)

amplitudes were determined from their respective amplitude equations including
the ŴN terms. Analogous to the discussion in Section 5.7, by comparing E

(CCSD)
NO2B to

E (CCSD), a direct quantification of the combined effect of ŴN in the CCSD amplitude
equations and the energy expression can be made. It should be noted that here

E (CCSD)− E
(CCSD)
NO2B 6= E

(CCSD)
3B , (5.9)

contrary to what (3.25) seems to imply, due to the use of different amplitudes for
the calculation of E

(CCSD)
NO2B and E (CCSD), respectively. Contrary to this, the same am-

plitudes (obtained from solving the amplitude equations containing the ŴN terms)
are used in the calculations of δE

(ΛCCSD(T))
NO2B and δE

(ΛCCSD(T))
3B . Therefore, using these

numbers it is only possible to quantify the importance of the ŴN contributions
– simply given by δE

(ΛCCSD(T))
3B itself – in the calculation of the total triples correc-

tion δE (ΛCCSD(T)). This allows to compare the results for the complete ΛCCSD(T)
ground-state energy E (ΛCCSD(T)) to the simplified expression

Ẽ (ΛCCSD(T)) = Eref + ∆E
(CCSD)
NO2B + δE

(ΛCCSD(T))
NO2B + ∆E

(CCSD)
3B , (5.10)

in which the ŴN terms are included in the CCSD and ΛCCSD calculations but are
omitted in the final calculation of the energy correction. However, particularly for
the calculation of δE

(ΛCCSD(T))
NO2B , other choices of where to include the ŴN terms in the

amplitude equations seem reasonable, and this issue is addressed further below.
However, it should already be mentioned that other choices of the amplitudes
equations lead to practically the same results.

In the following, 16O and the NN+3N-full Hamiltonian at flow parameter val-
ues α= 0.02 fm4 and 0.08 fm4 is considered as an example. For increasing α, more
and more of the binding energy is shifted to lower orders of the cluster expan-
sion and the contributions from the higher orders consequently get smaller with
the SRG flow: The size of the reference energy Eref grows from –56.11 MeV to
–101.67 MeV, while the CCSD correlation energy ∆E (CCSD) decreases from –69.03
MeV to –26.52 MeV as the SRG evolution goes from α = 0.02 fm4 to α = 0.08 fm4

and the ΛCCSD(T) energy correction δE (ΛCCSD(T)), which, according to Section 5.5,
is also considered as a measure for the contributions of the omitted cluster op-
erators beyond the three-body level [95], decreases from –5.54 MeV to –2.34 MeV,
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corresponding to 4.2 % and 1.8 % of the total binding energy. In the medium-
mass regime, these uncertainties related to the cluster truncation are typically the
largest in the calculations for a given Hamiltonian, and, therefore, they set the
overall level of accuracy targeted at [95].

Examining the contributions from the residual 3N interaction to ∆E (CCSD) it is
found that, while the absolute value of ∆E (CCSD) decreases by about 30 MeV when
the Hamiltonian is evolved from α = 0.02 fm4 further to α = 0.08 fm4, ∆E (CCSD) −
∆E

(CCSD)
NO2B is only subject to a slight increase from 0.54 MeV to 0.92 MeV, correspond-

ing to 0.4 % and 0.7 % of the total binding energy. Consequently, the relative as
well as the absolute importance of the residual 3N interaction to the CCSD corre-
lation energy grows with the SRG flow.

Furthermore, while for the harder Hamiltonian at α = 0.02 fm4 the ŴN contri-
butions to ∆E (CCSD) are about one order of magnitude smaller than the accuracy
level set by δE (ΛCCSD(T)), for the softer α = 0.08 fm4 Hamiltonian the ŴN contribu-
tions have an comparable size of about 39 % of the triples correction. Therefore, in
order to keep different errors at a consistent level, for soft interactions the residual
3N contributions should be included in CCSD if the triples correction is consid-
ered as well.

For the ΛCCSD(T) triples correction δE (ΛCCSD(T)) itself, the ŴN contributions
δE

(ΛCCSD(T))
3B , despite containing second-order MBPT contributions, have very small

values of about –15 keV. This effect is about one order of magnitude smaller than
the targeted accuracy given by the size of δE (ΛCCSD(T)), and may therefore safely be
neglected. From another perspective, the ŴN contributions to δE (ΛCCSD(T)) consti-
tutes about 0.1 % of the total binding energy, which clearly is beyond the level of
accuracy of any many-body method operating in the medium-mass regime today.

As is apparent from Figure 5.19, the discussion for the NN+3N-induced Hamil-
tonian and the heavier nuclei 24O and 40Ca is similar. In the case of 40Ca, the
smaller emax = 10 model space is used in order to keep the computational cost
reasonable. In this model space the results are not fully converged with respect to
emax, but since the quality of NO2B is largely independent of emax [95] this does not
affect the present discussion. For the NN+3N-induced Hamiltonian, for example,
the relative contribution of ŴN to the CCSD correlation energy grows from 1.3 %
for α = 0.02 fm4 to 4.2 % for α = 0.08 fm4, in both cases constituting about 0.6 % of
the total binding energy. Again, as the SRG flow parameter increases, the contri-
butions of ŴN to the CCSD correlation energy on the one hand, and the triples
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correction on the other hand, become comparable, where ∆E (CCSD) −∆E
(CCSD)
NO2B is

about 18 % of the size of the triples correction at α = 0.02 fm4 and already about
48 % at α = 0.08 fm4. The ŴN effect to the triples correction is again negligible,
about one order of magnitude smaller than the triples correction itself, namely
about 2 % of δE (ΛCCSD(T)) for α = 0.02 fm4 and about 11 % for α = 0.08 fm4, or 0.1 %
and 0.2 % of the total binding energy E (ΛCCSD(T)).

In summary, as in Section 5.7, contributions from residual 3N interactions to
the CCSD correlation energy are found to be of the order of 1 % of the total bind-
ing energy. For the triples correction the contributions are much smaller and may
be considered negligible. The fact that the residual 3N contributions are rather
insensitive to the SRG flow parameter impacts the characterization of their im-
portance. For hard interactions, the residual 3N effects to the CCSD correlation
energy E (CCSD) are rather small compared to the triples correction δE (ΛCCSD(T)), but
they become comparable as the triples contribution gets smaller for soft interac-
tions. Therefore, when using soft interactions, the residual 3N interaction should
be included in CCSD if the desired accuracy level also demands inclusion of triples
excitation effects. For the triples correction, on the other hand, the residual 3N
interaction only plays an insignificant role, providing contributions that are shad-
owed by the considerably larger uncertainties stemming, e.g., from the cluster
truncation. This motivates the use of the truncated energy expression Ẽ (ΛCCSD(T)),
Eq. (5.10), instead of the full form E (ΛCCSD(T)), resulting in only negligible losses in
accuracy.

5.8.2 Approximation Schemes for the Amplitudes

The above considerations indicate that the residual 3N interaction may be ne-
glected in calculating the ΛCCSD(T) energy correction δE (ΛCCSD(T)) without signif-
icantly affecting the overall accuracy, leading to Eq. (5.10) as an approximate, yet
accurate, form for E (ΛCCSD(T)). From a practitioner’s point of view, discarding the
ŴN contributions to δE (ΛCCSD(T)), Eqs. (3.46) and (3.55), already leads to significant
savings in the implementational effort and computing time, but one still has to
solve the CCSD equations determining the T̂ (CCSD) amplitudes t a

i and t ab
i j , as well

as the ΛCCSD equations determining the Λ̂(CCSD) amplitudes λi
a

and λi j

ab , with full
incorporation of ŴN . Particularly solving the ΛCCSD equations, for which the ef-
fective Hamiltonian contributions given in Figures 3.10–3.12 have to be evaluated,
consumes most of the computing time in practical calculations. Therefore, it is
also worthwhile to investigate how much of the residual 3N interaction informa-
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tion has to be included in solving for the T̂ (CCSD) and Λ̂(CCSD) amplitudes that enter
the energy expressions, in order to obtain accurate results at the lowest possible
computational cost.

In order to distinguish between different approximation schemes the following
notation is introduced in which for energy quantities that only depend on T̂ (CCSD)

amplitudes the label in brackets denote if the T̂ (CCSD) amplitudes were determined
from the amplitude equations with (3B) or without residual 3N interaction (2B).
Similarly, for quantities that depend on both, T̂ (CCSD) and Λ̂(CCSD) amplitudes, the
first label denotes the type of equation used to determine the T̂ (CCSD) amplitudes
and the second specifies the ΛCCSD equations. For example, Ẽ (ΛCCSD(T))(3B, 2B)

refers to the energy expression (5.10), calculated using T̂ (CCSD) amplitudes deter-
mined from the equations including the ŴN terms, while the Λ̂(CCSD) amplitudes
are determined using the NO2B approximation.

The following approximation schemes are considered, in which the ŴN contri-
butions δE

(ΛCCSD(T))
3B to the triples correction are always neglected: For the “NO2B”

scheme, all ŴN terms are discarded in both, the determination of the T̂ and Λ̂ am-
plitudes and the energy E

(ΛCCSD(T))
NO2B ,

E (NO2B) = E
(ΛCCSD(T))
NO2B (2B, 2B) . (5.11)

This of course corresponds to an ordinary ΛCCSD(T) calculation in NO2B approx-
imation. For scheme “A”, the energy E

(ΛCCSD(T))
NO2B is computed as in the NO2B case

and ∆E
(CCSD)
3B , calculated T̂ (CCSD) amplitudes obtained from the NO2B CCSD equa-

tions, is added,

E (A) = E
(ΛCCSD(T))
NO2B (2B, 2B)+∆E

(CCSD)
3B (2B) . (5.12)

This represents the simplest and most economic way to include ŴN information,
where it only enters in the expression for the energy contribution ∆E

(CCSD)
3B , but

not in the considerably more complex equations that determinate the amplitudes.
In scheme “B”, full ŴN information is included in the calculation of the CCSD
correlation energy, keeping the ŴN terms in the amplitude equations as well as in
the energy expression. The triples correction, however, is calculated without any
ŴN information,

E (B) = E (CCSD)(3B)+δE
(ΛCCSD(T))
NO2B (2B, 2B) . (5.13)

This way, consistency is kept between the T̂ (CCSD) and Λ̂(CCSD) amplitudes that enter
the triples correction, while capturing all residual 3N effects in the CCSD energy
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∆E (CCSD). In scheme “C”, an inconsistency is introduced between the T̂ (CCSD) and
Λ̂(CCSD) amplitudes by solving for T̂ (CCSD) with the ŴN terms present, while we solve
for Λ̂(CCSD) without ŴN terms and the energy expression is given by Ẽ (ΛCCSD(T)),

E (C) = Ẽ (ΛCCSD(T))(3B, 2B) . (5.14)

This variant is reasonable since one typically has to solve for the T̂ (CCSD) ampli-
tude equations with ŴN terms anyway in order to obtain the comparatively large
∆E

(CCSD)
3B contribution to the energy while one would like to avoid to solve for the

Λ(CCSD) amplitudes in this manner. Finally, in scheme “D”, in which the residual
3N interaction terms are neglected only in the expression for δE (ΛCCSD(T)), the full
ŴN -containing equations are used to solve for the T̂ (CCSD) and Λ̂(CCSD) amplitudes
and the energy is determined via Eq. (5.10),

E (D) = Ẽ (ΛCCSD(T))(3B, 3B) . (5.15)

As in the discussion of Figure 5.19, by comparing with scheme “C”, this variant
allows to estimate the importance of ŴN for the Λ̂(CCSD) amplitudes.

In Figure 5.20, for the case of 16O, 40Ca and the NN+3N-full Hamiltonian, the
deviations introduced by the aforementioned approximation schemes are com-
pared to the complete 3N calculations. For 24O and the NN+3N-induced Hamil-
tonian very similar results are obtained and, therefore, not presented here. As
expected, the “NO2B” scheme shows the largest deviations because the contribu-
tions of ŴN to CCSD are completely missing. Including the ŴN terms in the energy
expression for the CCSD correlation energy but evaluating it using T̂ (CCSD) ampli-
tudes without ŴN information in scheme “A” virtually does not change the result.
Therefore, we can conclude that it is the ŴN effect on the T̂ (CCSD) amplitudes that
is most important for CCSD, rather than the additional terms ∆E

(CCSD)
3B . In these

calculations, the best approximation to the complete calculations is provided by
scheme “B”, where the full ŴN information is used to determine the CCSD cor-
relation energy, but otherwise no ŴN information enters at all in the calculation
of the triples correction. However, approximation schemes “B”,“C” and “D” give
very similar results, again hinting at the ŴN effect on the T̂ (CCSD) amplitudes to
be the most important ingredient in the inclusion of residual 3N interactions in
CCSD and ΛCCSD(T) calculations.
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Figure 5.20: Comparison of the deviations introduced by the different approximation schemes de-

scribed in the text from the full inclusion of the residual 3N interaction in all steps

involving CCSD and ΛCCSD(T) calculations for three-body Hamiltonians. Param-

eters of the calculations as in Figure 5.19.

5.9 Ab Initio Description of Heavy Nuclei

The previous sections gave an overview of various aspects of Coupled-Cluster
calculations in the medium-mass regime using chiral interactions, from which the
following conclusions may be drawn about how to obtain the accurate results for
heavier nuclei in the present framework:

The normal-ordered two-body approximation works very well and allows to
almost completely include the relevant 3N interaction into the calculations at very
much reduced computational cost. The error introduced by this approximation
is only about 1 % of the total binding energy, which is absolutely acceptable for
ab initio calculations in the heavy regime considering other sources of uncertainty
present in the calculations, such as the omission of SRG-induced four- and multi-
nucleon interactions.

The E3max cut emerged as one of the main limiting factors in the calculation of
nuclear properties in the mass range A > 60. Therefore, significant improvement
over the E3max = 14 cut is required in order to obtain accurate results for nuclei
beyond the medium-mass regime considered so far. However, full sets of 3N ma-
trix elements with E3max > 14 are not easy to generate and to store. Additionally,
the many-body methods often cannot handle such large sets of explicit 3N ma-
trix elements and, therefore, there is no need for them except for the computation
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of the normal-ordered matrix elements. Computing only those matrix elements that
are used in the normal-ordering saves computing time and finally allows to go to
larger values of E3max in the normal-ordering procedure. However, it is important
to retain consistency between the E3max used in the Hartree-Fock calculation that
determines the reference state and the E3max used in the normal-ordering proce-
dure, as described in Section 5.9.1.

Another source of uncertainty for the nuclei considered so far is given by the
cluster truncation. There is not much room for practical improvements on the
many-body side, but the uncertainties may be reduced by the use of softer in-
teractions. Furthermore, the uncertainties due to the cluster truncation seem not
to increase with the mass number and so accurate calculations should be possible
using ΛCCSD(T) or CR-CC(2,3) in the A > 60 region.

The cluster truncation motivates the use of soft interactions at flow parameters
such as 0.08 fm4, for which the triples correction only contribute about 2 % to the
energy. However, at this level of accuracy other sources of uncertainties, such as
the error introduced by the NO2B approximation become relevant. Explicit 3N
calculations are very expensive for E3max > 12 but, nevertheless, the error intro-
duced by omitting residual 3N contributions may be reduced by using a scheme
in which the 3N matrix elements are included explicitly up to some parameter
E

explicit
3max , and 3N matrix elements with E NO2B

3max > E
explicit
3max enter the calculation only

through the normal-ordering.

How large the SRG flow-parameter dependence due to omitted many-body
forces in medium-mass nuclei really is cannot be decisively determined from the
previous calculations, because E3max and the cluster truncation are also sources
of flow-parameter dependence. However, as mentioned above, the uncertainties
due to E3max will largely be reduced by going to sufficient large values of E3max.

Finally, the insufficient SRG model spaces, as mentioned in Section 5.7, need
to be addressed. The strategies pursued in Section 5.9.2 are straightforward en-
largements of the model spaces and a frequency conversion technique.

By virtue of all the developments above it will then be possible to extend the
range of accurate ab initio calculations into the heavy nuclear regime.
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5.9.1 Self-Consistent Hartree-Fock Reference Normal-
Ordering

In order to perform accurate calculations of nuclei beyond the medium-mass re-
gime considered in Section 5.9.3, the normal-ordering procedure has to performed
for larger values of E3max than the ones used so far. For a given reference state,
computing the normal-ordered matrix elements corresponding to E3max values for
which no full sets of 3N matrix elements can be stored any more can be achieved by
distributing the workload over many independently operating computing nodes
which calculate (and temporarily store) the required matrix elements on the fly.
However, using full sets of 3N matrix elements with large E3max in this manner
in many-body calculations is not a preferred option; this also includes the HF
method from which the reference state for the normal-ordering is computed. There-
fore, a different strategy that avoids using explicit 3N matrix elements with large
E3max in the HF calculations is pursued in the following. To this end, the role of
the HF reference state in the normal-ordering procedure needs to be investigated.

A first attempt of going beyond current normal-ordering capabilities is to per-
form a HF calculation which determines the HF reference state |Φ〉 using 3N ma-
trix elements with an E

|Φ〉
3max cut for which full sets of 3N matrix elements can be

handled. Afterwards, this reference state may be used in the normal ordering
of 3N matrix elements for a larger E NO

3max. Obviously, in this case the reference
state used is not fully appropriate since it only contains E

|Φ〉
3max < E NO

3max information.
Furthermore, the Hartree-Fock basis will also be not consistent to the normal-
ordered matrix elements because, again, the construction of the HF basis only
used E

|Φ〉
3max < E NO

3max information while the matrix elements also contain informa-
tion up to E NO

3max. This means that the reference state used in the normal ordering
and which also enters the many-body calculations is actually no longer the proper
reference state from the point of view of the obtained normal-ordered interaction.

To demonstrate the effects of using reference states that do not correspond to
the employed interaction, in Figure 5.21 CCSD ground-state energies are shown
for 16O and 40Ca, using inconsistent E3max values in the Hartree-Fock calculation
and the subsequent normal-ordering, with E

|Φ〉
3max = 8 and E NO

3max = 14. The leftmost
bars show the results for this combination of E3max values while the rightmost bars
represent the result obtained for the consistent values E

|Φ〉
3max = E NO

3max = 14 which is
called exact in the following. In the case of 16O, for instance, the corresponding
results disagree, for the α= 0.02 fm4 Hamiltonian about 3 MeV and for α= 0.08 fm4
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Figure 5.21: CCSD ground-state energies from emax = 12 model spaces and ħhΩ = 24 MeV, for 16O

and 40Ca for the NN+3N-full Hamiltonian in NO2B approximation with E3max = 14

using different HF reference states (see text). The iterative HF normal ordering con-

verges immediately to the results obtained for consistent HF and normal ordering.

about 700 keV. These results demonstrate the importance of consistency between
the E3max of the reference state and of the normal-ordered interaction.

To correct for this inconsistency, the normal-ordered interaction can now be
used in yet another HF calculation in order to determine a corrected version of
the reference state 3. This reference state now contains also E NO

3max information at
the NO2B level and will be close to the exact reference state corresponding to
E NO

3max, due to the good performance of the NO2B approximation. Therefore, using
this updated reference state in a subsequent normal-ordering for E NO

3max will then
yield a more consistent combination of reference state and normal-ordered matrix
elements. This procedure can then be iterated until consistency is achieved.

The CCSD ground-state energies calculated using normal-ordered interactions
from reference states obtained from these additional iterative HF calculations and
normal orderings are also shown in Figure 5.21. From there it is apparent that
already after the first iteration the reference state is typically close enough to the
exact reference state such that the CCSD results become indistinguishable from
the exact case. As mentioned above, this fast convergence can be attributed to the

3This calculation only involves the normal-ordered zero-, one-, and two-body matrix elements
and can be performed very efficiently.
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capability of the NO2B approximation to capture most of the 3N information in
the lower-rank normal-ordered matrix elements.

5.9.2 Role of the SRG Model Space

For practical applications, the SRG operator flow equation (1.29) has to be con-
verted into matrix representation. To that end, resolutions of the identity in form
of infinite summations are inserted between adjacent operators, as it is done to ob-
tain (1.32). Since these infinite summations have to be truncated to finite sums, er-
rors are inevitably introduced in the evolution. The energy and momentum range
that the SRG model space spans depends on the oscillator frequency of the HO
states in which the flow equation is represented. Particularly for small frequen-
cies this range may not be sufficient for the model space sizes that are accessible
in practical computations. As is discussed in more detail in [86, 156], this issue
may be overcome by solving the SRG flow equations at a large enough parent fre-
quency and subsequently transforming the obtained matrix elements to smaller
target frequencies through a basis transformation. The latter step is facilitated by
the fact that the evolved matrix has a band-diagonal structure which makes the
transformation numerically more accurate.

Figure 5.22 illustrates the importance of the frequency conversion in a series
of CCSD ground-state calculations for nuclei ranging from 40Ca to 78Ni, for which
the frequency-converted matrix elements have been generated from the parent fre-
quency ħhΩ= 36 MeV. In the cases where no frequency conversion has been applied,
i.e., where the matrix elements corresponding to a specific value of ħhΩ have been
computed from SRG evolutions in a model space spanned by HO states of same
frequency ħhΩ, the insufficient energy span of the model space causes an artificial
increase of the ground-state energies at smaller frequencies. The ground-state
energies obtained using frequency-converted matrix elements, however, show a
much more natural behavior. Since for the considered nuclei the energy minimum
is located at smaller frequencies, accurately evolved matrix elements are particu-
larly important in this frequency range. In fact, as can be seen in Figure 5.22,
the artificial increase of the energies obtained using the non-converted matrix ele-
ments shifts the energy minima to higher frequencies and, thus, to smaller binding
energies.

The use of the frequency-conversion technique mentioned above allows to cir-
cumvent limitations of the SRG due to the insufficiency of the three-body SRG
model space for small frequencies by converting matrix elements corresponding
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Figure 5.22: Comparison of CCSD ground-state energies corresponding to matrix elements ob-

tained with (full symbols) and without (open symbols) frequency conversion. The

calculations were performed in a HF basis with emax = 12 and using the NO2B ap-

proximation with E3max = 12. The matrix elements were evolved in the ramp40C

SRG model space at parent frequency ħhΩ = 36 MeV.
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to a higher parent frequency to lower frequencies. Consequently, the SRG model
space has at least to be sufficiently large in order to accurately evolve the Hamil-
tonian at the parent frequency. Specifically, the SRG model space is parametrized
by the way the infinite summations in the resolution of the identity in (1.32) are
truncated. In the present case, these summations are truncated using a truncation
ESRG in the energy quantum number of the three-body Jacobi states in which the
identity is resolved [86], i.e., in a schematic notation,

1̂
(3) ≈

E (|φ(3)p 〉)≤ESRG∑

p

|φ(3)
p
〉〈φ(3)

p
| . (5.16)

Since the SRG evolution can be performed for each total angular momentum J

of the Jacobi states separately, and larger J are expected to be less relevant, this
motivates the definition of a J -dependent truncation parameter ESRG.

Figure 5.23 (top) presents different parametrizations of the SRG model spaces
in terms of ESRG, which will in the following be referred to as ramps. The parame-
trization used so far in this work corresponds to ramp 40C, in which the maximum
value ESRG = 40 is used for the smallest angular momenta J = 1/2, . . . , 5/2. Then, the
truncation parameter is linearly ramped down to ESRG = 24 at J = 13/2, where it
remains for all higher values of J . The largest SRG model space considered in
the following corresponds to ramp 40J, and the effects of different choices of the
truncation parameter ESRG, such as the 38G, 40C, 40F, 40K or 40L 4 ramps from Fig-
ure 5.23, are assessed by comparing CCSD ground-state energies corresponding
to these ramps to ground-state energies corresponding to the 40J ramp.

Figure 5.23 shows at the bottom a comparison of the 40C ramp to the 40J ramp
based on CCSD ground-state energies for nuclei ranging from 36Ca up to 142Sn,
where the experimental ground-state energies are shown as well. As mass num-
ber grows, increasing deviations of the 40C from the 40J results are clearly visible,
indicating that the 40C ramp becomes less sufficient for heavier nuclei. For the
40C ramp, the heavier nuclei are even almost unbound.

These deviations are considered in more detail in Figure 5.24, where at the top
the 40C ramp is once again compared to the 40J ramp, this time in terms of the
absolute deviation of the corresponding CCSD results. While for the lighter nuclei
there are moderate differences in the ground-state energies related to the different

4The number in the name of the ramp denotes the starting ESRG at small angular momenta,
while the letter has no further meaning.
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choices of SRG model spaces, for 56Ni these deviations already reach 0.5 MeV per
nucleon. From there, the deviations increase quickly, reaching values up to 7 MeV
per nucleon for 120Sn. Therefore, ramp 40C is far from sufficient for calculations
of nuclei with mass numbers A > 60. There are distinct jumps in the deviation
plot, occurring, for instance, between nuclei 68,78Ni or 120,132Sn. Such jumps occur
each time a new high-momentum single-particle orbit in Figure 4.1 is occupied
in the reference state. For example, the reference configurations of 68Ni and 78Ni
differ by the 1g9/2 shell, and the configurations of 120Sn and 132Sn differ by the
1h11/2 shell. This observation hints at a growing importance of the large-J part of
the SRG model space, which is subject to much stronger truncation for ramp 40C
than the low-J part is.

Consequently, the other ramps presented in Figure 5.23 perform much better,
as they imprint less truncations on the large-J SRG model space than ramp 40C
does. This is illustrated in the bottom plot of Figure 5.24. Among these alternative
ramps, even the one corresponding to the smallest model space, ramp 38G, shows
deviations of less than 0.25 MeV per nucleon from the 40J ramp. By comparing
the 38G ramp with 40F, the effect of the ESRG cut for the small angular momenta
J ≤ 5/2 can be probed, which turns out to have only a minor effect. Therefore, it
may be concluded that for these small J the SRG model space is sufficiently large
at ESRG = 40. Similar comparisons suggest that, with respect to 40C, increasing
ESRG for large angular momenta is crucial. Ground-state energies corresponding
to ramps 40K and 40J then only differ by at most 50 keV over the whole mass range.
This indicates that ramp 40J is an appropriate choice for nuclear calculations up
to mass numbers A = 150, with uncertainties related to the SRG model-space trun-
cation below 100 keV per nucleon.

The use of larger SRG model spaces also has a decisive impact on the previ-
ously observed E3max-dependence of the ground-state energies. Figure 5.25 com-
pares the E3max dependence of ground-state energies, measured by their difference
at the two E3max values of 12 and 14, corresponding to frequency-converted matrix
elements obtained from ramps 40C and 40J. The striking observation is that for
the larger SRG model space the E3max dependence does not increase, while it does
for the smaller model space. This indicates that much of the previously observed
E3max dependence was induced by the use of insufficient SRG model spaces and
that heavier nuclei may be accessible with manageable values of E3max.
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full Hamiltonian in NO2B approximation evolved in the SRG model spaces cor-

responding to ramp 40C and 40J. The ground-state energies are evaluated for

E3max = 12 and E3max = 14, and the energy difference (per nucleon) is shown in the

plot. The results clearly indicate an enhancement of the E3max-dependence due to the

insufficient model space corresponding to ramp 40C, which increases with the nuclear
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5.9.3 Results for Heavy Nuclei

The discussion of heavier nuclei will be based on SRG-transformed Hamiltoni-
ans at flow parameters α = 0.04 fm4 and 0.08 fm4 for which the Coupled-Cluster
method provides nearly converged results. Examples for convergence patterns of
ground-state energies of nuclei ranging from 48Ni to 132Sn are shown in Figure 5.26.
Except for the heaviest nucleus 132Sn considered in Figure 5.26, all other calcula-
tions are reasonably well converged within the model spaces up to emax = 12. The
cluster expansion also converges quickly. For 100Sn and the NN+3N-full Hamil-
tonian at α= 0.04 fm4, for instance, the reference energy is –590.8 MeV, the CCSD
correlation energy amounts to –375.5 MeV and the CR-CC(2,3) triples correction
contributes –26.3 MeV, which is less than 3 % of the total binding energy. For
α = 0.08 fm4 the convergence is naturally faster, with reference energy of –767.2
MeV, CCSD correlation energy of –218.8 MeV and the triples correction of –17.7
MeV. These numbers suggest that even in the regime of heavy nuclei the Coupled-
Cluster method is expected to provide, for a given Hamiltonian at fixed α, the
corresponding nuclear ground-state energies up to an accuracy of few percent.

In a next step it is necessary to identify the values of E3max required for calcu-
lations of heavy nuclei. Figure 5.27 presents CCSD ground-state energies of vari-
ous nuclei for E3max values ranging from 10 to 18. For all but the heaviest nucleus
132Sn convergence is achieved at E3max = 18, and for most of the lighter nuclei al-
ready at much smaller values of E3max. It is noteworthy that for the energies using
SRG-evolved matrix elements from ramp-40J model spaces the E3max dependence
is larger for the softer interaction, which is opposite to the observations made for
ramp 40C and lighter nuclei. This may hint at the growing importance of SRG-
induced 3N interactions.

Another interesting aspect of the E3max truncation is its impact on the ħhΩ de-
pendence. In Figure 5.28 the ħhΩ dependence of CCSD ground-state energies of
nuclei 40Ca, 56Ni and 132Sn is studied at various values of E3max. For 40Ca, the ħhΩ
dependence decreases with increasing E3max up to the point where it is practically
flat for E3max = 16. The fact that the curves have positive slope for smaller values
of E3max implies that for nuclei like 40Ca, too small values of E3max shift the optimal
oscillator frequency to smaller frequencies, which is also confirmed by the 56Ni re-
sults. For 132Sn, the situation is reversed. Here, the optimal frequency is shifted to
larger frequencies if a too small E3max is used. In fact, the E3max = 16 results suggest
that the optimal frequency for 132Sn lies even somewhat below ħhΩ = 24 MeV.

A systematic survey of CR-CC(2,3) ground-state energies of medium-mass and
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Figure 5.26: Convergence and ΛCCSD(T) (open symbols) and CR-CC(2,3) (full symbols) ground-

state energies of 48Ni, 68Ni, 100Sn and 132Sn for the NN+3N-full Hamiltonian in

NO2B approximation with E3max = 14 and using a Hartree-Fock basis with ħhΩ = 24

MeV. The arrows indicate the CCSD results from the emax = 12 model space.
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heavy nuclei ranging from 16O to 132Sn with emphasis on the Ca, Ni, and Sn iso-
topic chains is presented in Figure 5.29. All results are obtained using E3max = 18

and for the two SRG flow parametersα= 0.04 fm4 and α = 0.08 fm4, which are used
to quantify the flow-parameter dependence of the results. In panel (a), the NN+3N-
induced Hamiltonian is employed. The corresponding ground-state energies show
a significant increase in the flow-parameter dependence, rising from about 0.1
MeV per nucleon for 16O to about 1 MeV per nucleon for 132Sn, indicating grow-
ing contributions of SRG-induced 4N (and multi-nucleon) interactions out of the
initial NN interaction. From the direction in which the ground-state energies
move for smaller values of the flow parameter it can be concluded that the in-
duced many-body interactions have an attractive net effect. In order to confirm
that this is a general property of chiral NN Hamiltonians, in panel (a) also the
N2LO-optimized chiral NN interaction is used [159]. The flow-parameter depen-
dence is very similar to the former calculations for light and medium-mass nu-
clei, and is reduced for heavy nuclei, resulting in a flow-parameter dependence of
about 0.5 MeV per nucleon for 132Sn. Even with the reduced amount of induced
4N and multi-nucleon interactions for the N2LO-optimized interaction, induced
many-body interactions out of the initial NN interaction are a new challenge in the
heavy-mass regime which, if not addressed, will prevent any attempt to reliably
calculate ground-state energies of heavy nuclei based on chiral interactions. In
order to emphasize that the observed flow-parameter dependencies are indeed to
be attributed to induced many-body interactions and not truncations in the many-
body treatment such as the cluster truncation, in panel (b) the contributions of the
CR-CC(2,3) triples correction are shown.

Considering the large flow-parameter dependence of the NN+3N-induced re-
sults, the much reduced flow-parameter dependence of about 0.1 MeV per nu-
cleon for the results shown in panel (c) using the NN+3N-full Hamiltonian with
the Λ3N = 400 MeV regular cutoff is remarkable. This reduced flow-parameter
dependence has to be the consequence of a delicate cancellation of the attractive
induced 4N contributions from the initial NN interaction with additional repul-
sive 4N contributions originating from the initial 3N interaction. The direction
of the flow-parameter dependence of the ground-state energies is reversed to the
NN+3N-induced case, indicating that the attractive induced interactions are in
fact slightly overcompensated. Since for the NN+3N-induced case the contribu-
tions of induced many-body interactions grow with the nuclear mass, while the
NN+3N-full results exhibit a virtually constant flow-parameter dependence over
the whole considered mass range, the contributions from the repulsive induced
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Figure 5.30: Charge radii obtained from Hartree-Fock calculations for the NN+3N-induced and

NN+3N-full Hamiltonian with parameters as in Figure 5.29. Experimental val-

ues [161] are shown as black bars.

many-body interaction grow the same way with the the nuclear masses as the con-
tributions from the attractive induced many-body interactions do. This statement
can be confirmed by reducing the initial 3N cutoff from Λ3N = 400 MeV to 350 MeV.
For light nuclei this cutoff reduction is known to weaken the repulsive 4N com-
ponent originating from the initial 3N interaction [86]. Consequently, the flow-
parameter dependence of the ground-state energies for the 350 MeV NN+3N-full
Hamiltonian points in the same direction as for the NN+3N-induced Hamilto-
nian, because the repulsive contributions are no longer able to overcompensate
the attractive contributions. Furthermore, the 350 MeV NN+3N-full Hamiltonian
results exhibit a flow-parameter dependence that increases with mass number.
This shows that in addition to the fact that the repulsive contributions are not
only smaller for the Λ3N = 350 MeV NN+3N-full Hamiltonian compared to the
400 MeV case, but that they also grow slower with the nuclear masses. Therefore,
an almost constant flow-parameter dependence of the NN+3N-full results over
the whole mass range is not a general property of NN+3N-full Hamiltonians and
may only be achieved in a small window of initial 3N regular momentum cutoffs
around Λ3N = 400 MeV.

Taking advantage of the robust cancellation of SRG-induced 4N terms for the
NN+3N-full Hamiltonian with Λ3N = 400 MeV, resulting in a very small α depen-
dence, the obtained ground-state energies may be compared to experiment. The
ground-state energies of the oxygen isotopes are very well reproduced. Starting
from the Ca isotopes, a systematic and slowly increasing deviation of the theoret-
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ical results from experiment is visible, which is of the order of 1 MeV per nucleon.
Apart from this constant energy shift, the experimental trend of the binding en-
ergies is nicely reproduced. Therefore, these results represent a first confirmation
that chiral Hamiltonians that have been determined in the few-body sector are
also capable of qualitatively describe heavy nuclei. Furthermore, since the many-
body problem can be solved very accurately using ab initio methods, potential
shortcomings of the input Hamiltonian may be identified. In the present case,
the overbinding of the NN+3N-full results are well beyond theoretical uncertain-
ties and, thus, may be considered a deficiency of the current chiral NN+3N-full
Hamiltonian. This outcome is of course not surprising given the inconsistent chi-
ral perturbation order of the employed NN and 3N interaction and the neglect of
the chiral 4N force at N3LO.

While chiral Hamiltonians provide good results for binding energies with de-
viations from experiment that might be resolved using improved chiral Hamil-
tonians, charge radii come out significantly too small. Figure 5.30 shows charge
radii on the HF level for nuclei for which the experimental value is known [161].
An increasing deviation from experiment is apparent, about 0.3 fm or 10 % for
16O, up to about 1 fm or 20 % for 132Sn. It should be noted that the radius oper-
ator has not been SRG evolved. However, neither the consistent evolution of the
radius nor beyond-HF correlation effects are expected to have a significant impact
on these findings.

220 Coupled-Cluster Theory for Nuclear Structure



Chapter 6

Conclusion



Chapter 6. Conclusion

The two foundations of ab initio nuclear structure theory – the fundamental de-
scription of the nuclear interaction, and methods that provide accurate solutions
to the many-body problem along with some estimate of the errors involved – have
both seen impressive progress in recent years. The goal of the present work was
to combine and advance these developments into a theoretical and computational
framework capable of performing accurate ab initio nuclear structure calculations
of medium-mass and heavy nuclei.

The main focus of this work is the treatment of nucleon correlations in the
many-body problem. Here, the Coupled-Cluster method with iterative single-
and double-excitations contributions combined with a non-iterative treatment of
triply excited clusters constitutes a framework that is both, efficient and suffi-
ciently accurate in solving the many-body Schrödinger equation in order to make
acceptable estimates for nuclear ground-state energies. The spherical formula-
tion of Coupled-Cluster theory was one key element to the success of this work.
However, while Coupled-Cluster theory in its m -scheme formulation is already
notorious for the human effort required to derive and implement the method, the
spherical formulation multiplies this demand. Nevertheless, even under these
circumstances, spherical Coupled-Cluster theory has highly appealing properties
that make implementing the method worthwhile in the long run. For one, it ex-
tends the reach of ab initio Coupled-Cluster calculations to large mass numbers
way beyond the reach of an m -scheme formulation. Furthermore, the spherical
scheme is also sufficiently efficient to allow calculations including explicit 3N in-
teractions which makes the Coupled-Cluster method a favorable tool to test ap-
proximation schemes for 3N interactions, such as the normal-ordering approxi-
mation. Through the inclusion of triples excitation effects in form of a posteriori

non-iterative energy corrections, the degree of convergence of the cluster expan-
sion at the level of the triply excited clusters can be estimated. Using SRG-softened
interactions, the results suggest fast convergence of the cluster expansion. How-
ever, for harder interactions or even the bare nuclear interaction, the quality of
triples-corrected CCSD ground-state energies is questionable. Since full CCSDT
calculations cannot be done at present time, two different triples-correction meth-
ods have been considered in order to estimate their quality. The respective results
lie sufficiently close, motivating the claim that both represent reasonable approx-
imations to the exact triples contributions to the energy.

Three-nucleon forces play a central role in present-time nuclear structure the-
ory and applications. Chiral three-nucleon forces are known to be important for
the description of nuclear properties, and the framework of chiral effective field
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theory provides nuclear physicists with a convenient approach to the construc-
tion of QCD-based nuclear interactions and electro-weak currents, due to its abil-
ity to assign power-counting orders to the many possible operator structures of
the interactions, which in turn allows to identify the most relevant ones of these
operator structures. This is a particularly important feature of the chiral pertur-
bation approach for the derivation of three- and more-nucleon interactions, be-
cause their treatment is much more complicated in a purely phenomenological
approach. The generation of chiral interactions still is a dynamic field, even more
today after the great potential of chiral interactions has been realized in nuclear
many-body and reaction calculations. The most obvious improvement over the
current status of chiral interactions concerns the availability of the 3N interaction
at N3LO in order to achieve consistency between the NN and 3N interactions in the
chiral expansion. This will further be a next step towards assessing convergence of
nuclear observables with respect to the chiral expansion parameter which, how-
ever, would in principle also require the consideration of the chiral 4N interaction
at this order. The inclusion of the ∆ degree of freedom, which also causes a shift
of certain diagrams to lower power-counting orders, is another exciting prospect
for the future.

But even without chiral three-nucleon interactions, nuclear-structure calcula-
tions that rely on SRG-evolved or otherwise renormalized interactions, are in-
evitably confronted with induced three-nucleon forces. Regardless their origin,
the inclusion of three-nucleon interactions into the many-body calculations poses
a challenge which has to be met with caution in order to avoid the introduction
of severe sources of uncertainty, and lots of research has been dedicated to this
issue. This work demonstrates that a proper inclusion of three-nucleon interac-
tions is possible for many-body calculations operating up to nuclear masses of
about A ≈ 150, using manageably large SRG model spaces and reachable values
of E3max. It was shown that an approximate treatment of 3N interactions in the
many-body calculations via the normal-ordering two-body approximation is sat-
isfactory at the level of overall accuracy targeted at in ab initio nuclear structure
calculations. A remarkable outcome of this work is that a single Hamiltonian,
more precisely the SRG-evolved NN+3N-full Hamiltonian with reduced cutoff-
momentum of 400 MeV provides, within the computational framework used in
this work, a qualitative description of nuclei ranging from 16O to 132Sn, and maybe
even beyond. Given the still quite preliminary status of the chiral interactions, al-
ready these results are sufficiently encouraging to conclude that it is worthwhile
to proceed further along this path of research.
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In conclusion, ab initio nuclear structure theory is a vivid branch of physics
and the results of this work indicate great potential of the first-principle descrip-
tion of the nuclear many-body problem. Future research will have to address fur-
ther observables besides (ground-state) energies. For example, although energies
are reasonably reproduced by the chiral interactions, radii come out too small.
However, when using SRG-transformed Hamiltonians, the observables have to
undergo analogous transformations, and electromagnetic observables require the
inclusion of chiral electro-weak currents into the calculations. As already men-
tioned above, the chiral 3N interaction at N3LO will be a next step towards the
description of nuclear properties using interactions at consistent power counting
orders, giving insight in the convergence properties of the chiral expansion and
may enable uncertainty estimates. In the long run, nuclear theory will have to deal
with 4N interactions, either in form of the initial chiral 4N interaction at N3LO, or,
unless novel generators are found that reduce the amount of SRG-induced 4N
contributions, with these induced 4N interactions.
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The spherical EOM-CCSD method considered in this work enables calculations
of excited states of closed-shell nuclei. The low-energy spectra of such nuclei
typically consist of simple particle-hole excitations and collective rotational or vi-
brational states. The current method of choice for collective states has been the
Random Phase Approximation (RPA) [78], in which excited states are described via
linear 1p1h (de-) excitations on a ground state which contains certain correlations.
This approach has also been extended to include 2p2h (de-) excitations, known as
second RPA [162,163]. Since the quasi-Boson approximation that enters the deriva-
tion of the RPA equations works better for collective states than for single-nucleon
excitations, RPA methods have difficulties to describe the latter type of excited
nuclear states. The EOM-CCSD approach also employs linear excitations up to
the 2p2h level. However, since these excitations act on the fully correlated CCSD
ground state, EOM-CCSD is considered superior to the RPA approaches and may,
therefore, be able to describe single-nucleon excitations as well as collective states.

Typically, those excited states are rather high-lying, beyond the neutron sepa-
ration threshold, and no longer bound. These states are, therefore, not expected to
be highly accurate reproduced in calculations in which the continuum is not prop-
erly taken into account. Additionally, some of the low-lying 0+ states in closed-
shell nuclei, such as 16O, are suspected to haveα-cluster structure [164] and would,
consequently, require 4p4h excitations for an accurate description, which is be-
yond the scope of EOM-CCSD.

This section focuses mainly on the computational aspects of EOM-CCSD cal-
culations rather than a thorough physical discussion, although it will address the
question raised above as to whether EOM-CCSD is able to describe single-nucleon
excitations as well as collectivity within the same framework. The EOM-CCSD
eigenvalue problem constitutes a non-Hermitean eigenvalue problem, which can
reliably be solved using non-symmetric Lanczos methods provided by the Arnoldi
Package [165]. Since the matrix-vector multiplications can be distributed via MPI,
these multiplications can be evaluated quickly using multiple computing nodes.
This way, matrices of linear dimensions of hundreds of millions can be diagonal-
ized. However, for large linear dimensions the orthogonalizations of the Lanczos
vectors, which are performed on a single computing node only, does in practical
calculations eventually spoil the scaling.

When calculating excited states it is important to take spurious center-of-mass
excitations into account. While ground states are approximately free from center-
of-mass contaminations [152], these contaminations cannot be ignored for the ex-
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cited states. One way to probe the degree of center-of-mass contamination is to
use the Hamiltonian (1.3),

Ĥ =
1

A

A∑

i<j

(p̂ i − p̂ j )
2

2m
+

A∑

i<j

V̂ NN
i j

+

A∑

i<j<k

V̂ 3N
i j k
+ λCM ĤCM , (A.1)

augmented by the center-of-mass Hamiltonian λCM ĤCM with

ĤCM =
1

2 A m
P̂

2

CM
+

1

2
(A m ΩCM)

2 R̂ CM −
3

2
ħhΩCM , (A.2)

and to study the dependence of the eigenvalues on the parameter λCM. In the exact
case the nuclear wavefunction factorizes into an intrinsic and a center-of-mass
part, and the intrinsic energies are clearly independent of λCM. Furthermore, for
λCM 6= 0 the center of mass will then be in a ĤCM eigenstate |n〉 with eigenenergy

ECM,n = λCM n ħhΩCM (A.3)

that scales linearly with the parameter λCM. At large enough values of λCM only
the center-of-mass ground states |0〉 will be visible at the lower end of the energy
spectrum. In the following calculations the oscillator frequency ΩCM of the center-
of-mass potential is chosen to coincide with the HO basis frequency Ω, but other
choices are possible as well [152].

Figure A.1 shows the λCM-dependence of CCSD ground-state energies of 16,24O
and 40,48Ca for the chiral NN-only and NN+3N-full Hamiltonian, at two values of
the SRG flow parameter. The energies change only very little when λCM is varied
from 0.0 to 1.0, about 250 keV for 16O and about 500 keV for 40Ca. Excited states,
however, exhibit a much stronger dependence onλCM, as can be seen in Figures A.2
and A.3, where the lowest 10 J π = 0+ and J π = 2+ states of 16O and 40Ca are shown.
In Figures A.2 and A.3 it is clearly visible how spurious excited states are linearly
shifted upwards linearly with λCM. Typically at values of λCM around 1.0 the low-
energy spectra have become stable with respect the λCM variations.

Another important information is the rate of convergence of the EOM-CCSD
calculations with respect to model space size. The convergence of the 3 lowest J π =

0+,2+, and 4+ states of 16,24O and 40,48Ca is considered in Figures A.4 and A.5. The
calculations used λCM = 1.0. Regarding convergence, the results are encouraging.
Most states, and in particular the low-lying ones, are converged already in smaller
Coupled-Cluster model spaces. This allows a clear identification of high- and low-
lying states.
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Figure A.1: Dependence of 16O and 40Ca CCSD ground-state energies on λCM using a HO basis

with emax = 10, and at ħhΩ = 20 MeV.

Figures A.2 and A.3 show that beyond some threshold energy, EOM-CCSD
yields a bulk of excitation energies that lie closely together. These spectra strongly
resemble the results for collective excitations obtained from RPA. Apart from that,
EOM-CCSD is also capable of providing some low-lying excitations, as is appar-
ent from Figures A.4 and A.5. For 24O, two low-lying 2+ states are obtained, the
lowest at an excitation energy of 6.5 MeV. This might be a candidate for the ex-
perimentally known 2+ state at 4.8 MeV (experimental values from [166]). The
calculations also show a low-lying 4+ state at about 9.4 MeV, for which there is no
experimental evidence. For 48Ca, there are also low-lying 2+ and 4+ states. The
lowest 2+ state is at 5.0 MeV excitation energy, which is a candidate for the exper-
imentally observed state at 3.8 MeV. For the calculated 4+ state at 5.6 MeV there
is also a possible match in the observed 48Ca excitation spectrum at 4.5 MeV. No
low-lying 0+, 2+, or 4+ states are obtained for 16O and 40Ca. However, the 0+ and
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Figure A.2: Dependence of the 10 lowest J π = 0+ and J π = 2+ states of 16O on the parameter λCM.

The energies are obtained from EOM-CCSD using the NN+3N-full Hamiltonian in

NO2B approximation with E3max = 14 and atα= 0.08 fm4. The calculations employed

a HO basis with emax = 10 and ħhΩ = 20 MeV.

Coupled Cluster Theory for Nuclear Structure 229



Appendix A. Excited Nuclear States

40Ca

0

5

10

15

20

25

30

.

E
x

[M
e
V

]

0+

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

λCM

0

5

10

15

20

25

.

E
x

[M
e
V

]

2+

Figure A.3: As in Figure A.2, for 40Ca.
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2+ spectra are less converged than the low-lying states for other nuclei, indicating
that the 16O states are rather complicated. Experiments show low-lying 0+ states
at 6.1 and 3.3 MeV for 16O and 40Ca, respectively, but these are potentially α-cluster
states [164] and, therefore, expected to be out of reach of the EOM-CCSD. There
are also low-lying 2+ states at 6.9 and 3.9 MeV for 16O and 40Ca, respectively. Since
there is also no evidence for these in the calculations, it may be speculated they
also have a complicated structure, such as multi-particle-hole excitations, which
EOM-CCSD is simply not able to describe with linear 2p2h excitations.
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Figure A.4: Convergence of the 3 lowest J π = 0+ , J π = 2+, and J π = 4+ with respect to emax.

Other parameters as in Figure A.2, with λCM = 1.0.
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Figure A.5: As in Figure A.5, for 40Ca and 48Ca.
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As an application of Coupled-Cluster theory beyond common atomic nuclei, the
ground-state energies of neutrons trapped in an external potential are considered
in the following. Since pure neutron systems are not bound, the external potential
is required to prevent the neutrons from moving apart. Thus, the Hamiltonian is
of the form

Ĥ =

A∑

i

p̂ 2
i

2m
+

A∑

i

Ûext(r̂i ) +

A∑

i<j

V̂ NN
i j

+

A∑

i<j<k

V̂ 3N
i j k

(B.1)

where the external potential considered is a harmonic-oscillator potential with
frequency Ωtrap

Ûext(r̂i ) =
1

2
m Ω2

trap
r̂ 2

i
. (B.2)

Unlike for the nuclear case, in (B.1) the total, rather than the intrinsic kinetic energy
is used because the external potential also acts on the center-of-mass coordinates.
One motivation for considering neutron drops is that they provide a very simple
model of neutron-rich nuclei in which the core is approximated by an external
well acting on the valence neutrons [167]. Additionally, it allows to investigate
properties of the interaction in the neutron-neutron or three-neutron sector.

First, basic properties of the many-body calculations are considered. All cal-
culations employ SRG-evolved matrix elements from ramp-40C model spaces,
and with applied frequency conversion from parent frequency ħhΩ = 28 MeV. Fig-
ures B.1 and B.2 show for various neutron drops and interactions, and at fixed
trap potential frequency ħhΩtrap = 10 MeV, the dependence of the CCSD ground-
state energy on the harmonic-oscillator frequency. For the NN-only, the NN+3N-
induced, and the NN+3N-full (Λ3N = 400 MeV) Hamiltonians, the CCSD energies
for SRG flow parameters α= 0.04 fm4 and α= 0.08 fm4 are sufficiently flat in the fre-
quency range ħhΩ = 16, 20, 24 MeV so that any of these frequencies may be chosen
as optimum. The results for α= 0.02 fm4, where available, suggest an optimal fre-
quency at around ħhΩ = 28 MeV, however, for reason discussed below, an optimal
frequency of ħhΩ= 16 MeV is more convenient and will be chosen in the following.

The results for the NN+3N-full (Λ3N = 500 MeV) Hamiltonian show an odd fre-
quency dependence, where for the heavier neutron drops the CCSD energies keep
on decreasing with increasing frequency, which clearly hints at a defect in the in-
teraction matrix elements. Indeed, this unnatural behavior may be explained by
an insufficient E3max cut. Figure B.3 shows the frequency dependence of the CCSD
energies for the heavier neutron drops for the two values E3max = 12 and 14. From
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Figure B.1: Frequency-dependence of CCSD ground-state energies for various Hamiltonians and

various neutron drops and interactions in an external harmonic-oscillator potential

with frequency ħhΩtrap = 10 MeV. The 3N interactions are included via NO2B approx-

imation with E3max = 14, and a HF basis with emax = 12 is employed.
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Figure B.2: As in Figure B.1 for the neutron drops 28n, 40n, and 50n.
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Figure B.3: Dependence on the HO frequency of the CCSD ground-state energy for various neu-

tron drops for the NN+3N-full Hamiltonian with chiral 3N cutoff Λ3N = 500 MeV for

E3max = 12 (open symbols, dashed lines) and E3max = 14 (full symbols, solid lines).

Parameters of the calculations as in Figure B.1.
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16n α = 0.04 fm4 α = 0.08 fm4 50n α = 0.04 fm4 α = 0.08 fm4

Eref [MeV] 340.8 339.1 1467.0 1459.8
∆E (CCSD) [MeV] – 10.2 – 8.0 – 28.1 – 17.3
δE (ΛCCSD(T)) [MeV] – 0.7 – 0.5 – 1.3 – 1.0

Table B.1: Contributions from different orders of the cluster truncation to the ground-state energies

of 16n and 50n for the NN+3N-full (Λ3N = 400 MeV) Hamiltonian. Parameters of the

calculations as in Fig. B.4, with emax = 12.

this it becomes apparent that the problematic frequency dependence is enhanced
for smaller values of E3max and may vanish for sufficient large values. However, for
the frequency ħhΩ= 16 MeV chosen as optimum, there is virtually no E3max effect on
the energy scales considered in Figure B.3, while the effect increases with the oscil-
lator frequency. From these observations it may be concluded that is ħhΩ= 16 MeV

is the most appropriate choice for the NN+3N-full (Λ3N = 500 MeV) Hamiltonian.
As in the case of nuclei, the insufficiency of the ramp-40C SRG model spaces for
heavier neutron drops is expected to cause the problems mentioned above.

Next, the convergence properties of the calculations and the size of the differ-
ent contributions of the cluster expansion are discussed. In Figure B.4, the emax-
dependence of the reference energy, as well as the CCSD and ΛCCSD(T) ground-
state energy is depicted. The α = 0.04 fm4 and 0.08 fm4 results are well converged.
This is not quite the case for α = 0.02 fm4 results, showing a more linear, rather
than exponential, convergence pattern which would also not allow for reliable ex-
trapolations to infinite model-space sizes. Therefore, the α = 0.02 fm4 results will
not be considered in the following.

In Table B.1 the contributions from different orders of the cluster expansion
to the ground-state energies of 16n and 50n for the NN+3N-full (Λ3N = 400 MeV)
Hamiltonian are listed. These numbers show that the beyond-HF contributions
are very small. For the α = 0.04 fm4 Hamiltonian, the CCSD correlation energy
contributes only 3.1 % to the ground-state energy of 16n, and 2.0 % to the ground-
state energy of 50n. The ΛCCSD(T) triples correction is practically negligible, con-
tributing about 0.2 % and 0.1 % to the ground-state energy of 16n and 50n, respec-
tively. This, not surprisingly, indicates that the most part of the binding energy
stems from the external potential while the neutron interact only weakly within
the trap.

The E3max cut does not pose a problem in most of the present calculation of
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Figure B.4: Reference (dashed line), CCSD (dotted line) and ΛCCSD(T) (solid line) ground-state

energy for various neutron drops and interactions in an external harmonic-oscillator

potential with frequency ħhΩtrap = 10 MeV. Parameters of the calculations as in Fig-

ure B.1, with HO basis frequency ħhΩ = 16 MeV.
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α
NN+3N-ind.

NN+3N-full NN+3N-full
[fm4] Λ3N = 500 MeV Λ3N = 400 MeV

8n
0.04 0.00 0.00 0.00
0.08 0.00 0.00 0.00

20n
0.04 0.07 –0.11 0.00
0.08 0.05 –0.03 0.03

40n
0.04 0.82 –0.58 0.27
0.08 0.79 –0.08 0.50

50n
0.04 3.96 0.53 4.13
0.08 4.01 1.25 4.47

Table B.2: The E3max effect in the ΛCCSD(T) ground-state energies, measured by (B.3), for various

neutron drops and obtained from emax = 12 modes spaces. Other parameters of the

calculations as in Fig. B.4.

neutron drops at HO basis frequency ħhΩ = 16 MeV. This can be seen in Table B.2
where the differences in the ΛCCSD(T) ground-state energies

E (ΛCCSD(T))(E3max = 14)− E (ΛCCSD(T))(E3max = 12) (B.3)

are listed. In the calculations of the lighter neutron drops the E3max effect is com-
pletely negligible. For 40n, the absolute E3max effect ranges from 0.3 MeV to about
0.8 MeV, which is still small regarding the large energy scales involved. For 50n,
the E3max effect rises dramatically. This is most likely a signature of a problem in
the input matrix elements, and it may well be caused by the 40C ramp used for
the SRG evolution which also led to the observations made in Figure B.3. In con-
clusion, apart from 50n, the Coupled-Cluster results are expected to be accurate
with uncertainties well below 1 %. The full set of ΛCCSD(T) ground-state energies
is presented in Table B.3.

It should be noted that in the calculations the external potential is not SRG-
evolved. However, the SRG is not expected to have a large effect there because
the SRG alters mainly the short-range behavior while the external potential has
long-range character. Apart from the NN-only results, the ground-state energies
show very little flow-parameter dependence, even for the NN+3N-full Hamilto-
nian with Λ3N = 500 MeV. This outcome may indicate that the (T , MT ) = (3/2, 3/2)

isospin channels of the chiral NN and 3N interactions are not the driving force
behind SRG-induced 4N (and beyond) contributions. Therefore, pure neutron
systems give the opportunity to compare the results for Λ3N = 500 MeV NN+3N-
full Hamiltonian to the Λ3N = 400 MeV variant. As can be seen in Figure B.4, the
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α
NN-only NN+3N-ind.

NN+3N-full NN+3N-full
[fm4] Λ3N = 500 MeV Λ3N = 400 MeV

8n
0.04 133.6 134.2 135.1 135.5
0.08 133.5 134.4 135.3 135.6

16n
0.04 326.7 330.0 332.0 335.1
0.08 326.0 330.5 332.5 335.6

20n
0.04 421.8 427.1 432.8 436.5
0.08 420.3 427.9 433.3 437.2

28n
0.04 662.8 674.7 680.7 690.8
0.08 659.4 676.0 681.3 691.8

40n
0.04 1013.2 1042.6 1058.3 1080.2
0.08 1005.3 1045.1 1058.3 1081.7

50n
0.04 1365.9 1437.6 1449.1 1492.3
0.08 1354.2 1441.5 1448.1 1494.2

Table B.3: Ground-state energies from ΛCCSD(T) in MeV for various neutron drops in a

harmonic-oscillator trap with ħhΩtrap = 10 MeV. The calculations used frequency-

converted matrix elements with ħhΩ = 16 MeV, obtained from the parent frequency

ħhΩ = 28 MeV. The 3N interactions were included via NO2B approximation with

E3max = 14. The calculations were performed in a HF basis with emax = 12.

ground-state energies change noticeably when the cutoff-momentum is lowered
from 500 MeV to 400 MeV. The initial 3N contributions are in any case repulsive,
as is apparent from the comparison of the NN+3N-full energies with the NN+3N-
induced results. However, lowering the cutoff in the initial chiral 3N interaction
leads to an enhancement of these repulsive contributions, which is also found to
grow with the neutron number, as can be seen in Table B.3.

Finally, the Coupled-Cluster results using chiral interaction are compared to
Green’s function Monte Carlo (GFMC) calculations [168] using the Argonne V8′

(AV8′) potential [169], either alone or in combination with the Urbana IX (UIX) [169]
or the Illinois-7 (IL7) [170] three-nucleon interaction. The comparison is shown in
Figure B.5. For 8n, all methods and interactions give the same result on the en-
ergy scales considered in Figure B.5. However, for larger neutron numbers the
results increasingly deviate from each other. Up to 40n, both Hamiltonians that do
not contain initial 3N forces, the chiral NN+3N-induced and the AV8′, give very
similar results. Even closer to the AV8′ results is the NN+3N-full Hamiltonian
with 500 MeV cutoff momentum. As already discussed above, the NN+3N-full
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Hamiltonian with 400 MeV cutoff shows noticeable deviations from the 500 MeV
results, due to an enhanced repulsion. Even more repulsion is produced by the
UIX three-body interaction, such that for 40n, the AV8′+UIX results are clearly dis-
tinguishable from the other ones. For example, the AV8′+UIX ground-state energy
for 40n differs to the NN+3N-full (Λ3N = 500 MeV) result by about 1.5 MeV per neu-
tron, and to the NN+3N-full (Λ3N = 400 MeV) by about 0.9 MeV per neutron. On
the other hand, the AV8′ potential in combination with the IL7 three-nucleon in-
teraction produces significantly less repulsion than the other interactions. This
demonstrates once more that different current 3N interactions lead to very differ-
ent results in many-body calculations.

In conclusion, neutron drops represent convenient systems to test the extreme-
isospin properties of nuclear interactions. The Coupled-Cluster framework con-
sidered here is capable to provide very accurate energies, and the effects of SRG-
induced many-body interactions are very limited. Therefore, the uncertainties in-
volved are much reduced compared to nuclear calculations in such a mass range.
Particularly for heavier neutron drops, differences in the interactions become visi-
ble. This may help to understand the behavior of these interactions in the calcula-
tion of neutron-rich nuclei. A particularly interesting observation in the context of
this work are the different results for the NN+3N-full Hamiltonians for different
regulator cutoff momentum.

244 Coupled Cluster Theory for Nuclear Structure



Appendix B. Trapped Neutrons

8n 16n 20n 28n 40n

15

20

25

30

.

E
/A

[M
e
V

]

● � Î � ★ ✚

ΛCCSD(T) ΛCCSD(T) ΛCCSD(T) GFMC GFMC GFMC

NN+3N-ind.
NN+3N-full NN+3N-full

AV8′
AV8′ AV8′

Λ3N = 500 MeV Λ3N = 400 MeV + Urbana IX + Illinois-7

Figure B.5: Comparison of ground-state energies per neutron of neutron drops obtained from

ΛCCSD(T) and Green’s function Monte Carlo calculations employing various inter-

actions. The Coupled-Cluster calculations used the chiral NN as well as two variants

of the chiral NN+3N interactions in form of the NN+3N-induced, the NN+3N-full

(Λ3N = 500 MeV), and the NN+3N-full (Λ3N = 400 MeV) Hamiltonian. The GFMC

calculations used either the AV8′ two-nucleon potential, or the AV8′ potential together

with the Urbana IX model 3N interaction [168]. The Coupled-Cluster results can be

found in Table B.3.
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C.1 Diagrams
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Figure C.1: CCSD correlation energy and T̂1 diagrams.

248 Coupled Cluster Theory for Nuclear Structure



Appendix C. CCSD Diagrams and Spherical Expressions

b b b l b l b b

DA DBa DBb DBc

b b b b b b b b

DBd DBe DCa DCb

b b b b b b b b

DCc DCd DDa DDb

l b l b b b b b

DEa DEb DEc DEd

b b b b b b b b

DEe DEf DEg DEh

b b b b b b b b

DFa DFb DFc DGa

b b b b b b b b

DGb DGc DGd DGe

b b b b b b

DHa DHb DI

Figure C.2: CCSD T̂2 diagrams.
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C.2 Spherical Equations
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Ĵ 2 〈a c |t̂2|k l 〉
J M J M

〈k l |v̂ |i c 〉

J M J M

(SC a )

− ̂−1
a

∑

c
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Figure C.3: Spherical expressions for the CCSD T̂1 amplitude equations.
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Figure C.4: Spherical expressions for the CCSD T̂2 amplitude equations.
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〈ã |t̂1|k 〉

00

〈k̃ | f̂ |c 〉

00

〈cb |t̂2|i j 〉

J M J M

(DE c )

+ CCAtoStd(A)
�

ab

i j
J ; J ′

�

̂−1
i

∑

c d k

(−1)jd+jk−J ′ 〈c̃ |t̂1|i 〉

00
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〈ã |t̂1|k 〉

00

〈kb |v̂ |c d 〉

J M J M

〈c d |t̂2|i j 〉

J M J M

(DE f )

− 1
4
̂−1

i

∑

c k l

〈c̃ |t̂1|i 〉

00

〈k l |v̂ |c j 〉

J M J M

〈ab |t̂2|k l 〉

J M J M

(DE g )

− 1
2
̂−2

a

∑

c d k

̂−1
c

∑

J ′
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Figure C.5: Spherical expressions for the CCSD T̂2 amplitude equations, continued.
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〈ã |t̂1|k 〉

00

〈c̃ |t̂1|i 〉

00

〈d̃ |t̂1|j 〉

00

〈kb |v̂ |c d 〉

J M J M

(DHb )

− 1
2
̂−1

a ̂−1
b
̂−1

i

∑

c k l
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Figure C.6: Spherical expressions for the CCSD T̂2 amplitude equations, continued.
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C.3 Diagrams for Three-Body Hamiltonians
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Figure C.7: CCSD correlation energy and T̂1 diagrams for three-body Hamiltonians.
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Figure C.8: CCSD T̂2 diagrams for three-body Hamiltonians.
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Figure C.9: CCSD T̂2 diagrams for three-body Hamiltonians, continued.
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C.4 Spherical Equations for Three-Body Hamiltonians
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Figure C.10: Spherical expressions for the CCSD T̂1 amplitude equations for three-body Hamilto-

nians.
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Figure C.11: Spherical expressions for the CCSD T̂1 amplitude equations for three-body Hamilto-

nians, continued.
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n
J ′ J ′′ J
j i j j jk

o

6j
〈ab k̃ ||ŵ ||c d i 〉
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Figure C.12: Spherical expressions for the CCSD T̂2 amplitude equations for three-body Hamilto-

nians.

Coupled Cluster Theory for Nuclear Structure 259



Appendix C. CCSD Diagrams and Spherical Expressions

P̂ab (J ) P̂i j (J )

¨
(T2Cc)
+ 1

4
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Figure C.13: Spherical expressions for the CCSD T̂2 amplitude equations for three-body Hamilto-

nians, continued.
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J J ′

J ′′

〈c d |t̂2|j l 〉

J ′M ′ J ′M ′

〈b̃ |t̂1|k 〉

00
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Figure C.14: Spherical expressions for the CCSD T̂2 amplitude equations for three-body Hamilto-

nians, continued.
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Figure C.15: Spherical expressions for the CCSD T̂2 amplitude equations for three-body Hamilto-

nians, continued.
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Figure C.16: Spherical expressions for the CCSD T̂2 amplitude equations for three-body Hamilto-

nians, continued.
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〈ã |t̂1|k 〉

00

〈b̃ |t̂1|l 〉

00

〈c̃ |t̂1|i 〉

00

〈d̃ |t̂1|j 〉

00
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〈ẽ |t̂1|i 〉

00

〈ab |t̂2|j m 〉

J M J M
«

+ . . .

Figure C.17: Spherical expressions for the CCSD T̂2 amplitude equations for three-body Hamilto-

nians, continued.
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〈ã |t̂1|m 〉

00

〈c̃ |t̂1|i 〉

00

〈d̃ |t̂1|j 〉

00

(T2Eh)
+ 1

4
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Figure C.18: Spherical expressions for the CCSD T̂2 amplitude equations for three-body Hamilto-

nians, continued.
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( Ĵ ′)−1 ̂−1

j

∑

c d e k l m

(−1)je+jm−J ′

×
∑

J ′′ J ′′′
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( Ĵ ′)−1 〈k l m̃ ||ŵ ||c d e 〉
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Figure C.19: Spherical expressions for the CCSD T̂2 amplitude equations for three-body Hamilto-

nians, continued.
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Figure C.20: Spherical expressions for the CCSD T̂2 amplitude equations for three-body Hamilto-

nians, continued.
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D.1 Spherical Equations

〈ı̃ |Ĥ1|a 〉
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Figure D.1: Spherical expressions for the effective Hamiltonian matrix elements.
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Figure D.2: Spherical expressions for the effective Hamiltonian matrix elements.
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〈ã |t̂1|k 〉

00

〈k j |v̂ |ib 〉

J M J M

− 1
2
̂−1

i

∑

c

〈c̃ |t̂1|i 〉

00

〈a j |χ̂ ′|cb 〉

J M J M

Figure D.3: Spherical expressions for the intermediates used in the calculations of the effective

Hamiltonian matrix elements.
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J ′M ′

J ′M ′

〈ı̃ l̃ |Ĥ2|j c 〉
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Figure D.4: Spherical expressions for the intermediates used in the calculations of the effective

Hamiltonian matrix elements.
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D.2 Diagrams for Three-Body Hamiltonians
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Figure D.5: Effective Hamiltonian diagrams for three-body Hamiltonians.
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Figure D.6: Effective Hamiltonian diagrams for three-body Hamiltonians, continued.
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Figure D.7: Effective Hamiltonian diagrams for three-body Hamiltonians, continued.
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Figure D.8: Effective Hamiltonian diagrams for three-body Hamiltonians, continued.
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Figure D.9: Effective Hamiltonian diagrams for three-body Hamiltonians, continued.
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D.3 Spherical Equations for Three-Body Hamiltonians

〈ı̃ |Ĥ |a 〉

00

=
(H h

p A)
+ 1

4

∑

c d k l

∑

J

Ĵ 〈k l ı̃ ||ŵ ||c d a 〉
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Figure D.10: Spherical expressions for the effective Hamiltonian for three-body Hamiltonians.
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Figure D.11: Spherical expressions for the effective Hamiltonian for three-body Hamiltonians,

continued.
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Figure D.12: Spherical expressions for the effective Hamiltonian for three-body Hamiltonians,

continued.

Coupled Cluster Theory for Nuclear Structure 281



Appendix D. Effective Hamiltonian Diagrams and Spherical Expressions

〈i j |Ĥ |k l 〉
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×
¦

J J ′ J ′′
jm jk j l

©

6j
〈i j m̃ ||ŵ ||c d k 〉

J J ′

J ′′

〈c d |t̂2|l m 〉

J ′M ′ J ′M ′

(H hh
hh

B)
+ Ĵ−1
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Figure D.13: Spherical expressions for the effective Hamiltonian for three-body Hamiltonians,
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〈k l ̃ ||ŵ ||c d b 〉

J ′′ J ′′′

J ′

〈d̃ |t̂1|k 〉

00

〈c̃ |t̂1|i 〉

00

〈ã |t̂1|l 〉

00
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Figure D.15: Spherical expressions for the effective Hamiltonian for three-body Hamiltonians,
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〈ã |t̂1|m 〉

00

�

H pp
ph

K

�

+ 1
4

P̂ab (J ) (−1)ja+jb−J ̂−1
a ̂−1

b

∑

d e k l m

∑

J ′ J ′′
(−1)J+J ′+J ′′ Ĵ−1 Ĵ ′ Ĵ ′′
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Figure D.16: Spherical expressions for the effective Hamiltonian for three-body Hamiltonians,
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〈ã |t̂1|l 〉

00

�

H pp
ph

P

�

+ 1
2

P̂ab (J ) (−1)ja+jb−J ̂−1
a ̂−1

b
̂−1

i Ĵ−1
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〈ã |t̂1|l 〉

00

�

H pp
ph

Q

�

+ 1
4

∑

d e k l m

̂−1
c

∑

J ′
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×
¦

J J ′ J ′′
jm jc j i

©

6j
〈k l m̃ ||ŵ ||d e c 〉
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j Ĵ−1

∑

c d l

〈i a l̃ ||ŵ ||k c d 〉
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Figure D.19: Spherical expressions for the effective Hamiltonian for three-body Hamiltonians,

continued.

288 Coupled Cluster Theory for Nuclear Structure



Appendix D. Effective Hamiltonian Diagrams and Spherical Expressions

�

H hp
hh

M

�

− CCAtoStd(A)
�

i a

j k
J ; J ′

�

|Ti a=0

̂−1
j

∑

c d e l m

̂−1
l
(−1)je+jm−J ′

∑

J ′′ J ′′′
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J ′ J

J ′′

〈c d |t̂2|j k 〉

J M J M

〈a e |t̂2|l m 〉
J ′M ′ J ′M ′

+ . . .

Figure D.20: Spherical expressions for the effective Hamiltonian for three-body Hamiltonians,

continued.
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Figure D.21: Spherical expressions for the effective Hamiltonian for three-body Hamiltonians,

continued.
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E.1 Diagrams
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Figure E.1: ΛCCSD daiagrams for the Λ̂1 and Λ̂2 amplitude equations.

292 Coupled Cluster Theory for Nuclear Structure



Appendix E. ΛCCSD Diagrams and Spherical Expressions

E.2 Spherical Equations

(Λ1A)
+ 〈ı̃ |Ĥ1|a 〉
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Ĵ 2 〈i k |λ̂2|c d 〉

J M J M

〈c d |Ĥ2|a k 〉
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J M J M

〈k l |λ̂2|a c 〉

J M J M

(Λ1G)
− 1

2
̂−1

i

∑

c d e k l

̂−2
d

∑

J J ′
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Figure E.2: Spherical expressions for the ΛCCSD Λ̂1 amplitude equations.
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J M J M

(Λ2B)
+ CCAtoStd(A)

�

i j

ab
J ; J ′

�

〈ı̃ |Ĥ1|a 〉
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Figure E.3: Spherical expressions for the ΛCCSD Λ̂2 amplitude equations.
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E.3 Spherical Equations for Three-Body Hamiltonians
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Ĵ 〈c d ı̃ ||ŵ ||e f a 〉

J J

0

〈k l |λ̂2|c d 〉

J M J M

〈e f |t̂2|k l 〉

J M J M

(Λ3B
1

C)
+ ̂−1

i

∑

c d e k l m

∑

J J ′ J ′′
(−1)jc+jk−J (−1)jd+j l−J (−1)je+jm−J Ĵ Ĵ ′ Ĵ ′′
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Figure E.4: Spherical expressions for the ΛCCSD Λ̂1 amplitude equations for three-body Hamilto-

nians.

Coupled Cluster Theory for Nuclear Structure 295



Appendix E. ΛCCSD Diagrams and Spherical Expressions

(Λ3B
1

G)
+ 1

16

∑

c d e f k l m n

∑

J
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Ĵ 〈c d ı̃ ||ŵ ||e l a 〉

J J

0

〈k l |λ̂2|c d 〉

J M J M
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Ĵ 〈m d ı̃ ||ŵ ||e f a 〉
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Figure E.5: Spherical expressions for the ΛCCSD Λ̂1 amplitude equations for three-body Hamilto-

nians, continued.
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Figure E.6: Spherical expressions for the ΛCCSD Λ̂1 amplitude equations for three-body Hamilto-

nians, continued.
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Figure E.7: Spherical expressions for the ΛCCSD Λ̂1 amplitude equations for three-body Hamilto-

nians, continued.
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Figure E.8: Spherical expressions for the ΛCCSD Λ̂1 amplitude equations for three-body Hamilto-

nians, continued.
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〈i j c̃ ||ŵ ||k l b 〉

J J ′

J ′′

〈k l |λ̂2|a c 〉

J ′M ′
J ′M ′

�

Λ3B
2,J

B
�

− 1
2

P̂ab (J ) P̂i j (J )
∑

c d k l m

∑

J ′ J ′′
(−1)jc+j l−J ′ (−1)jd+jm−J ′ (−1)J+J ′+J ′′

× Ĵ−1 Ĵ ′ Ĵ ′′
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×
¦

J J ′ J ′′
jm jb ja

©

6j
〈i j m̃ ||ŵ ||k l b 〉
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Figure E.9: Spherical expressions for the ΛCCSD Λ̂2 amplitude equations for three-body Hamilto-

nians.
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〈ẽ |t̂1|m 〉

00

�

Λ3B
2,J

G
�

+ 1
2

P̂ab (J ) P̂i j (J )
∑

c d e k l m

̂−1
k

∑

J ′ J ′′
(−1)jc+j l−J ′ (−1)je+jm−J ′ (−1)J+J ′+J ′′
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Figure E.10: Spherical expressions for the ΛCCSD Λ̂2 amplitude equations for three-body Hamil-

tonians, continued.
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J ′ J

J ′′

〈k i |λ̂2|c d 〉

J ′M ′ J ′M ′

�

Λ3B
2,K

B
�

+ 1
2

P̂ab (J ) P̂i j (J ) (−1)j i+j j−J
∑

c d e k l

∑

J ′ J ′′
(−1)jd+jk−J ′ (−1)je+j l−J ′
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Figure E.11: Spherical expressions for the ΛCCSD Λ̂2 amplitude equations for three-body Hamil-

tonians, continued.
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Figure E.12: Spherical expressions for the ΛCCSD Λ̂2 amplitude equations for three-body Hamil-

tonians, continued.
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〈l m ̃ ||ŵ ||ab e 〉

J ′ J

J ′′

〈k i |λ̂2|c d 〉

J ′M ′ J ′M ′

〈c̃ |t̂1|l 〉

00

〈d̃ |t̂1|m 〉

00
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Figure E.13: Spherical expressions for the ΛCCSD Λ̂2 amplitude equations for three-body Hamil-

tonians, continued.
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Ĵ−1 ( Ĵ ′)2 〈i j m̃ ||ŵ ||ab k 〉

J J

0

〈k l |λ̂2|c d 〉

J ′M ′ J ′M ′

〈c d |t̂2|m l 〉

J ′M ′ J ′M ′

�

Λ3B
2,M

C
�

− 1
8

P̂ab (J ) P̂i j (J )
∑

c d e k l m

̂−1
c ̂−1

m

∑

J ′
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〈ẽ |t̂1|k 〉

00

+ 〈i j |λ̂2|ab 〉

J M J M

[NO2B] = 0 , ∀ a ,b , i , j , J , M

Figure E.14: Spherical expressions for the ΛCCSD Λ̂2 amplitude equations for three-body Hamil-

tonians, continued.
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Figure F.1: Spherical expressions for the CCSD one-body response density matrix elements.
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Figure F.2: Spherical expressions for the CCSD two-body response density matrix elements.

Coupled Cluster Theory for Nuclear Structure 309



Appendix F. Spherical Reduced Density Matrix

〈ab |γ̂(2)N |i j 〉

J M J M

=
(γ

pp
hhA)
+ 〈ab |t̂2|i j 〉

J M J M

(γ
pp
hhB)
+ P̂ab (J ) P̂i j (J ) ̂

−1
a ̂−1

b
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Figure F.3: Spherical expressions for the CCSD two-body response density matrix elements, con-

tinued.
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Figure F.4: Spherical expressions for the CCSD two-body response density matrix elements, con-

tinued.
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〈ã |t̂1|k 〉

00

〈c̃ |t̂1|j 〉

00
«

〈i j |γ̂(2)N |ab 〉

J M J M

=
(γhh

ppA)
+ 〈i j |λ̂2|ab 〉

J M J M

〈ab |γ̂(2)N |c d 〉

J M J M

=
(γ

pp
ppA)
+ 1

2

∑

k l

〈ab |t̂2|k l 〉

J M J M

〈k l |λ̂2|c d 〉

J M J M

(γ
pp
ppB)
+ P̂ab (J ) ̂

−1
a ̂−1

b

∑

k l

〈k l |λ̂2|c d 〉

J M J M
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Figure F.5: Spherical expressions for the CCSD two-body response density matrix elements, con-

tinued.
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〈ã |t̂1|l 〉

00

�

γhh
hpF

�

− P̂j k (J ) ̂
−1
a

∑

c d l

̂−1
c ̂−1

d
〈i l |λ̂2|c d 〉

J M J M
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Figure F.6: Spherical expressions for the CCSD two-body response density matrix elements, con-

tinued.
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Figure G.1: Spherical expressions for the ˆ̃t and ˆ̃λ amplitudes of the ΛCCSD(T) energy correction.

It should be noted that the X variant of the Wigner 6j and 9j symbols (4.35) and (4.34)

are used here and in the following.
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Figure G.2: Spherical expressions for the ˆ̃t and ˆ̃λ amplitudes of the ΛCCSD(T) energy correction,

continued.
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Figure G.3: Spherical expressions for the ˆ̃t and ˆ̃λ amplitudes of the ΛCCSD(T) energy correction,

continued.
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Figure G.4: Spherical expressions for the ˆ̃t and ˆ̃λ amplitudes of the ΛCCSD(T) energy correc-

tion, continued. The (λ̃DX ) contributions are obtained from the corresponding (λ̃CX )

contributions by Λ1 → F̂ and replacing the matrix elements of the normal-ordered

two-body Hamiltonian by Λ̂2 matrix elements.
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Figure G.5: Spherical expressions for the ˆ̃t and ˆ̃λ amplitudes of the ΛCCSD(T) energy correction,

continued.
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Figure G.6: Spherical expressions for the ˆ̃t and ˆ̃λ amplitudes of the ΛCCSD(T) energy correction,

continued.
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〈ã c̃ |t̂2|l k 〉

J ′′M ′′

J ′′M ′′

Figure G.7: Spherical expressions for the ˆ̃t and ˆ̃λ amplitudes of the ΛCCSD(T) energy correction,

continued.
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G.2 Spherical Equations for Three-Body Hamiltonians

〈i j k̃ ||ˆ̃λ||ab c 〉

J J ′

J ′′

= 〈i j k̃ ||ˆ̃λ||ab c 〉

J J ′

J ′′

[NO2B]
(LA1)

+ ̂−1
c

∑

l

〈i j k̃ ||ŵ ||ab l 〉
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Figure G.8: Spherical expressions for the ˆ̃λ amplitudes of the ΛCCSD(T) energy correction for

three-body Hamiltonians.
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J J ′

J ′′

〈k̃ l̃ |λ̂2|c d 〉

J ′′M ′′

J ′′M ′′

�

LETa c
Tb c

�

+ P̂ab (J
′)
∑

d l

∑

J ′J ′′
(−1)jd+j l−J ′′

�
jb jc J ′
ja jk J ′′
J ′ J ′′ J

�

X

〈i j d̃ ||ŵ ||cb l 〉
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J J ′

J ′′

Figure G.9: Spherical expressions for the ˆ̃λ amplitudes of the ΛCCSD(T) energy correction for

three-body Hamiltonians, continued.
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Figure G.10: Spherical expressions for the ˆ̃t amplitudes of the ΛCCSD(T) energy correction for

three-body Hamiltonians.
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Figure G.11: Spherical expressions for the ˆ̃t amplitudes of the ΛCCSD(T) energy correction for

three-body Hamiltonians, continued.
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H.1 Diagrams
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Figure H.1: EOM-CCSD R̂ diagrams.
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J M

J M

〈c ||R̂(J )1 ||k 〉

(R1D)
+
∑

c k

̂−1
c

∑

J ′ J ′′
(−1)J+J ′+J ′′ Ĵ ′ Ĵ ′′
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Figure H.2: Spherical expressions for the EOM-CCSD R̂0 and R̂1 amplitude equations.
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Figure H.3: Spherical expressions for the EOM-CCSD R̂2 amplitude equations.
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Figure H.4: Spherical expressions for the EOM-CCSD R̂2 amplitude equations, continued.
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00

(L1C)
+ ̂−1

i

∑

k

〈ı̃ |Ĥ1|k 〉
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Ĵ ′ Ĵ ′′
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Figure H.5: Spherical expressions for the EOM-CCSD L̂1 amplitude equations.
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Ĵi j Ĵab (−1)j i+j j−J (−1)Jab

∑

c

n
J Jab Ji j

j j j i jc

o

6j
〈i ||L̂(J )1 ||c 〉 〈c j |Ĥ2|ab 〉

Jab M ab Jab M ab

(L2D)
+ 1

2
(−1)Jab+Ji j+J Ĵi j Ĵab
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Figure H.6: Spherical expressions for the EOM-CCSD L̂2 amplitude equations.
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Figure H.7: Spherical expressions for the EOM-CCSD L̂2 amplitude equations, continued.
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H.3 Spherical Equations (Scalar)

ω R̂
(0) =

(R0A)
−
∑

a i

〈a ||R̂(0)1 ||i 〉 〈ı̃ |Ĥ1|a 〉
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Figure H.8: Spherical expressions for the scalar EOM-CCSD R̂0 and R̂2 amplitudes.
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Figure H.9: Spherical expressions for the scalar EOM-CCSD R̂2 amplitude equations.
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00

(L1C)
+ ̂−1

i

∑

k

〈ı̃ |Ĥ1|k 〉
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Figure H.10: Spherical expressions for the scalar EOM-CCSD L̂1 amplitude equations.
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Ĵ ̂−1

i

∑

c

〈i ||L̂(0)1 ||c 〉 〈c j |Ĥ2|ab 〉
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Figure H.11: Spherical expressions for the scalar EOM-CCSD L̂2 amplitude equations.
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The following articles originated during the course of this dissertation:
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1. R. Roth, J. Langhammer, A. Calci, S. Binder, P. Navrátil:
"Similarity-Transformed Chiral NN+3N Interactions for the Ab Initio Description

of 12C and 16O"

Phys. Rev. Lett. 107, 072501 (2011)

2. R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, P. Navrátil:
"Ab Initio Calculations of Medium-Mass Nuclei with Normal-Ordered Chiral NN+3N

Interactions",
Phys. Rev. Lett 109, 052501 (2012)

3. S. Binder, J. Langhammer, A. Calci, P. Navrátil, R. Roth:
"Ab Initio Calculations of Medium-Mass Nuclei with Explicit Chiral 3N Interac-
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Phys. Rev. C 87, 021303(R) (2013) - Editors’ Suggestion

4. H. Hergert, S. K. Bogner, S. Binder, A. Calci, J. Langhammer, R. Roth, A.
Schwenk:
"In-Medium Similarity Renormalization Group with Chiral Two- Plus Three-Nucleon

Interactions"

Phys. Rev. C 87, 034307 (2013)
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"Ab Initio Calculations of Even Oxygen Isotopes with Chiral Two- Plus Three-
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Phys. Rev. Lett. 110, 242501 (2013)

6. S. Binder, P. Piecuch, A. Calci, J. Langhammer, P. Navrátil, R. Roth:
"Extension of coupled-cluster theory with a non-iterative treatment of connected
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7. R. Roth, A. Calci, J. Langhammer, S. Binder:
"Evolved Chiral NN+3N Hamiltonians for Ab Initio Nuclear Structure

Calculations"

submitted to Phys. Rev. C

8. S. Binder, J. Langhammer, A. Calci, R. Roth:
"Ab Initio Path to Heavy Nuclei"

submitted to Phys. Rev. Lett.

Peer-Reviewed Conference Proceedings:
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Prog. Theor. Phys. Suppl. 196, 131 (2012)

2. R. Roth, J. Langhammer, S. Binder, A. Calci:
"New Horizons in Ab Initio Nuclear Structure Theory"

J. Phys.: Conf. Ser. 403, 012020 (2012)

3. R. Roth, J. Langhammer, A. Calci, S. Binder:
"From Chiral EFT Interactions to Ab Initio Nuclear Structure"
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E. Ng, E. Saule, R. Roth, J. Vary, C. Yang:
"No Core CI Calculations for Light Nuclei with Chiral 2- and 3-body Forces"

J. Phys.: Conf. Ser. 454, 012063 (2013) Proceedings of the 24th IUPAP Con-
ference on Computational Physics (IUPAP-CCP 2012), October 14 - 18, 2012,
Kobe, Japan

5. R. Roth, A. Calci, J. Langhammer, S. Binder:
"Ab Initio Nuclear Structure Theory: From Few to Many"

Proceedings of the 22nd European Conference on Few-Body Problems in
Physics (EFB22), September 9-13, 2013, Krakow, Poland
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"Towards New Horizons in Ab Initio Nuclear Structure Theory"

Proceedings of the 25th International Nuclear Physics Conference 2013
(INPC2013), June 2 - 7, 2013, Firenze, Italy

7. D. Oryspayev, H. Potter, P. Maris, M. Sosonkina, J. P. Vary, S. Binder, A. Calci,
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"Leveraging GPUs in Ab Initio Nuclear Physics Calculations"

IEEE 27th Parallel and Distributed Processing Symposium Workshops &
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