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Abstract

Based on the fundamental symmetries of QCD, chiral effective field theory (EFT) provides two-

(NN), three- (3N), four- (4N), and many-nucleon interactions in a consistent and systematic

scheme. Recent developments to construct chiral NN+3N interactions at different chiral orders

and regularizations enable exciting nuclear structure investigations as well as a quantification

of the fundamental uncertainties resulting from the chiral expansion and regularization.

We present the complete toolchain to employ the present and future chiral NN, 3N, and 4N in-

teractions in nuclear structure calculations and emphasize technical developments in the three-

and four-body space, such as the similarity renormalization group (SRG), the frequency conver-

sion, and the transformation to the JT -coupled scheme. We study the predictions of the chiral

NN+3N interactions in ab initio nuclear structure calculations with the importance-truncated

no-core shell model and coupled-cluster approach. We demonstrate that the inclusion of chiral

3N forces improves the overall agreement with experiment for excitation energies of p-shell nu-

clei and it qualitatively reproduces the systematics of nuclear binding energies throughout the

nuclear chart up to heavy tin isotopes. In this context it is necessary to introduce truncations

in the three-body model space and we carefully analyze their impact and confirm the reliability

of the reported results.

The SRG evolution induces many-nucleon forces that generally cannot be included in the cal-

culations and constitute a major limitation for the applicability of SRG-evolved chiral forces.

We study the origin and effect of the induced many-nucleon forces and propose a modification

of the interaction, which suppresses the induced beyond-3N forces. This enables applications

of the chiral interactions far beyond the mid-p shell. Furthermore, we test alternative formula-

tions of SRG generators aiming to prevent the induced many-body forces from the outset. The

extension of the SRG evolution and matrix-element treatment to the four-body space allows for

an explicit inclusion of induced and initial 4N forces. We discuss the truncations and limitations

in the four-body space and present first ab initio nuclear structure calculations for p-shell nuclei

with induced 4N forces.

By changing the parameters of the local 3N force we perform a comprehensive sensitivity anal-

ysis for nuclear spectra in the p shell that provides constraints for the construction of chiral

interactions. Moreover, we identify certain correlations that prevent an accurate description

of the experimental results by an adjustments of the local 3N force at N2LO. We report first

results obtained with a next-generation NN+3N interaction at N3LO and compare the spectra

obtained with several chiral interactions at different chiral orders, varying the regulator function

and cutoff. These studies present a first step towards a systematic uncertainty quantification

for the chiral forces and we show that p-shell spectroscopy is a sensitive diagnostic for chiral

3N interactions.



Zusammenfassung

Basierend auf den fundamentalen Symmetrien der QCD ermöglicht die chirale effective Feldthe-

orie (EFT) einen konsistenten und systematischen Zugang zu Zwei- (NN), Drei- (3N), Vier-

(4N) und Mehrteilchen Wechselwirkungen. Die aktuellen Entwicklungen von chiralen NN+3N

Wechselwirkungen für verschiedene chirale Ordnungen und Regularisierungen ermöglichen eine

Vielzahl von Kernstrukturuntersuchungen und erlauben die Bestimmung der fundamentalen

Unsicherheit die aus der chiralen Ordnungsentwicklung und Regularisierung stammen.

Wir erarbeiten die Techniken um die heutigen sowie die zukünftigen chiralen NN, 3N und

4N Wechselwirkungen in Kernstrukturrechnungen zu verwenden und setzen einen besonderen

Schwerpunkt auf die Innovationen im Drei- und Vierteilchen Raum zu denen die Similar-

ity Renormalization Group (SRG), die Frequenzkonversion und die Transformation zum JT -

gekoppelten Schema gehören. Wir untersuchen die Vorhersagen der chiralen NN+3N Wech-

selwirkungen in ab initio Kernstrukturrechnungen mit dem Importance-Truncated No-Core

Schalen Modell und der Coupled-Cluster Methode. Es wird demonstriert, dass das Einbinden

von chiralen 3N Kräften die experimentelle Übereinstimmung von Anregungsenergien in der

p-Schale insgesamt verbessert. Zudem erlauben die 3N Kräfte eine qualitative Reproduktion

der Grundzustandsenergie-Systematik über einen weiten Bereich der Nuklidkarte hinweg, bis

hin zu den schweren Zinn-Isotopen. In diesem Zusammenhang ist es nötig Trunkierungen des

Dreiteilchen-Modellraumes einzuführen. Wir analysieren den Einfluss dieser Trunkierungen und

bestätigen die Zuverlässigkeit der Ergebnisse, die in dieser Arbeit präsentiert werden.

Die SRG-Evolution induziert 4N Kräfte, die im Allgemeinen nicht in Vielteilchenrechnun-

gen verwendet werden können. Die induzierten Kräfte stellen die Hauptursache dar für die

Beschränkung des Anwendungsbereiches der SRG-evolvierten chiralen Wechselwirkungen. Wir

untersuchen den Ursprung und den Effekt der induzierten Vielteilchenkräfte und stellen eine

Modifikation der Wechselwirkung vor, welche die induzierten Kräfte unterdrückt. Diese Modi-

fikation ermöglicht eine Anwendung der chiralen Wechselwirkungen weit über die Kerne der mit-

tleren p-Schale hinaus. Des Weiteren untersuchen wir alternative Konstruktionen des SRG Gen-

erators mit Hinblick auf eine Vermeidung der induzierten Vielteilchenkräfte. Die Erweiterung

der SRG Evolution und der Matrixelement-Behandlung auf den Vierteilchenraum erlauben eine

explizite Verwendung der induzierten und genuinen 4N Kräfte. Wir diskutieren die Trunkierun-

gen und Grenzen der Entwicklungen im Vierteilchenraum und präsentieren die ersten ab initio

Kernstrukturrechnungen für Kerne der p-Schale mit induzierten 4N Kräften.

Mittels einer Variation der Parameter in der lokalen 3N Kraft betreiben wir eine ausführliche

Sensitivitätsanalyse der Spektren von p-Schalen Kernen. Aus dieser Analyse werden wichtige

Hinweise für die Konstruktion der chiralen Wechselwirkungen gewonnen. Zudem identifizieren

wir Korrelationen für bestimmte Observablen gegenüber Variationen in der 3N Kraft. Die



Korrelationen verhindern eine quantitative Beschreibung der experimentellen Daten durch eine

Anpassung der lokalen 3N Kraft bis N2LO. Schließlich präsentieren wir die ersten Resultate

mit der nächsten Generation von chiralen NN+3N Wechselwirkungen die konsistent bis N3LO

entwickelt werden und vergleichen Spektren für verschiedenen chiralen Wechselwirkungen mit

unterschiedlichen Ordnungen und Cutoffs. Diese Studien stellen einen ersten Schritt hin zu einer

systematischen Fehleranalyse dar. Insbesondere wird gezeigt, dass die p-Schalen Spektroskopie

hervorragend geeignet ist um Sensitivitäten bezüglich der chiralen 3N Wechselwirkungen zu

diagnostizieren.
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Introduction

The theoretical description of the atomic nucleus is an outstanding problem that connects

several physical disciplines ranging from microscopic elementary particles to macroscopic astro-

physical objects. The interaction among the nucleons is dominated by the strong force and its

determination is an important aspect of nuclear theory.

According to the standard model, the strong interaction is described by quantum chromody-

namics (QCD) with quarks and gluon as fundamental degrees of freedom. In general, nuclear

structure phenomena are dominated by low energies and QCD becomes non-perturbative in this

regime, which so far impedes a direct derivation of the nuclear interaction from the underly-

ing theory. Inspired by the meson-exchange theory proposed by Yukawa [1], phenomenological

high-precision interactions, such as the Argonne V18 [2] and CD-Bonn [3] potentials, have

been developed. The experimental discrepancies observed in nuclear structure application with

these interactions indicate the importance of many-nucleon interactions beyond the two-body

level [4–6] and reveal the necessity for a consistent scheme to construct the nuclear interactions.

Thus, Weinberg formulated an effective theory for the low-energy regime using nucleons and

pions as explicit degrees of freedom. Rooted in the fundamental symmetries of QCD, chiral

effective field theory (EFT) [7] allows to derive nucleon-nucleon (NN), three-nucleon (3N), four-

nucleon (4N), and many-nucleon interactions in a consistent and systematically improvable

scheme. The rapid developments of chiral NN [8–11] and 3N interactions [12–14] in recent years

open great opportunities for nuclear structure theory to target the wealth of nuclear observables

with interactions rooted in QCD.

Moreover, the conceptual and computational progress of the past decade enables us to tackle

the nuclear structure problem for an increasing number of nuclei with ab initio methods. Start-

ing from a realistic interaction these methods solve the many-body problem in a controlled and

systematically improvable manner and obtain the exact solution within the estimated uncer-

tainties.

Generally, realistic interactions such as the chiral interactions cause short-range and tensor cor-

relations among the nucleons. Most many-body methods that rely on a matrix representation

of the Hamiltonian require enormously large model spaces to adequately describe these corre-

lations. To soften the interaction and to accelerate the convergence with respect to the model

space different unitary transformations have been developed, such as the similarity renormal-

ization group (SRG) [15–17] and the unitary correlation operator method (UCOM) [18]. For

some time these transformations have been performed at the two-body level and many-body
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Introduction

calculations were restricted to NN interactions. Moreover, both transformations are known to

induce sizable beyond-NN contributions that could not be included.

The extension of the SRG evolution to the three-body space [19–21] and the innovations for

the computational treatment of three-body matrix elements allow for applications of chiral

NN+3N interactions to several many-body methods. It is now possible to study a multitude

of systems and observables, such as nuclear spectroscopy [20, 22, 23], nuclear reactions [24],

hypernuclei [25], and neutron drops [26]. Furthermore, the improvements of the coupled-cluster

(CC) methods [27–30], the self-consistent Green’s function methods [31–33], and the in-medium

similarity renormalization group (IM-SRG) [34–36] allow to assess nuclei far beyond the p and

sd shell in ab initio calculations.

However, medium-mass and heavy nuclei pose tremendous challenges regarding the truncations

of the 3N interactions and the three-body SRG evolution, which need to be addressed for

reliable applications. An unsolved problem are SRG-induced many-body contributions beyond

the three-body level that generally are omitted due to computational reasons. These induced

contributions can have sizable effects depending on the nucleus and observable and constitute

a major limitation for the application to heavier nuclei. Therefore, it is necessary to prevent,

suppress, or include these induced beyond-3N contributions.

The inclusion of beyond-3N forces are also of particular interest in view of the current efforts to

derive the chiral force at next-to-next-to-next-to-leading order (N3LO). At N3LO 4N forces ap-

pear that need to be included to obtain a fully consistent interaction. In addition to the present

chiral NN+3N forces a variety of chiral interactions up to the four-body level will be available

in the future that, e.g., use improved fit and regularization procedures, include contributions

from higher chiral orders, or use the ∆ resonance as an explicit degree of freedom [37].

Due to the exciting progress in nuclear structure theory we are approaching a stage, where a

systematic quantification of theoretical uncertainties of the chiral interactions becomes manda-

tory. Hence, future chiral interactions need to be constructed at different chiral orders for a

sequence of cutoffs, to estimate the uncertainties due to the regularization and the truncation

of the chiral order.

In this context it is necessary to work out techniques to efficiently employ the present and

future chiral NN+3N+4N interactions in ab initio many-body methods in order to confront

the predictions of chiral EFT for a variety of nuclear observables with experiment. From these

studies one can also identify sensitivities of selected observables, which provide constraints for

the construction of chiral interactions.

This thesis is organized as follows: In Sec. 1 the basic concept of chiral EFT is discussed

and currently available chiral NN and 3N interactions at N2LO and N3LO are introduced.

2



Introduction

The differences regarding the parameter fit procedure, the chiral order, and the regularization

are emphasized. In Sec. 2 the ab initio many-body methods used in this work are discussed.

The benefits and limitations of the no-core shell model (NCSM) and the importance-truncated

NCSM are described and the basic concept of the coupled-cluster approach, which is applied for

the medium-mass and heavy nuclei is presented. The different momentum and HO basis sets in

the two-, three-, and four-body space are explained in Sec. 3. The treatment of the interaction

matrix elements from the momentum representation through the Jacobi-HO representation

to the JT -coupled scheme in the three- and four-body space is discussed, such that a fully

self-consistent toolchain emerges to employ the present and future chiral NN, 3N, and 4N

interactions in nuclear structure theory. The SRG evolution is introduced in Sec. 4. The

formal aspects are discussed and the effects of the SRG evolution in the three- and four-body

Jacobi-HO representation are illustrated. Also important technical aspects are studied, such as

the subtraction procedure, the model-space truncation of the SRG evolution, and the frequency

conversion. The accuracy of the three-body SRG evolution is verified in Sec. 5. We demonstrate

the challenges regarding the SRG evolution with increasing mass number and that the frequency

conversion enables an efficient and reliable application up to heavy nuclei. The effects and the

origin of SRG-induced many-body contributions are discussed in Sec. 6. A suppression of the

induced beyond-3N contributions via a modification of the chiral Hamiltonian is presented and

alternative generators are investigated. For the first time, the induced 4N contributions are

explicitly included in ab initio nuclear structure calculations in the p-shell. The developments

regarding the treatment of the NN+3N interactions to access the medium-mass and heavy nuclei

in ab initio calculations are outlined in Sec. 7. The nuclear binding energies up to the heavy tin

isotopes are studied and the effect of omitted many-body contributions beyond the three-body

level is discussed. An application of the chiral NN+3N interactions to nuclear spectroscopy

is presented in Sec. 8. The sensitivity to chiral 3N contributions is analyzed and the spectra

for the present chiral interactions are compared, providing a first step towards a systematic

uncertainty quantification of the chiral forces. The uncertainty quantification is continued in

Sec. 9, where the impact of the truncation of the chiral order is probed by presenting first

nuclear structure results with the next-generation chiral NN+3N interaction at N3LO. Finally,

the results of this work are summarized in Sec. 9 and an outlook on future developments is

provided.
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1 Chiral Effective Field Theory

Within the Standard Model of particle physics the underlying theory for the strong interaction is

quantum chromodynamics (QCD). According to this theory, the fundamental degrees of freedom

are quarks and gluons. Unfortunately, in the low-energy regime of nuclear structure physics,

QCD becomes non-perturbative due to the large coupling constant of the strong interaction.

Therefore, a direct derivation of nuclear forces from QCD is not yet possible (see Ref. [38] for

a recent attempt). In 1979 Weinberg applied the concept of effective field theory (EFT) to

low-energy QCD [7]. By this pioneering work, the idea of Yukawa [1] to describe the nuclear

interactions using pions and nucleons as degrees of freedom, has been combined with the use

of the fundamental symmetries of QCD. Thus, chiral EFT allows for an analysis of nuclear

systems at low energies in a systematic and improvable manner, based on the fundamental

symmetries of QCD. In this section we give an overview of the basic concepts of chiral EFT

and present different chiral nucleon-nucleon (NN) and three-nucleon (3N) potentials that are

presently available.

1.1 Chiral Symmetry and Perturbation Theory

The foundation of chiral EFT are the fundamental symmetries of low-energy QCD. In particular,

the spontaneously broken chiral symmetry is an essential ingredient for the formulation of chiral

EFT. For instance, massless particles exhibit an exact chiral symmetry, as a consequence such

particles with spin and momentum either parallel (right-handed) or anti-parallel (left-handed)

are completely decoupled and cannot be transformed into each other. In the following we focus

on the QCD Lagrangian in the two-flavor case using the light up (u) and down (d) quarks that

build the nucleons [39],

LQCD “ q̄
`

iγµD
µ ´ M

˘

q ´ 1

4
Ga

µνG
µν
a , (1)

with the gauge-covariant derivative

Dµ “ Bµ ´ ig
λa

2
Aa

µ , (2)

where λa are the SU(3)color Gell-Mann matrices and q the quark field vectors. Furthermore,

g is the strong coupling constant, Ga
µν are the gluon field-strength tensors, Aa

µ are the gluon

fields, and the diagonal quark-mass matrix is given by M “ diagpmµ,νq.

5



1 Chiral Effective Field Theory

Since the two lightest quarks are almost massless (mu “ p2.5 ˘ 0.8q MeV/c2, md “ p5 ˘
0.9q MeV/c2) [40], compared to the hadronic scale of 1GeV/c2, the Lagrangian in the two-

flavor case (1) is approximately invariant under independent global flavor rotations of the left-

and right-handed quark fields. The corresponding symmetry group SU(2)LˆSU(2)R is referred

to as the SU(2) chiral group [41, 42]. By virtue of Noether’s theorem there are six conserved

currents, which can be expressed in terms of vector- and axial-vector currents. The conserved

vector currents are manifest in the mass degeneracy of the isospin multiplets, which is explicitly

broken to a small extend due to the non-vanishing u and d quark masses. While the QCD

Lagrangian is invariant under the axial-vector transformations, the ground state has not the

corresponding symmetry property, hence, the axial-vector subgroup of the chiral symmetry

group is spontaneously broken. Evidences for this spontaneous symmetry breaking can be

found in the hadron spectrum, where one does not observe degenerate masses for hadrons with

identical quantum numbers except for opposite parity. These mass-degenerated hadron partners

would be predicted from the axial-vector symmetry. Another strong indication is the existence

of the unnaturally (in comparison with other hadrons) light pseudoscalar mesons. These mesons,

also known as pions, can be identified as the three Nambu-Goldstone bosons of the spontaneous

chiral-symmetry breakdown. Goldstone’s theorem [43, 44] predicts massless bosons for the

vacuum excitations, that are caused by spontaneously broken symmetries. The fact that pions

do not have vanishing masses is an indication for the slight explicit breaking of chiral symmetry

due to non-vanishing quark masses. Note, that the discussion above can be extended to further

hadrons by including the strange quark s, with the corresponding chiral symmetry group SU(3)

rather than SU(2). Due to the larger mass of the s quark (ms “ p101˘25q MeV) [40] compared

to the u and d quarks, chiral symmetry is only valid to a lesser extend and the additional five

Nambu-Goldstone bosons, namely the kaons and the eta meson, have a larger mass than the

pions [45].

After the introduction of the spontaneously broken chiral symmetry (see [46, 47] for more de-

tailed discussions), we discuss the idea of chiral perturbation theory (ChPT). While the strong

interaction between colored objects is weak at short distances or high momenta (“asymptotic

freedom”) [48], it is strong at large distances or low momenta, leading to the confinement

of quarks into colorless hadrons. Therefore, QCD is highly non-perturbative at low energies,

where nuclear physics resides. In addition, the nuclear force corresponds to a residual color

interaction similar to the van-der-Waals force between neutral atoms, which complicates the

description in terms of quarks and gluons [49]. Fortunately, there is a conspicuous separation of

scales, when considering the lightest mesons, i.e., the pions predicted by the spontaneous chiral

symmetry breaking. The pion mass mπ « 140MeV/c2 is much smaller than the mass of other

vector mesons like mρ « 770MeV/c2 or mω « 782MeV/c2 [50].

Thus, one can develop an effective theory at low energies using pions and nucleons as relevant

degrees of freedom, where the pion mass sets the soft scale Q, and the rho mass sets the hard

6



1.1 Chiral Symmetry and Perturbation Theory

scale, also known as the chiral symmetry breaking scale. A perturbative scheme can be applied

to the theory by an expansion in terms of
´

Q
Λχ

¯ν

, where the power ν is the corresponding

expansion order. This scheme is also known as chiral perturbation theory (ChPT) and we

summarize the basic concept of the chiral EFT by making use of this scheme. According

to Steven Weinberg one has to write down the most general Lagrangian consistent with the

symmetries and symmetry breakings of low-energy QCD [7, 51] using pions and nucleons as

effective degrees of freedom. The effective chiral Lagrangian includes the following contributions

Leff “ Lππ ` LπN ` LNN . . . , (3)

where the ellipsis corresponds to terms involving two nucleons plus pions and three or more

nucleons, with and without pions.

One can organize the contributions to the chiral Lagrangian in terms of increasing values of the

parameter ∆ “ d ` n{2 ´ 2, where d is the number of derivatives or pion-mass insertions and

n is the number of nucleon fields. The terms of the Lagrangian in Eq. (3) necessary to derive

nuclear forces up to ν “ 4 are given by 1

L∆“0 “ Lp2q
ππ ` L

p1q
πN ` L

p0q
NN (4)

L∆“1 “ L
p2q
πN ` L

p1q
NN (5)

L∆“2 “ Lp4q
ππ ` L

p3q
πN ` L

p2q
NN ` . . . (6)

L∆“4 “ L
p4q
NN ` . . . , (7)

where the superscript in parenthesizes correspond to the number of derivatives or pion-mass

insertions d. As example one can consider the leading order term of the NN Lagrangian

L
p0q
NN “ ´1

2
cSN̄NN̄N ´ 1

2
cT pN̄~σNq ¨ pN̄~σNq , (8)

where the nucleon fields are represented by N and ~σ denotes the spin operator. The unknown

constants cS and cT are discussed in Sec. 1.2.

Finally, Weinberg designed an organizational scheme, defining the importance or order ν of the

appearing contributions [7,51] (see also [47] for a comprehensive presentation of the chiral EFT

approach). In Fig. 1.1 the diagrammatic contribution for the chiral NN, 3N, and 4N forces are

illustrated for the chiral orders up to ν “ 4.

For an irreducible diagram that involves A nucleons (see Fig. 1.1), the chiral order ν is deter-

mined by the so-called “power counting” [52]

ν “ ´4 ` 2A ` 2L `
ÿ

i

∆i with ∆i “ di ` ni

2
´ 2 , (9)

1The quoted Lagrangians are written in the heavy baryon formalism (see [47] for a more detailed description).
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1 Chiral Effective Field Theory

where the sum runs over all vertices i contained in the diagram, L is the number of loops, di is

the number of derivatives or pion-mass insertions and ni is the number of nucleon fields at the

vertex i. The terms in the Lagrangian are related to the vertices of the nuclear force diagrams

in Fig. 1.1 and can be used for the derivation of the nuclear potential.

For ν “ 0, that means at leading order (LO), the NN force is defined by the static one-pion

exchange diagram, as well as a two-nucleon contact diagram with a small-dot (∆ “ 0) vertex.

The related Lagrangian L
p0q
NN in Eq. (8) leads to the following contact potential in momentum

representation

V
p0q
ct p~Π 1, ~Πq “ cS ` cT~σ1 ¨ ~σ2 , (10)

where ~Π 1 and ~Π are the initial and final relative momenta and ~σi denotes the spin of the particle

i. For ν “ 1, all contributions vanish due to parity and time-reversal invariance. At next-to-

leading order (NLO) with ν “ 2, besides diagrams including pion exchanges such as the two-pion

exchange term, which occurs for the first time, there are seven contact terms. The next-to-next-

to-leading order (N2LO, ν “ 3) contains a rich NN structure and, in addition, also 3N forces,

whose effects in nuclear structure are investigated in detail in this work. Furthermore, the next

chiral order, i.e., the next-to-next-to-next-to-leading order (N3LO) does not only contain a large

number of NN and 3N contributions, but also four-nucleon (4N) contributions appear for the

first time.

An important practical point of the chiral expansion is the finite number of diagrams at given

order ν. The next order provides a rough estimate of the missing contributions. Thus, the chiral

forces, in principle, can be calculated to any desired accuracy by increasing the order [47]. It

is worth mentioning that to the systematically improvable character of chiral EFT, also allows

to generate NN, 3N, and many-nucleon forces in a consistent scheme [53].

1.2 Regularization, Renormalization and Parameter Fit

Chiral EFT is constructed through a low-momentum expansion and is valid only at low energies,

where nuclear structure processes are expected to take place. In fact, to avoid infinities, e.g.,

when solving the Lippmann-Schwinger equation, it is necessary to suppress high-momentum

contributions in the chiral potential by introducing certain regularizations, e.g., by multiplying

the potential with a regulator function [47]. There are different choices for the regular function,

as discussed in Sec. 1.3. Besides variations in the details, generally one uses an exponential

regulator function of the form

fpQ,Λq “ exp
”

´
´Q

Λ

¯2nı

, (11)
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1.2 Regularization, Renormalization and Parameter Fit

Figure 1.1 Hierarchy of nuclear forces in chiral EFT [54]: The interaction diagrams up to N3LO

arranged by the particle rank of the interaction. Dashed lines represent pions and the solid lines

nucleons. Small dots, large solid dots, solid squares and open squares denote vertices with ∆ “ 0, 1, 2

and 4, respectively.

with the chiral cutoff momentum Λ, a quantity Q related to the nucleon momentum, and the

integer n large enough to ensure that the regulator introduces only contributions beyond the

given chiral order, i.e., n ě 3 for an interaction at N3LO. Ideally, the theory should not depend

on the applied regulator or cutoff, Weinberg’s implicit assumption was that the incorporated

contact terms (also called counterterms) can be used to renormalize the theory and remove

dependencies on the regularization and cutoff [52]. Renormalizable quantum-field theories,

such as the quantum electrodynamics, have essentially one set of prescriptions that take care

of the renormalization through all orders. In contrast, chiral EFT is renormalized order by

order, such that its parameters, the low-energy constants (LECs), need to be readjusted when

increasing the chiral order.

Naively, the perfect renormalization should provide stable results even when taking the cutoff

to infinity. Investigations along these lines [55–58] have shown that the existing counterterms

are not sufficient to allow for the application of cutoff parameters considerably larger than

the chiral breakdown scale. A possible solution for this problem can be found in [59], where

an alternative to the Weinberg power-counting scheme is discussed. In this scheme many-

body calculations are performed using the LO potential, while the subleading orders are added

perturbatively in a distorted wave Born approximation. So far, there are some disadvantages of

this approach, which might prevent the production of accurate interactions for nuclear few- and

9



1 Chiral Effective Field Theory

many-body problems [47]. First of all, this scheme uses more counterterms, which reduces the

predictive power. Secondly, this scheme will presumably show a slower convergence with respect

to the chiral order, and most importantly it is expected that the interaction will incorporate an

unnaturally large tensor contribution, that could prevent reliable applications [47].

Throughout this thesis we investigate interactions obtained within the Weinberg power counting

scheme and stick to the philosophy of Lepage [60], by using momentum cutoffs between 300

and 700MeV/c, large enough to keep the physical relevant content of the interaction, but not

beyond the validity of the EFT, corresponding to the chiral breakdown scale Λχ « 1GeV/c.

Having defined the power-counting scheme, the regularization, and the cutoff, we are left with

the determination of the LECs, that are the free parameters of the chiral EFT. Commonly the

parameters of the NN interaction are determined in two-body systems by using scattering phase

shifts and deuteron properties for the fit procedure, while the new LECs appearing in the 3N

interactions are typically fitted to three- and four-body systems, as discussed in Sec. 1.3. It is

crucial to note that the LECs, in particular those of the contact terms, are used to renormalize

the theory and, in addition, to account for the effects of omitted degrees of freedom, e.g.,

heavier meson exchanges, as well as contributions from subleading chiral orders. In principle

the LECs can be quantified from lattice QCD calculations (see [61] for a recent review), but

there are still open issues and the calculations are computationally demanding. Therefore, the

practicable chiral NN and 3N interactions presented in Sec. 1.3 are obtained from fitting the

LECs to experiment.

1.3 Present Chiral NN+3N Interactions

In the following we introduce the available chiral NN and 3N interactions by discussing the chiral

order, the LECs, and the regularization procedure that determine the forces. We introduce the

NN and 3N forces separately and present the commonly used NN+3N combinations in Sec. 1.3.3,

but in principle there are also other combinations, which could be constructed from the NN

and 3N potentials. Since the LECs of the 3N interactions depend on the NN interaction the

parameters of the 3N forces are presented in context of the underlying NN force in Sec. 1.3.3.

In this work we perform a comprehensive investigation of the 3N-force parameters, while using

fixed NN potentials introduced in Sec. 1.3.1. There are several reasons for this: First of all, this

work concentrates on the efficient application and investigation of chiral 3N forces in nuclear

structure calculations. Secondly, the chiral 3N force effects are rather unknown beyond the

lightest systems, since these forces became available over the recent years only. Moreover,

apart from the influence of the NN force, the 3N interactions at N2LO only depend on the

regularization, and two new LECs, while the NN force at N3LO contains 26 LECs from the

contact terms (two of them are charge dependent) and eight LECs originating from the πN

vertices [8]. Thus, refitting the parameters of the 3N force is straightforward and can be iterated

10
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multiple times, but it is a highly demanding procedure for the NN force and to some extend

still an open issue. Nevertheless, for a complete investigation of the chiral NN+3N interaction

also variations of the NN force parameters are desirable and efforts for improvements towards

a systematic fit procedure are under way [11].

1.3.1 Chiral NN Interactions

In this section we briefly present the chiral NN interactions used in this work. We summarize

the regularization and LEC fit procedure as well as important properties of the interactions.

Standard NN Interaction at N 3LO. The most commonly used NN interaction in nuclear struc-

ture physics is the Idaho NN interaction by Entem and Machleidt [8], obtained at N3LO. For

this potential a regulator function of the following form is used

fpΛ,Π,Π1q “ exp

«

´
ˆ

Π

Λ

˙2n

´
ˆ

Π1

Λ

˙2n
ff

, (12)

where Π and Π1 denote the magnitude of the initial and final relative momentum, respectively.

A Taylor series expansion of this regulator

fpΛ,Π,Π1q “ 1 ´
«

´
ˆ

Π

Λ

˙2n

´
ˆ

Π1

Λ

˙2n
ff

` . . . , (13)

indicates that the exponential regulator produces only contributions of higher chiral order, as

long as n is chosen appropriately large. For the regularization of this interaction at N3LO,

that we refer to as our “standard” NN interaction, the power is used rather flexible with the

constraints n ě 3 at LO and n ě 2 at NLO and higher chiral orders, such that the regulator

generates exclusively contributions beyond the order N3LO (ν “ 4).

Finally, the LECs have to be fit. Besides eight LECs, the pion-exchange contributions depend

on the axial-vector coupling and the pion-decay constant, which are chosen to be gA “ 1.29

and fπ “ 92.4MeV, respectively. Since five of these LECs do not have a large effect on NN

systems [8], they are determined by πN scattering data [62, 63]. The remaining three LECs

c1, c3, c4 of the pion-exchange contributions, together with the 26 LECs of the contact terms

that are fitted to neutron-proton (np) and proton-proton (pp) data below 290MeV, obtaining

c1 “ ´0.81GeV´1, c3 “ ´3.20GeV´1, c4 “ 5.40GeV´1 [8].2 The resulting χ2{datum is 1.10

for the np data and 1.50 for the pp data up to 290MeV [8]. The accuracy for the reproduction of

the NN data is comparable to one of so-called phenomenological high-precision NN potentials,

such as the Argonne V18 [2] or the CD-Bonn [3] potential.

2In comparison one obtains c1 “ ´0.81GeV´1, c3 “ ´4.69GeV´1, c4 “ 3.40GeV´1 from a fit to πN
scattering data [62].
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Epelbaum NN Interactions at N 2LO and N 3LO. The NN interactions by Epelbaum, Glöckle,

and Meißner are obtained at N2LO [9] and at N3LO [10], and we refer to this interaction as

“Epelbaum” NN interaction. For both chiral orders the exponential regulator (12) as for the

Idaho NN interaction is used, but with a fixed power n “ 3. In addition to the exponential

regularization also a so-called spectral-function regularization (SFR) of the two-pion exchange

(2PE) contributions is applied to remove the corresponding short-distance contributions [9,64].

To this purpose one uses the momentum-dependent components W pqq of the 2PE potential,

which can be treated separately for the isocalar and isovector central, spin-spin and tensor con-

tributions and represents this function W pqq by a continuous superposition of Yukawa functions

W pqq “ 2

π

ż 8

2mπ

dµµ
σpµq

µ2 ` q2
, (14)

with the momentum transfer q “ |~q| “ |~p 1 ´~p|, where ~p and ~p 1 are the initial and final momenta

of the nucleon and σpµq is the spectral function, which contains the whole dynamics of the 2PE

contribution [64]. The SFR suppresses the contributions of large µ via a sharp cutoff Λ̂ using

a Heaviside function

σpµq ÞÑ θpΛ̂ ´ µqσpµq . (15)

This additional cutoff regulates the short-distance contributions of the 2PE term, leading to

improved convergence with respect to the chiral order [9, 64]. The LECs c1 “ ´0.81GeV´1

and c4 “ 3.40GeV´1 is fitted to πN scattering data [62], while c3 “ ´3.4GeV´1 is chosen

consistently with NN phase shifts and is at the lower side of the result obtained in Ref. [62].

For a more detailed discussion of the fit procedure see Refs. [9] and [10].3

In Ref. [9] it has been found, that a cutoff momentum of Λ “ 650MeV/c is already rather

close to its critical value, such that one encounters spurious deeply-bound states for larger

cutoff momenta. Note that additionally the values of various LECs start to strongly vary for

cutoffs in the range and beyond this critical value. The Epelbaum NN interactions at both

chiral orders applied in this work are constructed for five different cutoff combinations, with

Λ “ 450 . . . 600MeV/c, while Λ̂ is varied independently in the range 500 . . . 700MeV/c, allowing

for investigations of the effect of the regularization in nuclear structure calculations and, thus,

to draw conclusions about the theoretical uncertainties originating from the interaction.

The resulting NN interactions at N2LO have a χ2{datum at the order of 10 for the np-scattering

data up to 290MeV, while the pp data is reproduced with even less accuracy [9] and are not as

precise as the description of the scattering data for the Idaho NN interaction. Increasing the

chiral order to N3LO improves this description and leads to an accurate NN potential [10].

3In addition to the regularization and fit procedure, the Epelbaum NN interactions differ from the standard
NN interaction by the treatment of relativistic corrections. See Ref. [45] and references therein.

12
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Figure 1.2 3N forces at N 2LO [47]: The diagram on the left corresponds to the two-pion exchange

terms depending on the LECs c1, c3, c4, in the middle we see the one-pion exchange plus two-nucleon

contact term depending on cD and on the right the three-nucleon contact term, which depends on cE ,

is depicted. The vertices are defined as in Fig. 1.1.

POUNDerS NN Interaction at N 2LO. The optimized chiral NN interaction by Ekström et. al [11]

is obtained at N2LO and is a recent example for the necessity of an optimized systematic LEC

fit. The fits have been performed with the Practical Optimization Using No Derivatives (for

Squares) algorithm (POUNDerS) [65] to optimize the values of pion-nucleon (πN) couplings

c1, c3, c4, as well as the 11 contact parameters to describe the experimental phase shifts from

the Nijmegen partial-wave analysis [66]. We refer to this interaction as “POUNDerS” NN

interaction. For the regularization an exponential regulator (12) with power n “ 3, cutoff

Λ “ 500MeV/c and an additional SFR with Λ̂ “ 700MeV/c, as for the Epelbaum interactions

is used. The χ2{datum are considerably improved compared to the Epelbaum interactions at

N2LO. For the description of the np data up to 290MeV a χ2{datum of around 3 is achieved.

From these fits the LECs of the 2PE 3N force are determined as c1 “ ´0.92GeV´1, c3 “
´3.89GeV´1, and c4 “ 4.31GeV´1 [11].

1.3.2 Chiral 3N Interactions at N2LO

Since one of the major purposes of this thesis is the inclusion and investigation of the 3N

forces initially obtained at N2LO (the expressions are derived in [67]), we concentrate on the

corresponding diagrams, depicted in Fig. 1.2. The 2PE term, which is related to the Fujita-

Miyazawa term [68], contains the long-range part of the 3N force. The corresponding potential

in a momentum basis representation is given by [12,69]

V 3N
2PEp~q1, ~q2, ~q3q “

ˆ

gA

2fπ

˙2
1

2

ÿ

i‰j‰k

p~σi ¨ ~qiqp~σj ¨ ~qjq
pq2i ` m2

πqpq2j ` m2
πq F

αβ
ijk τ

α
i τ

β
j , (16)

with

F
αβ
ijk “ δαβ

„

´4c1m
2
π

f2
π

` 2c3

f2
π

~qi ¨ ~qj


` c4

f2
π

εαβγτ
γ
k ~σk ¨ r~qi ˆ ~qjs , (17)
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the one-pion exchange (1PE) plus two nucleon contact potential can be written as

V 3N
1PEp~q1, ~q2, ~q3q “ ´cD

gA

8f4
πΛχ

ÿ

i‰j‰k

~σj ¨ ~qj
~q 2
j ` m2

π

p~τi ¨ ~τjqp~σi ¨ ~qjq , (18)

and the three-nucleon contact (ct) interaction reads

V 3N
ct p~q1, ~q2, ~q3q “ cE

1

2fπΛχ

ÿ

j‰k

p~τj ¨ ~τkq . (19)

Here we use the momentum transfer ~qi “ ~p 1
i ´ ~pi, where ~pi and ~p 1

i are the initial and final

momenta of the nucleon i, respectively, and ~σi denotes the spin and ~τi the isospin of nucleon

i. The Latin letters i, j, k P t1, 2, 3u indicate the index of the nucleon, while Greek letters

correspond to the isospin components. Further, gA is the axial-vector coupling, and fπ the pion

decay constant. The LECs ci for i “ 1, 3, 4 correspond to the 2PE term and already appear in

the NN interactions and are fixed by NN systems, while cD and cE, the LECs of the 1PE and

three-nucleon contact term, respectively, occur exclusively in the 3N force and have to be fit to

A ě 3 systems.

After these general considerations of the operator structure, we now introduce the presently

available chiral 3N interactions at N2LO and briefly discuss the numerical evaluation of the

interaction matrix elements, which are required for nuclear structure calculations as well as the

regularization.

Local 3N Interactions at N 2LO. The “standard ” 3N interaction, extensively used in this work

as well as by the nuclear structure community in general, has been introduced by Navrátil in

Ref. [13]. Besides the specific choice of the physical constants, i.e., gA “ 1.29, fπ “ 92.4MeV,

and Λχ “ 700MeV/c the interaction is characterized by the regularization procedure. As in

the two-body case the 3N interaction matrix elements in a certain momentum representation

xV 3N y (see Sec. 3.5) are regularized by multiplying the regulator functions

xV 3Ny ÝÑ F pq2,Λ3Nq xV 3N yF pq3,Λ3Nq , with F pq,Λ3Nq “ exp
”

´
´ q

Λ3N

¯2nı

, (20)

where n “ 2 is being used. The quantities q2 and q3 are the magnitudes of the momentum

transfer of the second and third nucleon, respectively. The momentum transfer is defined by

~q2 “ ~p 1
2 ´ ~p2 ,

~q3 “ ~p 1
3 ´ ~p3 ,

(21)

where ~p and ~p 1 correspond to the bra (final) and ket (initial) state of the matrix element,

respectively. Note, the regulator function can be easily expressed as function of the Jacobi mo-

menta by using relation (49) introduced in Sec. 3.1. Due to the special choice of the regulator
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the spatial locality of the operator structure is maintained. The local character of the regular-

ized 3N interaction has advantages for certain few- and many-body approaches, depending on

the applied basis representation. For the application in this thesis we rely on the harmonic-

oscillator (HO) representation of the potential (see Sec. 3.1.2), such that we do not exploit the

locality explicitly. However, the locality is utilized to derive the analytical expression of the

3N interaction matrix elements in Ref. [13] and allows for an efficient numerical evaluation,

which is performed by Petr Navrátil’s ManyEff code [70]. Hence, we have access to the 3N

interaction contributions in the Jacobi-HO representation for very large model spaces, without

introducing additional truncations regarding the angular-momenta of the partial waves. These

matrix elements are the starting point for the studies of the 3N force effects in this work.

Non-Local 3N Interactions at N 2LO. Another chiral 3N interaction at N2LO, that is commonly

applied to few-body [12] and neutron-matter [71–73] calculations, but rather untested in nuclear

structure calculations, is developed by Epelbaum and collaborators [12]. Besides a slightly dis-

tinct value for the axial-vector coupling of gA “ 1.26, the major difference to the previous chiral

3N interaction is the regularization. As before the interaction matrix elements are multiplied

by a regulator function [12]

xV 3N y ÝÑ fpπ1, π2,Λ3Nq xV 3N y fpπ1
1, π

1
2,Λ3Nq , (22)

explicitly defined in terms of the Jacobi momenta ~π1 and ~π2 (see Sec. 3.1)

fpπ1, π2,Λ3Nq “ exp
”

´
´π2

1 ` π2
2

p2Λ3Nq2
¯nı

. (23)

Throughout this work we choose the exponent to be n “ 3 as in Ref. [42,74], while also different

values have been employed in the literature (e.g., see Ref. [12]). The explicit Jacobi momentum

dependence of the regulator (23) destroys the spatial locality of the operator structure and yields

a non-local 3N potential. In contrast to the local “standard” 3N interaction of the previous

section, the unregularized Cartesian momentum-space operators are evaluated in the partial-

wave decomposed momentum representation. The regularization is performed subsequently

at essentially no additional cost, allowing for a flexible adjustment of the regulator function.

Eventually, we transform the regularized partial-wave decomposed momentum matrix elements

into the Jacobi-HO representation. The transformation has been derived and implemented in

this thesis and is described in Sec. 3.5.

The numerical calculation of the partial-wave decomposed momentum 3N matrix elements is

carried out in an automatized approach proposed by Skibiński et. al [75], called automatized

partial-wave decomposition (aPWD), that can be utilized independently of the underlying op-

erator structure, and, in principle, enables the evaluation of the 3N interaction matrix elements

at N3LO in a similar manner. The generality of this approach is accompanied with enormous
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computational effort. Although the aPWD uses massive parallelization, without exploiting

certain properties of the operator structures, e.g., the locality in coordinate space, it requires

a five-dimensional integration for the evaluation of each matrix element. Due to the sheer

number of required partial-wave decomposed matrix elements this method is restricted to low

partial waves. In particular, when aiming at the 3N interaction at N3LO (see Sec. 1.4), where

the additional operator structures complicate the evaluation of the integrand, the computa-

tional demands of the aPWD become even more severe and there are ongoing efforts within the

LENPIC collaboration [76] to generate these matrix elements.

1.3.3 NN+3N Interactions Combinations

Different combinations of the potentials introduced in the previous section define the NN+3N

Hamiltonians studied in this work. For all interactions the ci “ c1, c3, c4 values are adopted

from the NN interaction, while cD and cE are fit to A “ 3, 4 systems. We start with the

“standard” chiral NN+3N interactions, where we combine the Idaho NN interaction at N3LO

with cutoff momentum 500MeV/c with the local 3N interaction at N2LO. For the standard

three-body cutoff Λ3N “ 500MeV/c the LECs cD and cE are obtained by a fit to the average

ground-state energy of 3H and 3He, as well as to the β-decay half-life of 3H [77].

In addition, we introduce NN+3N interactions with a reduced three-body cutoff, where we

maintain the Idaho NN interaction with the Λ “ 500MeV/c cutoff momentum. The cD value is

fixed in order to reproduce the triton β-decay half-life that is rather insensitive to the three-body

cutoff. The cE is fit to the 4He ground-state energy of ´28.30MeV with an uncertainty below

10 keV, utilizing the no-core shell model (NCSM) (see Tab. 1.1). Note, that these interactions

slightly underbind the triton ground state. A fit to the triton binding energy would lead to a

slight overbinding in 4He that increases perceptibly with the mass number.

Since the NN and 3N interactions are obtained at different chiral orders, these interactions are

inconsistent from the point of view of chiral EFT. Owing to the different regulator functions

for the NN and 3N interactions it is questionable if the well established NN+3N interaction

with Λ3N “ 500MeV/c is “more” consistent than the interactions with the reduced cutoff.

Moreover, we stress that the reduced cutoff interactions, which are discussed in this thesis, are

very successful in applications beyond the mid-p shell (see Sec. 6 and 7).

In the middle of Tab. 1.1 we list the parameters of the NN+3N interaction at N2LO, that we

refer to as the “POUNDerS” interactions. The optimized NN interaction is combined with the

local 3N potentials.4 As for the standard interaction cD is fit to the triton β-decay half-life, and

for Λ3N “ 500MeV/c we adjust cE to the A “ 3 ground-state energies, while for the reduced

cutoff Λ3N “ 400MeV/c it is fit to the 4He ground-state energy [78]. Note that the NN+3N

4Note, there is no established combination of the POUNDerS NN interaction with a certain 3N force and,
in principle, one can also combine this NN potential with the non-local 3N forces.
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interaction with the larger Λ3N slightly overbinds the 4He ground state by less than 200 keV.

The third type of NN+3N interactions is summarized on the bottom of Tab. 1.1, where the

Epelbaum NN potentials are combined with the non-local 3N potentials consistently at N2LO.

In the following we refer to them as “Epelbaum” interactions. The fits for the five cutoff

combinations have been performed to the coherent neutron-deuteron scattering length bnd and

the triton ground-state energy [42, 79]. For the cutoff combination p600{500q MeV/c a rather

large value for cD is obtained. This might indicate that Λ “ 600MeV/c is already too close to

the critical value, where spurious bound states violate the naturalness of the LECs. We probe

if this might affect spectra of p-shell nuclei in Sec. 8.2.

We do not use the last interaction combination of the Epelbaum NN+3N potential, but list the

parameter in the table for completeness. While the standard interactions, also with the reduced

three-body cutoffs, are used in various investigations throughout this work, the POUNDerS as

well as the Epelbaum interactions are investigated in Sec. 8.2.

In principle, one can construct other combinations, e.g., the Idaho NN plus non-local 3N in-

teraction, that have been applied in [80]. Such a combination might be of particular interest,

because the Idaho NN potential at N3LO provides a high-precision description of the NN data

and has proven to be successful in nuclear structure calculations. Furthermore, the regular-

ization of the non-local 3N interactions uses a consistent regulator function. Nevertheless, the

standard NN+3N interaction seems to provide results, that show better experimental agree-

ment for mid-p-shell nuclei [13,80,81] and we restrict ourselves to the interactions presented in

Tab. 1.1.

1.4 Next-Generation Chiral NN+3N Interactions

The techniques developed in this thesis allow for an efficient application of the present chiral

NN+3N interactions, as well as upcoming new interactions to nuclear structure calculations.

An important example are the consistent NN+3N interaction at N3LO, by combining the Epel-

baum NN interaction with the 3N interactions that are recently generated within the LENPIC

collaboration, by an improved matrix-element evaluation approach [82]. This approach per-

forms the partial-wave decomposition efficiently utilizing properties of the operator structures,

e.g., the locality in coordinate space. The regularization and antisymmetrization are performed

afterwards during the transformation to HO representation as discussed in Sec. 3.5.

The chiral 3N interaction at N3LO is much more complex than the one at N2LO. In addition

to the subleading contributions of the two-pion exchange topology, there are further long-range

contributions such as the two-pion-one-pion exchange topology and so-called ring diagrams [83].

Moreover, also relativistic corrections and short-range contributions appear, such as the one-

pion-exchange-contact and the two-pion-exchange-contact topology [84]. Besides the non-local

relativistic corrections, we add these contributions to the 3N interaction at N2LO. Note that
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1 Chiral Effective Field Theory

standard interactions

NN at N3LO local 3N at N2LO

Λ Λ3N c1 c3 c4 cD cE
rMeV/cs rMeV/cs rGeV´1s rGeV´1s rGeV´1s

500 500 ´0.81 ´3.2 `5.4 ´0.2 ´0.205

500 450 ´0.81 ´3.2 `5.4 ´0.2 ´0.016

500 400 ´0.81 ´3.2 `5.4 ´0.2 `0.098

500 350 ´0.81 ´3.2 `5.4 ´0.2 `0.205

POUNDerS interactions

NN at N2LO local 3N at N2LO

pΛ{Λ̂q Λ3N c1 c3 c4 cD cE
rMeV/cs rMeV/cs rGeV´1s rGeV´1s rGeV´1s
(500/700) 500 ´0.9186 ´3.8887 `4.3103 ´0.39 ´0.398

(500/700) 400 ´0.9186 ´3.8887 `4.3103 ´0.40 ´0.2812

Epelbaum interactions

NN at N2LO non-local 3N at N2LO

pΛ{Λ̂q (Λ3N) c1 c3 c4 cD cE
rMeV/cs rMeV/cs rGeV´1s rGeV´1s rGeV´1s
(450/500) 450 ´0.81 ´3.40 `3.40 ´0.14 ´0.319

(600/500) 600 ´0.81 ´3.40 `3.40 ´4.71 ´2.124

(550/600) 550 ´0.81 ´3.40 `3.40 ´0.45 ´0.798

(450/700) 450 ´0.81 ´3.40 `3.40 ´2.43 ´0.113

(600/700) 600 ´0.81 ´3.40 `3.40 ´2.00 ´1.074

Table 1.1 Parameter for the chiral 3N interaction at N 2LO:
Summarized are the three-body LECs and cutoffs for the NN+3N interactions used in this work. The

upper table lists the parameters of the local 3N interaction, that are combined with the Idaho NN

interaction at N3LO with cutoff momentum of 500MeV/c. Besides the standard NN+3N interaction

(Λ3N “ 500MeV/c) we introduce modifications of this interactions with reduced three-body cutoffs. The

middle table shows the combined POUNDerS potentials of the optimized NN plus local 3N interactions

and the lower table lists the parameters of the Epelbaum interactions, where the NN interaction by

Epelbaum, Glöckle, and Meißner is combined with the non-local 3N interaction for five different cutoff

combinations. See text for further information.
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1.4 Next-Generation Chiral NN+3N Interactions

next-generation Epelbaum interaction

NN at N3LO non-local 3N at N3LO

pΛ{Λ̂q (Λ3N) c̃1 c̃3 c̃4 cD cE
rMeV/cs rMeV/cs rGeV´1s rGeV´1s rGeV´1s
(450/500) 450 ´0.94 ´2.51 `2.51 ´13.442 `0.206

Table 1.2 Parameters for the next-generation chiral 3N interaction at N 3LO:
In this table the LECs and cutoffs for the non-local 3N interactions that are combined with the NN by

Epelbaum, Glöckle, and Meißner at N3LO with a cutoff combination of p450{500q MeV/c are listed [14].

no additional LECs appear at N3LO. The subleading two-pion exchange contributions, can be

partially absorbed by a shift of the ci values [75, 83, 85]

c̃1 “ c1 ´ g2Amπ

64πf2
π

,

c̃3 “ c3 ` g4Amπ

16πf2
π

,

c̃4 “ c4 ´ g4Amπ

16πf2
π

,

(24)

where we adopt c1, c3, and c4 from the NN potential [10]. Furthermore, the two-pion-exchange-

contact topology depends on the LEC cT “ ´0.45GeV´1, that already appears in the NN

contact potential (10), and is fixed by NN data [10]. Thus, we are left with the determination

of cD and cE that are fit to the triton ground-state energy and the neutron-deuteron doublet

scattering length and [14]. The relevant parameters of the NN+3N interaction are summarized

in Tab. 1.2.

In Sec. 9 we show the first application of the consistent NN+3N interaction at N3LO in nuclear

structure calculations for the p-shell nuclei, which provides an outlook of future applications

and, in addition, allows for a systematic estimation of the convergence with respect to the chiral

order. In this context it is worthwhile to mention that there are still open issues especially

regarding the LECs fit of the NN interaction that can influence the 3N force effects. The NN

data are not as precisely described as by the standard interaction, which could be the reason for

the rather large cD value necessary to reproduce A “ 3 observables. Due to the large number

of LECs in the NN sector, the present fit procedure needs to be improved. A first step towards

a more systematic fit procedure has been demonstrated in [11] for the POUNDerS interaction

at N2LO and it is an open question if the procedure can be extended to the N3LO terms in the

near future. Such a systematic fit procedure is important regarding the further developments

of chiral interactions including the ∆-excitation of the nucleon as an explicit degree of freedom.

While the ∆ degree of freedom is implicitly considered for the presented chiral interactions via

the LECs fit, the so-called ∆-full theory [37] provides a promising approach to improve the
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1 Chiral Effective Field Theory

predictive power of the chiral EFT and the convergence with respect to the chiral order. The

techniques presented in this work enable the efficient application of such interactions in the

future. However, a consistent inclusion of the ∆ will also change the NN sector, which requires

a reassessment of the LEC fit to the NN data. At the moment such a fit is very time- and

man-power consuming.

Thus, for the intermediate term a combination of the Idaho NN potential and the non-local 3N

interaction at N3LO could be promising from a practical point of view and would only require

a fit of cD and cE . However, the long-term goal is to test the chiral NN+3N interaction, with

respect to the fundamental EFT quantities, i.e., by a variation of the chiral order and the cutoff

consistently for the NN and 3N sector, which among other things requires the generation of

several high-accuracy NN interactions.

Finally, it is important to note that at N3LO also chiral 4N forces appear (see Fig.1.1). This

means, fully consistent future interactions at this chiral order require the treatment of irreducible

4N interactions. In this work we present the necessary techniques to apply irreducible 4N to

nuclear structure calculations, which can be also used for the application of chiral 4N forces.
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2 Ab Initio Many-Body Methods

Ab initio many-body methods are of particular importance for nuclear structure and reaction

theory. On the one hand, they are indispensable for the investigation of nuclear interaction

properties with controlled uncertainties, on the other hand, they allow to assess the quality of

approximative approaches and to identify new ab initio candidates, which incorporate physically

justified and systematically improvable approximations.

In this section we introduce the ab initio many-body methods that are used in this work. We

discuss the concept as well as the application range of these methods, and point out approxima-

tions or truncations that are applied during the solution of the many-body eigenvalue problem

Hint |Ψpmqy “ Em |Ψpmqy , (25)

where Hint “ Tint ` V is the many-body Hamilton operator, decomposed of the intrinsic

kinetic energy Tint “ T ´ Tcm and the nuclear interaction V “ VNN ` V 3N ` V 4N ` . . . , both

acting exclusively on the intrinsic part.5 The m-th eigenstate is denoted by |Ψpmqy and the

corresponding energy eigenvalue by Em.

The no-core shell model (NCSM) [70,81,86–89] together with the Green’s function Monte Carlo

(GFMC) method [90–92] are famous examples of exact ab initio methods that can solve the

many-body eigenvalue problem (25) with quantified and systematic improvable uncertainties.

During the past years the NCSM-type methods have been improved towards the description

of heavier mass systems. A crucial example is the importance truncated no-core shell model

(IT-NCSM).This method bridges the gap in the application range between the aforementioned

exact methods and novel ab initio methods, such as the coupled-cluster (CC) method [27–

30, 93–95], the self-consistent Green’s function methods [31–33], or the in-medium similarity

renormalization group (IM-SRG) [34–36].

We start with an introduction of the NCSM in Sec. 2.1 and continue with its extension, namely

the IT-NCSM in Sec. 2.2, which is mainly used in this work. Finally we briefly discuss the

concept of the coupled-cluster method in Sec. 2.3, which is used for the investigation of heavier

nuclei.

5Since we are interested on relative or intrinsic properties of the nuclei, we use Hint as the Hamiltonian. Note
that the relative part is often referred as intrinsic part and has to be distinguished from the phrase “intrinsic”
used in context of, e.g., deformations in mean-field calculations.
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2 Ab Initio Many-Body Methods

2.1 The No-Core Shell Model

The no-core shell model (NCSM) is a special configuration interaction (CI) approach, which

is successfully used to solve the many-body eigenvalue problem exactly. For this purpose the

NCSM represents the eigenvalue problem (25) in a finite many-body model space, spanned by

HO eigenstates |Φνy or short HO states.

Due to the special structure of the NCSM model space the HO many-body basis can be con-

structed in particle coordinates as well as in relative coordinates, also called Jacobi coordinates

(see Sec. 3.1). A basis formulation in the latter coordinates has the advantage that the center-

of-mass degrees of freedom are separated from the outset. Hence, center-of-mass contaminations

are avoided elegantly by the basis choice. Unfortunately, NCSM calculations using antisym-

metrized Jacobi bases are generally not feasible for particle numbers larger than A « 7 (see

Sec. 3.1.2 and 3.1.3), i.e., we are typically reliant on a formulation of the many-body basis

in single-particle coordinates. In this case the many-body HO states are Slater determinants

composed of single-particle HO states. Such many-body states are known as m-scheme states

(see Sec. 3.2). In the following we introduce the definition of the NCSM model space that is as

beneficial as simple and characterizes the method. The model-space truncation is determined

by the so-called unperturbed excitation energy Nmax~Ω. The quantity Nmax corresponds to the

maximal number of HO excitation quanta with respect to the unperturbed Slater determinant

required to create a certain basis state |Φνy. We illustrate this quantity by an example of

an 16O basis configuration in Fig. 2.1. The unperturbed Slater determinant is given by the

configuration, where the protons and neutrons occupy the lowest HO orbits. Starting from this

configuration one can construct HO basis states by exciting nucleons to orbits with a larger

single-particle HO energy quantum number e. The NCSM model space for a given Nmax is

spanned by all HO configurations whose total excitation energy is smaller or equal Nmax, i.e.,

A
ÿ

i“1

∆ei ď Nmax , (26)

where ∆ei corresponds to the number of HO excitation quanta of the nucleon i. As an example

we consider the configuration in Fig. 2.1, where a proton is excited by one ~Ω (∆e “ 1) and

a neutron by three ~Ω (∆e “ 3) while the remaining nucleons are not excited (∆e “ 0), thus,

this basis state is included in all NCSM model spaces with Nmax ě 4. We can represent the

eigenvalue problem (25) in the NCSM model space and end up with a finite matrix-eigenvalue

problem, which can be solved by taking advantage of the sparse Hamilton matrix using the

Lanczos diagonalization algorithm. As a result we obtain the eigenenergies of the lowest energy

eigenstates, as well as the expansion coefficients C
pmq
ν in the HO basis |Φνy that define the
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2.1 The No-Core Shell Model

e = 0

e = 1

e = 2

e = 3

.

protons
neutrons

Figure 2.1 Illustration of the unperturbed excitation energy in the NCSM: The figure shows a

schematic representation of a HO many-body basis configuration for an 16O nucleus. The protons

(solid circles) and the neutrons (open circles) occupy the single particle HO shells defined by the energy

quantum number e. The illustrated configuration is constructed by a total 4 ~Ω excitation with respect

to the unperturbed ground state and is, thus, contained in all NCSM model spaces with Nmax ě 4.

eigenstates

|Ψpmqy “
ÿ

ν

Cpmq
ν |Φνy . (27)

We can determine any nuclear observable from the eigenstates by evaluating expectation values

or matrix elements between different eigenstates, e.g., in case of transition operators. With

increasing Nmax the observables converge towards the exact result of the eigenvalue problem

that is obtained for Nmax Ñ 8. To obtained the converged result with NCSM calculations in

finite model spaces one uses an extrapolation of the calculated observable for an Nmax sequence.

Especially in case of absolute eigenenergies the NCSM has the advantage that the Raleigh-Ritz

variational principle holds [96]. One of the most important benefits of the NCSM results from

the definition of the model space in combination with the HO basis choice. This combination

is the reason for the fact that the model space can be equivalently formulated in single-particle

or Jacobi coordinates and allows for a factorization of the eigenstates into a center-of-mass part

|Ψpmqycm and a relative part |Ψpmqyint

|Ψpmqy “ |Ψpmqycm b |Ψpmqyint . (28)

As mentioned above by using Jacobi coordinates the center-of-mass degree of freedom can

be neglected from the outset, while it is necessary to apply an intermediate step to get rid

of center-of-mass excitation when using single-particle coordinates. To suppress the center-
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2 Ab Initio Many-Body Methods

of-mass excitations one adds the Lawson term Hcm ´ 3

2
~Ω to the Hamiltonian [97], where

Hcm “ Tcm ` AmNΩ2R2
cm

2
corresponds to the center-of-mass HO Hamilton operator of an A-

body system, with the HO frequency Ω and the averaged nucleon mass mN . The latter is

used in the following in good approximation for the proton and neutron mass. In practice the

eigenvalue problem for the extended Hamiltonian is solved

H “ Tint ` V ` β
 

Hcm ´ 3

2
~Ω

(

. (29)

By increasing the factor β, eigenstates with excited center-of-mass part are shifted to higher en-

ergies, such that the energetically lowest eigenstates, which we obtain from the diagonalization,

have a center-of-mass contribution in the HO ground state. Therefore, observables obtained in

an NCSM calculations do not contain center-of-mass contaminations.

A further advantage of the NCSM formalism becomes obvious when applying modern nuclear

potentials, which contain NN, 3N and might even contain 4N interactions. The majority of

the present many-body methods need substantial conceptual and technical developments to

include 3N forces approach (as the case for IM-SRG [35,36], Gor’kov-Green’s function [32, 33],

and CC [28–30,98,99] applications). However, NCSM-type approaches have the natural ability

to include 3N, 4N and even higher-order forces, with only moderately increasing computational

costs. Due to the higher-order interactions the NCSM A-body Hamilton matrix becomes more

dense or, stated differently, there are more non-vanishing matrix elements. Thus, the ma-

trix diagonalized by the Lanczos algorithm is less sparse provoking increased computational

demands [100].

The sheer number of three-body m-scheme matrix elements sets a severe limit to the accessible

model-space sizes. For NCSM calculations of mid-p-shell nuclei with Nmax “ 8 about 33GB

are required to store the 3N interaction matrix elements in single precision [101]. A recent

key development for the inclusion of 3N interactions and even of 4N contributions in large

model spaces, is the storage of the interaction matrix elements in the so-called JT -coupled

scheme, which be discuss in detail in Sec. 3.2. Using this scheme the required storage for the

3N interaction matrix in the aforementioned case reduces to 0.4GB. The interaction matrix

elements stored in the JT -coupled scheme are decoupled on-the-fly during the many-body

calculation into the m-scheme. The latter basis representation is ideal to construct the A-body

Hamilton matrix utilizing Slater rules [102,103]. A high performance application of the NCSM

approach can be found in Ref. [104] porting the on-the-fly decoupling procedure to accelerator

cards.

Having emphasized the advantages of the NCSM we now concentrate on the limitations of this

method. The main drawback is the factorial growth of the many-body model-space dimen-

sion with particle number A and truncation parameter Nmax. Today’s implementations of the

NCSM are able to handle model-space dimensions of 109 ´ 1010 taking advantage of massive
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parallelization. For instance an NCSM calculation of 16O with Nmax “ 8 corresponds to a

model-space dimension of about 109. As discussed in the next section such a calculation is

not jet sufficiently converged with respect to Nmax to perform reliable extrapolations to infinite

model spaces. Therefore, the NSCM is limited to nuclei in the p-shell. Furthermore, the HO

basis is not suited to describe long-range properties, e.g., halo structures, as well as cluster

structures, which would require unfeasible large Nmax for accurate calculations [105].

To overcome the limitation inherent in the HO basis, in particular to extend the NCSM to

the long-range physics, alternatives to the standard HO basis are under investigation. Ex-

amples are the Coulomb Sturmian basis [106–108], which is obtained from the solution of a

Sturm-Liouville problem associated with the Coulomb potential and retains the exponential

asymptotics of the Coulomb problem. A further attempt to improve the convergence properties

of the NCSM by modifying the underlying HO basis has been also performed as part of this

thesis. We generalized the HO basis as proposed by Rowe [109] and applied the basis sets

to nuclear structure calculations. Unfortunately, the approach failed, due to the complicated

structure of the intrinsic kinetic-energy matrix elements in the generalized HO basis. Thus, we

do not present the details of this approach, but refer the interested reader to related Bache-

lor theses [110, 111]. In addition to these strategies there are approaches that extend the HO

model space of the NCSM by long-range basis states, e.g, scattering states used in the NCSM

combined with the resonating group method (NCSM/RGM) [24, 112, 113] or the NCSM with

continuum (NCSMC) [114, 115]. See Ref. [116] for a detailed discussion of the inclusion of 3N

forces in both approaches.

Despite the limited application range of the NCSM, which we address in the next section, it

constitutes an indispensable foundation for a broad range of nuclear structure physics. This

is due to the fact that the NCSM obtains the exact solution of the intrinsic eigenvalue prob-

lem, which can be used as benchmark for approximations concerning many-body methods and

the interaction treatment, which is necessary to tackle atomic nuclei significantly beyond the

application range of the NCSM.

2.2 Importance Truncated No-Core Shell Model

As discussed in the previous section the NCSM is limited to light nuclei in the p-shell, due to

the rapid combinatorial growth of the model space. The importance truncated no-core shell

model (IT-NCSM) [21,117,118] provides an extension of the NCSM increasing the application

range to larger Nmax and, hence, to larger particle numbers, while keeping all the advantages

of the conventional NCSM. The global truncation of the many-body model space, determined

by Nmax, does not account for specific properties of the Hamiltonian or the targeted states.

The basic idea of the IT-NCSM is to impose an additional adaptive, physics guided, state and

interaction specific truncation that reduces the growth of the model space.
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We target at a small number M of eigenstates |Ψpmqy with m “ 1, . . . ,M for a certain Nmax.

The exact result obtained in a conventional NCSM calculation can be expressed by representing

the eigenstates in the many-body basis |Φνy

|Ψpmqy “
ÿ

ν

Cpmq
ν |Φνy . (30)

In this expansion a large number of basis states contribute with very small or even vanishing

amplitudes Cpmq
ν . Those basis states have a minor impact on the result and can be treated, e.g.,

in a perturbative scheme or via other a posteriori approaches that we discuss in the following. By

defining an appropriate importance truncation (IT), we aim at the identification and omission

of these basis states a priori in order to reduce the model space to the physically relevant states.

We focus initially on the general concept of this method and discuss the practical benefits and

limitation subsequently. A more detailed description of the importance selection used in this

work is published in Ref. [118]. In addition a realization of a slightly different implementation

can be found in Ref. [119]. The starting point of the IT-NCSM are approximations of the

targeted states, the so-called reference states |Ψpmq
ref y, that are typically determined by previous

NCSM calculations in a feasible model space Mref. The reference states |Ψpmq
ref y carry the

quantum numbers of the targeted states and are determined by a superposition of the many-

body basis states |Φνy, that span the reference space Mref

|Ψpmq
ref y “

ÿ

ν

|Φνy PMref

C
pmq
ref,ν |Φνy . (31)

Guided by first-order multiconfigurational perturbation theory the reference states are used to

define the importance measures

κpmq
ν “ ´xΦν |H |Ψpmq

ref y
∆εν

, (32)

which estimate the importance of the basis states |Φνy contributing to the targeted state indi-

cated by the superscript m. Here H corresponds to the Hamiltonian of the NCSM calculation

including the Lawson term as discussed in Sec. 2.1, and ∆εν is chosen to be the excitation energy

of |Φνy with respect to the unperturbed HO Slater determinant [21, 117, 118]. The reference

space Mref is extended by those basis states |Φνy R Mref that fulfill the condition |κpmq
ν | ě κmin

for at least one m, where κmin denotes a certain importance threshold. A solution of the eigen-

value problem in this extended model space, the so-called importance-truncated model space,

yields a new set of reference states, which provide an improved approximation of the targeted

states. As evident from (32), the additional truncation of the model space parametrized by

κmin, contains information of the Hamiltonian and the targeted states, carried by the reference

states, combined with the structure of the individual basis states. Note, that the importance
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2.2 Importance Truncated No-Core Shell Model

measure in (32) originates from the first-order perturbative state correction and, hence, not

only aims at a description of the energy, but of the eigenstate in general, i.e., it aims at an

optimal description of all observables. In principle, the idea of importance selection, pioneered

in quantum chemistry in the 1970s [120, 121], can be applied to other CI methods as well. In

nuclear structure theory it is almost exclusively applied in combination with the NCSM. There

are different possibilities to embed the IT into general CI-type calculations (see [118] for a

detailed overview). See also [122] for a recent application of the IT procedure to the nuclear

shell-model approach.

In the context of NCSM calculations one aims at a sequence of Nmax values for the extrapolation

of the observable to infinite model spaces. Therefore, a sequential scheme, where one increases

Nmax in steps of 2 to the next-larger same-parity NCSM space, emerges to be most appropriate.

For the explanation of the sequential scheme we again consider the eigenstates obtained from

the full NCSM in an Nmax space. These states define the reference states |Ψpmq
ref y used for

the construction of the importance-truncated pNmax ` 2q model space. In order to reduce the

computational cost of evaluating the importance measure, we apply an additional truncation,

defined by the so-called reference threshold Cmin. That is we do not keep the full reference

space, but only those basis states, that correspond to amplitudes with |Cpmq
ν | ě Cmin for at

least one reference state. Hence, the reference states are defined as the normalized projection of

the eigenstates onto the Cmin-truncated reference space. Eventually, basis states contained in

the pNmax ` 2q model space, but not in the reference space, are probed during the importance

selection to construct the importance-truncated model space. The eigenstates for the next

iteration are obtained by diagonalizing the Hamiltonian in this model space via the Lanczos

algorithm.

Typically we start with a full NCSM calculation for Nmax “ 4 or 6 and increase the model

space via the sequential scheme described above. It is important to point out that in the limit

(κmin,Cmin)Ñ 0 we recover the full NCSM result. As we show in the following the applied

reference truncation Cmin has only minor effects on the results, while it is crucial to perform a

κmin Ñ 0 extrapolation. For this purpose we economically generate a sequence of importance

thresholds κmin by constructing the importance-truncated model space first for the smallest

κmin, i.e., the largest model space. Based on this model space we obtain the next smaller model

space by omitting the basis states incompatible with the next larger κmin and so on.

Although the amplitudes in the eigenstates might be small for the discarded basis states, due

to their large number they can lead to non-negligible contributions to observables. There

are two established options to include these effects. The simplest possibility to account for

the contributions of the discarded basis states on the eigenenergies is through a second-order

perturbation correction. During the importance-selection procedure we can evaluate the second-

order energy corrections to the m-th eigenstate caused by the individual basis states |Φνy that
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have been discarded

ξpmq
ν “ ´|xΦν |H |Ψpmq

ref y|2
∆εν

. (33)

The sum of these second-order energy contributions ξpmq
ν can be used to estimate the energy con-

tribution of the excluded states ∆pmq
exclu. This correction can by calculated during the importance

selection at essentially no additional cost and can be added a posteriori to the energy eigenvalue

E
pmq
evalpκminq. Here E

pmq
evalpκminq corresponds to the energy eigenvalue of the m-th eigenstate ob-

tained via a diagonalization of the Hamiltonian in the importance-truncated model space for a

certain κmin. Unfortunately, an analogous correction for other observables can generally not be

obtained by such a simple approach. The second more general and superior option to include

the effect of discarded basis states is to calculate the observables for a sequence of thresholds

and extrapolate to (κmin, Cmin)Ñ 0 to recover the full NCSM result.

We use Fig. 2.2 to illustrate the usual extrapolation protocol. In panel (a) and (c) the ground-

state energy of 16O obtained in an importance-truncated model space for Nmax “ 8 and 10,

respectively, is plotted as function of the importance threshold κmin. The different curves corre-

spond to the reference thresholds Cmin “ 1 ˆ 10´4 (blue circles), 2 ˆ 10´4 (red diamonds), 3ˆ
10´4 (green triangles), and 5ˆ10´4 (violet boxes). In all calculations shown in this section the

standard chiral NN interaction at N3LO by Entem and Machleidt [8] is used, which is evolved

by the Similarity Renormalization Group (SRG) at the two-body level to a flow parameter

α “ 0.04 fm4 (see Sec. 4 for a detailed discussion of the SRG). The calculations are performed

with a HO frequency of ~Ω “ 20MeV. All results were obtained by starting with a reference

state from a full NCSM calculation in an Nmax “ 4 space and applying the sequential scheme

described above. As evident from Fig. 2.2 (a) and (c) for practical applications we can choose

Cmin small enough such that it essentially does not affect the results. Typically a value of

Cmin “ 2 ˆ 10´4 is used throughout this work.

Hence, we are left with the extrapolation κmin Ñ 0. In practice we generate a sequence of

about 8 importance thresholds in the range of κmin “ 3 ˆ 10´5 to 10 ˆ 10´5. The energy

eigenvalues decrease smoothly and monotonically for increasing κmin. The latter is due to

the variational principle that holds also for the importance-truncated model spaces. Other

observables generally show a smooth behavior with respect to κmin as well, but they do not

necessarily exhibit a monotonic dependence. The extrapolations indicated by the gray lines are

obtained by a fit of the full data set with a polynomial, typically of the order n “ 3. Note that

the only additional uncertainty compared to the NCSM is caused by this extrapolation, thus,

it is important to control and quantify this systematic uncertainty. To this end we perform

additional extrapolations using the full data set with polynomials of order (n ´ 1) and pn ` 1q,
as well as extrapolations with order n, where we omit the data points for the lowest and two

lowest κmin values. The extrapolation uncertainty of this protocol is indicated by the error band
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Figure 2.2 Threshold dependence and extrapolation for ground-state energies of 16O: Shown are

the ground-state energies as function of the importance threshold κmin for IT-NCSM calculations using

the standard NN interaction, SRG evolved at the two-body level to α “ 0.04 fm4 at ~Ω “ 20MeV for

Nmax “ 8 (upper panels) and Nmax “ 12 (lower panels). In panel (a) and (c) the energies correspond to

different Cmin “ 1 ˆ 10´4( •), 2 ˆ 10´4( ), 3 ˆ 10´4(N), and 5 ˆ 10´4(�). Panel (b) and (d) illustrate

the simple threshold extrapolation for Cmin “ 2ˆ 10´4 using a third-order polynomial with uncertainty

bands derived from the extrapolation protocol described in the text. The red bars correspond to the

full NCSM result calculated with the Antoine code [123]. Results are published in [21].

in Fig. 2.2 (b) and (d). The upper panels show the IT-NCSM results for Nmax “ 8. For this

model space full NCSM calculations are feasible using the highly optimized Antoine code [123]

and the results are indicated by the red bars. Figure 2.2 (b) illustrates the agreement of the

extrapolated IT-NCSM result and the full NCSM result within the small extrapolation errors.

For the Nmax “ 12 calculations plotted in the lower panels, the extrapolation uncertainties

increase, but are still well under control. Note that for such large model spaces full NCSM

calculations are not feasible.

In order to reduce the uncertainties of the energy eigenvalues further one can take advantage

of the fact that the energy contribution of the excluded states ∆
pmq
exclupκminq, obtained from

second-order perturbation theory, vanishes for κmin Ñ 0. Therefore, we can construct a family
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Figure 2.3 Simultaneous threshold extrapolation for the ground-state energy of 16O: The curves

correspond to the improved energies (34) for different λ values. The results have been achieved for

Nmax “ 12 and Cmin “ 2 ˆ 10´4. The interaction and remaining parameters are chosen as in Fig. 2.2.

Results are published in [21].

of improved energy curves

E
pmq
λ pκminq “ E

pmq
evalpκminq ` λ∆

pmq
exclupκminq , (34)

with an auxiliary control parameter λ. Per definition all curves converge to the full NCSM

energy for the limit κmin Ñ 0. We use this property as constraint for the simultaneous fit

of the curves for a set of λ parameters. As an example for this approach Fig. 2.3 shows the

energies Eλ of the 16O ground state with the same parameters as in Fig. 2.2(d) for five λ values

as function of the importance threshold κmin. The extrapolation error is determined again

through a variation of the polynomial order by ˘1 and omitting the lowest or the two lowest

κmin data points. In addition to this we perform extrapolations omitting the curve with the

largest (red squares) or lowest (blue circles) λ. Typically the λ parameters are chosen such

that the E
pmq
λ pκminq curves exhibit an approximately symmetrical appearance, which stabilizes

the extrapolation significantly. In practical applications throughout this work we typically

follow the simpler extrapolation protocol illustrated in Fig. 2.2(d) and if necessary we use the

constrained simultaneous fit procedure to stabilize the extrapolation.

In the following we show further examples of IT-NCSM calculations using the simpler extrap-

olation, varying the nucleus and the observables. In Fig. 2.4 IT-NCSM energies of 12C are

shown as function of κmin for the ground-state energy (a), the excitation energy of the first

2` state (b), the angular momentum of the ground state (c) and the expectation value Ecm of

the Lawson term (d) to estimate the center-of-mass contamination. We utilize the same NN
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Figure 2.4 Threshold dependence in 12C: Illustrated are the ground-state energy (a), the angular

momentum (c), and the expectation value of the Lawson term (d), as well as the excitation energy of

the first excited 2` state (b). The IT-NCSM calculations are carried out for Nmax “ 8, ~ω “ 20MeV,

Cmin “ 2 ˆ 10´4 and the same interaction as in Fig. 2.2. The red bars mark the full NCSM results

obtained with the Antoine code [123]. Results are published in [21].

Hamiltonian as above, SRG evolved to α “ 0.04 fm4. The IT-NCSM calculations have been

performed for Nmax “ 8, ~Ω “ 20MeV and Cmin “ 2 ˆ 10´4. The ground-state energy of 12C

is again a smooth, monotonic curve as function of κmin and the full NCSM result (red bars)

are reproduced rather precise, although the NCSM result is located at the lower edge of the

error band obtained from the extrapolation protocol. The excitation energy of the first excited

2` state is almost constant with respect to the importance threshold, yielding an extrapolation

error of about 50 keV. This indicates that for the plotted κmin range the excluded basis states

contribute to the same amount to the absolute energy of the ground and first-excited 2` state.

The angular momentum J for the ground state, i.e., the 0` state, is not a good quantum number

for finite κmin but can be reproduced very accurately when extrapolating to κmin Ñ 0. Further,

we can investigate the center-of-mass contamination by, e.g., calculating the expectation value

of the Lawson term Ecm introduced in Sec. 2.1. For a full NCSM calculation Ecm vanishes

up to numerical noise. From panel (d), where the mentioned expectation value for the ground

state of 12C is depicted, we observe that IT-NCSM results for finite κmin show a noticeable

center-of-mass contaminations, which almost vanishes when extrapolating to κmin Ñ 0. Thus,
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Figure 2.5 Ground-state energy and model-space dimensions for 16O: Illustrated are the ground-

state energies (upper panel) and the corresponding model-space dimensions (lower panel) for the IT-

NCSM ( •) and the full NCSM (`) calculations as function of Nmax. The interaction and remaining

parameters are chosen as in Fig. 2.4. The error bars for the IT-NCSM energies resulting from the

importance extrapolation are covered by the plot symbols. Results are published in [21].

the final threshold extrapolated IT-NCSM results are essentially not affected by center-of-mass

contaminations.

Eventually, we elucidate the major advantage of the IT-NCSM, namely the reduction of the

dimension of the many-body model space. In the upper panel of Fig. 2.5 we compare the

ground-state energy of 16O as function of Nmax, for the same NN interaction and HO frequency

as in the previous figures of this section, obtained with the IT-NCSM (blue circles) and the full

NCSM (black crosses). The NCSM calculations are performed with the Antoine code [123] and

the IT-NCSM results are obtained using the simple extrapolation protocol described above. For

the model spaces feasible with the NCSM, i.e., Nmax ď 8, both results agree to within 200 keV,

illustrating the excellent agreement of the IT-NCSM with the full NCSM. In addition the IT

procedure allows to extend the model space up to Nmax “ 18, far beyond the application range

of the NCSM. The reason is illustrated in the lower panel of Fig. 2.5, where we plot the model-

space dimensions used during the Lanczos diagonalization for the IT-NCSM (blue circle) and

the NCSM (black crosses) as function of Nmax. The IT model spaces are constructed with an

importance threshold κmin “ 3 ˆ 10´5, which corresponds to the largest IT model space used

for the calculation of the ground-state energies in the upper panel. Note that the IT-NCSM

typically starts with reference states from a full Nmax “ 4 NCSM calculation to construct the
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2.2 Importance Truncated No-Core Shell Model

IT Nmax “ 6 model space, i.e., both methods are identical for Nmax ď 4 in this case. While the

model-space dimension of the NCSM increases dramatically with Nmax, it saturates for the IT

case, yielding a reduction of the model-space dimension by more than two orders of magnitude.

From the saturation we conclude that the majority of the new basis states for large Nmax have

small or vanishing importance measures when targeting the ground state. This agrees with

the fact that the ground-state energy is approximately converged for Nmax “ 12. However,

the results beyond the NCSM application range (Nmax ą 8) are essential to perform accurate

extrapolations with respect to the Nmax.

Finally, we consider the limitations of the IT-NCSM. From the model-space dimension analysis

in Fig. 2.5 one could get the impression that the larger Nmax calculations can be performed with

constant effort. This is true for the Lanczos diagonalization, but the computing time required

for the importance selection increases considerably owing to the large number of importance

measures that have to be evaluated. The IT-NCSM has proven to have the capability of

calculating eigenenergies as well as other observables on the same footing [21]. The pattern of

observables with respect to the IT threshold is generally smooth and can be extrapolated to

the full NCSM space with high accuracy. However, we stress that there are observables that

depend substantial on basis states with a small importance measure or show a pattern less

suited for the extrapolation protocol used in this work. Examples are the quadrupole moments

or B(E2) transition strength,6 which generally have a larger relative extrapolation error than

the observables shown in this section [21].

Furthermore, the extrapolation procedure becomes less accurate when using too large HO fre-

quencies, because the contributions to the eigenstates are distributed over the full NCSM model

space for such inappropriate HO frequencies [21]. See Ref. [119] for an investigation of the κmin

extrapolation for different HO frequencies. In these cases it might be necessary to extend the

typically κmin range to lower values in order to obtain the desired accuracy of the extrapolation.

To sum up, the importance-truncation technique in combination with the threshold extrapo-

lation, enables the IT-NCSM to reproduce the results of the full NCSM and keeping its ad-

vantages, namely: the variational principle holds, the center-of-contamination approximately

vanishes, other observables can be obtained from the calculated eigenstates, 3N and higher-

order interactions can be included in this method with moderate effort. The IT extends the

application range to larger model spaces and particle numbers, i.e., nuclei in the p- and lower

sd-shell become accessible, entering an interesting regime of nuclear physics. Furthermore, the

IT-NCSM bridges the gap between light nuclei accessible with exact methods, such as the NCSM

and the medium-mass and heavy nuclei that are the terrain of approximative methods such as

the CC or IM-SRG approach. Therefore, this method is crucial to investigate the uncertainty

6The results shown in this work are achieved by using chiral interactions softened by the Similarity Renor-
malization Group. A reliable investigation of other observables than the eigenenergies requires a corresponding
unitary transformation of the operators. We mainly concentrate on eigenenergies in this work, but refer the
interested reader to [124,125] for recent applications of the unitary transformation of observables.
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2 Ab Initio Many-Body Methods

of approximative approaches and represents the central many-body method in this work.

2.3 Coupled-Cluster Approach

To study the impact of chiral NN and 3N interactions for heavier nuclei far beyond the p and sd

shell we utilize the ab initio single-reference coupled-cluster (CC) approach to compute ground-

state energies for closed-shell nuclei. In the following, we briefly outline the formal concept of

CC theory and refer to Ref. [99] for a detailed description. The CC approach elegantly assesses

the energy E of the A-particle ground state |Ψy by solving the many-body eigenvalue problem

Hint |Ψy “ E |Φy , (35)

using an exponantial ansatz [126,127]

|Ψy “ eT |Φrefy , (36)

where the same Hamiltonian Hint as in Eq. (25) is used and |Φrefy is a single-reference deter-

minant that approximates the ground state. The cluster operator

T “
A
ÿ

n“1

Tn , (37)

is a particle-hole excitation operator and its many-body components

Tn “
ˆ

1

n!

˙2
ÿ

ν1...νn
µ1...µn

tµ1...µn
ν1...νn

a:
µ1

¨ ¨ ¨a:
µn
aνn ¨ ¨ ¨aν1 , (38)

depend on the coefficients tµ1...µn
ν1...νn also called cluster amplitudes and comprise n pairs of creation

and annihilation operators, which are defined with respect to the reference state. The indices

ν1, ν2, . . . dentote single-particle state occupied in |Φrefy and µ1, µ2, . . . denote single-particle

state unoccupied in |Φrefy, such that the creation and annihilation operators are in normal-

ordered form (see Sec. 3.3).

Expanding the operator eT in a Taylor series using the expression of the cluster operator (37),

yields

eT “ 1 ` T 1 ` T2 ` . . .

` 1

2!
T 2
1 ` T1T2 ` 1

2!
T 2
1 ` . . .

` 1

3!
T 3
1 ` 1

2!
T 2
1 T2 ` 1

2!
T1T

2
2 ` 1

3!
T 3
2 ` . . .

...

(39)
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2.3 Coupled-Cluster Approach

where the dots correspond to contributions including either products of more than three cluster-

operator components or Tm operators with m ě 3. In this work we report results with the CC

approach using the Hartree-Fock state as the reference state. This single Slater determinant is

unable to describe short-range and tensor correlations [128], e.g., induced by the chiral interac-

tions. Due to the application of the operator in Eq. (39) to the reference state, the eigenstate

|Ψy contains multiple excitations that allow to account for these correlations. Contributions

to the eigenstate of the form Tm |Φrefy are called connected-cluster contributions while contri-

butions including products of the cluster operators components are called disconnected-cluster

contributions. The latter are a direct consequence of the exponential ansatz for the eigenstate

and are responsible for the extensivity of the CC eigenstate [94]. Because of the T1 components

the CC methods are relatively insensitive to the choice of the reference state, since the operator

eT1 transforms the reference state to another Slater determinant [129].

To derive the CC equations that need to be solved to obtain the ground-state energy it is conve-

nient to decompose the ground-state energy E into the reference energy Eref “ xΦref|Hint |Φrefy
and the CC correlation energy ∆E

E “ Eref ` ∆E (40)

and to subtract the Eref from the Schrödinger equation (35), yielding the eigenvalue problem

HN |Φrefy “ ∆E |Φrefy with HN “ Hint ´ Eref . (41)

Moreover, one multiplies both sides of this equation by e´T from the left to obtain the connected-

cluster form of the Schrödinger equation [130,131]

HN |Φrefy “ ∆E |Φrefy , (42)

where HN “ e´THN eT is the similarity-transformed Hamiltonian. Finally, both sides of

Eq. (42) are projected on the reference state |Φrefy and on the excited states

|Φµ1..µn
ν1..νn

y “ a:
µ1

¨ ¨ ¨a:
µn
aνn ¨ ¨ ¨aν1 |Φrefy , (43)

which are obtained by applying particle-hole excitations to the reference state.

These projections yield the CC equations [28, 130,131], i.e., the correlation energy formula

∆E “ xΦref|HN |Φrefy (44)

and the non-linear system of explicitly connected and energy-independent equations

xΦµ1..µn
ν1..νn

|HN |Φrefy “ 0 , with ν1 ă ¨ ¨ ¨ ă νn , µ1 ă ¨ ¨ ¨ ă µn , (45)
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for n “ 1 . . . A. The solution of the system of equations (45) determines the cluster amplitudes

t
µ1...µn
ν1...νn and thus the eigenstate |Ψy. Furthermore, the amplitudes can be inserted in Eq. (44)

to obtain the correlation energy ∆E and thus the ground-state energy E.

Since the exponential ansatz in Eq. (36) allows to consider all configurations that appear in a

full CI approach, the CC solution for the ground state is equivalent to the full CI approach.

For practical reasons, this exact CC approach is limited to small few-body problems and ap-

plications to heavier systems require a truncations of the cluster operator T . Generally, one

truncates the many-body expansion for T in Eq. (37) at a certain excitation component Tm

(cluster truncation). Commonly used is the coupled-cluster method with singles and doubles

excitations (CCSD) [28,93–95,132,133], where the excitation components T1 and T2 are consid-

ered. In quantum chemistry an excellent approximation to the exact result is usually achieved

by the coupled-cluster method with singles, doubles, and triples excitations (CCSDT), including

additionally the T3 components. However, an iterative solution of the system of equations (45)

causes high computational cost, when including the T3 excitations. Therefore, in this work we

apply the CCSD method and add corrections to the CCSD energy originating from the dominant

triples contributions, using the ΛCCSD(T) method [28–30,93–95] as well as the left-eigenstate

completely renormalized coupled-cluster method with singles, doubles and non-iterative triples

excitations [30, 134, 135], CR-CC(2,3) for short. The systematic uncertainties of the ground-

state energies due to the cluster truncation can be estimated by the energy corrections of the

triples contributions.

Note that the derivation of the final expressions for the CC energy and amplitude equations that

are used in practical implementations is a conceptual demanding task. Moreover, the final form

of the equation depends on the Hamiltonian used in the calculations. This becomes evident

when one utilizes the Baker-Campbell-Hausdorff expansion to derive the following expression

for the similarity-transformed Hamiltonian [28, 94]

HN “ HN `
nmax
ÿ

n“1

1

n!

“

. . .
“

loomoon

n times

HN ,T
‰

, . . . ,T
‰

looooomooooon

n times

. (46)

Using Wicks’s theorem one can show that only those terms in the nested commutators
“

. . .
“

HN ,T
‰

, . . . ,T
‰

provide non-vanishing contributions that involve contractions between

HN and one or more components of T , yielding

HN “
nmax
ÿ

n“0

1

n!
pHNT nqC , (47)

where the subscript C indicates that HN is contracted with at least one of the following T

operators. This restricts the maximum power of the T operators and simplifies the CC equa-

tions. Nevertheless, the form of HN depends on nmax that is determined by the maximal
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particle-rank of the interaction in the Hamiltonian, i.e., nmax=4 for an NN interaction, nmax=6

for a 3N interaction and so on. Without conceptual changes the CC approaches developed

for NN interactions can include effects of 3N interactions by reducing the particle-rank of the

interaction via the normal-ordering approximation, discussed in Sec. 3.3. However, to employ

3N interactions explicitly one requires formal extensions [28–30,98,99] that complicate the CC

equations and increase the computational costs of the calculations.

Nevertheless, the CC approach constitutes an elegant ab initio many-body approach allowing

for an efficient computation of the ground-state energies for closed-shell nuclei far beyond the p

and sd shell using a many-body model space truncation defined by the maximum single-particle

energy emax. In particular due to the spherical formulation of the CC equations (see Ref. [99]

for a detailed description) one can reach much larger model spaces than with the NCSM and

IT-NCSM approaches, such that, in general, all 3N interaction matrix elements required for the

CC model spaces cannot be provided. Thus, it is important to study the sensitivity of the CC

results to the truncation of the 3N contributions.
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An important objective when dealing with quantum-mechanical problems both, algebraically

and numerically is the choice of an adequate basis that, e.g., exploits the symmetries of the

involved operators and allows to define model spaces with tractable dimensions that cover the

relevant physics. The harmonic-oscillator (HO) basis has been successfully established in a wide

range of nuclear structure physics and is commonly used in different many-body methods in this

field, such as the NCSM, IT-NCSM, CC, IM-SRG, Gor’kov-Green’s function, etc. The harmonic

oscillator provides a complete and discrete basis of localized wave functions that depend on the

HO frequency ~Ω or equivalently the oscillator length a. These parameters can be adjusted

to improve the description of finite systems or can be varied to study the sufficiency of the

model space. Although the HO basis is not suited to describe all aspects relevant for nuclear

structure physics, such as short-range correlations, cluster-structures, long-range properties, or

continuum effects, it provides an excellent starting point for further developments.

Throughout this section we introduce and discuss the basis sets and basis transformations that

are used in our toolchain to perform nuclear structure calculations. The major focus is on

the introduction of the HO basis sets used for the inclusion of 3N and 4N contributions and

the presentation of the corresponding basis transformations. We highlight the advantages and

disadvantages of the different basis sets that justify their application for certain tasks in the

toolchain used to carry out nuclear structure calculations.

In order to motivate the basis sets and basis transformations that are presented in the follow-

ing, we briefly summarize the different strategies to include the chiral 3N and 4N contributions

into nuclear structure calculations: The standard procedure using the HO basis for the in-

clusion of these interactions is to perform the unitary similarity renormalization group (SRG)

transformation (see Sec. 4) in the Jacobi-HO basis, followed by a basis transformation into the

so-called JT -coupled scheme. In case of the (IT-)NCSM we perform the final decoupling to the

m-scheme on-the-fly during the many-body calculations. The procedures for the inclusion of

the 3N and 4N contributions are similar, even though the treatment of the latter requires ex-

tensions of all the discussed steps to the four-body space and, thus, several novel developments

and optimizations.

In addition, it is possible to simplify the treatment of the 3N and 4N interactions by introducing

approximations that reduce the particle rank of the interaction. Throughout this work such

approximations are applied via a normal-ordering (NO) approximation to reduce contributions
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of the 3N interaction to interactions with lower particle ranks.

Eventually, we concentrate on the partial-wave decomposed Jacobi-momentum basis, which is

the starting point for the non-local chiral 3N interactions (see Sec. 1.3 and 1.4). We discuss

the basis transformation from the three-body momentum basis to the HO basis in order to feed

these interactions into the efficient HO toolchain that is presented throughout this work.

3.1 The Jacobi Basis

The first basis set we discuss corresponds to the HO eigenstates defined with respect to Jacobi

coordinates. These coordinates allow to disentangle the relative from the center-of-mass motion,

which allows for a direct investigation of the intrinsic structure of the nucleus. There are

different choices for these coordinates. In this work we use the definition also applied in Refs. [13,

70] for the spatial Jacobi coordinates

~ξ0 “
c

1

A
r~r1 ` ~r2 ` ¨ ¨ ¨ ` ~rAs ,

~ξn “
c

n

n ` 1

” 1

n
p~r1 ` ~r2 ` ¨ ¨ ¨ ` ~rnq ´ ~rn`1

ı

,

(48)

and for the Jacobi momenta

~π0 “
c

1

A
r~p1 ` ~p2 ` ¨ ¨ ¨ ` ~pAs ,

~πn “
c

n

n ` 1

”1

n
p~p1 ` ~p2 ` ¨ ¨ ¨ ` ~pnq ´ ~pn`1

ı

.

(49)

where ~ri and ~pi correspond to the single-particle coordinates and momenta of the i-th particle,

respectively. The coordinates ~ξ0 and ~π0 are proportional to the center-of-mass coordinates of

the A-body system. The Jacobi coordinates ~ξn and ~πn with n “ 1, 2, ..., pA ´ 1q describe the

relative motion of the A-body system. Apart from prefactors ~ξn is defined as the distance of

the pn ` 1q-th particle to the center-of-mass of the first n particles, and analogous for ~πn.

In the following we utilize basis sets defined with respect to Jacobi and single-particle coordi-

nates in various relations and transformations. To distinguish between the underlying coordi-

nate systems we use numeric indices for quantities defined with respect to Jacobi coordinates

and latin indices for the ones defined with respect to single-particle coordinates. With this
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convention the Jacobi coordinates relevant for the relative motion read

~ξ1 “
c

1

2
r~ra ´ ~rbs ,

~ξ2 “
c

2

3

”1

2
p~ra ` ~rbq ´ ~rc

ı

,

~ξ3 “
c

3

4

”1

3
p~ra ` ~rb ` ~rcq ´ ~rd

ı

,

...

(50)

and

~π1 “
c

1

2
r~pa ´ ~pbs ,

~π2 “
c

2

3

”1

2
p~pa ` ~pbq ´ ~pc

ı

,

~π3 “
c

3

4

”1

3
p~pa ` ~pb ` ~pcq ´ ~pd

ı

,

...

(51)

3.1.1 Two-Body Basis

We start with the two-body basis states as the simplest example for Jacobi-HO states and define

the notation used later on.

In the two-body space there are the antisymmetric HO eigenstates

|Ncmp2qLcmp2qMLcmp2qy b |N1; pL1S1qJ1MJ1 ;T1MT1
ya , (52)

where N1, L1 are the radial and orbital angular-momentum quantum numbers, defined with

respect to the Jacobi coordinate ~ξ1. The coupled spin and isospin are denoted by S1 and T1,

respectively, with the isospin projection MT1
. The angular-momentum quantum number of

the relative part and its projection are denoted by J1 and MJ1 . Further, Ncmp2q, Lcmp2q, and

MLcmp2q correspond to the center-of-mass coordinate ~ξ0 and define the center-of-mass part of the

two-body HO basis state. The subscript a of the relative state indicates its antisymmetry with

respect to particle exchanges, i.e., its quantum numbers fulfill the condition p´1qL1`S1`T1 “
1. The center-of-mass part is symmetric under particle exchanges by definition, such that

the complete state in Eq. (52) is antisymmetric. Note, that we use upper-case letters for

the quantum number to indicate their dependence on more than one particle, while we use

lower-case letters for single-particle quantum numbers. The subscript cmpnq indicates that the

quantity is defined with respect to the center-of-mass coordinate of the n-body system. As
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mentioned before, quantities with numeric indices correspond to Jacobi coordinates and those

with latin indices to single-particle coordinates. Note, there are quantities that correspond to

both coordinate systems. For example the single-particle spins sa and sb couple to Sab, which

is equivalent to S1.7 The HO basis in Eq. (52) is used, e.g., for the SRG evolution in the

two-space (see Sec. 4) and is transformed via a Talmi-Moshinsky transformation [128,136,137]

to the m-scheme or to the so-called JT -coupled scheme (see Ref. [138] for a detailed derivation

of the transformation).

In analogy to the antisymmetric Jacobi-HO states in the three- and four-body space that are

introduced in Sec. 3.1.2 and 3.1.3, respectively, one can also introduce the following short-hand

notation for the relative part of the two-body states

|E1i1J1T1ya “ |N1; pL1S1qJ1;T1ya , (53)

with the energy quantum number E1 “ 2N1 ` L1 and the collective index i1 “ tL1, S1, T1u.
Note that we omit the projection quantum numbers for brevity.

Another common two-body Jacobi basis is the antisymmetric partial-wave decomposed momen-

tum basis

|π1; pL1S1qJ1;T1ya , (54)

where we omit the center-of-mass part for brevity. The quantity π1 corresponds to the absolute

value of the first Jacobi momentum. This basis is applied, e.g., to perform the SRG transforma-

tion of the chiral NN interaction in the two-space, which is used in the many-body Hamiltonian

(see Sec. 4.5) and is partially utilized in the derivation of the frequency conversion formula (see

Sec. 5). The transformation of the momentum basis to the HO basis is discussed for the more

complicated three-body case in Sec. 3.5.

3.1.2 Three-Body HO Basis and Antisymmetrization

The construction of antisymmetric three-body Jacobi-HO states can be performed by utilizing

the antisymmetrization technique discussed in the following. We begin with the Jacobi-HO

states

|Ncmp3qLcmp3qy b |N1N2; rpL1S1qJ1, pL2
1

2
qJ2sJ12; pT1

1

2
qT12ya1 , (55)

7We emphasize that it is crucial to distinguish between the angular momentum, spin, and isospin operators
that can couple with each other in the corresponding Hilbert spaces, and the quantum numbers that are associ-
ated with this operators. Nevertheless, we refer, e.g., to the “coupling of two quantum numbers” and point out
that this is only a short-hand formulation for the coupling of the corresponding operators.
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that are only partially antisymmetric with respect to the exchange of the first two particles,

which correspond to the first Jacobi coordinate, indicated by the index a1 of the state, i.e.,

p´1qL1`S1`T1 “ 1 holds. We suppress the projection quantum numbers for brevity and utilize

the notation introduced in Sec. 3.1.1, e.g., the quantum number J12 correspond to the coupled

relative angular momentum of the three-body state that are defined with respect to the Jacobi

coordinates ~ξ1 and ~ξ2. The total isospin and its projection is denoted by T12 and MT12
, respec-

tively. Since we are considering nucleons the single-particle spin and isospin quantum numbers

are equal to 1

2
. The total HO energy quantum number of the three-body state is defined by

Eabc “ Ecmp3q ` E12, with the center-of-mass contribution Ecmp3q “ 2Ncmp3q ` Lcmp3q and the

relative energy quantum number E12 “ p2N1 ` L1q ` p2N2 ` L2q. We omit the center-of-mass

part and concentrate on the relative part

|N1N2;α12ya1 “ |N1N2; rpL1S1qJ1, pL2
1

2
qJ2sJ12; pT1

1

2
qT12ya1 , (56)

where we suppress the projection quantum numbers MJ12 and MT12
for brevity and introduce

a short-hand notation using the collective index α12 “ tL1, S1, J1, L2, J2, J12, T1, T12u for the

angular momentum, spin and isospin quantum numbers that define the partial waves.

Since we describe fermionic systems it is necessary to antisymmetrize this basis. In case of

the two-body Jacobi-HO basis this can be achieved by allowing only certain combinations of

quantum numbers. Unfortunately, an analogous relation does not exist for the three-body

Jacobi-HO states. Thus, one could obtain a completely antisymmetric state, e.g., by applying

the antisymmetrization operator A. For the m-scheme such a procedure reduces the number of

basis states in a certain model space due to the fact that permutations of single-particles only

differ by a trivial factor and can be omitted. However, it is generally not possible to identify such

permutation relations for Jacobi basis states. Therefore, we apply a more sophisticated approach

that leads to an antisymmetric and orthonormal basis: We represent the antisymmetrizer A

in the partially antisymmetric Jacobi-HO basis of Eq. (56) and diagonalize the corresponding

matrix to obtain the eigenstates of this operator. The antisymmetrizer matrix elements vanish

for different energy E12, angular momentum J12, and isospin T12 quantum numbers in the

bra and ket states, such that the diagonalization can by performed for each pE12J12T12q-block

separately. To obtain the corresponding matrix elements we exploit the partial antisymmetry

of our basis yielding

a1xN1N2;α12|A |N 1
1N

1
2;α

1
12ya1 “ a1xN1N2;α12| 1

3
p1 ´ 2T bcq |N 1

1N
1
2;α

1
12

1ya1 , (57)

with the transposition operator T bc of particle b and c. The matrix elements of the transposition

43



3 Momentum and HO Basis Sets

operator are given by [70]

a1xN1N2; rpL1S1qJ1, pL2
1

2
qJ2sJ12; pT1

1

2
qT12| T bc

ˆ |N 1
1N

1
2; rpL1

1S
1
1qJ 1

1, pL1
2
1

2
qJ 1

2sJ12; pT 1
1
1

2
qT12ya1

“
ÿ

L12S12

ÿ

L1
12
S1
12

ÿ

ML12
MS12

ÿ

M 1
L12

M 1
S12

Ĵ1Ĵ
1
1L̂12L̂

1
12Ŝ12Ŝ

1
12Ĵ2Ĵ

1
2Ŝ1Ŝ

1
1T̂1T̂

1
1p´1qT1`T 1

1
`S1`S1

1

ˆ δS12,S
1
12
δMS12

,M 1
S12

δT12,T
1
12
δL12,L

1
12
δML12

,M 1
L12

δp2N1`L1`2N2`L2q,p2N 1
1

`L1
1

`2N 1
2

`L1
2

q

ˆ

$

’

&

’

%

L1 S1 J1

L2
1

2
J2

L12 S12 J12

,

/

.

/

-

$

’

&

’

%

L1
1 S1

1 J 1
1

L1
2

1

2
J 1
2

L1
12 S1

12 J 1
12

,

/

.

/

-

˜

L12 S12

ML12
MS12

ˇ

ˇ

ˇ

ˇ

ˇ

J12

MJ12

¸˜

L1
12 S1

12

M 1
L12

M 1
S12

ˇ

ˇ

ˇ

ˇ

ˇ

J 1
12

M 1
J12

¸

ˆ
#

1

2

1

2
T1

1

2
T 1
12 T 1

1

+#

1

2

1

2
S1

1

2
S1
12 S1

1

+

xxN1L1, N2L2;L12|N 1
1L

1
1, N

1
2L

1
2yy 1

3

,

(58)

with the short hand x̂ “
?
2x ` 1. For the derivation of this formula (see Refs. [138, 139] for

details) several angular-momentum recouplings are necessary, yielding the 6j- and 9j-symbols.

Moreover, the transposition changes the underlying coordinate system in one state, which gen-

erates the harmonic-oscillator brackets (HOBs) xx. . . ; . . . yy 1

3

[137, 140–142]. Note, the HOBs

used in this work correspond to the definition in Ref. [140], an alternative formulation that

differs by a phase can be found, e.g., in Ref. [142].

From the diagonalization of the antisymmetrizer matrix we obtain the antisymmetric eigenstates

that correspond to the eigenvalue p´1q. These eigenstates can be expressed as a superposition

of the partial-antisymmetric states as

|E12i12J12T12ya “
ÿ

N 1
1
N 1

2
α1
12

δp2N 1
1

`L1
1

`2N 1
2

`L1
2

q,E12
δJ 1

12
,J12δT 1

12
,T12

Ci12
N 1

1
N 1

2
α1
12

|N1N2;α12y , (59)

where the states |E12i12J12T12ya correspond to the relative part of the antisymmetric Jacobi-HO

states and Ci12
N 1

1
N 1

2
α1
12

are the expansion coefficients, also referred to as “coefficients of fractional

parentage” (CFPs) [70]. The index i12 is not a physical quantum number, but enumerates the

antisymmetric states. The choice of the antisymmetric Jacobi basis states, i.e., the choice of the

CFPs, is not unique. In fact there are arbitrarily many possibilities to choose an orthonormal

basis that spans the antisymmetric space. The specific values of the CFPs are defined by

the diagonalization procedure and the physical content of a numerical matrix element in the

antisymmetric Jacobi-HO representation is only defined with respect to the underlying CFPs.

The starting point for the inclusion of 3N interactions in the HO basis is a representation of

the interaction in the antisymmetric Jacobi-HO basis

axE12i12J12T12|V |E1
12i

1
12J12T12ya, (60)
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3.1 The Jacobi Basis

which are only nonvanishing for equal angular momentum J12, isospin T12 and parity π of

the bra and ket states, yielding a separation of the interaction matrix into pJπ
12T12q-blocks.

Note that the parity is defined by the orbital angular momenta π “ p´1qL1`L2 and thus is

related to the energy quantum number E12 “ 2N1 ` L1 ` 2N2 ` L2 via π “ p´1qE12 , where

we exploited that p´1q2N1`2N2 is equivalent to 1. The matrix elements of the local standard

3N interaction (see Sec 1.3.2) and the corresponding CFPs are evaluated with Petr Navrátil’s

ManyEff code [70].

The introduction of the antisymmetric Jacobi-HO basis reduces the number of interaction ma-

trix elements by one order of magnitude compared to the partial antisymmetric basis. The

antisymmetrization procedure discussed above is generally not applicable to continuous basis

sets, such as the momentum basis. Further, advantages and disadvantages of the Jacobi-HO

basis in comparison to other three-body bases are discussed in Sec. 3.2 and 3.5, where we intro-

duce the HO single-particle schemes and the partial-wave decomposed Jacobi-momentum basis,

respectively.

3.1.3 Four-Body HO Basis and Antisymmetrization

For the construction of the four-body Jacobi-HO basis we adopt the strategy of Ref. [70]: One

arrives at the A-body Jacobi-HO state via an extension of the antisymmetric pA´1q-body state

and performs the subsequent antisymmetrization as presented in Sec. 3.1.2.

We start with a partial-antisymmetric four-body Jacobi-HO basis

|Ncmp4qLcmp4qy b |E12i12N3; rJ12, pL3
1

2
qJ3sJ123; pT12

1

2
qT123ya12 , (61)

where we omit the projection quantum numbers MLcmp4q ,MJ123 , and MT123
for brevity. The

state in Eq. (61) is an extension of the antisymmetric three-body state of Eq. (59) by the

quantum numbers N3, L3, J3 corresponding to the Jacobi coordinate ~ξ3 and the spin and isospin

of the fourth particle, which couple with the quantities of the three-body state to the angular

momentum J123 and isospin T123. The symmetric center-of-mass part of the four-body state

is omitted in the following, for the same reasons as in the previous section. The total HO

energy quantum number of the four-body state is given by Eabcd “ Ecmp4q ` E123, with the

center-of-mass contribution Ecmp4q “ 2Ncmp4q `Lcmp4q and the relative-energy quantum number

E123 “ E12 ` 2N3 ` L3.

For brevity we introduce the short hand

|E12i12N3;α123ya12 “ |E12i12N3; rJ12, pL3
1

2
qJ3sJ123; pT12

1

2
qT123ya12 , (62)

with the collective index α123 “ tJ12, L3, J3, J123, T12, T123u. Note, that the partial-wave infor-

mation is partially contained in the index i12, such that the states are defined with respect to
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the three-body CFPs.

The basis state in Eq. (61) is only antisymmetric with respect to the exchange of the first three

particles. The full antisymmetrization is performed analogously as for the three-body case. We

represent the antisymmetrizer A using the basis states of Eq. (61). By exploiting the partial

antisymmetry of the basis we obtain

a12xE12i12N3;α123|A |E1
12i

1
12N

1
3;α

1
123ya12 “

a12xE12i12N3;α123| 1
4

p1 ´ 3T cdq |E1
12i

1
12N

1
3;α

1
123ya12 .

(63)

The nonvanishing matrix elements of the transposition operator T cd can be calculated by [143]

a12xE12i12N3; rJ12, pL3
1

2
qJ3sJ123; pT12

1

2
qT123| 1

4
p1 ´ 3T cdq

ˆ |E1
12i

1
12N

1
3; rJ 1

12, pL1
3
1

2
qJ 1

3sJ123; pT 1
12

1

2
qT123ya12

“
ÿ

N1N2

ÿ

α

ÿ

N 1
2
L1
2
J 1
2

ÿ

i12i
1
12

ÿ

L23K

p´1qT12`T 1
12

`L2`L1
2

`J2`J 1
2 Ĵ12Ĵ2Ĵ3T̂12Ĵ

1
12Ĵ

1
2Ĵ

1
3L̂

2
23K̂

2

ˆ Ci12
N1N2α12

C
i1
12

N1N
1
2
α̃1
12

$

’

&

’

%

J1 J2 J12

J 1
2 K J3

J 1
12 J 1

3 J123

,

/

.

/

-

#

L1
2
L3 K

J3 J 1
2

1

2

+ #

L2 L1
3
K

J 1
3 J2

1

2

+

ˆ
#

L3 L1
2 K

L1
3 L2 L23

+ #

1

2
T123 T12

1

2
T1 T 1

12

+

xxN 1
2L

1
2, N

1
3L

1
3;L23|N2L2, N3L3yy 1

8

,

(64)

with the collective index α̃1
12 “ tL1, S1, J1, T1, L

1
2, J

1
2u. The intermediate angular momenta L23

and K result from the angular momentum-recouplings, and the HOBs xx. . . yy 1

8

appear due

to the coordinate transformation caused by the transposition operator (see Ref. [144] for a

derivation of the formula). The calculation of the antisymmetrizer eigenstates with eigenvalue

p´1q yields the four-body CFPs that determine the antisymmetric four-body Jacobi-HO basis

states

|E123i123J123T123ya “
ÿ

E1
12
N 1

3

ÿ

i1
12
α1
123

δpE1
12

`2N 1
3

`L1
3

q,E123
δJ 1

123
,J123δT 1

123
,T123

ˆ C̃
i1
12
i123

E1
12
N 1

3
α1
123

|E1
12i

1
12N

1
3;α

1
123ya12 . (65)

The four-body CFPs C̃i1
12
i123

E1
12
N 1

3
α1
123

depend on the diagonalization algorithm of the antisymmetrizer

matrix in the three- and four-body space, such that the physical content of the antisymmetric

Jacobi state |E123i123J123T123ya is defined by the choice of the three- and four-body CFPs. As

in the three-body case the index i123 enumerates the antisymmetric basis states. The interaction

matrix elements represented in the basis states of Eq. (65) separate into blocks of equal angular

momentum J123, isospin T123, and parity π “ p´1qE123 in the bra and ket states.
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Figure 3.1 Number of 4N interaction matrix elements in the four-body Jacobi-HO basis: Illus-

trated are the memory needs in GB to store the interaction matrix in the four-body Jacobi-HO basis with

single precision as function of the maximum energy quantum number E4,max. The curves correspond to

the pJπ
123T123q-blocks: 0`0 ( •), 0´1 ( ), 1´1 (N), 2´1 (�), and 3´1 (✚).

Note, that the explicit consideration of the antisymmetry reduces the number of matrix elements

by a factor of almost 16 compared to the partial antisymmetric basis of Eq. (61). Nevertheless,

in comparison to the three-body case the number of four-body matrix elements grows more

rapidly with the energy quantum number E123 and the angular momentum J123.

We focus on the limitations that appear when performing calculations, e.g., the SRG transfor-

mation in the Jacobi-HO basis representation. In Fig. 3.1 we illustrate the memory needed to

store interaction matrix elements for different pJπ
123T123q-blocks as function of the model-space

truncation denoted by the maximum energy quantum number E4,max. We show the memory

needs for the p0`0q-block (blue circles), corresponding to the 4He channel as well as for those

channels corresponding to T123 “ 1 and negative parity, which are the largest channels using an

odd E4,max truncation for given J123 “ 0 (green diamonds), 1 (red triangles), 2 (violet boxes),

and 3 (orange crosses).

Due to combinatorial reasons for the isospin coupling the number of matrix elements for T123 “ 1

channels are considerably larger than for T123 “ 0 or 2 channels. In particular, raising of

the angular momentum from J123 “ 0 to J123 “ 1 increases the number of matrix elements

dramatically by about one order of magnitude. Although, the growth with J123 tends to slow

down for the higher angular momenta we are confronted with huge model-space dimensions for

rather small values of E4,max compared to the energy quantum numbers used in the three-body

space (see Sec. 5). In Sec. 6.4 we investigate which partial waves can be treated accurately and

whether these partial waves capture the relevant physics.

To summarize, the separation of the center-of-mass degree of freedom and the possibility to

exploit the antisymmetry of the discrete basis, utilizing the CFPs, makes the Jacobi-HO basis
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an optimal candidate for the treatment of the 4N contributions. However, the major limitation

is the large number of interaction matrix elements in the four-body space.

Moreover, the antisymmetrization procedure becomes challenging for larger model spaces. This

is due to the increasing number of antisymmetrizer matrix elements that have to be evaluated

by means of Eq. (64), which requires careful optimizations, precaching of several computing-

intensive objects and utilizing, e.g., BLAS routines to perform efficient matrix-matrix and

matrix-vector multiplications. Further, the subsequent diagonalization requires the storage

of the dense antisymmetrizer matrix, which becomes an additional obstacle with increasing

model-space size.

3.2 Single-Particle Scheme vs. Jacobi basis

In the previous section we discussed the Jacobi-HO basis including its advantages concerning

the omission of the center-of-mass part from the outset. Nonetheless, since we are interested in

the description of A-nucleon systems, e.g., with NCSM-type approaches, it is necessary to solve

the nuclear eigenvalue problem in the A-body space. Formally one can construct an A-body

Jacobi basis by an extension of the pA ´ 1q-body basis, but the antisymmetrization becomes

computational too demanding for A ě 7 [70]. Thus, it is necessary to transform the interaction

matrix elements to the single-particle scheme to embed them into the A-body space and to

solve the eigenvalue problem. The antisymmetrized product states of ls-coupled single-particle

HO states, the so-called m-scheme, can be converted from the two-, three-, or four-body basis

to the A-body basis simply by using Slater rules [102, 103]. Thus, we aim at a representation

of the interaction in the m-scheme to perform, e.g., NCSM-type calculations.

To simplify the discussion, we concentrate on the inclusion of 3N interactions via their rep-

resentation in three-body space, but stress that this procedure is analogous for the four-body

case. The m-scheme states in the three-body space are defined as

|abcya “ |nalajamjamta ;nblbjbmjbmtb ;nclcjcmjcmtcya , (66)

where a “ tnalajamjamtau is a short-hand for the single-particle quantum numbers. Utilizing

this basis one can exploit the Hermiticity and the particle-exchange symmetry of the interaction,

as well as the symmetries corresponding to time-reversal, rotation, and the charge.

The major disadvantage of the m-scheme is the large number of non-vanishing matrix ele-

ments necessary to represent the interaction, which becomes problematic for applications of

3N forces beyond mid-p-shell nuclei. Therefore, we develop an intermediate step, namely, the

transformation from the Jacobi-HO representation into the JT -coupled scheme (see Sec. 3.2.1)

|ãb̃c̃;JabJabc;TabTabcya “ |nalanblbnclc; rpjajbqJab, jcsJabc; rp1
2

1

2
qTab,

1

2
sTabcya , (67)
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where we suppress the projection quantum numbers MJabc and MTabc
for brevity and introduce

the short hand ã “ tna, la, jau that collect the radial and angular momentum single-particle

quantum numbers. This basis is obtained from the m-scheme by coupling the angular mo-

menta and isospins of the first two particles and subsequently coupling the resulting quantities

(Jab, Tab) to those of the third particle. In the JT -coupled scheme one can exploit that the

interaction does not connect different angular momenta Jabc and isospins Tabc in the bra and

ket states, which reduces the number of non-vanishing matrix elements by more than two orders

of magnitude compared to the m-scheme representation. This becomes evident from Fig. 3.2,

where the memory required to store the 3N interaction elements is plotted for the different

HO basis sets as function of the maximum three-body energy quantum number E3,max. We

point out that in practice the time-reversal symmetry is not exploited to reduce the number

of non-vanishing matrix elements. In order to be comparable with Ref. [101] the m-scheme

storage demands in the figure are reduced by a factor of 2 exploiting this symmetry. Further-

more, the figure illustrates the storage demands of the T -coefficients, that are necessary for

the transformation of the Jacobi basis into the single-particle schemes (see Sec. 3.2.1). For the

storage demands in the plot the basic symmetries of the 3N interaction are exploited and the

quantities are assumed to be stored in single precision. The JT -coupled scheme provides a

compromise between the enormous memory needs in the m-scheme and the large recompute

costs in the Jacobi basis. Thus, the storage of the 3N interaction in the JT -coupled scheme

is the key to perform reliable (IT-)NCSM calculations for Nmax ą 8 for p- and lower sd-shell

nuclei including 3N forces. The NCSM calculations of mid-p-shell nuclei for Nmax “ 8 requires

3N matrix elements up to E3,max “ 11. These 3N matrix elements require 33GB in the m-

scheme representation [101]. This is at the borderline of current supercomputers, while one only

needs 0.4GB in the JT -coupled scheme representation, which is typically even manageable on

commercial laptops. In practice we perform the decoupling to the m-scheme on the fly during

the NCSM-type calculation, using an efficient storage scheme explained in Sec. 3.2.3.

So far we focused on NCSM-type calculations to motivate the transformation to a single-particle

scheme and, in particular, to utilize the JT -coupled scheme for storing the interaction matrix

elements. It is worth mentioning that the JT -coupled scheme provides important advantages

for a number of other approaches and many-body methods as well. For instance, the normal-

ordering approach discussed in Sec. 3.3 can be formulated directly in the JT -coupled scheme,

avoiding the m-scheme completely. The moderate memory footprint in combination with the

simplicity of the decoupling procedure leads to the adoption in various many-body methods

[28, 29, 32, 35, 36, 101, 145]. By analogous developments also the inclusion of 4N interactions

becomes feasible, e.g., in the (IT-)NCSM. The necessary ingredients to derive and store the

three- and four-body interaction matrix elements in the JT -coupled scheme, are discussed in

the following.
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Figure 3.2 Required memory in the three-body basis: Illustrated is the memory in GB required to

store 3N interaction matrix in the representation of the four-body Jacobi-HO basis ( ), the JT -coupled

scheme (N), and the m-scheme ( •), as well as the storage demand for the T -coefficients (�). The

storage demand is plotted as function of the maximum three-body energy quantum number E3,max. All

quantities are assumed to be single-precision floating point numbers.

3.2.1 Transformation to JT -Coupled Scheme in Three-Body Space

In this section we summarize the formal steps to derive the transformation of the interaction ma-

trix elements in the three-body Jacobi-HO representation (59) to the JT -coupled scheme (67),

and discuss the computational limits of the transformation. We refer the reader to Ref. [138]

for a comprehensive derivation of the transformation formula.

The starting point are the interaction matrix elements in the antisymmetric Jacobi-HO ba-

sis (60). We aim at the transformation to a single-particle scheme, hence, we need to include

the center-of-mass part, yielding

axE12i12J12T12;Ncmp3qLcmp3q;Jabc|V |E1
12i

1
12J12T12;N

1
cmp3qL

1
cmp3q;J

1
abcya

“ δNcmp3q,N 1
cmp3q

δLcmp3q,L1
cmp3q

δJabc,J 1
abc

axE12i12J12T12|V |E1
12i

1
12J12T12ya ,

(68)

where we couple the angular momentum of the relative part J12 with the orbital angular mo-

mentum of the center-of-mass part Lcmp3q to the total angular momentum Jabc

|E12i12J12T12;Ncmp3qLcmp3q;Jabcya “ t |E12i12J12T12ya b |Ncmp3qLcmp3qyuJabc . (69)

With help of the CFPs we express these antisymmetric states as superposition of the partial
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antisymmetic Jacobi-HO states (56). The corresponding overlap reads

a1xN1N2;α12;Ncmp3qLcmp3q;Jabc|E1
12i

1
12J

1
12T

1
12;N

1
cmp3qL

1
cmp3q;J

1
abcya

“ δp2N1`L1`2N2`L2q,E1
12
δJ12,J 1

12
δT12,T

1
12
δNcmp3q,N 1

cmp3q
δLcmp3q,L1

cmp3q
δJabc,J 1

abc
Ci12
N1N2α12

,
(70)

with

|N1N2;α12;Ncmp3qLcmp3q;Jabcya1 “ t |N1N2;α12ya1 b |Ncmp3qLcmp3qyuJabc . (71)

As before all projection quantum numbers are suppressed in this section for brevity. The central

component of the transformation consist of a coordinate-system change, which can be achieved

by evaluating the overlap of the partial-antisymmetric Jacobi-HO state (71) with the non-

antisymmetrized JT -coupled state |ãb̃c̃;JabJabc;TabTabcy that defines the so-called T -coefficient

T
ãb̃c̃JabJabc
N1N2α12Ncmp3qLcmp3q

“ T
nalajanblbjbnclcjcJabJabc
N1L1S1J1N2L2S2J2J12Ncmp3qLcmp3q

“ a1xN1N2;α12;Ncmp3qLcmp3q;Jabc|ãb̃c̃;JabJabc;TabTabcy .
(72)

The overlap is non-vanishing only for equal total angular momentum Jabc in both states, as well

as for T1 “ Tab and T12 “ T . Besides there is no further dependence on the isospin quantum

numbers. As discussed in Ref. [80] this overlap can be derived by multiple angular-momentum

recouplings that are necessary to perform the Talmi-Moshinsky transformations, which change

the coordinate system. The analytic form is given by

T
nalajanblbjbnclcjcJabJabc
N1L1S1J1N2L2S2J2J12Ncmp3qLcmp3q

“
ÿ

Ncmp2qLcmp2q

ÿ

Lab

ÿ

L12S12

ÿ

K

δp2na`la`2nb`lb`2nc`lcq,p2Ncmp3q`Lcmp3q`2N1`L1`2N2`L2q

ˆ p´1qlc`K`Lab`L`S12`L1`Jabc ĵaĵbĵcĴabĴabcĴ1Ĵ2Ŝ1Ŝ
2
12L̂

2
abL̂

2
abcL̂

2
12L̂

2

cmp2qK̂
2

ˆ xxNcmp2qLcmp2q, N1L1;Lab|nblb, nalayy1
ˆ xxNcmp3qLcmp3q, N2L2;K|Ncmp2qLcmp2q, nclcyy2

ˆ

$

’

&

’

%

la lb Lab

1

2

1

2
S1

ja jb Jab

,

/

.

/

-

$

’

&

’

%

Lab lc Labc

S1
1

2
S12

Jab jc Jabc

,

/

.

/

-

$

’

&

’

%

L1 L2 L12

S1 S2 S12

J1 J2 J12

,

/

.

/

-

ˆ
#

lc Lcmp2q K

L1 Labc Lab

+#

Lcmp3q L2 K

L1 Labc L12

+#

Lcmp3q L12 L

S12 Jabc J12

+

,

(73)

with the short hand x̂ “
?
2x ` 1. The summation over Ncmp2q can be eliminated by using the

energy-conservation property of the first HOB, i.e., 2Ncmp2q ` Lcmp2q ` 2N1 ` L1 “ 2nb ` lb `
2na ` la.
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Note, that for the derivation of the T -coefficient we used a non-antisymmetric JT -coupled state,

thus, we express the final antisymmetric matrix element in terms of this state

axãb̃c̃;JabJabc;TabTabc|V |ã1b̃1c̃1;J 1
abJabc;T

1
abTabcya

“ 3! xãb̃c̃;JabJabc;TabTabc|AV A |ã1b̃1c̃1;J 1
abJabc;T

1
abTabcy ,

(74)

where the factor 3! is due to the fact that the antisymmetrizer A is a projection operator. For

completeness we mention that the non-antisymmetric JT -coupled states are orthogonal but not

normalized while the antisymmetric state are orthonormal. However, since we typically decouple

those states to the orthonormal m-scheme, this does not affect the subsequent calculations.

The antisymmetrizer can be expressed by the antisymmetric Jacobi-HO basis (69) as

A “
ÿ

E12i12

ÿ

J12T12

ÿ

Ncmp3qLcmp3q

ÿ

Jabc

|E12i12J12T12;Ncmp3qLcmp3q;JabcyaaxE12i12J12T12;Ncmp3qLcmp3q;Jabc| .
(75)

Plugging this into Eq. (74) and inserting a unity in the partial-antisymmetric Jacobi-HO

basis representation (69) yields the final expression containing the CFPs (70) and the T -

coefficients (73)

axãb̃c̃;JabJabc;TabTabc|V |ã1b̃1c̃1;J 1
abJabc;T

1
abTabcya

“ 3!
ÿ

N1N2α12

ÿ

N 1
1
N 1

2
α1
12

ÿ

Ncmp3qLcmp3q

ÿ

i12i
1
12

δTab,T1
δT 1

ab
,T 1

1
δTabc,T12

δTabc,T
1
12
δJ12,J 1

12

ˆ T
ã b̃ c̃ JabJabc
N1N2α12Ncmp3qLcmp3q

T
ã1 b̃1 c̃1 J 1

ab
Jabc

N 1
1
N 1

2
α1
12
Ncmp3qLcmp3q

Ci12
N1N2α12

C
i1
12

N 1
1
N 1

2
α1
12

ˆ axE12i12J12T12|V |E1
12i

1
12J12T12ya .

(76)

The transformation of the three-body interaction matrix elements is computationally demand-

ing. In practice we precompute the T -coefficients and store them in memory, in order to cir-

cumvent multiple evaluations of these complicated objects. The sheer number of T -coefficients

causes limitations due to computing time and memory demands. The number of T -coefficients

that need to be evaluated is comparable to the number of the matrix elements in the JT -

coupled scheme (see Fig. 3.2). Due to optimized caching of the relevant intermediates and a

separation of the transformation to multiple nodes, we are able to provide 3N interactions up to

E3,max « 16. The use of BLAS routines for the matrix multiplications enables us to calculate a

3N matrix element set for E3,max “ 14 on a single node in about one hour. Further information

about technical details can be also found in Ref. [21].
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3.2.2 Transformation to JT -Coupled Scheme in Four-Body Space

The transformation from the Jacobi-HO to the JT -coupled scheme in the four-body space can

be performed following analogous steps as for the three-body space. However, the derivation

of the transformation formula is more complex and requires a considerably larger number of

angular-momentum recouplings and also additional Talmi-Moshinsky transformations to change

the underlying coordinate system. First we introduce the JT -coupled basis states

|ãb̃c̃d̃;JabJabcJabcd;TabTabcTabcdya
“ |nalanblbnclcndld; trpjajbqJab, jcsJabc, jduJabcd; trp1

2

1

2
qTab,

1

2
sTabc,

1

2
uTabcdya ,

(77)

where the coupled angular momentum of the first three particles Jabc couples with the angular

momentum of the fourth particle jd to Jabcd and analogously for the isospin. As before we

suppress the projection quantum number for brevity.

A complete derivation of the transformation formula can be found in Ref. [144]. In the following

we quote the result, emphasizing the differences to the three-body case and discussing the

limitations of the transformation. Performing similar steps as in the three-body case yields the

formula

axãb̃c̃d̃;JabJabcJabcd;TabTabcTabcd|V |ã1b̃1c̃1d̃1;J 1
abJ

1
abcJabcd;T

1
abT

1
abcTabcdya

“ 4!
ÿ

Ncmp4qLcmp4q

ÿ

J123T123

ÿ

E123i123

ÿ

E1
123

i1
123

ˆ T̃
ã b̃ c̃ d̃ JabJabcJabcdTabTabcTabcd

E123 i123 J123 Ncmp4qLcmp4q
T̃
ã1 b̃1 c̃1 d̃1 J 1

ab
J 1
abc

JabcdT
1
ab
T 1
abc

Tabcd

E1
123

i1
123

J123 Ncmp4qLcmp4q

ˆ axE123i123J123T123|V |E1
123i

1
123J123T123ya .

(78)

The interaction matrix elements in the JT -coupled scheme only connect bra and ket states

with equal angular momentum Jabcd, isospin Tabcd, and projection quantum numbers MJabcd

and MTabcd
. The latter are suppressed for brevity. Also the parity π “ p´1qEabcd is conserved,

which is determined by the total energy quantum number Eabcd “ 2na ` la ` ¨ ¨ ¨ ` 2nd ` ld.

In Eq. (78) we introduce a somewhat different definition of the T -coefficient compared to the

three-body case and we come to the reason for this later on. The four-body T -coefficient

corresponds to an overlap that contains the antisymmetric Jacobi-HO state (80), rather than

the partial-antisymmetric Jacobi-HO state (61), and is defined by

T̃
ã b̃ c̃ d̃ JabJabcJabcdTabTabcTabcd

E123 i123 J123 Ncmp4q Lcmp4q

“ 1?
4!

axE123i123J123T123;Ncmp4qLcmp4q;Jabcd|ãb̃c̃d̃;JabJabcJabcd;TabTabcTabcdy ,
(79)
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where the relative part of the Jacobi state is augmented by the center-of-mass part

|E123i123J123T123;Ncmp4qLcmp4q;Jabcdya
“ t |Ncmp4qLcmp4qy b |E123i123J123T123yauJabcd .

(80)

For the derivation of these overlaps we perform the analogous steps as in the previous section,

namely, we calculate the overlap of the non-antisymmetrized JT -coupled state with the four-

body Jacobi-HO state that is only antisymmetric with respect to the exchange of the first two

particles. The latter state reads

t |Ncmp4qLcmp4qy b |N1N2N3; trpL1
1

2
qJ1, pL2

1

2
qJ2sJ12, pL3

1

2
qJ3uJ123; rpT1

1

2
qT12,

1

2
sT123ya1uJabcd

“ |N1N2N3;α12 α̃123;Ncmp4qLcmp4q;Jabcdya1
(81)

with α12 “ tL1, S1, J1, L2, J2, J12, T1, T12u and α̃123 “ tL3, J3, J123, T123u. By inserting the

antisymmetrizer in the Jacobi-HO basis representation and using the overlap

a1xN1N2N3;α12 α̃123;Ncmp4qLcmp4q;Jabcd|E1
123i123J

1
123T

1
123;N

1
cmp4qL

1
cmp4q;J

1
abcdya

“
ÿ

E12i12

Ci12
N1N2α12

C̃i12i123
E12N3α123

δp2N1`L1`2N2`L2q,E12
δp2N1`L1`2N2`L2`2N3`L3q,E1

123

ˆ δJ123,J 1
123

δT123,T
1
123

δJabcd,J 1
abcd

δNcmp4q,N 1
cmp4q

δLcmp4q,L1
cmp4q

(82)
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one can evaluate the T -coefficient and obtains

T̃
ã b̃ c̃ d̃ JabJabcJabcdTabTabcTabcd

E123 i123 J123 Ncmp4q Lcmp4q

“
ÿ

N1N2

ÿ

α12

ÿ

E12i12N3

ÿ

α123

ÿ

Lab

ÿ

K P

ÿ

QR

ÿ

Ncmp2qLcmp2q

ÿ

Ncmp3qLcmp3q

ˆ ĵaĵbĵcĵdL̂
2
abŜabĴabĴabcK̂

2P̂ 2Q̂2R̂2Ĵ1Ĵ2Ĵ3Ĵ12Ĵ123

ˆ p´1q1`Jab`Jabc`Jabcd`Lcmp2q`Lcmp3q`Lcmp4q`L1`S1`J1`J2`J3`J12

ˆ xxNcmp2qLcmp2q, N1L1;Lab|nala, nblbyy1
ˆ xxNcmp3qLcmp3q, N2L2;K|Ncmp2qLcmp2q, nclcyy2
ˆ xxNcmp4qLcmp4q, N3L3;Q|Ncmp3qLcmp3q, ndldyy3

ˆ

$

’

&

’

%

la
1

2
ja

lb
1

2
jb

Lab S1 Jab

,

/

.

/

-

$

’

&

’

%

Lcmp2q J1 Jab

lc
1

2
jc

K P Jabc

,

/

.

/

-

$

’

&

’

%

Lcmp3q J12 Jabc

ld
1

2
jd

Q R Jabcd

,

/

.

/

-

ˆ
#

cmp2q L1 Lab

S1 Jab J1

+ #

cmp3q L2 K

P Jabc J12

+ #

cmp4q L3 Q

R Jabcd J123

+

ˆ
#

L2
1

2
J2

J1 J12 P

+ #

L3
1

2
J3

J12 J123 R

+

Ci12
N1N2α12

C̃i12i123
E12N3α123

,

(83)

with α123 “ tL3, J3, J12, J123, T12, T123u. Note, the sums over the isospin quantum numbers

T1, T12, and T123 can be eliminated by the conditions T1 “ Tab, T12 “ Tabc, and T123 “ Tabcd.

In this formula the 6j- and 9j-symbols result from various angular momentum recouplings in

order to obtain the appropriate coupling order for the Talmi-Moshinsky transformations that

result the HOBs. The computation of the JT -coupled matrix elements (78) and, in particular, of

the required T -coefficients (83) is a formidable task. The experience and technical developments

from the three-body transformation are utilized and extended to facilitate the transformation

for model spaces required in the many-body calculations of Sec. 6.4.

An important detail is the slightly different definition of the four-body T -coefficients com-

pared to the three-body case. Due to the fact that the number of antisymmetric four-body

Jacobi-HO states (65) in a certain model space is about a factor of 4 smaller than for the

partial-antisymmetric states (61) (antisymmetric with respect to the exchange of the first three

particles) and even a factor 12 smaller than for the states (81) (antisymmetric with respect to

the exchange of the first two particles), the memory needs of these coefficients are considerably

reduced. A similar definition could be also introduced for the three-body case to reduce the

memory demands during the transformation. The four-body model space is typically truncated

by the maximum total-energy quantum number E4,max. In Fig. 3.3 we illustrate the mem-

ory required to store the interaction matrix elements in the Jacobi basis (violet squares), the

JT -coupled scheme (red triangles) and the m-scheme (blue circles). The matrix elements are
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Figure 3.3 Required memory in the four-body basis: Illustrated is the memory in GB required to store

the 4N interaction matrix in the representation of the four-body Jacobi-HO basis (�), the JT -coupled

scheme (N), and the m-scheme ( •). The storage demand is plotted as function of the maximum four-

body energy quantum number E4,max, all matrix elements are assumed to be single-precision floating

point numbers.

assumed to be stored in single precision and the considered symmetries correspond to the ones

in the three-body case. We observe an equal pattern as in Fig. 3.2, the memory demands in

JT -coupled scheme provides a compromise between the recompute demands in the Jacobi basis

and the memory demands in the m-scheme. Obviously, the growth of the number of matrix

elements is even more dramatic than in the three-body case, limiting us to model space with

smaller E4,max. However, due to optimizations concerning the implementation of the transfor-

mation we can provide 4N interaction matrix elements up to E4,max « 10 and we investigate in

Sec. 6.4 if such model spaces are sufficient to cover the relevant physics of the 4N contributions.

3.2.3 Decoupling and Storage Scheme

As illustrated in Fig. 3.2 and 3.3 the JT -coupled scheme reduces the storage demands by about

two orders of magnitude compared to the m-scheme. However, several many-body methods,

such as NCSM-type approaches, rely on the m-scheme representation, since it enables an effi-

cient transformation to the A-body space via Slater rules [102,103]. The precomputation of the

3N contributions in the JT -coupled scheme in combination with a fast on-the-fly decoupling

during the many-body calculations, provides an optimal compromise between increasing disk-

I/O and computational demands. In this section we discuss the storage scheme that enables an

efficient and cache optimized decoupling to the m-scheme.

The decoupling can be performed via summations over the coupled quantities of the JT -coupled

scheme using several Clebsch-Gordon coefficients, yielding the three-body m-scheme matrix
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elements

axabc|V |a1b1c1ya “
ÿ

JabJ
1
ab

ÿ

TabT
1
ab

ÿ

JabcTabc

ˆ axãb̃c̃;JabJabc;TabTabc|V |ã1b̃1c̃1;J 1
abJabc;T

1
abTabcya

ˆ
˜

ja jb

ma mb

ˇ

ˇ

ˇ

ˇ

ˇ

Jab

MJab

¸˜

Jab jc

MJab mjc

ˇ

ˇ

ˇ

ˇ

ˇ

Jabc

MJabc

¸˜

1

2

1

2

mta mtb

ˇ

ˇ

ˇ

ˇ

ˇ

Tab

MTab

¸˜

Tab
1

2

MTab
mtc

ˇ

ˇ

ˇ

ˇ

ˇ

Tabc

MTabc

¸

ˆ
˜

j1
a j1

b

m1
ja

m1
jb

ˇ

ˇ

ˇ

ˇ

ˇ

J 1
ab

M 1
Jab

¸˜

J 1
ab j1

c

M 1
Jab

m1
jc

ˇ

ˇ

ˇ

ˇ

ˇ

Jabc

MJabc

¸˜

1

2

1

2

m1
ta m1

tb

ˇ

ˇ

ˇ

ˇ

ˇ

T 1
ab

M 1
Tab

¸˜

T 1
ab

1

2

M 1
Tab

m1
tc

ˇ

ˇ

ˇ

ˇ

ˇ

Tabc

MTabc

¸

,

(84)

and analogously the four-body matrix elements

axabcd|V |a1b1c1d1ya “
ÿ

JabJ
1
ab

ÿ

JabcJ
1
abc

ÿ

TabT
1
ab

ÿ

TabcT
1
abc

ÿ

JabcdTabcd

ˆ axãb̃c̃d̃;JabJabcJabcd;TabTabcTabcd|V |ã1b̃1c̃1d̃1;J 1
abJ

1
abcJabcd;T

1
abT

1
abcTabcdya

ˆ
˜

ja jb

ma mb

ˇ

ˇ

ˇ

ˇ

ˇ

Jab

MJab

¸˜

Jab jc

MJab mjc

ˇ

ˇ

ˇ

ˇ

ˇ

Jabc

MJabc

¸˜

Jabc jd

MJabc mjd

ˇ

ˇ

ˇ

ˇ

ˇ

Jabcd

MJabcd

¸

ˆ
˜

1

2

1

2

mta mtb

ˇ

ˇ

ˇ

ˇ

ˇ

Tab

MTab

¸˜

Tab
1

2

MTab
mtc

ˇ

ˇ

ˇ

ˇ

ˇ

Tabc

MTabc

¸˜

Tabc
1

2

MTabc
mtd

ˇ

ˇ

ˇ

ˇ

ˇ

Tabcd

MTabcd

¸

ˆ
˜

j1
a j1

b

m1
ja

m1
jb

ˇ

ˇ

ˇ

ˇ

ˇ

J 1
ab

M 1
Jab

¸˜

J 1
ab j1

c

M 1
Jab

m1
jc

ˇ

ˇ

ˇ

ˇ

ˇ

J 1
abc

M 1
Jabc

¸˜

J 1
abc j1

d

M 1
Jabc

m1
jd

ˇ

ˇ

ˇ

ˇ

ˇ

Jabcd

MJabcd

¸

ˆ
˜

1

2

1

2

m1
ta m1

tb

ˇ

ˇ

ˇ

ˇ

ˇ

T 1
ab

M 1
Tab

¸˜

T 1
ab

1

2

M 1
Tab

m1
tc

ˇ

ˇ

ˇ

ˇ

ˇ

T 1
abc

M 1
Tabc

¸˜

T 1
abc

1

2

M 1
Tabc

m1
td

ˇ

ˇ

ˇ

ˇ

ˇ

Tabcd

MTabcd

¸

.

(85)

Note, the projection quantum numbers of the coupled quantities are determined by the single-

particle projection quantum numbers, e.g., mta ` mtb “ MTab
and so forth. Although the

decoupling formulas are rather simple, they have to be evaluated many times due to the huge

number of required m-scheme matrix elements during the many-body calculation. Therefore,

an efficient decoupling procedure based on a cache-optimized storage scheme is crucial.

The JT -coupled three- and four-body matrix elements are stored in an one-dimensional array,

without quantum numbers. The position of the matrix elements is specified by a fixed loop

order for all quantum numbers of the JT -coupled matrix elements. In the following we discuss

the loop order in the three-body space [21] and stress that it is used in an analogous manner

in the four-body space.

The order of the matrix elements is illustrated by the loops of the pseudo code in Fig. 3.4. The

six outer loops are defined by the quantum numbers of the single-particle orbitals ã, b̃, c̃, ã 1, b̃ 1,

and c̃ 1 with ã “ tna, la, jau and exploit parity conservation, Hermeticity, and the antisymmetry
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outer loops:

for( ã “ 0; ã ď ãmax; ã ``q
for( b̃ “ 0; b̃ ď b̃max; b̃ ``q

for( c̃ “ 0; c̃ ď c̃max; c̃ ``q
for( ã1 “ 0; ã1 ď ã1

max; ã
1 ``q

for( b̃1 “ 0; b̃1 ď b̃1
max; b̃

1 ``q
for( c̃1 “ 0; c̃1 ď c̃1

max; c̃
1 ``q

inner loops:

for( Jab “ |ja ´ jb|; Jab ď pja ` jbq; Jab ``q
for( Jab “ |ja ´ jb|; Jab ď pja ` jbq; Jab ``q

for( J 1
ab “ |j1

a ´ j1
b|; J 1

ab ď pj1
a ` j1

bq; J 1
ab ``q

for( Jabc “ MAX
“

|Jab ´ jc|, |J 1
ab ´ j1

c|
‰

; Jabc ď MIN
“

pJab ` jcq, pJ 1
ab ` j1

cq
‰

; Jab ``q
for( Tab “ 0; Tab ď 1; Tab ``q

for( T 1
ab “ 0; T 1

ab ď 1; T 1
ab ``q

for( Tabc “ 1

2
; Tabc ď MIN

“

pTab ` 1

2
q, pT 1

ab ` 1

2
q; Tabc ``q ,

Figure 3.4 Storage order of 3N interaction matrix elements in the JT-coupled scheme: The

pseudo code illustrates the loop order to store and access the 3N interaction matrix elements in the

JT -coupled scheme.

of the interaction matrix elements with respect to particle exchange. The six inner loops

correspond to the coupled quantum numbers Jab, J
1
ab, Jabc,

Tab, T
1
ab, and Tabc. These loops are constrained by the triangular conditions and do not exploit

the antisymmetry constraints for the matrix elements with identical single-particle orbitals to

keep a fixed inner segment. It is worth noting that the loop order specified by the pseudo code

above is chosen such that the six inner loops correspond to the coupled quantum numbers we

sum over in the decoupling procedure (84). Thus, the decoupling requires only a contiguous

segment of the JT -coupled storage vector, whose position is defined by the orbital quantum

numbers. Moreover, there are only five combinations for the inner-most sums over the isospin,

such that these loops can be rolled-out manually. Due to the cache-optimized order and the

simplicity of the evaluation the decoupling routine is an excellent candidate for porting it to

accelerator cards (see Ref. [104] for a successful application).

The decoupling procedure in the four-body space uses a similar storage scheme with eight outer

loops over the orbital quantum numbers ã, b̃, c̃, d̃, ã1, b̃ 1, c̃ 1, and d̃ 1 and ten inner loops over the

coupled quantum numbers Jab, J
1
ab, Jabc, J

1
abc, Jabcd, Tab, T

1
ab, Tabc, T

1
abc, and Tabcd. Besides, the

increased complexity due to the extension by an additional particle, the formal aspects of the

decoupling procedure in the three- and four-body space are rather the same. The optimized
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storage scheme presented in this section is of great importance for an efficient application of 3N

and 4N contributions, in particular, for those many-body methods that rely on a representation

of the Hamiltonian in the m-scheme.

3.3 The Normal-Ordering Approach

For several many-body methods the explicit inclusion of 3N and 4N interactions lead to formal

and computational efforts that are disproportionated. Thus, we introduce an approximative

scheme to convert the relevant physical content to a lower particle rank. To this purpose we

utilize the normal-ordering (NO) approach, which is a standard technique in quantum many-

body physics. For the following discussion we restrict ourselves to the approximative inclusion

of the 3N contributions, whose quality is investigated in Sec. 7.1. The NO transformation of

the 4N contributions can be formulated in a straight-forward manner to apply 4N contributions

to various many-body methods that can handle three- or even just two-body contributions.

So far we include the 4N interactions explicitly and have also developed a rather simplistic

approximation to construct an effective 3N interaction from the 4N force, which is briefly

discussed in Sec. 3.4.

We concentrate on the single-reference NO approach throughout this work that is in general

limited to closed-shell nuclei, but the NO approach can be also formulated with respect to multi-

reference states as discussed in Ref. [146]. This formulation extends the application range to

ground and excited states of open-shell systems.

Using creation and annihilation operators a
:
ν and aν , for the single-particle states |νy defined

with respect to the trivial zero-body vacuum state |0y, one can express a 3N operator in second

quantization

V 3N “ 1

36

ÿ

ν1
µ1

ν2
µ2

ν3
µ3

V ν1ν2ν3
µ1µ2µ3

Aν1ν2ν3
µ1µ2µ3

, (86)

with the antisymmetrized matrix elements V ν1ν2ν3
µ1µ2µ3

“ axν1ν2ν3|V 3N |µ1µ2µ3ya and the short

hand Aν1ν2ν3
µ1µ2µ3

“ a
:
ν1a

:
ν2a

:
ν3aµ3

aµ2
aµ1

for products of creation and annihilation operators. Since

all creation operators are to the left of the annihilation operators, the 3N operator on the

right-hand side of Eq. (86) is expressed in the normal-ordered form with respect to the trivial

vacuum (vacuum NO). Instead of the trivial vacuum state |0y one can also use a single Slater

determinant |Φrefy “ ś

α a
:
α |0y made up of A single-particle states to define the creation and

annihilation operators as particle or hole operators that are rearranged in the normal-ordered

form (reference NO).

In the following, we use the index α to label occupied single-particle states in the reference

state |Φrefy, also called hole states and β for the unoccupied ones referred as particle states.

59



3 Momentum and HO Basis Sets

Further we can define a
:
α,aβ as quasi-particle annihilators, since they act on the reference state

like annihilators on the vacuum state, i.e.,

a:
α |Φrefy “ 0 (87)

aβ |Φrefy “ 0 . (88)

The quasi-particle annihilators a
:
α,aβ annihilate a hole state or a particle state, respectively.

Accordingly, we define a
:
β,aα as quasi-particle creators that create a particle or a hole state,

respectively. The 3N interaction can be expressed in normal-ordered form with respect to the

reference state |Φrefy by rearranging the quasi-particle creators to the left of the quasi-particle

annihilators in all products of operators. Using Wick’s theorem we obtain [145]

V 3N “ W `
ÿ

ν1
µ1

W ν1
µ1
Ã

ν1
µ1

` 1

4

ÿ

ν1
µ1

ν2
µ2

W ν1ν2
µ1µ2

Ã
ν1ν2
µ1µ2

` 1

36

ÿ

ν1
µ1

ν2
µ2

ν3
µ3

W ν1ν2ν3
µ1µ2µ3

Ã
ν1ν2ν3
µ1µ2µ3

, (89)

where Ã
ν1ν2...

µ1µ2...
is a short hand for the normal-ordered product with respect to the reference

state. Further, we use W “ 1

6

ř

α1α2α3
V α1α2α3

α1α2α3
as the matrix elements for the zero-body term,

W ν1
µ1

“ 1

2

ř

α2α3
V ν1α2α3

µ1α2α3
for the one-body term, W ν1ν2

µ1µ2
“ ř

α3
V ν1ν2α3

µ1µ2α3
for the two-body term,

and W ν1ν2ν3
µ1µ2µ3

“ V ν1ν2ν3
µ1µ2µ3

for the three-body term. Note, that the indices αi label the occupied

single-particle states in the reference state |Φrefy. Apparently, the 3N interaction in the vacuum

representation consists of zero-, one-, two, and three-body operators in the NO representation.

Note, the NO transformation is an identity and the right-hand-sides in Eqs. (86) and (89)

are equivalent. As an important property, the NO of an m-body operator with respect to a

certain reference state generally yields an expression with non-vanishing operators up to the

m-body level, but not beyond. The transformation back to the vacuum representation leads

to a cancellation of the lower particle-rank operators and we end up with the initial m-body

operator in the vacuum representation.

Neglecting the operators beyond the n-body level in the NO expression (with n ă m) and

rearranging the operators to vacuum NO representation only yields non-vanishing operator

contributions up to the n-body level. This truncation we call the normal-ordered n-body

(NOnB) approximation. Of particular interest in the following is the NO2B approximation of

the 3N interaction, where we neglect the normal-ordered three-body operators on the right-

hand-side of (89)

V 3N « V
(NO2B)
3N “ W `

ÿ

ν1
µ1

W ν1
µ1
Ã

ν1
µ1

` 1

4

ÿ

ν1
µ1

ν2
µ2

W ν1ν2
µ1µ2

Ã
ν1ν2
µ1µ2

. (90)
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Rearranging this expression to the vacuum NO representation yields [147]

V
(NO2B)
3N “ W ´

ÿ

ν1
µ1

W ν1
µ1
Aν1

µ1
` 1

4

ÿ

ν1
µ1

ν2
µ2

W ν1ν2
µ1µ2

Aν1ν2
µ1µ2

, (91)

where W ν1...
µ1...

are defined as in the NO representation and the creation and annihilation op-

erators are vacuum normal-ordered. The NO2B approximation is based on the fact that we

shift information from the 3N interaction to lower particle ranks, using information about the

targeted system. Thus, we can apply the relevant 3N effects in many-body methods that treat

the interactions only up to the two-body level. The information about the system is included

using a reference state that approximates the targeted state. For the ground state of a closed-

shell nucleus one can use, e.g., the unperturbed HO Slater determinant or the ground state of

a Hartree-Fock calculation. The latter provides typically a better approximation suggesting a

more accurate NO procedure. The NO approximation is benchmarked in Sec. 7.1.

As an important application of the NO approximation we utilize it to include 3N contributions

up to larger maximum energy quantum numbers E3,max. In the NO2B approximation for

instance, the W ν1...
µ1...

symbols incorporate at least one sum over the single-particle states occupied

in the reference state, which reduces the number of required 3N matrix elements significantly.

By performing the transformation from the m-scheme to the JT -coupled scheme, as discussed

in Sec. 3.2.1, in combination with the NO approach, we can avoid saving the 3N matrix elements

to disk and reduces the number of required 3N matrix elements that have to be calculated. This

combination allows to include the information about 3N matrix element up to E3,max « 20. For

this approach it is necessary to determine the targeted state and to calculate the corresponding

reference state a priori to perform the NO2B approximation. In practice we perform the normal-

ordered JT -coupling for a sequence of closed-shell nuclei, where we obtain the reference states

from Hartree-Fock calculations. Due to this we have to calculate each JT -coupled matrix

element only once and add its contribution to the normal-ordered interaction for the different

reference states. It is worth noticing, that the Hartree-Fock calculation is performed with the

explicit 3N interactions, generally limited to a lower E3,max, e.g., of 14. Thus, the reference state

does not contain information of 3N contributions with higher energy quantum numbers, which

contribute during the normal-ordered JT -coupling. To overcome this inconsistency one can

embed the NO into an iterative scheme using the resulting normal-ordered interaction, which

contains the high-energy 3N interaction information, to obtain an improved reference state

in a subsequent Hartree-Fock calculation. The procedure can be iterated until convergence is

reached. For a detailed description and benchmark of the iterative normal-ordered JT -coupling,

see Refs. [99, 116].
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3.4 Simplistic Particle-Rank Reduction

Inspired by the concept of the NO approximation discussed in the previous section, one can

develop a simplistic approximation to include the 4N interaction by a summation over the

quantum numbers of the fourth particle yielding an effective 3N interaction. For this approach

one transforms the four-body Jacobi basis to a hybrid basis that is a product state of the an-

tisymmetric three-body Jacobi basis (including the center-of-mass part) and a single-particle

HO state describing the fourth particle, which can be achieved by using the Talmi-Moshinsky

transformation. Eventually, we sum over the quantum numbers of the fourth particle. The

summation is constrained to the single-particle states that occupy the unperturbed Slater de-

terminant, which provides the reference state for the target nucleus. Moreover, we introduce

some rather rough approximations, e.g., concerning the center-of-mass part, to transform the

4N interaction from the four-body Jacobi-HO representation to an effective 3N interaction in

the three-body Jacobi-HO representation that can be treated with the three-body techniques

developed in this work.

For the derivation and details of this summation see Ref. [144]. Although, this procedure

contains rough approximations whose effects need to be studied, it can be used to obtain a

quick estimate of the general trend of the 4N interaction effects.

However, the transformation of the 4N interaction matrix elements to the JT -coupled scheme

is well under control for the applications of this work (see Sec. 6.4). Thus, we stick to the

explicit inclusion of the 4N contributions as presented in Sec. 3.2.2 and refer to Ref. [144] for

an application of this approximative inclusion. The concept of this approach might be relevant

nevertheless, since it enables us to access very large model spaces that are far beyond the

reach of the exact transformation to the single-particle scheme. The formulas for the simplistic

particle-rank reduction have been derived and implemented in the three- and four-body space

and can be revisited if certain approaches or observables show evidence for the need of high-

energy interaction contributions.

3.5 Partial-Wave Decomposed Jacobi-Momentum Basis

After focusing on the HO basis sets in three- and four-body space, we discuss a momentum ba-

sis in three-body space. The partial-wave decomposed Jacobi-momentum basis is of particular

interest since it is used to calculate the chiral 3N interactions produced by the LENPIC collabo-

ration [76]. The present non-local 3N force at N2LO (see Sec. 1.3.2) and the next-generation 3N

force at N3LO (see Sec. 1.4), which we refer as the Epelbaum 3N interactions, are represented

in the following basis

|Π1Π2;α12ya1 “ |Π1Π2; rpL1S1qJ1, pL2
1

2
qJ2sJ12; pT1

1

2
qT12ya1 , (92)
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3.5 Partial-Wave Decomposed Jacobi-Momentum Basis

where we omit the center-of-mass part and the projection quantum numbers for brevity and

introduced a short hand with the collective index α12 “ tL1, S1, J1, L2, J2, J12, T1, T12u. The

coupling order is the same as for the Jacobi-HO basis (56) and exhibits the same partial anti-

symmetry under exchange of the first two particles. Thus, the angular part can be treated as

in the HO case. The difference is the radial part that is parametrized by the absolute values

of the Jacobi momenta. Note, that the Jacobi-momentum states in Eq. (92) are defined with

respect to the Jacobi momenta used, e.g., in Ref. [148]

~Π1 “ 1

2
r~pa ´ ~pbs ,

~Π2 “ 2

3

“

~pc ´ 1

2
p~pa ` ~pbq

‰

,

(93)

which differ from the previous Jacobi momenta of Eq. (92) by a factor and are related by

~π1 “
?
2 ~Π1 ,

~π2 “ ´
c

3

2
~Π2 .

(94)

We come back to this difference in Sec. 3.5.1. The 3N interaction matrix elements in the Jacobi

momentum representation read

a1xΠ1Π2;α12|V |Π1
1Π

1
2; α̃

1
12ya1 , (95)

with α̃1
12 “ tL1

1, S
1
1, J

1
1, L

1
2, J

1
2, J12, T

1
1, T12u. The matrix elements are only partially antisym-

metric and need to be antisymmetrized explicitly. As explained before this continuous basis

does not allow to use the antisymmetrization procedure discussed for the Jacobi-HO basis (see

Sec. 3.1.2), such that the model-space dimension for the completely antisymmetric representa-

tion is not reduced. Due to the large model-space dimension one has to omit partial waves with

large angular momenta, which is physically motivated when aiming at low-energy properties.

However, the antisymmetrization of the partial-wave decomposed momentum basis couples the

interaction matrix elements to the omitted partial waves, which causes truncation errors [149].8

The 3N interaction matrix is discretized on a four-dimensional momentum grid typically using

8 ´ 14 grid points for each dimension. An advantage of the Jacobi-momentum representation

is the possibility to recover physical information that is lost by the discretization via an in-

terpolation on the four-dimensional grid. However, one needs to investigate the reliability of

the interpolation, in particular for large angular momenta where the matrix elements show

rather strong oscillations as function of the momenta. We typically use Akima splines [150]

with periodic boundary conditions for the interpolation and verify the numerical accuracy by a

8In the following we perform the transformation of these Jacobi-momentum matrix elements into the Jacobi-
HO basis representation. Thus, the truncation errors of the antisymmetrization can be avoided by performing
it in the HO basis.
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variation of the initial and interpolated grid point numbers. The momentum representation is

an appropriate choice for nuclear- or neutron-matter calculations [71,151], but when aiming at

the structure of nuclei one requires basis sets that appropriately describe finite systems, such

as the HO basis.

To apply the non-local Epelbaum 3N interactions to nuclear structure calculations we perform

the transformation of the partial-wave decomposed momentum interaction matrix elements to

the Jacobi-HO representation. In the following sections we derive the transformation formula

and emphasize the different conventions used for the two basis sets as well as the consequences,

which need to be considered for a subsequent application of the HO machinery.

3.5.1 Transformation to the Jacobi-HO Basis

In the following we discuss the transformation of the 3N interaction matrix elements from the

partial-wave decomposed Jacobi-momentum representation (92) to the antisymmetric Jacobi-

HO representation (59). We concentrate on the derivation of the transformation formula, as-

suming the interaction represented in the Jacobi-momentum basis using the same coordinates

and conventions as in the HO case

a1xπ1π2;α12|V |π1
1π

1
2; α̃12ya1 , (96)

where the Jacobi momenta correspond to those introduced in Sec. 3.1 and with the collective

indices α12 “ tL1, S1, J1, L2, J2, J12, T1, T12u and α̃12 “ tL1
1
, S1

1
, J 1

1
, L1

2
, J 1

2
, J12, T

1
1
, T12u.

We start with the HO state and expand it in the momentum basis. Because the transformation

exclusively concerns the spatial part we first separate it from the spin part by decoupling the

angular momenta and omit isopin part (which is already separated) for brevity

|N1N2;α12ya1 “ |N1N2; rpL1S1qJ1, pL2
1

2
qJ2sJ12MJ12ya1

“
ÿ

MJ1
MJ2

ÿ

ML1
ML2

ÿ

MS1
MS2

ˆ
˜

J1 J2

MJ1 MJ2

ˇ

ˇ

ˇ

ˇ

ˇ

J12

MJ12

¸˜

L1 S1

ML1
MS1

ˇ

ˇ

ˇ

ˇ

ˇ

J1

MJ1

¸˜

L2
1

2

ML2
MS2

ˇ

ˇ

ˇ

ˇ

ˇ

J2

MJ2

¸

ˆ
 

|N1L1ML1
y b |N2L2ML2

y b |S1MS1
y b |1

2
MS2

y
(

a1
.

(97)

The Jacobi-HO state on the right-hand side is a product state of the spatial and spin compo-

nents, which are defined with respect to the Jacobi coordinates. The product state allows us

to focus on a general HO state, which we transform to the momentum basis. Note, that the

partial antisymmetry is only defined for the complete Jacobi-HO state including the spin and

isospin part. However, the partial antisymmetry is realized by allowing only certain combina-

tions of quantum numbers that fulfill p´1qL1`S1`T1 “ 1. This means the partial antisymmetry
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is ensured by the choice of the states |N1N2;α12ya1 and does not require further consideration.

Expressing the HO states by the momentum states, yields

|NLMLy “
ż

d3π |~πyx~π|NLMLy

“
ż

dπ π2

ż

dΩ x~π|NLMLy |~πy ,
(98)

where the angles are parametrized by Ω. The overlap in Eq. (98) corresponds to the HO wave

function in momentum space

x~π|NLMLy “ ΨNLML
p~πq “ RNLpπqYLML

pΩq , (99)

where YLML
pΩq are the spherical harmonics and RNLpπq describes the radial part defined as

RNLpπq “ p´1qN
g

f

f

e

2pN !q
`

a
~

˘3

ΓpN ` L ` 3

2
q
´

π
a

~

¯L

e´
1

2
pπ a

~
q2
L
L`1{2
N

ˆ

´

π
a

~

¯2
˙

, (100)

with the HO length a and the generalized or associated Laguerre polynomials L
L`1{2
N

´

`

π a
~

˘2
¯

.

The phase p´1qN results from the convention we use for the basis definition. The relation to

the partial-wave decomposed momentum basis is given by

|~πy “
ÿ

LML

ż

dπ1 pπ1q2 |π1LMLyxπ1LML|~πy with xπ1LML|~πy “ δpπ1 ´ πq
π1π

Y ˚
LML

pΩq

“
ÿ

LML

Y ˚
LML

pΩq |πLMLy ,
(101)

with the complex conjugate of the spherical harmonics. From the above relations the HO state

can be expressed as

|NLMLy “
ÿ

L1M 1
L

ż

dπ π2RNLpπq |πLMLy
ż

dΩYLML
pΩqY ˚

L1M 1
L

pΩq

“
ż

dπ π2RNLpπq |πLMLy ,
(102)

where we use the orthonormality relation of the spherical harmonics.

We come back to the three-body Jacobi basis in Eq. (97) and utilize the general transformation

65



3 Momentum and HO Basis Sets

formula (102) combined with a coupling of the angular momenta, yielding

|N1N2;α12ya1 “
ÿ

MJ1
MJ2

ÿ

ML1
ML2

ÿ

MS1
MS2

ÿ

L1
1
L1
2

ÿ

J 1
1
J 1
2
J 1
12

ÿ

M 1
L1

M 1
L2

ÿ

M 1
J1

M 1
J2

M 1
J12

ˆ
˜

J1 J2

MJ1 MJ2

ˇ

ˇ

ˇ

ˇ

ˇ

J12

MJ12

¸˜

L1 S1

ML1
MS1

ˇ

ˇ

ˇ

ˇ

ˇ

J1

MJ1

¸˜

L2
1

2

ML2
MS2

ˇ

ˇ

ˇ

ˇ

ˇ

J2

MJ2

¸

ˆ
˜

J 1
1 J 1

2

M 1
J1

M 1
J2

ˇ

ˇ

ˇ

ˇ

ˇ

J 1
12

M 1
J12

¸˜

L1
1 S1

1

M 1
L1

M 1
S1

ˇ

ˇ

ˇ

ˇ

ˇ

J 1
1

M 1
J1

¸˜

L1
2

1

2

M 1
L2

M 1
S2

ˇ

ˇ

ˇ

ˇ

ˇ

J 1
2

M 1
J2

¸

ˆ
ż

dπ1 π2
1

ż

dπ2 π2
2 RN1L1

pπ1qRN2L2
pπ2q

ˆ
ż

dΩ1

ż

dΩ2 YL1ML1
pΩ1qY ˚

L1
1
M 1

L1

pΩ1qYL2ML2
pΩ2qY ˚

L1
2
M 1

L2

pΩ2q

ˆ |π1π2; rpL1
1S1qJ 1

1, pL1
2
1

2
qJ 1

2sJ 1
12M

1
J12

ya1 .

(103)

Exploiting the orthonormality relation of the Clebsch-Gordan coefficients and the spherical

harmonics in the appropriate order, leads to

|N1N2;α12ya1 “
ż

dπ1 π2
1

ż

dπ2 π2
2 RN1L1

pπ1qRN2L2
pπ2q

ˆ |π1π2; rpL1S1qJ1, pL2
1

2
qJ2sJ12MJ12ya1 ,

(104)

such that we arrive at the final formula for the transformation of the 3N interaction matrix

elements to the partial antisymmetrized Jacobi-HO basis

a1xN1N2;α12|V |N 1
1N

1
2; α̃

1
12ya1

“
ż

dπ1 π2
1

ż

dπ2 π2
2 RN1L1

pπ1qRN2L2
pπ2q

ˆ
ż

dπ1
1 pπ1

1q2
ż

dπ1
2 pπ1

2q2 R˚
N 1

1
L1
1

pπ1
1qR˚

N 1
2
L1
2

pπ1
2q

ˆ a1xπ1π2;α12|V |π1
1π

1
2; α̃

1
12ya1 .

(105)

This transformation can by evaluated by interpolating the interaction matrix elements on the

discrete four-dimensional momentum grid and calculating the radial wave functions explicitly

to perform the integrals.

The momentum input matrix elements are unregularized and we regularize them by a multipli-

cation with the regulator function

a1xπ1π2;α12|V |π1
1π

1
2; α̃

1
12ya1 Ñ

fpπ1, π2,Λ3Nq a1xπ1π2;α12|V |π1
1π

1
2; α̃

1
12ya1 fpπ1

1, π
1
2,Λ3Nq ,

(106)
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with

fpπ1, π2,Λ3Nq “ e
´

ˆ

π2
1

`π2
2

p
?
2Λ3Nq2

˙2n

“ e
´

ˆ

4Π
2
1

`3Π
2
2

p2Λ3Nq2

˙2n

“ f̃pΠ1,Π2,Λ3Nq , (107)

where we also quote the regulator function for the other choice of the Jacobi momenta of

Eq. (93). For the 3N interactions at N2LO and N3LO used in this work we set n “ 3.

Finally, the interaction matrix elements are antisymmetrized in the HO basis via the procedure

discussed in Sec. 3.1.2

axE12i12J12T12|V |E1
12i

1
12J12T12ya

“
ÿ

N1N2α12

ÿ

N 1
1
N 1

2

ÿ

L1
1
S1
1
J 1
1
T 1
1

ÿ

L1
2
J 1
2

δE12,p2N1`L1`2N2`L2qδE1
12
,p2N 1

1
`L1

1
`2N 1

2
`L1

2
q

ˆ Ci12
N1N2α12

C
i1
12

N 1
1
N 1

2
α̃1
12

a1xN1N2;α12|V |N 1
1N

1
2; α̃

1
12ya1 .

(108)

Due to the large number of matrix elements in the HO and momentum representation a careful

pre-calculation of several quantities and an optimized ordering of the summations and integra-

tions is required to perform an efficient transformation.

3.5.2 Basis Conventions for Practical Applications

An important issue that has to be addressed meticulously are the different conventions for the

HO and momentum basis sets. As described in Sec. 1.3.2 and 1.4 the momentum interaction

matrix elements are produced in a large collaboration named LENPIC and there are different

formats used, depending on the production procedure. Therefore, the matrix elements either

represent the pure 3N interaction operator V3N or the operators V3Np1`P q or p1`P qV3Np1`
P q, with the permutation operator P “ T ac T ab`T bc T ab, which is equivalent to p´2T bcq when

acting on the partial-antisymmetrized states and 1

3
p1 ` P q is equivalent to the antisymmetrizer

A. Because we perform the antisymmetrization in the HO basis the only difference between the

potential inputs
 

V3N, V3Np1 ` P q, p1 ` P qV3Np1 ` P q
(

is a factor
 

1, 1

3
, 1

9

(

, respectively, in

the transformation formula of the previous section.

A further factor results from the fact that the provided momentum matrix elements are ex-

pressed in units of rfm5s, while we require them in units of rMeV fm6s to obtain the HO matrix

elements in units rMeVs. Thus, we have to multiply the momentum matrix elements with an

additional factor ~c.

It is worth noticing that the overlap of the orthonormalized momentum and HO basis is deter-

mined only up to an arbitrary complex phase. The convention we use in this work is defined by

Eqs. (98) and (100). It turns out that the convention used for the production of the momentum

matrix elements differs by a complex orbital angular-momentum dependent phase, such that

the matrix elements in Eq. (105) need to be multiplied by a phase iL1`L1
1

´L2´L1
2 , which in total
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is real due to the equal parity of the bra and ket states.

Finally, we consider a rather tedious factor that results from the different definitions of the

Jacobi momenta. To derive this factor we assume two momentum basis sets |~πy and |~Πy,
where the momenta ~π “ g~Π are related by a real factor g. The two basis sets fulfill the

completeness relations

ż

d3π |~πyx~π| “ 1 “
ż

d3Π |~Πyx~Π| , (109)

and we obtain

|~πy “
ż

d3Π |~Πyx~Π|~πy ,

|~Πy “
ż

d3π |~πyx~π|~Πy ,
(110)

with x~Π|~πy “ δ3p~Π ´ ~π
g

q and x~π|~Πy “ δ3p~π ´ g~Πq “ |g|3δ3p~Π ´ ~π
g

q. Our aim is to find the

relation between the partial-wave decomposed state with respect to the Jacobi momentum ~π

and ~Π, i.e., |πLMLy and |ΠLMLy, respectively

|πLMLy “
ż

d3π1 |~π1yx~π1|πLMLy “
ż

dΩπ |~πyYLML
pΩπq

“
ż

d3Π1

ż

dΩπ x~Π1|~πyYLML
pΩπq |~Π1y

“
ż

d3Π1

ż

dΩπ δ
3

ˆ

~Π1 ´ ~π

g

˙

YLML
pΩπq |~Π1y

“
ÿ

L1M 1
L

ż

dΠ2 Π22

ż

d3Π1

ż

dΩπ δ
3

ˆ

~Π1 ´ ~π

g

˙

ˆ YLML
pΩπq xΠ2L1M 1

L|~Π1y |Π2L1M 1
Ly

“
ÿ

L1M 1
L

ż

d3Π1

ż

dΩπ δ
3

ˆ

~Π1 ´ ~π

g

˙

YLML
pΩπqY ˚

L1M 1
L

pΩ1
Πq |Π1L1M 1

Ly ,

(111)

where we use x~Π|~πy “ δ3p~Π ´ ~π
g

q and the overlaps between the momentum state |~Πy and the

partial-wave decomposed momentum state |ΠLMLy introduced in Sec. 3.5.1. Evaluating the

integral over the three-dimensional Dirac-delta function
ş

d3Π1δ3p ~Π1 ´ ~π
g

q causes the momentum

vector conversion ~Π1 Ñ ~π
g

” ~Π. If ~Π and ~π are antiparallel, i.e., g
|g| “ ´1, the spherical

harmonics produces a phase p´1qL1
, while the phase is p`1q for parallel momentum vectors.
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Therefore, we obtain the phase
`

g
|g|

˘L1
from the spherical harmonics, yielding

|πLMLy “
ÿ

L1M 1
L

ˆ

g

|g|

˙L1

|ΠL1M 1
Ly

ż

dΩπ YLML
pΩπqY ˚

L1M 1
L

pΩπq

“
ÿ

L1M 1
L

ˆ

g

|g|

˙L1

|ΠL1M 1
LyδL1,LδM 1

L
,ML

“
ˆ

g

|g|

˙L

|ΠLMLy .

(112)

The analogous calculation can be performed for the bra state, which is identical with the

exception that the overlap x~π|~Πy “ |g|3δ3p~Π ´ ~π
g

q leads to an additional factor |g|3

xπLML| “ |g|3
ˆ

g

|g|

˙L

xΠLML| . (113)

In summary, owing to the two definitions of the Jacobi momenta related by Eq. (94) we gain

additional factors when transforming from one momentum-basis set to the other. Because of the

different absolute values of the Jacobi momenta we need to multiply the momentum-interaction

matrix elements in (105) by a factor
ˇ

ˇ

?
2
`

´
b

3

2

˘ˇ

ˇ

3 “ 3
?
3. The sign change for the second

Jacobi momentum leads to an additional phase p´1qL1
1

`L1 . Although this section discusses

rather technical details, it is indispensable for the application of an interaction to be aware of

the different conventions, in particular because they are only partially documented in general.

The formulas and conventions described in this thesis provide the required knowledge to apply

the non-local Epelbaum 3N forces with the HO machinery to nuclear structure calculations. The

final formula to regularize, antisymmetrize, and transform the Epelbaum 3N matrix elements in

the partial-wave decomposed momentum representation to the Jacobi-HO representation reads

axE12i12J12T12|V |E1
12i

1
12J12T12ya

“ 3
?
3 ~c

ÿ

N1N2α12

ÿ

N 1
1
N 1

2

ÿ

L1
1
S1
1
J 1
1
T 1
1

ÿ

L1
2
J 1
2

iL1`L1
1

´L2´L1
2 p´1qL1

1
`L1

ˆ δE12,p2N1`L1`2N2`L2qδE1
12
,p2N 1

1
`L1

1
`2N 1

2
`L1

2
q C

i12
N1N2α12

C
i1
12

N 1
1
N 1

2
α̃1
12

ˆ
ż

dΠ1 Π
2
1

ż

dΠ2Π
2
2 RN1L1

pΠ1qRN2L2
pΠ2q

ˆ
ż

dΠ1
1 pΠ1

1q2
ż

dΠ1
2 pΠ1

2q2 R˚
N 1

1
L1
1

pΠ1
1qR˚

N 1
2
L1
2

pΠ1
2q

ˆ f̃pΠ1,Π2,Λ3Nq f̃pΠ1
1,Π

1
2,Λ3Nq

ˆ a1xΠ1Π2;α12|V |Π1
1Π

1
2; α̃

1
12ya1 .

(114)
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Compared to phenomenological high-precision interactions, such as the Argonne V18 [2] and

the CD-Bonn [3] potential, the chiral interactions (see Sec. 1) are already quite soft owing to

the regularization that suppresses high-momentum contributions. Nevertheless, using the bare

chiral interactions, i.e., without subsequent transformations, most many-body methods cannot

achieve converged results beyond the lightest systems. Therefore, additional transformations

are desirable to soften the chiral interactions further.

The unitary correlation operator method (UCOM) [18] provides one possibility to soften the

interaction via a unitary transformation. Also the Vlowk renormalization group method [152–

154] is commonly used to produce a low-momentum NN force that is sufficiently soft. So far

the UCOM and Vlowk formalism are restricted to the NN sector and cannot be applied in the

three-body space to also consider 3N contributions, which we investigate in this work. The

Okubo-Lee-Suzuki similarity transformation [155, 156] decouples a specific many-body model

space from the so-called excluded space and is applicable for 3N contributions as well. However,

the similarity transformed Hamiltonian depends on the model space and the nucleus. As a

consequence the variational character of NCSM-type approaches is destroyed. For these reasons

we use the similarity renormalization group (SRG) [15–17, 19] that provides model-space and

nucleus independent softened interactions and allows for the application in two-, three-, and

even four-body space. We refer the reader to Ref. [157] for a current review of renormalization

group methods in nuclear physics.

In the following we present the formal aspects of the SRG transformation to soften the chiral

NN+3N interactions and focus on its implementation in the harmonic-oscillator (HO) basis

up to the four-body level. In particular, we discuss the formal and technical truncations and

present possible improvements of these limitations. The effects of the truncations of the SRG

evolution as well as the developed improvements are investigated in many-body calculations in

Sec. 5 and 6.
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4.1 Concept

Throughout this work we use the SRG to perform a continuous unitary transformation of the

Hamiltonian H

Hα “ U :
α HUα , (115)

with the initial condition

Hα“0 “ H , Uα“0 “ 1 . (116)

An appropriate choice for the unitary operator Uα softens the interaction and enables us to

handle tensor- and short-range correlations in tractable HO model spaces.

The derivative of Eq. (115) with respect to the continuous parameter α leads to a first-order

differential equation

d

dα
Hα “ rηα,Hαs , (117)

where the dynamic generator ηα is connected to the unitary operator Uα through

ηα “ ´U :
α

d

dα
Uα “ ´η:

α . (118)

Instead of defining the SRG transformation directly by specifying the unitary operator Uα,

which is non-trivial, we use an appropriate choice of the dynamic generator to decouple the

low- and high-energy/momentum contributions, in order to accelerate the convergence of the

many-body calculations. Having defined the generator we can perform the SRG transformation

by evolving the Hamiltonian via the flow equation (117) up to a certain value of the flow

parameter α. The SRG-transformed operators are indicated by the flow-parameter index. In

this work we essentially use the canonical choice for the generator that is also used in the

majority of nuclear structure applications

ηα “
´

2
µ

~2

¯2

rTint,Hαs , (119)

with the intrinsic kinetic-energy operator Tint “ T ´Tcm. We assume equal proton and neutron

masses, such that the reduced nucleon mass is given by µ “ mN
2

, with the nucleon mass mN.

The intrinsic kinetic-energy operator for equal proton and neutron masses is defined as

Tint “ 1

Aµ

ÿ

iăj

~q 2

ij , (120)

with the relative-momentum operator ~qij “ ~pi´~pj

2
and the particle number A. The operator in

72



4.1 Concept

Eq. (120) is diagonal in a momentum and partial-wave decomposed momentum representation

and exhibits a band-diagonal structure in the HO representation (see Fig. 4.2 and 4.4). For

the canonical generator a diagonal form of the Hamiltonian in the momentum representation

leads to a vanishing commutator in (119) and provides a fix point of the flow equation. We

illustrate in the following that the generator decouples the low- and high-energy components

of the interaction causing a flow of the Hamiltonian in the HO basis representation towards a

band-diagonal form, which leads to an accelerated convergence in the many-body calculations.

The units of the flow parameter are defined via the prefactor in the generator (119) as rfm4s.
For this specific generator it is reasonable to associate the flow parameter with a momentum

scale, using the relation λSRG “ α´1{4 as often done in the literature [158,159].

When aiming at observables other than binding and excitation energies it is formally necessary

to transform the corresponding operators as well

Oα “ U :
α OUα , (121)

which can be achieved by evaluating Uα directly or by solving the flow equation

d

dα
Oα “ rηα, Oαs . (122)

Because the generator we use contains the evolved Hamiltonian, the flow equations for the

operator Oα and the Hamiltonian Hα need to be evolved simultaneously. We refer to [124,

125] for a recent application and stress that there is work in progress to perform the SRG

transformation of observables.

The SRG requires the solution of a first-order differential operator equation. Due to the sim-

plicity of the evolution the SRG can be implemented in three-body space and even beyond.

A further important advantage is the inherent flexibility of this unitary transformation, since

the only formal constraint on the generator is its anti-Hermiticity to ensure the unitarity of

the transformation. A variety of SRG generators have been studied in different physics con-

texts [159,160].

An example is the so-called in-medium SRG (IM-SRG) [34–36], which uses the SRG evolution

in a normal-ordered form to decouple a certain reference state, that approximates the ground

state, from all particle-hole excitations. Once the reference state is completely decoupled its

energy expectation value provides the ground-state energy of a nucleus. The embedded normal-

ordering approximation represents the major systematic error of this approach, that is well

under control for the chiral interactions that have been initially softened with the “free-space”

SRG discussed above. Therefore, the IM-SRG provides an elegant ab initio method that, in

addition, can be extended to the use of a multi-reference state (multi-reference IM-SRG) [36]

enabling studies of open-shell systems.
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4 Similarity Renormalization Group

However, in terms of the "free-space" SRG it is difficult to take advantage of the formal flexibility

by choosing an alternative generator that improves the properties of the SRG evolution for our

purposes. See for instance Sec. 6.3 for attempts to find alternative generators.

4.2 Cluster Decomposition

The equations in the formal discussions in Sec. 4.1 are operator relations in A-body Hilbert

space or even a Fock space. When aiming at a numerical solution of the flow equation (117),

we have to express the operators in a certain basis representation. Owing to computational

reasons we generally cannot perform the evolution in an A-body space, but we have to restrict

ourselves to space with smaller particle numbers. This limitation causes one of the most chal-

lenging problems in context of the SRG transformation, because during the evolution irreducible

contributions beyond the particle rank of the initial Hamiltonian are induced. This becomes

clear when considering the right-hand side of the flow equation (117). Because the generator

we use is at least a two-body operator, the commutator with the Hamiltonian increases the

particle rank of the evolved Hamiltonian in each evolution step. Thus, induced contributions

up to the A-body rank are produced, even if one starts with a two-body Hamiltonian. The

SRG-evolved Hamiltonian can be decomposed into contributions with different particle ranks

(cluster decomposition) [18, 21, 161]

Hα “ H r1s
α ` H r2s

α ` H r3s
α ` Hr4s

α ` ¨ ¨ ¨ ` HrAs
α , (123)

where the subscript α indicates that the operator is SRG evolved and the superscript indicates

the irreducible particle rank of the operator, i.e., Hrks
α is an irreducible k-body operator that

can be expressed in second quantization as

H rks
α “ 1

pk!q2
ÿ

µ1,...,µk

ÿ

ν1,...,νk

axµ1 . . . µk|H rks
α |ν1 . . . νkya a:

µ1
. . .a:

µk
aνk . . .aν1 . (124)

For instance, we assume a Hamiltonian containing an initial NN+3N interaction

H “ Tint ` V
r2s
NN ` V

r3s
3N

SRGÝÑ Hα “ Tint ` V
r2s
NN,α `

´

V
r3s
NN,α ` V

r3s
3N,α

¯

`
´

V
r4s
NN,α ` V

r4s
3N,α

¯

` . . . ,
(125)

where the induced irreducible k-body contributions of the intrinsic kinetic energy (with k ě 2)

are absorbed in the V
rks
NN operators. With this definition exclusively the interaction is changed

by the SRG, while the intrinsic kinetic-energy operator remains the initial one.

The special treatment of the intrinsic kinetic-energy operator in the cluster decomposition often

leads to confusion. Therefore, we want to elucidate this issue further. We first consider the

SRG transformation of the total kinetic-energy operator T “ Tint `Tcm, which is an irreducible
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4.3 Types of Evolved Hamiltonians

Hamiltonians with initial NN interaction

NNonly
evolution performed in two-body space:

HNNonly
“ Tint ` V

r2s
NN,α

NN+3Nind
evolution performed in three-body space:

HNN`3Nind
“ Tint ` V

r2s
NN,α ` V

r3s
NN,α

NN+3Nind+4Nind
evolution performed in four-body space:

HNN`3Nind`4Nind
“ Tint ` V

r2s
NN,α ` V

r3s
NN,α ` V

r4s
NN,α

Hamiltonians with initial NN+3N interaction

NN+3Nfull
evolution performed in three-body space:

HNN`3Nfull
“ Tint ` V

r2s
NN,α `

´

V
r3s
NN,α ` V

r3s
3N,α

¯

NN+3Nfull+4Nind
evolution performed in four-body space:

HNN`3Nfull`4Nind
“ Tint ` V

r2s
NN,α `

´

V
r3s
NN,α ` V

r3s
3N,α

¯

`
´

V
r4s
NN,α ` V

r4s
3N,α

¯

Table 4.1 SRG-evolved Hamiltonians: We introduce the short-hand notation for the SRG-evolved

Hamiltonians that can be constructed using an initial NN (upper table) or NN+3N (lower table) inter-

action and contain the induced contributions that can be included by an SRG evolution in the two-,

three-, or four-body space.

one-body operator. This operator induces irreducible many-body contributions during the SRG

evolution, while the irreducible one-body contribution remains unchanged

T r1s SRGÝÑ T r1s ` T r2s
α ` T r3s

α ` . . . . (126)

For T int one cannot assign a unique irreducible particle rank. Although the momentum oper-

ators in Eq. (120) suggest Tint to be an irreducible two-body operator, the dependence on the

particle number A requires special attention when converting the matrix elements to higher

particle-rank model spaces. The center-of-mass part of the kinetic-energy operator Tcm com-

mutes with Tint as well as with the interaction. As a consequence, the SRG evolution has the

same effect if one replaces the intrinsic kinetic-energy operator in Eq. (117) and (119) by the

total kinetic-energy operator. However, for practical purposes we use Tint in the SRG evolu-

tion and the absorption of the induced kinetic energy contributions into the transformed VNN

operators simplifies the practical evolution.

4.3 Types of Evolved Hamiltonians

In this work we present the techniques to perform the SRG evolution up to the four-body level.

Starting either from an initial NN or NN+3N interaction we define the five Hamiltonians listed

in Tab. 4.1 by successively including contributions of higher particle ranks. If we start with
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an initial Hamiltonian using a chiral NN interaction, we can perform the SRG evolution in the

m-body space with 2 ď m ď 4, leading to the Hamiltonians in the upper table. During the

evolution we omit the induced contributions beyond the m-body level, since they cannot be

represented in the m-body space. The Hamiltonians with the initial NN+3N interaction (lower

table) are obtained from an evolution in the three-, or four-body space. The canonical generator

we use contains the Hamiltonian, hence, it slightly differs for the evolution of a Hamiltonian

with an initial NN or NN+NN interaction. Therefore, the induced contributions originating

from the NN interaction (V r3s
NN,α,V

r4s
NN,α) in the upper and lower table are not the same, because

they result from evolutions with different generators.

The SRG evolution is a unitary transformation and, therefore, the converged eigenvalues of the

Hamiltonian have to be invariant during the evolution. Formally, the omission of induced many-

body contributions violates the unitarity of the SRG and it is mandatory to verify the invariance

of the observables during the evolution. We want to assess the effect of the induced contributions

using the presented Hamiltonians and expect a sizable dependence of our observables on the

flow parameter if the omitted contributions are relevant for their description. Thus, we utilize a

variation of the flow parameter as diagnostic tool to assess the effect of the omitted many-body

contributions when we perform the many-body calculations.

4.4 Evolution in HO Representation

As already mentioned, in order to perform numerical evolutions of the operator equations, it

is necessary to express the operators in a certain basis representation. We typically perform

the SRG evolution in the Jacobi-HO representation. The reasons for this are the separation

of the center-of-mass part and the fact that the discrete orthonormal HO basis simplifies the

evolution and, in addition, allows for an explicit reduction of the model-space dimension due to

the antisymmetry of the basis. A more detailed discussion of the advantages and disadvantages

of different basis sets can be found in Sec. 3. Note, that the three-body SRG evolution can be

also performed in other basis representations, such as the partial-wave decomposed momentum-

Jacobi basis [149] and the hyperspherical momentum basis [162]. However, so far only the SRG

in the HO basis has been used to provide reliably evolved 3N interactions for nuclear structure

calculations beyond the lightest nuclei.

Inserting the canonical generator (119) into the flow equation (117) and expanding the com-

mutators yields

d

dα
Hα “

´

2
µ

~2

¯2

pT intHαHα ´ 2HαT intHα ` HαHαT intq . (127)

As discussed in Sec. 3 one can perform the SRG evolution for each pJπT q-channel separately,
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4.4 Evolution in HO Representation

when using the Jacobi-HO representation

d

dα
xEiJT |Hα |E1i1JT y “

´

2
µ

~2

¯2
ESRG
ÿ

E2E3

ÿ

i2i3
´

xEiJT |T int |E2i2JT y xE2i2JT |Hα |E3i3JT y xE3i3JT |Hα |E1i1JT y

´2xEiJT |Hα |E2i2JT y xE2i2JT |T int |E3i3JT y xE3i3JT |Hα |E1i1JT y

`xEiJT |Hα |E2i2JT y xE2i2JT |Hα |E3i3JT y xE3i3JT |T int |E1i1JT y
¯

,

(128)

where |EiJT y corresponds to an antisymmetric Jacobi-HO basis state in the two-, three-, or

four-body space. Formally, the sums go to infinite energy quantum numbers, but in practice

we have to restrict the sums to a finite maximum energy quantum number E2, E3 ď ESRG

which defines the model space of the SRG evolution or the SRG space for short. The ba-

sis representation leads to a system of coupled linear first-order differential equations for the

Hamilton matrix elements. Note that all matrix elements in the SRG space of a pJπT q-channel

need to be evolved simultaneously, since they appear on the right-hand side of Eq. (128). In

finite model spaces this right-hand side corresponds to a three-fold matrix product that can

be evaluated efficiently using optimized BLAS routines. The flow equation is typically solved

using an embedded Runge-Kutta solver with an adaptive step-size control.

Once we evolved the flow equation in the m-body space, with m “ 2, 3, 4, we obtain the

evolved Hamiltonian in form of matrix elements in the Jacobi-HO representation that contain all

irreducible contributions up to the m-body level. This Hamiltonian can be used directly to solve

the eigenvalue problem of an m-particle nucleus. In general, we aim at the description of nuclei

with A ą m nucleons, thus, it is necessary to obtain the irreducible contributions separately for

their conversion to the A-body space. In the antisymmetrized Jacobi-HO representation this is

achieved by subtracting the irreducible contributions with lower particle ranks. The latter are

derived from an additional SRG evolution in a Jacobi-HO basis of lower particle rank.

After the SRG evolution in m-body space we typically subtract the intrinsic kinetic energy part.

This allows us to concentrate on the irreducible interactions for the subtraction procedure as

illustrated in Fig. 4.1.

For instance, we assume to start we an initial NN interaction and aim at the irreducible 4N

contributions V
r4s
NN,α, we evolve the Hamiltonian in the four-body Jacobi-HO space yielding

the interactions V
r2s
NN,α ` V

r3s
NN,α ` V

r4s
NN,α.9 Next, we perform the evolution to the same flow-

parameter value α and in a consistent SRG space, in the two- and three-body space. The NN

contributions V
r2s
NN,α can be obtained directly from the evolution in the two-body space and are

converted to the three-body Jacobi-HO space. In the three-body space one can now subtract the

9The general subtraction procedure is independent of the initial interaction, because the initial NN and
NN+3N interactions induce irreducible contributions to all particle ranks.
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two-body space three-body space four-body space

V r2s V r2s
´

`V r3s
¯

V r2s
´

`V r3s
¯

SRG SRG SRG

V
r2s
α V

r2s
α ` V

r3s
α V

r2s
α ` V

r3s
α ` V

r4s
α

sub.

V
r3s
α

sub.

V
r2s
α ` V

r4s
α

• sub.

V
r4s
α

Figure 4.1 Subtraction procedure in the two-, three-, and four-body space: Illustrated are the

irreducible interactions, resulting from the SRG evolution in the two-, three-, and four-body space and

the subtractions performed to separate the irreducible contributions (see text for further description).

NN contribution from the interaction obtained from the three-body SRG evolution, yielding the

irreducible 3N contributions V r3s
NN,α. Finally, one converts both 3N interaction matrix elements,

of the NN and 3N contributions separately to the four-body Jacobi-HO basis and performs

the subtraction from the matrix elements obtained from the four-body SRG evolution, yielding

V
r4s
NN,α.

Note, that owing to computational reasons and the construction of the antisymmetric Jacobi-

HO basis it is advantageous to convert the irreducible NN contributions first to the three-body

space and from this representation to the four-body space (indicated by the dot in Fig. 4.1),

instead of converting them directly to the four-body space.

As mentioned before an important aspect is the consistency of the SRG space. For the subtrac-

tion procedure it is essential that the subtracted contributions correspond to those that appear

during the SRG evolution in the higher particle-rank model spaces. Therefore, it is necessary

to use a consistent generator and an equal flow-parameter value. Also an inconsistent choice of

the SRG space can cause artifacts and we address this aspect in the following. The SRG space

in the m-body Jacobi-HO representation is defined by the maximum energy quantum num-

ber ESRG. This truncation depends on all m particles that contribute to the energy quantum

number. Therefore, the SRG spaces cannot be chosen fully equivalent in the two-, three-, and
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four-body space, by using the same ESRG. In contrast to the single-particle space, where one

could define the model space via a truncation of the single-particle basis,10 the Jacobi basis does

not allow for the definition of a fully compatible model-space truncation for different particle

ranks. For sufficiently large SRG spaces the slight differences in the model-space truncations

are negligible, such that the SRG evolution and subtraction can be performed up to the desired

accuracy. We come back to this aspect when we discuss the details of the subtractions in the

three- (see Sec. 4.6.2) and, in particular, in the four-body space (see Sec. 4.7.2).

We present the typical SRG spaces for the different particle ranks in the following sections, where

we discuss the technical aspects that need to be addressed for the individual SRG evolutions. For

all applications in this section we use the standard chiral NN forces by Entem and Machleidt [8]

and the 3N force by Navrátil [13] both with a cutoff of Λ “ 500MeV/c.

4.5 Evolution in Two-Body Space

From a technical point of view the SRG evolution in the two-body space is simple and can be

performed easily in the momentum [18] or the HO [163] representation. As mentioned before,

to obtain converged NN contributions for the many-body calculations, we need rather large

E2,SRG « 200 [163], compared to those used in the three- and four-body space. The starting

point for the initial NN interaction are matrix elements in the partial-wave decomposed Jacobi-

momentum representation (54), thus, we typically perform the two-body SRG evolution in this

representation on a sufficiently fine and large momentum grid. This avoids the transformation

to the HO basis for the large model spaces, that would be required for the evolution in the HO

basis. But, nevertheless we have to perform the two-body evolution in the HO basis for the

subtraction procedure as described above. The Coulomb interaction and the isospin breaking are

explicitly included in the two-body SRG evolution for the subsequent many-body calculations.

However, we omit the Coulomb interaction and average over the isospin-projection quantum

number for the pT1 “ 1q channels when we perform the SRG evolution for the subtraction

procedure. This is because we do not consider the isospin breaking in the three- or four-body

representation, since they are expected to produce minor corrections. This reduces the model-

space dimensions, but does not allow to consider the effect of the induced 3N and many-nucleon

contributions originating from the Coulomb interaction. These effects should be marginal as

well because of the long-range character of the Coulomb force, what make it is rather insensitive

to the SRG evolution [18]. We refer the interested reader to [18] for further details of the two-

body SRG evolution, but since it is an already well established technique, we do not go into

further details in this work.

10Although the single-particle basis formally allows for a consistent truncation of the model space for differ-
ent particle ranks, such model spaces are of no practical use, since they lead to unfeasible large model-space
dimensions to cover the physical relevant content.
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4.6 Evolution in Three-Body Space

The implementation of the SRG evolution in three-body space is an essential ingredient for

the application of evolved chiral interactions to nuclear structure calculations. The evolution

in three-body space has been established over the recent years. In this section we illustrate

its effect exemplarily for the triton and discuss technical ingredients for the application to A-

body systems. Further, we explain the frequency-conversion approach that allows to provide

accurately evolved chiral Hamiltonians for a large frequency range.

4.6.1 Chiral Interactions Evolved in the Triton Channel

We have already described the general purpose of the SRG evolution, to decouple low- and high-

momentum/energy contributions and to accelerate the convergence of the many-body calcula-

tion. We investigate the effect of the SRG evolution by using the triton nucleus as an example.

In Fig. 4.2 we illustrate the SRG evolution of the 3N matrix elements. Plotted are the abso-

lute values of the intrinsic kinetic-energy matrix elements axE12i12J12T12|Tint |E1
12i

1
12J12T12ya,

as well as of the interaction matrix elements axE12i12J12T12|Hα ´ Tint |E1
12i

1
12J12T12ya in the

antisymmetric Jacobi-HO representation for the triton channel pJπ
12T12q “ p1{2`1{2q. We use

the standard initial chiral NN+3N interaction and evolve it to typical flow-parameter values

α “ 0.04 fm4 and 0.16 fm4. The initial interaction shows sizable off-diagonal contributions,

corresponding to matrix elements between low- and high-energy HO eigenstates. The band-

diagonal structure of the intrinsic kinetic-energy matrix represents a trivial fix point of the

SRG evolution and, indeed, with increasing flow-parameter value α the off-diagonal contribu-

tions decouple, such that the interaction and accordingly the Hamiltonian is driven towards a

band-diagonal form determined by the intrinsic kinetic-energy operator. Although, the detailed

structure within the blocks of fixed energy quantum numbers E12 and E1
12 (separated by the

dark grid lines), depend on the specific choice of the coefficients of fractional parentage (CFPs),

the suppression of the off-diagonal blocks is a general feature of the canonical SRG generator.

For the pA “ 3q systems the subtraction procedure is not required and we can solve the eigen-

value problem by diagonalizing the Hamilton matrix in the antisymmetric Jacobi-HO basis.

We truncate the model space at the maximum relative-energy quantum number E3,max such

that the diagonalization corresponds to an NCSM calculation in a model space defined by

Nmax “ E3,max. In Fig. 4.3 the triton ground-state energy as function of the NCSM model

space is illustrated. We use the bare standard NN+3N Hamiltonian (blue circles) and the cor-

responding evolved NN+3Nfull Hamiltonians with α “ 0.01 fm4 (red diamonds), 0.04 fm4 (green

triangles), 0.16 fm4 (violet boxes), and 0.64 fm4 (light-blue stars). For the bare Hamiltonian

rather large model spaces beyond Nmax “ 20 are required to achieve converged ground-state

energies, while with increasing flow parameter the convergence with respect to the model-space

size accelerates. In particular at the beginning of the evolution the acceleration effect is strong
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Figure 4.2 Matrix elements in the antisymmetrized Jacobi-HO representation for the triton
channel: Plotted are the absolute values of the intrinsic kinetic-energy matrix elements (a), and of the

interaction matrix elements for the flow parameter α “ 0 fm4 (b), 0.04 fm4 (c) and 0.16 fm4 (d). For the

SRG evolution we used the standard chiral NN+3N interaction. Further, we used a HO frequency of

~Ω “ 24MeV and an SRG space defined by E3,SRG “ 40. The dark grid lines separate blocks of fixed

energy quantum numbers E12 and E1
12

.
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Figure 4.3 Triton ground-state energy as function of the model space Nmax: The ground-state

energies are obtained in an NCSM calculation using the initial NN+3N Hamiltonian as in Fig. 4.2.

The SRG evolution has been performed in three-body space truncated by E3,SRG “ 40 up to the

flow-parameter value α “ 0 fm4 ( •), 0.01 fm4 ( ), 0.04 fm4 (N), 0.16 fm4 (�), and 0.64 fm4 (★), using

~Ω “ 24MeV. The dashed horizontal line correspond to the experimental value [164].

and starts to saturate for the largest flow-parameter values. The fact that all curves converge

to the experimental value (dashed horizontal line), within an uncertainty of about 50 keV is not

surprising. First of all we investigate an pA “ 3q system, such that induced 4N contributions

are not present and all curves must converge to the same result. Moreover, the standard initial

chiral NN+3N interaction we use is fitted to the binding energies of 3He and 3H.

It is important to note that heavier nuclear systems require the evolution of several three-body

channels pJπ
12T12q, which increases the computational demands of the three-body SRG evolution.

In contrast to previous applications of the SRG evolution in the Jacobi-HO basis [158] we have

implemented a highly efficient transformation that, e.g., can evolve the triton channel to typical

flow-parameter values in an SRG space of E3,SRG “ 40 in less then one hour on a single standard

node.

4.6.2 Subtraction Procedure

When targeting nuclei with A ą 3 in the many-body calculations it is necessary to separate

the irreducible NN and 3N contributions, since they convert differently to the A-body space.

The separate irreducible contributions can be constructed by using the subtraction procedure

illustrated in Fig. 4.1. As mentioned before, it is crucial that the SRG evolutions are performed

consistently in two- and three-body space. Specifying the SRG space via the maximum relative-

energy quantum number ESRG does not allow for a fully equivalent truncation in two- and

three-body Jacobi-HO space. To demonstrate this problem, we consider an SRG space defined
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by an even or odd energy truncation ESRG of 20 and 21. We evolve the positive-parity triton

channel pJπ
12T12q “ p1{2`1{2q and investigate the contributions from two-body channels with

different parities used for the subtraction. Due to the positive parity of the triton channel the

SRG evolution in three-body space is identical for E3,SRG “ 20 or 21, while the SRG evolution

of the NN contributions with negative parity, which are required for the subtraction, are evolved

either with E2,SRG “ 19 or 21, respectively.11 As long as the high-energy NN contributions at

the boundary of the SRG space have a sizable effect on the interaction matrix elements used in

the many-body calculations, we will observe a dependence on the subtraction procedure. Since

there is no unique choice we define several subtraction schemes and investigate the implications

for the many-body results. In case of the three-body SRG evolution we generally choose the SRG

space sufficiently large, so that the observables are independent of the subtraction scheme. For

practical applications we use an even E3,SRG to specify the evolution of the three-body channels

for both parities. The two-body SRG space used for the subtraction is truncated by the same

even maximum energy quantum number, i.e., E2,SRG “ E3,SRG.

4.6.3 Frequency Conversion

A seeming disadvantage of the SRG evolution in the HO representation is the explicit depen-

dence of the SRG space on the HO frequency ~Ω. Depending on the HO frequency SRG spaces

with equal E3,SRG span different momentum or energy ranges, such that the SRG spaces for

very small frequencies might not cover the relevant physics required in the many-body calcula-

tions. Furthermore, to investigate the frequency dependence in the many-body calculations, so

far we have needed multiple SRG evolutions for the desired frequencies. To circumvent these

disadvantages of the evolution in the HO representation we introduce the frequency-conversion

approach. This approach takes advantage of the fact that the model space used for the SRG

evolution (expressed in a Jacobi basis) is generally much larger than the one used for the many-

body calculations (expressed in a single-particle scheme). The simple idea is to perform the

SRG evolution for an adequate HO frequency ~ΩSRG and transform the antisymmetric Jacobi-

HO matrix elements of the interaction to the HO frequencies ~Ω required in the many-body

calculations. The corresponding transformation formula reads

axE12i12J12T12|Vα |E1
12i

1
12J12T12ya “

E3,SRG
ÿ

Ẽ12Ẽ
1
12

ÿ

ĩ12 ĩ
1
12

ˆ axE12i12J12T12|Ẽ12 ĩ12J12T12ya axE1
12i

1
12J12T12|Ẽ1

12 ĩ
1
12J12T12ya

ˆ axẼ12 ĩ12J12T12|Vα |Ẽ1
12 ĩ

1
12J12T12ya ,

(129)

11For the negative-parity two-body channels the energy quantum numbers must be odd, such that an SRG
space with E2,SRG “ 20 is identical to the one with E2,SRG “ 19.
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where we denote the quantities that correspond to the HO frequency ~ΩSRG by a tilde. The

matrix elements on the left-hand side are represented in the Jacobi-HO basis with the frequency

~Ω and the matrix elements that appear on the right-hand side corresponds to the HO basis

with ~ΩSRG. To derive this equation we inserted two unity operators and used the fact that

the overlaps of the HO basis sets with different frequencies are only non-vanishing for equal

parity and angular momentum Jπ
12, and isospin T12 in the bra and ket states. We are left

with the calculation of the overlaps axE12i12J12T12|Ẽ12 ĩ12J12T12ya. To derive the correspond-

ing formula one can use a similar procedure as in Sec. 3.5.1, where the transformation of the

Jacobi-HO basis to the partial-wave decomposed Jacobi-momentum basis is discussed. We first

use the antisymmetrization relation (59) to express both states of the overlap as a superpo-

sition of the corresponding partial-antisymmetric states |N1N2;α12ya1 . Next we decouple the

angular momenta as in Eq. (97), such that we can concentrate on the spatial part of the over-

lap xNLML|ÑL̃M̃Ly, where the HO states are defined with respect to different frequencies.

Expressing the HO overlap in the momentum representation yields

xNLML|ÑL̃M̃Ly “
ż

dπ π2

ż

dΩ R˚
NLpπqY ˚

LML
pΩq RÑL̃pπqYL̃M̃L

pΩq ,

“ δLL̃δMLM̃L

ż

dπ π2 R˚
NLpπqRÑLpπq ,

(130)

where we used the orthonormality relation of the spherical harmonics.

Finally, we couple the angular momenta, use several orthonormality relations of the Clebsch-

Gordan coefficients, and antisymmetrize the states utilizing the CFPs yielding the formula

axE12i12J12T12|Ẽ12 ĩ12J12T12ya “
ÿ

N1N2

ÿ

Ñ1Ñ2

ÿ

α12

ˆ δE12,2N1`L1`2N2`L2
Ci12
N1N2α12

ż

dπ1 π
2
1 R

˚
N1L1

pπ1qR
Ñ1L1

pπ1q

ˆ δẼ12,2Ñ1`L1`2Ñ2`L2
C ĩ12
Ñ1Ñ2α12

ż

dπ2 π
2
2 R

˚
N2L2

pπ2qRÑ2L2
pπ2q .

(131)

As indicated by the sums in (129) the frequency conversion is performed in the same finite

model space that is used for the SRG evolution. Generally speaking, to perform an accurate

conversion of the frequency the SRG space must cover those basis states |Ẽ12 ĩ12J12T12ya that

produce non-negligible overlaps with the basis states |E12i12J12T12ya that are required for the

many-body model space. For small frequency differences the overlap has a rather narrow band-

diagonal structure, which broadens with the difference of the frequencies ~Ω and ~ΩSRG. In

particular, for large frequency differences far-off diagonal overlaps can become relevant.

However, as the frequency conversion is performed after the SRG evolution the interaction

already has a band-diagonal structure and the low- and high-energy basis states are decoupled.

The frequency transformation in Eq. (129) only yields sizable contributions to the summation
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on the right-hand side for interaction matrix elements with similar E12 and E1
12

. The low-energy

sector of the Jacobi-HO matrix-elements that enters the subsequent many-body calculations is

thus typically not affected by the truncation of the model space used for the frequency conversion

and we study the reliability of the approach in Sec. 5.

The simplicity of the transformation in Eq. (129) and (131) makes the frequency-conversion

approach a useful tool to facilitate the SRG evolution procedure for multiple frequencies and

enables the application of accurately evolved interactions for a large frequency range using

tractable SRG spaces. As we discuss in Sec. 5 the frequency conversion is indispensable for

many applications in nuclear structure physics and have been successfully applied in several

publications [21, 28, 30].

4.7 SRG Evolution in Four-Body Space

In this work we demonstrate the importance of the SRG induced 4N interactions for nuclear

structure applications beyond the mid-p-shell nuclei (see Sec. 6). The SRG evolution in the

antisymmetric four-body Jacobi-HO representation is a useful tool to handle these induced con-

tributions. All the techniques we highlight in this section are not tailored to special properties

of the induced forces and can be used for the general inclusion of 4N interactions. This is of

particular interest for the current efforts of the inclusion of an NN+3N interactions at N3LO by

the LENPIC collaboration, since at the same chiral order initial 4N forces start to emerge and

thus are required for a fully consistent N3LO Hamiltonian. In contrast to the established SRG

evolution in three-body space, the four-body evolution has never been performed so far. The

SRG evolution in the antisymmetric four-body Jacobi-HO representation provides unforeseen

challenges in particular with respect to the rapidly increasing SRG space and we discuss the

benefits, problems, and limitations for the application in nuclear structure calculations for p-

shell nuclei in Sec. 6.4. In the following we present the inclusion of the induced 4N contributions

using the 4He nucleus as an example. Further, we introduce several subtraction schemes that

are used to investigate the dependence on the SRG-space truncation. Finally, we introduce the

frequency-conversion approach in the four-body space.

4.7.1 Chiral Interactions Evolved in the 4He Channel

We start with the analog investigations of the SRG effect as in Sec. 4.6.1 for the three-body

case. In Fig. 4.4 we illustrate the absolute values of the intrinsic-kinetic energy matrix ele-

ments (a) and the interaction matrix elements in the antisymmetric Jacobi-HO representation

|E123i123J123T123ya for the 4He channel pJπ
123T123q “ p0`0q. Plotted are the bare interaction

matrix elements in Fig. 4.4 (b) as well as the ones obtained from a four-body SRG evolution

with α “ 0.04 fm4 (c) and 0.16 fm4 (d). We start with the initial standard NN+3N interaction,

using ~Ω “ 24MeV and perform the evolution in an SRG space truncated at E4,SRG “ 20. As
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Figure 4.4 Matrix elements in the antisymmetrized Jacobi-HO representation for the 4He chan-
nel: Plotted are the absolute values of the intrinsic kinetic-energy matrix elements (a), and of the

interaction matrix elements for the flow parameter α “ 0 fm4 (b), 0.04 fm4 (c) and 0.16 fm4 (d). The

SRG evolution is performed with the standard initial NN+3N interaction for ~Ω “ 24MeV and an SRG

space defined by E4,SRG “ 20. The dark grid lines separate blocks of fixed energy quantum numbers

E123 and E1
123

.

in the three-body case we observe a suppression of the off-diagonal interaction matrix elements

driving the Hamiltonian to the pre-diagonal form determined by the intrinsic-kinetic energy

matrix. The pre-diagonalization seems to be more pronounced in the three-body case but this

is mainly due to the reduced range of energies in Fig. 4.4. Due to the large model-space dimen-

sions in the four-body space we show only those matrix elements with E123, E
1
123 ď 16, while

in the three-body case in Fig. 4.2 we display all matrix elements with E12, E
1
12 ď 28.

In Fig. 4.5 we examine the 4He ground-state energy obtained in NCSM calculations plotted over

the many-body model-space truncation Nmax. The results are obtained with the initial NN+3N

Hamiltonian (blue circles) as well as with the SRG-evolved NN+3Nfull+4Nind Hamiltonians for

α “ 0.01 fm4 (red diamonds), 0.04 fm4 (green triangles), 0.16 fm4 (violet boxes), and 0.64 fm4

(light blue stars). The Hamiltonian is evolved in the four-body Jacobi-HO representation with
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Figure 4.5 4He ground-state energy as function of the model space Nmax: The ground-state energies

are obtained in an NCSM calculation using the standard NN+3N Hamiltonian without the Coulomb

interaction. The SRG evolution has been performed in a four-body space truncated by E4,SRG “ 20 up

to the flow-parameter value α “ 0 fm4 ( •), 0.01 fm4 ( ), 0.04 fm4 (N), 0.16 fm4 (�), and 0.64 fm4 (★),

using ~Ω “ 24MeV. The dashed horizontal line correspond to the experimental value [164].

an SRG space of E4,SRG “ 20. Note, the SRG space corresponds to the Nmax “ 20 model

space of an NCSM calculation, which is performed by diagonalizing the Hamilton matrix in

the Jacobi-HO representation. Therefore, by definition, the ground-state energies of all evolved

Hamiltonians converge to the result of the bare interaction with Nmax “ 20. As for the triton

the convergence acceleration with respect to the model space caused by the SRG evolution is

substantial. In particular, at the beginning of the evolution one achieves a strong convergence

acceleration, while it tends to saturate for the largest studied flow parameters.

Note that the energy curve obtained with the bare Hamiltonian is not yet fully converged in the

Nmax “ 20 space. Thus we are missing relevant contribution during the SRG from the outset.

After the SRG evolution this contributions cannot be considered via an Nmax extrapolation.

To perform a reliable calculation for the 4He ground-state energy it would be necessary to use

much larger four-body SRG spaces. However, although the four-body SRG space cannot cover

all relevant relevant NN and 3N contributions, this model space might be large enough to treat

the relevant induced 4N contributions and we investigate this issue in Sec. 6.4.

Therefore, a more sophisticated approach is to obtain the irreducible contributions from separate

SRG evolutions in the two-, three-, and four-body space and to utilize the subtraction procedure

illustrated in Fig. 4.1. This approach allows for the evolution of the NN and 3N contributions

in much larger SRG spaces because we can use E2,SRG ą E3,SRG ą E4,SRG. Note that repulsive

Coulomb interaction is not included in the presented 4He calculations leading to a sizable

overbinding of the ground-state energy.
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It is interesting to examine the induced 3N and 4N contributions that originate from the initial

NN and NN+3N interactions. To this purpose Fig. 4.6 shows the 4He ground-state energies, that

have been obtained with the Hamiltonians denoted by NNonly (blue circles), NN+3Nind (red

diamonds), and NN+3Nind+4Nind (red open diamonds) starting from the initial NN interaction

as well as the NN+3Nfull (green triangles) and NN+3Nfull+4Nind (green open triangles), where

we start with the initial NN+3N interaction. We perform the SRG evolution in two-, three-,

and four-body space with an SRG space truncation of ESRG “ 20 for each evolution, such that

the subtraction procedure is not required. The results are plotted over a large flow-parameter

range, with the flow parameter doubling from α “ 0.0025 fm4 up to 1.28 fm4, which substantially

exceeds the α range typically used in nuclear structure calculations. For those calculations with

a particle number A ą 4, we follow the philosophy to choose the flow parameter α as small as

possible to avoid an increase of the induced many-body forces and to use α as large as necessary

to achieve a sufficient convergence of the many-body calculations. Therefore, we typically use

flow parameters in the range from α “ 0.02 to 0.16 fm4.

In the following, we demonstrate the emergence and, in particular, the inclusion of induced

4N forces. In Fig. 4.6 (a) we observe that the ground-state energy obtained with the NNonly

Hamiltonian shows a strong dependence on the flow-parameter value. This indicates that

the omitted induced contributions have a strong repulsive effect for the small α values, that

turns into an attractive effect beyond the flow-parameter value α “ 0.64 fm4. The result of

the initial NN interaction can be recovered for a large α range, when including the induced 3N

contribution, i.e., using the NN+3Nind Hamiltonian. Furthermore, the inclusion of the initial 3N

forces leads to an attraction and an improved description of the experimental value. Note that

the omission of the Coulomb interaction leads to an overbinding of the calculated ground-state

energy compared to experiment. When we include the induced 4N contributions we reproduce

the ground-state energy of the bare NN and NN+3N Hamiltonians over the complete flow-

parameter range. This confirms that all relevant contributions are included in the four-body

space, such that the eigenvalues are invariant under the unitary SRG transformation. The

discrepancies of the ground-state energies of the considered flow-parameter range are far below

1 keV, monitoring the numerical precision of the Hamilton matrix evolution.

In the following, we study the effect of the induced 4N contributions originating from the initial

NN and NN+3N interaction by considering the deviations of the NN+3Nind and NN+3Nfull

results from the result including the 4N contributions. We zoom in the corresponding regimes

illustrated in Fig. 4.6 (b) and (c), respectively. The induced 4N forces show a rather complicated

effect as function of the flow parameter. The induced 4N forces originating from the initial NN

interaction in Fig. 4.6 (b) are slightly repulsive in the range of α “ 0.0025´0.04 fm4, leading to

a local minimum for the curve with the NN+3Nind Hamiltonian and a maximal discrepancy of

about 40 keV to the constant energy of the NN+3Nind+4Nind Hamiltonian. Beyond the flow-

parameter value α “ 0.16 fm4 the repulsive induced 4N forces cause a second minimum for the

88



4.7 SRG Evolution in Four-Body Space

curve with the NN+3Nind Hamiltonian of up to 370 keV.

When starting with an initial NN+3N interaction in Fig. 4.6 (c) the induced 4N forces are

slightly repulsive for the range of α “ 0.0025 ´ 0.08 fm4 and their repulsion increases mono-

tonically from about 25 keV to 70 keV, while it rapidly increases to more than 315 keV for

the larger flow parameters and turns into an attraction for the largest studied flow-parameter

value. Note, the discrepancy observed between the energies obtained with the NN+3Nfull and

NN+3Nfull+4Nind Hamiltonian are caused by a combination of the omitted induced 4N forces

that originate from the initial NN as well as from the initial 3N interaction.

A similar investigation has been performed for the triton and 4He using the NNonly, NN+3Nind

and NN+3Nfull Hamiltonians in Ref. [163], i.e., without inclusion of the 4N contributions.

Besides differences concerning the SRG spaces and the treatment of the isospin breaking, an

alternative definition of the flow-parameter value is used. For comparison the equivalent results

of Fig. 4.6 as function of the scale parameter λSRG “ α´p1{4q can be found in Fig. 4.7.

In summary, in the flow-parameter regime we typically use for nuclear structure calculations,

i.e., α “ 0.02 ´ 0.16 fm4 (λSRG « 1.58 ´ 2.66 fm´1), the effect of the repulsive induced and

attractive initial 3N forces to the 4He ground-state energy are both of the order of 3MeV

and by coincidence almost cancel each other. The effect of the induced 4N forces are much

smaller and lead to an attraction of less than 130 keV, indicating a hierarchy of the 3N and

4N forces. A small attractive 4N effect for the initial NN+3N interaction already emerges at

the very beginning of the SRG evolution and remains almost constant throughout our typical

flow-parameter range. It would be difficult to identify such an effect of the induced 4N forces

by a flow-parameter variation using SRG evolutions exclusively at the three-body level. Note,

the effect of the 4N contributions for α ď 0.02 fm4 is almost negligible and based on the studies

in this section we do not expect to miss sizable 4N effects by the flow-parameter variation used

in practice. Nevertheless, it might be interesting to study the induced 4N forces by an explicit

inclusion (or by determining the converged result of the bare Hamiltonian if possible) even for

observables, where one finds a negligible flow-parameter dependence to confirm our assumption.
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Figure 4.6 4He ground-state energy as function of the flow parameter α: Plotted is the 4He

ground-state energy obtained in an NCSM calculation for Nmax “ 20 using the SRG-evolved NNonly

( •), NN+3Nind ( ), and NN+3Nind+4Nind ( ˛) Hamiltonians, where we start with the standard NN

interaction, as well as the NN+3Nfull (N) and NN+3Nfull+4Nind (△) Hamiltonians, where we start with

the standard NN+3N interaction. For all calculations the Coulomb interaction has been omitted and we

have averaged over the isospin projection quantum numbers. In the lower two plots we emphasize the

effect of the induced 4N contributions originating from the initial NN (b) and NN+3N (c) interaction

using a diminished plot range. Further we used ~Ω “ 24MeV and ESRG “ 20. The dashed horizontal

line correspond to the experimental value [164]. Note that the flow-parameter value α is doubled for

each tick on the abscissa. See text for further description.
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Figure 4.7 4He ground-state energy as function of the flow parameter λSRG: Illustrated are the

same results as in Fig. 4.6, where the ground-state energy is plotted as function of λSRG “ α´p1{4q

in order to provide a simpler comparison to the other flow-parameter convention commonly used in

the nuclear structure community. The results of the bare Hamiltonian correspond to λSRG “ 8. The

dashed horizontal line correspond to the experimental value [164].
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4.7.2 Subtraction Procedure

In the previous section we have demonstrated how to include the relevant induced 4N contribu-

tions for the description of the 4He ground-state energy. When aiming at man-body calculations

for this nucleus or heavier nuclei that are converged with respect to the SRG space, it is nec-

essary to perform the SRG evolutions in the two-, three-, and four-body space separately and

utilize the subtraction procedure to obtain the corresponding irreducible contributions. We have

discussed the incompatibility of the SRG spaces of different particle ranks with the truncation

formulated in the Jacobi basis. Compared to the SRG in the three-body space the dimensions

of the four-body model spaces increase dramatically with ESRG, in particular, for the channels

with an angular momentum J123 ą 0 (see Sec. 3.1.3). Therefore, we are restricted to SRG

spaces with E4,SRG ă E3,SRG and as we illustrate in Sec. 6.4 for nuclei in the p shell, the

subtraction procedure can have sizable effects on the ground-state energy. For sufficiently large

SRG spaces the nuclear observables are independent of the specific subtraction procedure. In

order to validate that the SRG space is large enough we introduce several subtraction schemes

and study their influence on the energies.

The subtractions are performed with the general procedure described in Fig. 4.1, while the

schemes differ by an adjustment of the ESRG truncation by typically p´1q or p´2q, according

to the parity. In the following we use the notation E
pπq
n,SRG for the SRG truncation, where the

superscript denotes the parity of the channel with particle rank n and for general statements

independent of the particle rank we skip the subscript n. For instance E
p`q
4,SRG corresponds to

the SRG space truncation of a four-body channel with positive parity.

It is important to note that the relative energy quantum numbers of the states corresponding to

positive-parity channels are even, and odd for negative-parity channels. Thus SRG evolutions

for positive-parity channels are identical for an even E
p`q
SRG and an odd E

p`q
SRG ` 1. Similarly

evolutions of negative-parity channels are equivalent for an odd E
p´q
SRG and an even E

p´q
SRG ` 1.

We now list the subtraction schemes, that successively increase in complexity.

SubA: This subtraction scheme is the simplest one and corresponds to the subtraction used

in practice to obtain the irreducible 3N contributions (see Sec. 4.6.2). The SRG space for the

four-body channels is defined by an even E
p`{´q
4,SRG truncation for both parities and use this trun-

cation also for the evolution in two- and three-body space, i.e., Ep`{´q
2,SRG “ E

p`{´q
3,SRG “ E

p`{´q
4,SRG, to

obtain the contributions for the subtraction.

As illustrated for the three-body case, this scheme is not unique because the four-body channels

with negative parity are effectively evolved using E
p´q
4,SRG “ E

p`q
4,SRG ´ 1, while the subtracted

positive-parity two- and three-body contributions are evolved for E
p`q
2,SRG “ E

p`q
3,SRG “ E

p´q
4,SRG.

This means that we subtract contributions of model spaces that do not contribute during the
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four-body evolution and one might adjust the E
p´q
4,SRG for the negative parity channels, yielding

the next subtraction scheme.

SubB: The SRG spaces for the four-body channels with positive and negative parity are de-

fined by an even E
p`q
4,SRG and an odd E

p´q
4,SRG “ E

p`q
4,SRG ` 1 truncation.12 Further, the same

truncation as in the four-body space is used for the evolution of the subtracted contributions,

i.e., for positive-parity four-body channels E
p`{´q
2,SRG “ E

p`{´q
3,SRG “ E

p`q
4,SRG and for negative-parity

four-body channels E
p`{´q
2,SRG “ E

p`{´q
3,SRG “ E

p´q
4,SRG “ E

p`q
4,SRG ` 1.

This subtraction scheme ensures that there are no obvious contributions incorporated in the

three-body SRG space that effectively do not contribute to the evolution in the four-body SRG

space. But the two-body SRG space that is used for the subtraction to obtain the irreducible 3N

parts still contains contributions that do not contribute to the evolution in the three- and four-

body space. For instance, we consider a positive-parity four-body channel with even E
p`q
4,SRG.

The negative-parity three-body channels are effectively evolved with an E
p´q
3,SRG “ E

p`q
4,SRG ´ 1

truncation while the positive-parity two-body evolution used for the subtraction is performed

for E
p`q
2,SRG “ E

p`q
4,SRG and not for E

p`q
2,SRG “ E

p`q
4,SRG ´ 2. This means, there are obviously con-

tributions in the two-body space, that do not appear in the three-body space. To account for

these contributions as well we introduce the following scheme.

SubC: The SRG spaces are defined as for the SubB scheme with the exception of the two-

body SRG spaces that are used for the subtraction to obtain the irreducible three-body parts

of a channel, whose parity differs from the parity of the four-body channel. In this case the

two-body SRG spaces with the same parity as the four-body channel are adjusted by reducing

E2,SRG to the effective truncation used for three-body evolution, i.e., E
p`{´q
2,SRG “ E4,SRG ´ 1

or E
p`{´q
2,SRG “ E4,SRG ´ 2 for the two-body channels with a different or equal parity than the

three-body channel, respectively.

To formulate a subtraction scheme fully consistent with the principle of not incorporating con-

tributions for the subtraction that are not included for the actual evolution, there is still a

non-trivial aspect missing. So far, we have considered all subtractions described in Fig. 4.1,

besides the direct subtraction of the irreducible NN contributions in the four-body space. As

already explained, we first convert the NN contributions to the three-body space and subse-

quently to the four-body space to perform the subtraction. Let us, for instance, again consider

a positive-parity four-body channel using an even E
p`q
4,SRG. As evident from this procedure,

12The E
p´q
4,SRG truncation is increased and not lowered by one for the negative-parity channels in order to have

an equal number of contributing pE123, E
1
123q-blocks for positive and negative parities during the SRG evolution.
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there are irreducible two-body parts with positive parity, evolved with E
p`q
2,SRG “ E

p`q
4,SRG, that

contribute to the four-body space via a negative-parity three-body channel. This three-body

space on the other hand can only represent SRG spaces with an E
p´q
3,SRG “ E

p`q
4,SRG ´ 1 and one

can adjust the corresponding two-body SRG spaces to take care of this issue, which leads to

the final subtraction scheme.

SubD: The SRG spaces are defined as for the SubC scheme, with the exception of the two-body

SRG spaces used for the subtraction in the four-body space. The two-body SRG spaces are

adjusted according to the parity of the three-body channel, which is used for the conversion to

the four-body space. The adjustment is performed in the same manner as described in SubC

for the intermediate three-body channels, that have a different parity than the targeted four-

body channels. For instance we consider the two-body contributions used for the subtraction

in a positive-parity four-body channel with even E
p`q
4,SRG. If the two-body parts contribute via

a positive-parity three-body channel we use the same truncations as for SubC and SubB, i.e.,

E
p`q
2,SRG “ E

p`q
4,SRG and E

p´q
2,SRG “ E

p`q
4,SRG (note it is equivalent to use E

p´q
2,SRG “ E

p`q
4,SRG ´ 1). If

the two-parts contribute via a negative-parity three-body channel we use E
p`q
2,SRG “ E

p`q
4,SRG ´ 1

and E
p´q
2,SRG “ E

p`q
4,SRG ´ 2.

These four subtraction schemes exhibit a successively increased complexity and consistency

with regard to the principle of not incorporating contributions for the subtraction that are

not included in the actual evolution. We utilize these schemes to investigate the dependence

of nuclear observables on the subtraction and, thus, test if the results are insensitive to the

SRG-space truncation.

4.7.3 Frequency Conversion

Due to the large model-space dimensions in the four-body space, we are computationally limited

to rather small ESRG truncations compared to the two- and three-body space. To improve the

convergence with respect to the SRG space, it is crucial to apply the frequency-conversion

approach. The general idea has been discussed for the three-body case in Sec. 4.6.3 and we

can proceed with the derivation of the frequency-conversion formula. Our goal are interaction

matrix elements in the antisymmetric four-body Jacobi-HO representation |E123i123J123T123ya
defined with respect to the HO frequency ~Ω, that is required in the many-body calculations.

Therefore, we express these matrix elements by a superposition of interaction matrix elements in

the Jacobi representation |Ẽ123 ĩ123J123T123ya defined with respect to the HO frequency ~ΩSRG,
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4.7 SRG Evolution in Four-Body Space

that is used for the SRG evolution

axE123i123J123T123|Vα |E1
123i

1
123J123T123ya “

E4,SRG
ÿ

Ẽ123Ẽ
1
123

ÿ

ĩ123 ĩ
1
123

ˆ axE123i123J123T123|Ẽ123 ĩ123J123T123ya axE1
123i

1
123J123T123|Ẽ1

123 ĩ
1
123J123T123ya

ˆ axẼ123 ĩ123J123T123|Vα |Ẽ1
123 ĩ

1
123J123T123ya ,

(132)

As in the three-body case the interaction only connects bra and ket states with equal angular

momentum and isospin, also for HO states defined with respect to different frequencies. The

transformation formula is obtained by inserting unity operators in the Jacobi representation

defined with respect to ~ΩSRG. The model space of the frequency conversion is limited by E4,SRG

and corresponds to the SRG space. Eventually, we have to determine the overlaps of the Jacobi-

HO states for the different HO frequencies. To derive the expression for the overlap we first use

the relation (65), such that we have to calculate the overlap between the partial antisymmetric

four-body state |E12i12N3;α
1
123ya12 for different HO frequencies. The decoupling of the angular

momenta of this four-body state yields a product state of an antisymmetric three-body Jacobi

state and a state that is defined with respect to the third Jacobi coordinate |E12i12J12ya12 b
|N3pL3

1

2
qJ3y, where we have omitted the isospin part and the projection quantum numbers

for brevity. Based on these states we apply an analogous procedure as in Sec. 4.6.3 for the

three-body case, to derive the transformation formula for the overlap, yielding

axE123i123J123T123|Ẽ123 ĩ123J123T123ya “
ÿ

N1N2N3

ÿ

Ñ1Ñ2Ñ3

ÿ

α12

ÿ

L3J3

ˆ δE12,2N1`L1`2N2`L2

ż

dπ1 π
2
1 R

˚
N1L1

pπ1qRÑ1L1
pπ1q

ˆ δẼ12,2Ñ1`L1`2Ñ2`L2

ż

dπ2 π
2
2 R

˚
N2L2

pπ2qRÑ2L2
pπ2q

ˆ δE123,E12`2N3`L3
δẼ123,Ẽ12`2Ñ3`L3

ż

dπ3 π
2
3 R

˚
N3L3

pπ3qRÑ3L3
pπ3q

ˆ
ÿ

i12

Ci12
N1N2α12

C̃i12i123
E12N3α123

ÿ

ĩ12

C ĩ12
Ñ1Ñ2α12

C̃ ĩ12 ĩ123
Ẽ12Ñ3α123

,

(133)

with the collective index α12 “ tL1, S1, J1, L2, J2, J12, T1, T12u and α123 “ tJ12, L3, J3, J123,

T12, T123u. Formula (133) has a similar structure as for the corresponding overlap in the three-

body case (131), but additionally involves components that are defined with respect to the third

Jacobi coordinate. In particular the calculation of the overlap becomes more complex due to

the additional sums over the indexes pi12, ĩ12q and the appearance of the four-body CFPs that

both originate from relation (65). The additional sums and quantities included in the four-body

frequency-conversion formula as well as the sheer number of matrix elements that appear in

the four-body model spaces are the reason that the frequency-conversion approach provides
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a computational challenge. Careful pre-cachings and optimized loop evaluations, e.g., using

BLAS routines, are mandatory to efficiently perform the frequency conversion in the four-body

space.
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An important technical aspect of the SRG evolution concerns the model space used for the

numerical evolution. In this section we introduce the model spaces used for the three-body

SRG evolution and validate that the nuclear structure results are independent to the SRG-

space truncation. Furthermore, we demonstrate the benefits of the frequency conversion. We

start with the investigation with the SRG evolution used in nuclear structure calculations for

p- and sd-shell nuclei (see Sec. 5.1). Further, we present results using the frequency conversion

that is applied to improve the convergence with respect to the SRG space (see Sec. 5.2). Finally,

we discuss the challenges in terms of the three-body SRG evolution that appear in applications

to medium-mass and heavy nuclei.

The three-body SRG evolution is performed separately for the pJπ
12T12q-channels in the an-

tisymmetric Jacobi-HO representation (60) as described in Sec. 4.6. Generally, the model-

space dimension increases rapidly with J12, while contributions for large angular momenta are

typically less important for the low-energy properties we are focusing on. Therefore, we use

an angular-momentum dependent SRG-space truncation parameter E3,SRGpJ12q that decreases

with increasing J12.

The SRG space for applications to p- and sd-shell nuclei is schematically illustrated in Fig. 5.1

by plotting the truncation parameter E3,SRG as function of the relative angular momentum J12.

For comparison we present this SRG space (blue solid line), which has been applied in several

publications [20,23–25,29,35,36,145], with the SRG space used by Jurgenson et al. (gray dashed

line), e.g., in Refs. [158, 163, 165]. Our SRG space starts with an E3,SRG “ 40 for the lowest

J12 ď 5

2
and ramps down linearly to E3,SRG “ 24 used for all J12 ě 13

2
. We denote this model

space as rampA in the following. This SRG space contains all possible pJπ
12T12q-channels, with

J12 ď 51

2
for an energy truncation of E3,SRG “ 24. Due to the large SRG-space dimensions

for rampA we have developed an efficient implementation of the three-body SRG evolution.

The model space for the pJπ
12T12q “ p5{2`1{2q-channel is the largest for the rampA truncation.

For this particular channel one requires about 250MB to store the interaction matrix elements

in single precision utilizing the basic symmetries discussed in Sec. 3.2. Owing to the efficient

implementation, we can evolve this channel in about six hours to a typical flow-parameter value

α “ 0.04 fm4 on a standard computing node.

The SRG space used by Jurgenson et al. starts at E3,SRG “ 40 for J12 “ 1

2
as well, but directly

ramps linearly down to E3,SRG “ 20, which is used for J12 ě 21

2
. As is evident from Fig. 5.1

the SRG space applied in this work exceeds or agrees with the one used by Jurgenson et al. for
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Figure 5.1 Standard SRG space for p- and sd-shell nuclei: Schematic representation of the E3,SRG

truncation parameter as function of the relative angular momentum J12 that defines the standard SRG

space used in this work for applications to p- and sd-shell nuclei (blue solid line). For comparison we

plot the SRG space used by Jurgenson et. al (gray dashed line) [158,163,165].

all pJπ
12T12q-channels except those from J12 “ 11

2
to 15

2
. For these particular channels they use

a slightly larger E3,SRG than the rampA.

However, as we demonstrate in this section, our SRG space is sufficiently large and does not

effect the energies for the p- and sd-shell nuclei investigated in this thesis. The results of

these investigations are also summarized in Ref. [21]. Unfortunately, a similar validation for

the SRG space used by Jurgenson et al. is not published, such that discrepancies observed for

calculations with the two SRG spaces (see, e.g., [21] and [165]), need not necessarily originate

from the truncations of the many-body approaches, but could be partially caused due to missing

contributions in the SRG space of Ref. [165]. Therefore, we stress that a careful investigation

of the truncations is crucial for reliable physical applications.

5.1 Sensitivity to the SRG Model Space

In the following we study the limitations of the standard three-body SRG space applied to

nuclei up to the sd shell (denoted by rampA). For this purpose we introduce further SRG

spaces that probe vital J12 sectors of the model space by variations of the E3,SRGpJ12q trun-

cation. The standard SRG space (blue solid line) as well as the additional SRG spaces are

schematically illustrated in Fig. 5.2. The rampB (red dashed line) starts with E3,SRG “ 40 for

J12 ď 3

2
and decreases linearly to E3,SRG “ 24 at J12 “ 11

2
, wherefrom the truncation remains

constant for the larger angular momenta. This SRG space is used to probe the sufficiency of the

intermediate angular-momentum regime 5

2
ď J12 ď 11

2
, where it differs from rampA. Further,

we introduce ramp C (green dotted line) to probe the low angular-momentum regime, where we
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Figure 5.2 SRG spaces for sensitivity analysis: Illustrated is a schematic presentation of the E3,SRG

truncation parameter as function of the relative angular momentum J12, that defines the default SRG

space used in this work for applications to p- and sd-shell nuclei, also called rampA (blue solid line), as

well as rampB (red dashed line) and ramp C (green dotted line) that are used for a sensitivity analysis.

use a truncation of E3,SRG “ 36 up to J12 “ 7

2
. For the larger angular momenta this SRG space

agrees with rampA.

To study the sensitivity to SRG-space truncation we perform IT-NCSM calculations with the

NN+3Nfull Hamiltonian using the standard chiral NN+3N interaction (see Sec. 1.3.3) SRG

evolved in the different three-body model spaces illustrated in Fig. 5.2. We investigate the

sensitivity of the nuclear many-body observables on the SRG-space truncation of rampA by

comparing the results to those obtained with rampB and ramp C. In Fig. 5.3 we show the

ground-state energies of 4He (left-hand panels) and 16O (right-hand panels) using a HO fre-

quency of ~Ω “ 16MeV (upper panels) and 20MeV (lower panels) as function of Nmax. The

three curves correspond to the results using the SRG spaces defined by rampA (blue circles),

rampB (red diamonds) and ramp C (green triangles).

For the larger frequency the ground-state energies of both nuclei agree for the different SRG

spaces, indicating that for ~Ω “ 20MeV the SRG spaces are sufficiently large to accurately

describe these observables. In contrast, for ~Ω “ 16MeV already the 4He ground-state energy

shows small deviations with ramp C from the results with rampA and rampB. While the curves

corresponding to rampA and rampB provide essentially the same result, ramp C gives 0.4% less

binding, indicating that the SRG space for ~Ω “ 16MeV is not fully converged for the partial

waves with low angular momenta. The dependence on the SRG-space truncation increases with

particle number, such that for 16O we observe a sizable discrepancy between the three curves

of 1.5%.

A finite HO model space with a certain E3,SRG truncation incorporates a high momentum/energy
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Figure 5.3 Dependence of ground-state energies on the SRG space: Plotted are the ground-state

energies of 4He (left-hand column) and 16O (right-hand column) with the standard NN+3Nfull interac-

tion obtained in IT-NCSM calculations as function of Nmax, for ~Ω “ 16MeV (upper row) and 20MeV

(lower row). The SRG evolutions are performed up to a flow parameter α “ 0.08 fm4 using the SRG

spaces defined by rampA ( •), rampB ( ), and rampC ( •). The results are published in Ref. [21].

(so-called ultraviolet) truncation as well as a low momentum/energy (so-called infrared) trun-

cation that both depended on the HO frequency. With decreasing HO frequency the ultraviolet

truncation becomes significant while with decreasing HO frequency the infrared truncation be-

comes significant. From the results in Fig. 5.3 we can conclude that the ground-state energies,

particularly for the heavier nuclei are predominantly affected by the ultraviolet truncation of the

SRG space. Hence, the dependence on the SRG spaces increases with decreasing HO frequency,

leading to spurious repulsion. The repulsive effect can be easily understood for an insufficient

E3,SRG truncation used for a calculation of the triton binding energy, where the calculated en-

ergy corresponds to result of the bare Hamiltonian obtained in an Nmax “ E3,SRG model space.

Due to the variational principle the missing contributions in SRG space increase the binding.

For the heavier nuclei the spurious repulsion cannot be rigorously explained by such simple

arguments, since the variational principle holds only for the truncations of the A-body space,

but not for truncations of the three-body space (with A ą 3). It is an interesting observation

that the SRG space dependence has the naively-expected repulsive effect.
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Figure 5.4 Dependence of excitation energies on the SRG space: Plotted is the excitation spectrum

of 12C with the standard NN+3Nfull interaction obtained with the IT-NCSM as function of Nmax, for

~Ω “ 16MeV (left-hand panel) and 20MeV (right-hand panel). The SRG evolution are performed for

α “ 0.08 fm4 using the SRG spaces defined by rampA (solid bars), rampB (dashed bars), and rampC

(dotted bars). Note the excitation energies are almost on top of each other. The results are published

in Ref. [21].

We can also investigate the sensitivity to the SRG space truncation in context of excitation

energies as illustrated in Fig. 5.4, where the excitation spectrum of 12C using ~Ω “ 16 (a) and

20MeV (b) as function of Nmax is shown. The excitation energies for the SRG spaces defined

by rampA (solid bars), rampB (dashed bars), and ramp C (dotted bars) are essentially on top

of each other for both frequencies. This reveals, that the missing contributions of the SRG

space for the lower frequency causes a similar repulsive effect for the ground state as well as

for the excited states, such that the excitation energies are almost insensitive to the SRG space

truncation.

In order to apply interactions SRG evolved in appropriately large SRG spaces to nuclear struc-

ture calculations, in particular, for lower HO frequencies that are required, e.g., investigate

long-range properties of a nucleus, one could simply try to increase the SRG space. However,

this would cause a tremendous increase of the computational efforts and becomes unfeasible for

very low frequencies. Therefore, we apply the more sophisticated frequency conversion discussed

in the next section.

5.2 The Frequency-Conversion Approach

The formal concept of the frequency-conversion approach in the three-body space is discussed

in Sec. 4.6.3. In the following we illustrate the benefits of this approach revisiting the 4He and
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Figure 5.5 Frequency conversion for 16O ground-state energy: Plotted is the ground-state energy

of 16O with the standard NN+3Nfull interaction as function of HO frequency ~Ω used in the IT-NCSM

calculations for Nmax “ 8. We compare the standard SRG evolution, where the HO frequency ~ΩSRG

corresponds to the frequency ~Ω (left-hand column) with an SRG evolution at fixed ~ΩSRG “ 24MeV

utilizing a subsequent frequency conversion of the interaction matrix elements to ~Ω (right-hand col-

umn). The SRG evolutions are performed with α “ 0.08 fm4 using to the SRG spaces defined by rampA

( •), rampB ( ), and rampC (N). The dashed line indicates the experimental value. The results are

published in Ref. [21].

16O ground-state energies. The results are plotted in Fig. 5.5 where we perform the IT-NCSM

calculations for Nmax “ 8 and α “ 0.08 fm4, and a sequence of HO frequencies ranging from

~Ω “ 24 MeV down to 12MeV. The results shown in the left-hand panels are obtained using

the same HO frequency in the SRG evolution ~ΩSRG “ ~Ω as for the many-body calculations.

For the right-hand panels we use a fixed ~ΩSRG “ 24MeV for the three-body SRG evolution and

subsequently convert the HO frequency to the ~Ω used for the many-body calculations. Note,

that we apply the same model space for the frequency conversion as for the SRG evolution. The

upper panels show the ground-state energies obtained for the SRG spaces defined by rampA

(blue circles), rampB (red diamonds), and ramp C (green triangles). To facilitate analysis the

lower panels show the deviation of the ground-state energies from the ones obtained with the

standard rampA.

The advantage of the frequency-conversion approach is obvious. Whereas the ground-state

energies strongly deviate with decreasing frequency without using the frequency conversion

the results with frequency conversion show no sensitivity to the SRG space truncation. This

confirms that the model space used for the SRG evolution as well as for the frequency conversion

are sufficiently large, such that the energies are not affected by the model space truncation.
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The SRG evolution using ~ΩSRG “ ~Ω leads to a substantial underbinding of the ground-

state compared to the accurate result using the frequency-conversion approach. The relative

deviations in the lower left-hand panel indicate that especially the insufficiency of the SRG

space at the lowest angular momenta causes a sizable repulsion.

In summary, the frequency conversion is indispensable for nuclear structure calculations in the p

shell using HO frequencies below ~Ω “ 16MeV. Such low frequencies are relevant in the NCSM,

e.g., to obtain convergence for observables that depend on long-range properties of the nucleus.

Owing to the frequency conversion the prior disadvantage of the HO representation, i.e., the

dependence of the model space on the HO frequency is turned into a practical tool to adapt

the ultraviolet and infrared truncations to the requirements of the application. Besides the

advantages that have been discussed above, the frequency conversion yields also a considerable

gain in the computational efficiency. Without the frequency conversion the SRG evolution needs

to be performed for each frequency used for the many-body investigations, while now one needs

to evolve the Hamiltonian only for a single adequate frequency and can subsequently convert

the matrix elements to the desired frequencies. The conversion is very robust with respect to

the model space as illustrated in Fig. 5.5 (b) and due to the simple transformation discussed in

Sec. 4.6.3 its computational demands are only a fraction of those for the SRG evolution.

5.3 SRG Space for Medium-Mass and Heavy Nuclei

The standard SRG space, denoted by rampA, is constructed to reliable SRG evolve interactions

for nuclear calculations in the p shell and one needs to study if observables are still insensitive

to this SRG-space truncation when increasing the mass number. In this section we focus on the

three-body SRG evolution for medium-mass and heavy nuclei, which pose unforeseen challenges

and requirements for a reliable evolution.

In our applications in the medium-mass regime [29,35], using the coupled-cluster approach, we

have observed that at low frequencies the sensitivity of ground-state energies to the SRG-space

truncation increases with the mass number, such that in the A „ 50 mass regime the adequate

frequency range for the evolution is restricted to rather large HO frequencies. This behavior is

illustrated in Fig. 5.6, where we present the ground-state energies per nucleon, obtained with the

coupled-cluster method with single and doubles excitations (CCSD) for the closed-shell nuclei
40Ca (a), 48Ca (b), 56Ni (c), and 68Ni (d), using the NN+3Nind (red diamonds), and NN+3Nfull

(green triangles) Hamiltonian. We compare the results obtained with the conventional SRG

evolution without the frequency conversion, i.e., ~ΩSRG “ ~Ω (open symbols) to those obtained

by using ~ΩSRG “ 36MeV for the SRG evolution and a subsequent conversion to the frequency

~Ω. The SRG evolution is performed up to α “ 0.04 fm4 using the model space defined by

rampA. As initial interaction we use the standard NN and 3N interaction with a reduced

three-body cutoff of Λ3N “ 400MeV/c (see Sec. 1.3.3) in order to circumvent sizable induced
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5 Role of the SRG Model Space and Frequency Conversion

four-body contributions (see Sec. 6.2). All CCSD calculations are performed for a many-body

model space truncated by the maximum single-particle energy quantum number emax “ 12.

The 3N contributions are included explicitly up to E3,max “ 14.

Without the frequency conversion we observe a slight dependence on the SRG-space truncation

at ~Ω “ 24MeV for the 40Ca ground-state energy, indicated by the deviation from the frequency-

converted results. This dependence amplifies with increasing particle number, such that a

description of the 68Ni ground-state energy requires ~ΩSRG ě 32MeV. Interestingly, we observe

the equivalent repulsive effect at small frequencies ~ΩSRG using the NN+3Nind or NN+3Nfull

Hamiltonians. This signifies that the sensitivity to the SRG space does originate from the

three-body contributions that are induced by the initial NN interaction and not from the initial

3N interaction.

In conclusion, already for an application of the chiral NN interaction, we have to increase the

HO frequency further with increasing particle number, in order to use appropriate ultraviolet

truncations. This procedure cannot be applied to arbitrarily heavy systems using a certain

E3,SRG truncation, because at too large frequencies the infrared truncation starts to affect the

nuclear observables. In addition, the required model space for a reliable frequency conversion

increases with the deviation of the initial frequency from the final one. Thus, we restrict the

application range of the rampA SRG space to nuclei in the p and sd shell and define a new

standard SRG space for heavier nuclei.

In Fig. 5.7 we illustrate the relevant SRG spaces applied in this section in order to verify the

reliability of the evolution for heavy nuclear systems. Panel (a) compares the standard SRG

space (rampA) of the previous section for lighter systems (thin blue line) to the new standard

used for heavy nuclei (thick red line). The latter SRG space, denoted by rampD, is substantially

larger compared to rampA, particularly for large angular momenta.

This extension can be motivated by the naive single-particle shell-model picture [166]. For

heavy nuclei already the unperturbed HO Slater determinant occupies orbits with large single-

particle angular momenta and there are several 3N configurations with large coupled angular

momenta that contribute to the energy of this A-body state. Hence, the three-body channels

with large angular momenta are expected to contribute considerably to ground-state energies

of heavy nuclei and it is crucial to transform these channels as precise as those with low angular

momenta.

For this purpose we employ a new SRG space denoted by rampD for the heavy nuclei using

an E3,SRG truncation of 40 for J12 ď 7

2
and linear ramp down to E3,SRG “ 36, which is used

for all J12 ě 11

2
(thick red line in Fig. 5.7). To confirm that this extended SRG space is

appropriate over the complete angular-momentum domain we use ramp E (orange dotted line)

and rampF (dashed blue line) to resolve, in particular, the sensitivity to low angular momenta.

Both SRG spaces are illustrated in Fig. 5.7 (b). Panel (c) shows the SRG spaces used to probe
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Figure 5.6 Frequency conversion for medium-mass nuclei: Plotted are the ground-state energies per

nucleon of 40Ca (a), 48Ca (b), 56Ni (c), and 68Ni (d) with the NN+3Nind ( / ˛) and NN+3Nfull (N/△)

interaction as function of the HO frequency ~Ω used in the CCSD calculations. We use the standard

initial NN and 3N interaction with a reduced three-body cutoff of Λ3N “ 400MeV/c. Compared are

the results for the conventional SRG evolution, where ~ΩSRG corresponds to ~Ω (open symbols), with

the results for an SRG evolution at fixed ~ΩSRG “ 36MeV utilizing a subsequent frequency conversion

of the interaction matrix elements to ~Ω (solid symbols). The SRG evolutions are performed in the

SRG space denoted by rampA for α “ 0.04 fm4. The 3N contributions with E3,max “ 14 are included

explicitly in all CCSD calculations using a model space defined by emax “ 12. The results are published

in Ref. [30].
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Figure 5.7 SRG spaces for sensitivity analysis in the heavy nuclei regime: Illustrated is a schematic

representation of the E3,SRG truncation parameter as function of the relative angular momentum J12.

The standard SRG space for the heavy nuclei, denoted by rampD (thick solid red line) is compared

with the default SRG space for p- and sd-shell nuclei, also called rampA (thin blue line) in panel (a),

with rampE (orange dotted line) and rampF (dashed light blue line) in panel (b), as well as rampG

(green dotted line) and rampH (violet dashed line) in panel (c).

the intermediate angular-momentum domain, denoted by ramp G (green dotted line), as well as

the large angular-momentum domain using rampH (violet dotted line).

We study the sensitivity to the SRG spaces, illustrated in Fig. 5.7, by means of CCSD calcu-

lations for the ground-state energy of several closed-shell nuclei in Fig. 5.8 for the same initial

NN and NN+3N interactions as above. The interactions are SRG evolved up to α “ 0.08 fm4

for a frequency ~ΩSRG “ 36MeV using a subsequent frequency conversion to ~Ω “ 24MeV,

which is an appropriate frequency for the CCSD calculations in this mass regime. Further, we

use a many-body model space defined by emax “ 12 and explicitly include the 3N contributions

up to E3,max “ 14.

Figure 5.8 (a) shows the corresponding ground-state energies per nucleon using the SRG spaces

denoted by rampA (blue circles) and rampD (red diamonds). The black bars denote the data

taken from Ref. [164]. Further, we show the deviations from the rampD results when using the

SRG spaces denoted by ramp E (orange stars) and rampF (light-blue triangles) in Fig. 5.8 (b), as

well as rampG (green crosses) and rampH (violet squares) in Fig. 5.8 (c). Besides the NN+3Nfull

Hamiltonian (solid symbols) we additionally show results for the NN+3Nind Hamiltonian (open

symbols) in panel (c).

The comparison in panel (a) is striking: Even for the large frequency ~ΩSRG the standard

SRG-space truncation used in the p and sd shell (rampA) affects 56Ni leading to an artifi-

cial repulsion that rapidly increases with the particle number. Compared to the ground-state

energies obtained with rampD we observe a repulsion of about 6MeV per nucleon in the tin

isotopes when using rampA. We stress that the results illustrated in Fig. 5.8 serve for sensitiv-

ity analysis with respect to the SRG space, rather than for a quantitative comparisons to the

experiment. Since there are several truncations concerning the many-body method, as well as
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Figure 5.8 SRG space dependence for heavy nuclei: Panel (a) compares the ground-state energies

per nucleon for several closed-shell nuclei from 16O to 132Sn using an SRG space denoted by rampA

( •) and rampD ( ). The black bars denote the data taken from Ref. [164]. Panels (b) and (c)

show the deviation of the ground-state energy per nucleon using rampE (★) and rampF (N) as well

as rampG (✚) and rampH (�), respectively, from the results obtained with the largest SRG space,

i.e., rampD. All calculations are performed with CCSD for the NN+3Nind (open symbols) and the

NN+3Nfull Hamiltonian (solid symbols) using ~ΩSRG “ 36MeV, ~Ω “ 24MeV and α “ 0.08 fm4.

Further parameters as in Fig. 5.6. The results are published in Ref. [30].
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the treatment of the interaction that need to be addressed first (see Sec. 7). A comprehensive

investigation of the various truncations is published in Ref. [30].

As evident from Fig. 5.8 (b) the ground-state energies obtained for ramp E and rampF , which

both allow for considerably larger spaces in the large angular-momentum domain compared to

rampA, show a strongly reduced but still noticeable deviation from the results with rampD.

This difference increases from less than 8 keV for 56Ni to more than 200 keV per nucleon for 132Sn.

However, more important is the deviation of the results from ramp E to those from rampF ,

which is less than 10 keV per nucleon for all considered nuclei. This confirms the adequate size

of the SRG spaces for the low angular-momentum domain, where ramp E and rampF differ

from each other. Eventually, we have to validate the medium and large angular-momentum

domains of our standard SRG space for the heavy nuclei, which are probed in Fig. 5.8 (c). The

discrepancies are below 50 keV per nucleon even for the heaviest nuclei and demonstrate the

reliability of rampD.

As discussed above the inclusion of the initial 3N interaction has only a minor effect on the

discrepancies identifying the induced 3N contributions of the initial NN interaction to be respon-

sible for the high demands on the SRG space. Although the deviation we observe by probing

the different domains of the SRG space are well below 1%, these deviations increase rapidly

with the mass number, particularly due to large angular-momentum contributions, such that an

application of an initial NN interaction beyond 132Sn might require further extensions or novel

developments regarding the SRG space. Note that we have explicitly probed the sensitivity

of the energies to the frequency-conversion model space by reducing it for a fixed SRG space,

observing a negligible sensitivity of the ground-state energies to frequency-conversion model

space. Thus, the dependencies on the model-space truncation can be exclusively attributed to

missing contributions during the SRG evolution.

For the applications in medium-mass and heavy nuclei the frequency conversion is an indispens-

able tool to reduce the computational demands that come along with the SRG evolution in the

large model spaces and efficiently allows for an investigation of the HO frequency dependence

in the many-body calculations.
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6 SRG-Induced Many-Nucleon Contributions

In this section we discuss the treatment of many-body contributions that are induced during

the SRG evolution. For this purpose we apply the standard NN and NN+3N interactions of

Sec. 1.3.3 in nuclear structure calculations for p-shell nuclei using the IT-NCSM. In particular,

we concentrate on the effect of the induced beyond-3N contributions. We study the appearance

and origin of the induced many-nucleon contributions and present approaches to circumvent or

suppress these contributions in Sec. 6.1- 6.3. Finally, we apply the four-body techniques that are

discussed in this work to include these contributions explicitly to nuclear structure calculations

in Sec. 6.4. We carefully investigate the truncations and limitations that accompany the large

four-body model-space dimensions and present the first ab initio nuclear structure results for

p-shell nuclei including 4N forces explicitly.

6.1 Ground-State and Excitation Energies up to the p Shell

We continue the discussion of SRG-induced contributions for the 4He of Sec. 4.7.1, using the

state-of-the-art interaction treatment discussed in the previous sections that enables us to em-

ploy the 3N interaction matrix elements in IT-NCSM calculations up to Nmax “ 12 for the

heaviest p-shell nuclei..

In Fig. 6.1 we show the ground-state energies per nucleon of 4He (upper panels), 6Li (middle

panels), and 16O (lower panels) obtained with the NNonly, NN+3Nind, and NN+3Nfull Hamilto-

nian (left to right) plotted as function of Nmax. The SRG evolutions and IT-NCSM calculations

are performed at ~Ω “ 20MeV, which is close to the energy minimum in this mass regime [21].

The curves correspond to flow parameters between α “ 0.04 and 0.16 fm4. For all panels

we clearly identify the major benefit of the SRG evolution. With increasing flow parameter

the convergence of the many-body calculations with respect to the model space is accelerated.

This is indispensable for reliable extrapolations of the energies to infinite many-body model

spaces. Moreover, the regime of Nmax ą 8, which becomes applicable due to the use of the

efficient three-body interaction-matrix treatment and the importance-truncation technique, is

crucial to accurately extrapolate the ground-state energies (solid lines). The extrapolations use

the Nmax “ 6 ´ 12 results to fit an exponential function (see [21] for a detailed discussion of

different fit procedures).

The converged 4He ground-state energies for the NNonly Hamiltonian in Fig. 6.1 (a) show a

strong dependence on the flow-parameter α, which indicates that the induced three- and many-
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Figure 6.1 Flow-parameter dependence of ground-state energies: We show the ground-state energies

of 4He (upper row), 6Li (middle row), and 16O (lower row) obtained with the IT-NCSM as function

of Nmax, using the NNonly (left column), NN+3Nind (middle column), and NN+3Nfull (right column)

Hamiltonian. We start with the standard initial NN and NN+3N interactions and evolve them in the

SRG space denoted by rampA (see Fig. 5.2) up to α “ 0.04 fm4 ( •), 0.05 fm4 (✚), 0.0625 fm4 (�),

0.08 fm4 ( ), 0.12 fm4 (★), and 0.16 fm4 (N) with ~Ω “ ~ΩSRG “ 20MeV. The dashed horizontal lines

indicate the experimental value [164]. The results are published in Ref. [20].
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nucleon forces, which are omitted during the SRG evolution contribute significantly to the

ground-state energy. The explicit inclusion of the induced 3N forces using the NN+3Nind

Hamiltonian in Fig. 6.1 (b) leads to flow-parameter independent energies indicating that all

relevant many-nucleon contributions are included. This means that the induced beyond-3N

forces originating from the initial NN interaction have a negligible effect. A detailed discussion

of the flow-parameter dependence for 4He illustrated in Sec. 4.7.1 confirming that the energies

of the NN+3Nind Hamiltonian indeed correspond to the ones of the bare Hamiltonian. The

discrepancy between the α “ 0.04 fm4 and 0.16 fm4 energies for the NNonly Hamiltonian of less

than 120 keV per nucleon is rather small compared to the discrepancy of the more than 640 keV

per nucleon between the α “ 0.04 fm4 and the bare energy. This reveals that an extrapolation

from a sizable flow-parameter dependence to the bare energy is uncontrolled and we require

flow-parameter independent energies for reliable predictions. In principle, sizable many-nucleon

forces could be induced at the very beginning of the SRG evolution and affect the observable

by a constant shift for the examined flow-parameter range. However, the investigations in

Sec. 4.7.1 provide indications that sizable effects of the omitted induced contributions should

be noticeable by a flow-parameter dependence in the α regime we use in practice.

The inclusion of the initial chiral 3N interactions at N2LO shown in Fig. 6.1 (c) significantly

improves the description of the experimental 4He ground-state energy and retains the α inde-

pendence. The attractive effect of the initial 3N interaction of about 780 keV per nucleon is of

the same order as the repulsion from the induced 3N forces. A similar pattern as for 4He can

be observed for the ground-state energy of 6Li, such that the NN+3Nind Hamiltonian presented

in Fig. 6.1 (e) underbinds the experimental value by more than 750 keV per nucleon, while the

initial 3N interaction provides the missing attraction to significantly improve the experimen-

tal agreement illustrated in Fig. 6.1 (f). When increasing the mass number from the light to

the heavy edge of the p shell, i.e., when going to 16O, a sizable flow-parameter dependence

appears for the NN+3Nfull Hamiltonian in Fig. 6.1 (i), while for the NN+3Nind Hamiltonian

in Fig. 6.1 (h) the ground-state energy remains flow-parameter independent. This leads to the

conclusion that the induced beyond-3N contributions originating from the initial NN interac-

tion are still negligible, while the beyond-3N contributions of the initial 3N interaction become

strongly repulsive and should not be omitted. The NN+3Nind Hamiltonian underbinds the 16O

ground state by more than 0.5MeV per nucleon, while the NN+3Nfull Hamiltonian overbinds

the experimental ground-state energy, by 1 ´ 1.5MeV per nucleon for the considered flow-

parameter range. In contrast to 4He and 6Li, where the NNonly Hamiltonian at α “ 0.0625 fm4

provides similar results as the NN+3Nfull Hamiltonian, this is not the case for 16O, emphasizing

structural differences between the induced and initial 3N contributions. Thus, fitting the flow

parameter for the NNonly Hamiltonian in order to account for missing initial 3N interactions,

obviously does not work for different mass regions. We stress that because of the strong flow-

parameter dependence with included initial 3N interactions one can not make reliable conclusion
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Figure 6.2 Flow-parameter dependence of ground-state energies in the p shell: We show the

ground-state energies of 8Be, 10Be, 12C, and 14C (top to bottom) obtained with the IT-NCSM as

function of Nmax, using the NN+3Nind (left column), and NN+3Nfull (right column) Hamiltonian for

α “ 0.04 fm4 ( •), 0.08 fm4 ( ), and 0.16 fm4 (N). Further parameters are chosen as in Fig. 6.1. The

experimental data (dashed horizontal line) is taken from Ref. [164]. The results are published in Ref. [21].
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on the ground-state energy for the bare Hamiltonian. Thus we cannot exclude that the bare

NN+3N Hamiltonian describes the experimental energy appropriately as in the lighter systems.

The induced many-body contributions provide a clear limitation to the application range of

SRG-evolved chiral NN+3N interactions.

In Fig. 6.2 we show a systematic comparison of the NN+3Nind and NN+3Nfull ground-state

energies per nucleon for selected even-even nuclei in the p shell: 8Be, 10Be, 12C, and 14C (from

top to bottom). The calculations are performed for the same parameters as in Fig. 6.1 using a

reduced number of flow-parameter values that span the same range from α “ 0.04 to 0.16 fm4.

As before the flow-parameter independent energy obtained by using an initial NN interaction

and including the induced 3N contributions underbinds the ground state by about 1MeV per

nucleon. In the lighter nuclei 8Be and 10Be the inclusion of the initial 3N interaction leads to

a good agreement with the experimental value, while the dependence on the flow-parameter

successively increases with mass such that 12C and 14C are systematically overbound, which

might again be attributed to the missing repulsive beyond-3N contributions.

The induced beyond-3N contributions originating from the 3N force have a sizable impact on

absolute ground-state energies for nuclei beyond the mid-p shell, but as demonstrated in Fig. 6.3

they have a minor influence on excitation energies. This figure shows the excitation spectrum for

the lowest positive-parity eigenstates of 12C as function of Nmax (a comprehensive spectroscopic

investigation of this nucleus including negative-parity states with the NCSM and IT-NCSM is

published in Ref. [22]). For the SRG evolution we use the model space defined by rampA (see

Fig. 5.1) with α “ 0.04 fm4 (dashed bars) and 0.08 fm4 (solid bars). The IT-NCSM calculations

are performed at ~Ω “ 16MeV, where a good convergence with respect to the many-body

model space is observed. The left panel shows the results using the NNonly Hamiltonian, with a

noticeable but small flow-parameter dependence, which is reduced when including the induced

3N contributions in the middle panel.

The differences between the energies with the NNonly and the NN+3Nind Hamiltonian indicate

the effect of the repulsive induced 3N contributions increase the radius of the nucleus and leads

to a compression of the spectrum. The additional inclusion of the initial 3N force shown in

the right panel leads to an overall improved description of the experimental spectrum. The

excitation energies of the rotational band, i.e., of the first 2` and, in particular, of the first

4` state are increased by the initial 3N interaction. The excitation energy of the first excited

1` state declines, leading to an underestimation of the experimental excitation energy by more

than 3MeV. We further discuss the 12C spectrum in Sec. 8, where we analyze the sensitivity

to the parameters of the initial 3N force and compare the spectrum to those computed with

different present chiral interactions.

It is important to note that the omitted induced many-nucleon contributions for the NN+3Nfull

Hamiltonian do not affect the internal structure of the spectrum and lead to a rather constant

shift of the absolute energies. The excitation energies show a negligible flow parameter depen-
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Figure 6.3 Excitation spectra for 12C: We show the excitation spectrum of 12C obtained from IT-

NCSM calculations with the NNonly (left panel), NN+3Nind (middle panel), and NN+3Nfull Hamiltonian

(right panel), at α “ 0.04 fm4 (dashed bars) and 0.08 fm4 (solid bars) for ~Ω “ 16MeV. Experimental

data taken from Ref. [167]. The results are published in Ref. [20].

dence, especially compared to the one observed for the absolute energies. Furthermore, the

excitation energies are sufficiently well converged with respect to the many-body model space.

The only exception is the excitation energy of the excited 0` state, which drops with Nmax.

Note that it is experimentally known that the first excited 0` state or the so-called Hoyle

state shows a pronounced 4He cluster structure, which requires huge model spaces in the HO

representation for an appropriate description [105].13

In summary, although the omitted repulsive induced beyond-3N contributions, which originate

from the initial 3N interaction, affects the absolute energies beyond the mid-p shell, we can

make reliable predictions for excitation spectra, which are rather insensitive to the omitted

induced contributions.

6.2 Origin and Suppression of Induced 4N Contributions

After discovering that the initial 3N interactions are responsible for the sizable SRG induced

beyond-3N contributions we investigate the components of the 3N force to identify the operator

structures that drive the induced contributions. The chiral 3N interaction at N2LO consists

of the long-range two-pion exchange terms depending on ci “ tc1, c3, c4u, the medium-range

two-nucleon contact one-pion exchange term proportional to cD, and the short-range three-

nucleon contact term proportional to cE . The corresponding operator structures are denoted

13Recent lattice simulations of the chiral effective field theory can predict the Hoyle state at approximately
the correct energy using an interaction up to N2LO [168,169].
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NN+3Nfull
c1 c3 c4 cD cE

rGeV´1s rGeV´1s rGeV´1s
standard ´0.81 ´3.2 `5.4 ´0.2 ´0.205

ci “ 0 0 0 0 ´0.2 `0.444

cD “ 0 ´0.81 ´3.2 `5.4 0 ´0.205

cE “ 0 ´0.81 ´3.2 `5.4 `1.238 0.0

c1 “ 0 0 ´3.2 `5.4 ´0.2 ´0.207

c3 “ 0 ´0.81 0 `5.4 ´0.2 ´0.228

c4 “ 0 ´0.81 ´3.2 0 ´0.2 `0.141

Table 6.1 LECs for local chiral 3N interactions with excluded contributions: In addition to the

standard NN+3N interaction [77] the table summarize the LECs of the local 3N interaction using a

cutoff of Λ3N “ 500MeV/c for variations with excluded 3N contribution, while keeping the standard

NN part at N3LO fixed.

and discussed in Sec. 1.3.2. To assess the impact of the individual terms we switch them off

by setting the corresponding LECs to zero and refit cE to the 4He ground-state energy of

´28.30MeV with an uncertainty below 10 keV. To reproduce the triton β-decay half-life we

keep cD “ ´0.2, with the exception of the cD “ 0 or cE “ 0 cases, where we exclusively

reproduce the 4He ground-state energy by fitting cE or cD, respectively. The resulting LECs

for the different Hamiltonians are summarized in Tab. 6.1.

Figure 6.4 shows the results obtained for the ground-state energy of 16O with the IT-NCSM

using the modified Hamiltonians and compares them to the results obtained with the standard

NN+3N interaction. The Hamiltonians are SRG evolved using α “ 0.04 fm4 (blue circles),

0.08 fm4 (red diamonds), and 0.16 fm4 (green triangles) treating the interaction matrix elements

with the three-body HO machinery. The upper panels compare the standard NN+3Nfull energies

in Figure 6.4 (a) to those obtained from switching off the two-pion exchange term (b), the two-

nucleon contact term (c), and the three-nucleon contact term (d). The latter two modifications

have only minor effects on the still sizable flow-parameter dependence, while setting c1 “ c3 “
c4 “ 0 to eliminate the two-pion exchange term dramatically changes the picture. The flow-

parameter dependence of the converged results vanishes completely. From these observations

we can conclude that the induced beyond-3N forces almost exclusively originate from the long-

range two-pion exchange terms.

We further study the impact of different operator structures in this term, by switching off the

individual contributions that are proportional to c1, c3, and c4 illustrated in Figure 6.4 (f), (g),

and (h), respectively. The c1 structure has only negligible impact, already indicated by the

small change of the refitted cE value to describe the 4He ground-state energy. The omitted c4

contribution strongly affects the refitted cE , but leads to minor changes of the 16O ground-state

energy and the flow-parameter dependence. The omission of the operator structure proportional

to c3 apparently eliminates the flow-parameter dependence, identifying the c3 term to be the
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Figure 6.4 Origin of induced 4N forces in initial 3N interaction: Plotted is the ground-state energy

of 16O obtained with the NN+3Nfull Hamiltonian for α “ 0.04 fm4 ( •), 0.08 fm4 ( ), and 0.16 fm4 (N)

with ~Ω “ 20MeV as function of Nmax. The upper row compares the results obtained with the standard

3N interaction (a) with those for ci “ 0 (b), cD “ 0 (c), and cE “ 0 (d). The lower row compares the

results obtained again with the standard 3N interaction (d) with those for c1 “ 0 (e), c3 “ 0 (f), and

c4 “ 0 (g). The solid curves indicate the Nmax-extrapolated results. See text for further details. The

results are published in Ref. [21].

main driver of the SRG induced beyond-3N contributions. From analogies to the NN interaction,

where the tensor force represents an important source of induced 3N contributions [18], it is not

surprising that the complicated operator structure of the two-pion exchange terms, including

intermediate-range tensor- and spin-orbit-type interactions, is responsible for sizable induced

beyond-3N contributions. However, it is not obvious why the c3 term is the dominant driver

of the induced contributions, while the operator structures that correspond to c4 have only a

small effect on the flow-parameter dependence.

The identification of the long-range two-pion exchange terms as major source of induced many-

nucleon contributions seems to be contradictory to the fact that the SRG evolution, in partic-

ular, acts on the high-momentum or high-energy contributions that typically corresponds to

short-range physics. Despite the general characterization as long-range contribution the two-

pion exchange topology also significantly contributes to the high energy regime. To study the

impact of this regime, we lower the 3N cutoff Λ3N and thus suppress the high energy con-

tributions of the 3N interaction. We use an analogous procedure as for the variation of the

LECs, i.e., we keep the standard NN interaction fixed and modify exclusively the cutoff in the

momentum-transfer regulator of the initial 3N interaction. Since the three-body regularization

has a small impact on the triton β-decay half-life [77] we keep cD “ ´0.2 and refit cE to the
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Figure 6.5 Suppression of induced 4N forces by cutoff reduction: Plotted is the ground-state energy

of 16O obtained with the NN+3Nfull Hamiltonian using the standard NN+3N interaction with the three-

body cutoff of Λ3N “ 500MeV/c (a) as well as with Λ3N “ 450MeV/c (b), 400MeV/c (c), and 350MeV/c

(d). The curves correspond to the flow-parameters α “ 0.04 fm4 ( •), 0.05 fm4 (✚), 0.0625 fm4 (�), and

0.08 fm4 ( ). Extrapolations are indicated by solid lines. The IT-NCSM calculations are performed at

~Ω “ 20MeV. The results are published in [21].

4He ground-state energy. Note, the ci values already appear in the NN interaction and are fixed

by a fit to the NN system. The parameters of the 3N interactions for the standard NN+3N

interaction, as well as for those with a reduced three-body cutoff are summarized in Tab. 1.1

on page 18.

We show the 16O ground-state energy obtained with the NN+3Nfull Hamiltonians using the stan-

dard cutoff Λ3N “ 500MeV/c in Fig. 6.5 (a), as well as the reduced cutoffs Λ3N “ 450MeV/c

(b), 400MeV/c (c), and 350MeV/c (d). By reducing the cutoff the effects of induced contribu-

tions are indeed suppressed, such that the spread of the converged ground-state energies for the

considered flow-parameter range of α “ 0.04 ´ 0.08 fm4 continuously narrows from more than

3.5MeV for the standard cutoff to less than 0.5MeV for Λ3N “ 350MeV/c. Even more impor-

tant, the substantial overbinding reduces with decreasing cutoff, such that with the two lowest

cutoffs that enable reliable predictions the experimental ground-state energy is well reproduced.

This reveals the predictive power of the chiral interactions in such large systems.

At this point it is still not clear whether the bare Hamiltonians with larger cutoffs reproduce the

experimental ground-state energy as well, since the regularization might impact the results and

we come back to this issue when including the induced 4N contributions explicitly in Sec. 6.4.

Of course, with decreasing cutoff one not only suppresses the induced many-body contributions

as demonstrated in Fig. 6.5, but might also start to exclude physically relevant contributions.

Therefore, we typically use the 3N interaction with the reduced 400MeV/c cutoff, when aiming

at the description of absolute energies for nuclei beyond the p shell [23, 28–30,33, 35, 36, 145].
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6 SRG-Induced Many-Nucleon Contributions

In conclusion, the initial 3N contributions proportional to c3 of the two-pion exchange term

with high-momentum components beyond 400MeV/c are responsible for the induced beyond-

3N contributions, which have a sizable repulsive effect on the absolute energies for nuclei beyond

the mid-p shell. These studies, which are published in Ref. [21], show a suppression of the

induced beyond-3N contributions by reducing the cutoff of the 3N interaction, enabling reliable

applications of the chiral NN+3N interaction beyond p-shell nuclei (see Sec. 7).

However, it is desirable to assess the theoretical uncertainties of the chiral EFT approach by

a variation of the fundamental chiral parameters, i.e., the chiral perturbation order and the

regularization. In this work we present a crucial step towards this fundamental uncertainty

quantification for nuclear structure physics in Sec. 8 and 9, focusing on spectroscopy. In terms of

absolute ground-state energies, studying the influence of the regularization by a cutoff variation,

requires either to avoid the induced many-nucleon contributions from the outset, e.g., by using

an alternative SRG generator or the inclusion of the relevant 4N contributions in the many-body

calculations. Both approaches are investigated in the following.

6.3 Alternative SRG Generators

Motivated by the findings in the previous section, we discuss two fundamental ideas of modifying

the canonical SRG generator

ηα “ p2 µ

~2
q2 rTint,Hαs (134)

in order to suppress the induced many-nucleon forces. Based on these ideas we design alternative

SRG generators and probe their impact, regarding convergence acceleration and induced many-

nucleon forces in nuclear structure calculations of ground-state energies.

6.3.1 Exclusion of Initial 3N Contributions

In the following we concentrate on the evolution of the initial NN+3N interaction in the three-

body space leading to the NN+3Nfull Hamiltonian HNN+3Nfull
. Considering the fact that sizable

beyond-3N effects originate from the initial 3N contributions motivates attempts to reduce the

effect of the SRG evolution on these contributions. In order to ensure the formal unitarity we

exclude the initial 3N part from the applied generator, i.e., we solve the flow equation

d

dα
HNN+3Nfull

“ rηNN
α ,HNN+3Nfull

s , (135)

where we replace the generator by

ηNN
α “ p2 µ

~2
q2 rTint,HNN+3Nind

s . (136)
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6.3 Alternative SRG Generators

We have to simultaneously solve the flow equation for the initial NN interaction

d

dα
HNN+3Nind

“ rηNN
α ,HNN+3Nind

s , (137)

to obtain the NN+3Nind Hamiltonian HNN+3Nind
that appears in the generator (136).

For these simultaneous evolutions we exclude the contributions of the initial 3N interaction in

the generator, such that the unitary transformation is not optimized for the prediagonaliza-

tion of the initial 3N contributions. Nevertheless, the initial 3N interaction is affected by the

evolution in a different manner and we examine if the alternative SRG formulation sustains

an appropriate convergence acceleration of the many-body calculations and at the same time

prevents induced beyond-3N forces.

In Fig. 6.6 we compare the ground-state energies of 4He (upper panels) and 16O (lower panels)

using the NN+3Nfull Hamiltonian, that is obtained by using the canonical generator ηα of

Eq. (134) (left panels) and the alternative generator ηNN
α of Eq. (136) (middle panels). While

the ground-state energies with the standard evolution are well converged for the largest Nmax in

the flow-parameter range α “ 0.04´ 0.16 fm4, this is not the case for the alternative generator,

where we observe an almost linear dependence of the ground-state energy with respect to Nmax

for the larger model spaces.

Even for an untypically large flow parameter α “ 0.32 fm4 that is used for 16O in Fig. 6.6 (e)

convergence is not achieved for the alternative generator. Moreover, the energies show an al-

most parallel shift compared to those with smaller flow parameters. This indicates that a longer

evolution seems to produce attraction without improving the convergence. Unfortunately, the

convergence pattern with the alternative generator ηNN
α does not allow for a meaningful extrap-

olation to infinite model spaces and it is hardly possible to judge on a potential suppression of

induced many-nucleon forces.

Instead of excluding the complete initial 3N part from the Hamiltonian in the generator one,

e.g., can exclude only the two-pion exchange term by setting c1 “ c3 “ c4 “ 0 keeping cE and

cD fixed. With such a generator one obtains almost the same ground-state energies as with the

alternative generator ηNN
α , such that the curves mainly lie on top of those in Fig. 6.6 (b) and (e).

This identifies the two-pion exchange term, which is responsible for the sizable induced beyond-

3N effects, to be also required for the convergence acceleration in the many-body calculations.

If we assume the effects of the induced 4N forces to be small with the alternative generator one

can think about a combination of the SRG generators. For instance, we start with the alternative

evolution up to a certain α value, such that we have improved the convergence compared to the

bare Hamiltonian, while assuming the induced 4N effect to be small. Based on this Hamiltonian

we perform an additional evolution with the canonical generator for a rather small evolution

period ∆α, in order to retain the substantial convergence acceleration, while avoiding sizable

induced 4N effects due to small ∆α. The 4He case (c) illustrates that the combined evolution
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Figure 6.6 Alternative SRG generators without initial 3N contributions: Plotted are the ground-

state energies of 4He (upper panels) and 16O (lower panels) obtained with the IT-NCSM at ~Ω “ 20MeV

as function of Nmax. We start we the standard initial NN+3N interaction and perform the SRG evolution

with the canonical generator (left column) and with the alternative generator ηNN
α (middle column)

using the flow-parameter α “ 0.04 fm4 ( •), 0.0625 fm4 (�), 0.08 fm4 ( ), 0.16 fm4 (N), 0.2 fm4 (İ), and

0.32 fm4 (✖). In the right column we show the results obtained by performing the SRG evolution with

the alternative generator ηNN
α up to α “ 0.08 fm4 ( ) and additionally evolve the obtained interaction

further by 0.01 fm4 ( ˝), and 0.02 fm4 ( ˝) using the canonical generator. See text for further details.
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6.3 Alternative SRG Generators

indeed improves the convergence, such that we recover the converged result of the standard

evolution. Unfortunately, for the 16O ground-state energy the convergence is still not sufficient

to accurately extrapolate to infinite Nmax. Moreover, the additional short evolutions with the

canonical generator seem to induce sizable repulsive many-nucleon contributions, that cause a

strong attractive shift of the energies with increasing ∆α. This indicates that the SRG evolution

already induces sizable beyond-3N contributions at very small flow-parameter values. As before,

the lack of convergence complicates an interpretation regarding the effect of induced many-

nucleon forces and eliminates the alternative generators for applications to nuclear structure

physics.

6.3.2 Restriction of Range

As shown in the previous section the high-momentum contributions of the long-range two-pion

exchange term induce sizable many-nucleon contributions during the SRG evolution. Moreover,

the two-pion exchange contributions in the generator are crucial to accelerate the convergence

with respect to the many-body model space. Instead of omitting the complete two-pion ex-

change term we now aim at an exclusive suppression of the long-range components of the gen-

erator. Already from a naive picture, long-range transformations tend to effect more particles.

Thus, it is not surprising that the long-range term of the initial 3N interaction is responsible

for the induced contributions and we show that one observes a similar behavior for the NN in-

teraction, which induces sizable beyond-NN contributions. We present an alternative generator

that suppresses the induced contributions by restricting the range of the generator and leaves

the long-range contributions mainly unaffected. In contrast to the approach of the previous

section, which is adjusted to the particular operator structure of the chiral 3N interaction, the

following concept is of general validity. We evolve the initial NN interaction at the two-body

level (NNonly) aiming at the suppression of the sizable induced 3N and many-nucleon forces.

We solve the evolution equation

d

dα
Hα “ rηr

α,Hαs , (138)

with the generator

ηr
α “ Θ

:
pR,pq ηαΘpR,pq . (139)

The Hermitian operator Θ
:
pR,pq suppresses the long-range contributions of the canonical gener-

ator by a Gaussian factor

Θ
:
pR,pq “ ΘpR,pq “ e´p r

Rq2p , (140)
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6 SRG-Induced Many-Nucleon Contributions

where r “ |rb ´ ra| is the absolute value of the relative distance operator of the two-nucleon

system, R is the range parameter to adjust the range of the generator and p is a power that

determines the suppression behavior. The special form of the operator Θ, designed in collab-

oration with Hans Feldmeier, is adjusted for the application to a two-body evolution, but in

principle can be generalized to the three-body or four-body space by using the corresponding

Jacobi coordinates.

To illustrate the effect of the restricted-range generator we investigate the deuteron S-wave

functions in Fig. 6.7 obtained by solving the Schrödinger equation in momentum space, using

the SRG-evolved NNonly Hamiltonians. The wave functions correspond to the bare Hamilto-

nian (dashed black line) and the flow-parameter values α “ 0.08 fm4 (red solid line), 0.16 fm4

(green solid line), and 0.32 fm4 (light-blue solid line). We compare the wave functions for the

Hamiltonians that are evolved with the canonical generator in Fig. 6.7 (a) to those where we

performed the restricted-range evolution for several parameter combinations. In almost every

case the SRG evolution strongly affects the short-range correlations of the wave function, which

is related to high-momentum contributions of the interaction, such that the repulsion at short-

distances reduces. In Fig. 6.7 (b)-(d) we fix the range R “ 1.5 fm and vary the power p from 1

to 3. As evident from the deuteron wave functions, with increasing power p the suppression by

the operator Θ increases. For the largest p the generator is suppressed too strongly, such that

the short-range repulsion is not completely eliminated. In Fig. 6.7 (e)-(f) we fix the power p “ 2

and vary the range parameter R “ 1.0 ´ 2.0 fm. For small range parameters R ă 1.5 fm we

suppress too much of the generator, such that the deuteron S-wave function is almost unaffected

by the evolution. The important difference between the standard and the restricted range SRG

evolution is the effect on the wave function at about r “ 3 fm. While for the standard evolution

the wave function is noticeably increased compared to the bare Hamiltonian, the restricted

range evolution leaves these medium-range part (r Á 2.5fm) unchanged.

We anticipate that exactly these medium-range correlations induce sizable many-nucleon forces

during the SRG evolution and we investigate this issue for the ground-state energy of 4He in

Fig. 6.8. We show the ground-state energy obtained in NCSM calculations at ~Ω “ 20MeV

plotted as function of Nmax for the bare Hamiltonian (open circles) and the flow-parameter

range α “ 0.08 ´ 0.32 fm4. We compare the energies for the canonical generator in Fig. 6.8 (a),

with those obtained for the restricted-range generator for the same parameter combinations

as in Fig. 6.7 using an equivalent arrangement of the panels. The dashed line indicates the

experimental value and the thick black bar corresponds to the converged energy of the bare NN

interaction.

The ground-state energies are in agreement with the interpretations for the deuteron wave

functions. For too large powers p in Fig. 6.8 (d) and too small ranges R (e) one starts to

suppress contributions of the generator that are relevant for the convergence acceleration, such

that reliable Nmax extrapolations are not possible. On the other hand, for too small powers
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Figure 6.7 Deuteron wave function with restricted range generator: Plotted is the deuteron S-wave

function over the relative distance of the two nucleons. We compare the results obtained for the SRG-

evolved initial NN interaction in the two-body space (NNonly) with the canonical generator (a) and with

the alternative generator ηr
α using a fixed range R “ 1.5 fm and varying the power p “ 1, 2, 3 (b,c,d)

as well as for a fixed power p “ 2 and a variation of the range R “ 1.0, 1.5, 2.0 fm (e,f,g). The wave

functions are obtained for the bare Hamiltonian (black dashed line) as well as for the flow-parameter

values 0.08 fm4 (red solid line), 0.16 fm4 (green solid line) and 0.32 fm4 (light-blue solid line). See text

for further details.
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Figure 6.8 4He ground-state energy with restricted-range generator: Plotted is the ground-state

energy of 4He obtained with the NCSM at ~Ω “ 20MeV as function of Nmax. We compare the results

obtained for the SRG-evolved initial NN interaction in the two-body space (NNonly) with the canonical

generator (a) and with the alternative generator ηr
α using a fixed range R “ 1.5 fm and varying power

p “ 1, 2, 3 (b,c,d) as well as for a fixed power p “ 2 and a variation of the range R “ 1.0, 1.5, 2.0 fm

(e,f,g). The curves correspond to the results obtained for flow parameters 0.08 fm4 ( ), 0.16 fm4 (N)

and 0.32 fm4 (✖). For comparison of the convergence acceleration we also illustrate the results for the

bare Hamiltonian ( ˝). See text for further description.
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p in Fig. 6.8 (b) and too large ranges R (g), we retain the medium-range contributions that

induce sizable 3N forces, such that we significantly overbind the converged energy of the bare

Hamiltonian. Thus, we have to optimize these two parameters of the alternative generator to

achieve an appropriate trade-off between the convergence acceleration and the suppression of

induced many-body contributions. In Fig. 6.8 (c), which is equivalent to (f), we illustrate a

rather optimized parameter set. The curves for the larger flow-parameter values already tend

to slightly overbind the bare result, indicating the appearance of repulsive induced 3N forces,

while simultaneously the energies are not yet converged up to Nmax “ 14.

The parameters of the restricted-range generator allow to control the trade-off between conver-

gence and induced many-nucleon forces. With parameters for the generator that suppress the

induced 3N contributions one cannot obtain converged energies with the IT-NCSM in tractable

model spaces. Nevertheless, this generator could be useful for other ab initio methods, such as

the CC approaches or the IM-SRG that can handle much larger model spaces. Moreover, we

have studied the suppression of the induced 3N contributions with the restricted-range gener-

ator, while a suppression of the induced 4N contributions could be less critical. Therefore, a

formulation of this alternative generator in the three-body space is an interesting subject for

future investigations.

In conclusion, from the studies of the alternative generators, we achieve a deep insight in the

SRG evolution for nuclear structure calculations, identifying the medium-range components of

the NN interaction to be important for the convergence pattern and at the same time responsible

for the sizable induced many-body effects. It seems that those parts of the interaction that

need to be softened by the SRG evolution to accelerate the model-space convergence are also

responsible for sizable induced many-nucleon contributions. Therefore, the search of alternative

generators presumably concentrates on optimizations of a trade-off, such that the generator is

adjusted to a specific observable, nucleus, and interaction and the findings of this work might be

crucial for the development of future SRG generators. Keeping the results with the alternative

generators in mind the SRG evolution up to the three-body level with the canonical generator

already provides an appropriate compromise, allowing for successful applications of the chiral

NN+3N interactions to a wide range of physics. In order to broaden the application range and,

in particular, to study the nature of the induced many-nucleon contributions, we aim at the

explicit inclusion of the induced 4N forces.

6.4 Inclusion of Induced 4N Forces

In the following, we discuss the successes and limitations regarding the inclusion of 4N contribu-

tions and point out that the presented techniques are directly capable to handle initial 4N forces

as well. The chiral 4N force already appears at N3LO in the Weinberg power-counting scheme

and is required for a fully consistent Hamiltonian at this order. Therefore, the present studies

125



6 SRG-Induced Many-Nucleon Contributions

are of particular interest for the continuation of current efforts of the LENPIC collaboration to

employ consistent Hamiltonians at this chiral order.

To treat the 4N contributions, we start with an SRG evolution in the four-body Jacobi-HO basis

truncated by the relative-energy quantum number E4,SRG as described in Sec. 4.7. During the

evolution irreducible 4N contributions are induced that we separate from lower-particle rank

contributions using the subtraction procedure presented in Fig. 4.1 on page 78. The irreducible

4N contributions in the Jacobi-HO representation are transformed into the single-particle basis,

namely into the JT -coupled scheme (see Sec. 3.2.2). The resulting interaction matrix elements

are truncated by the total energy quantum number E4,max and are explicitly included in the

many-body calculations using the IT-NCSM. The many-body method is extended to treat the

4N interactions explicitly using an analogous on-the-fly decoupling procedure as for the 3N

interactions. The irreducible NN and 3N forces are treated with the established two- and three-

body techniques described in this work. For instance we use the three-body SRG space denoted

by rampA, while the two-body evolution is performed in the momentum representation.

To include the 4N contributions to the many-body calculations we need to introduce the fol-

lowing truncations in the four-body space:

• We truncate the number of included partial waves, restricting ourselves to those with low

angular momenta J123.

• We are limited to a finite SRG space defined by the maximum relative-energy quantum

number E4,SRG.

• The four-body interaction matrix-element set in the JT -coupled scheme are truncated

by the maximum total-energy quantum number E4,max. This set is typically not large

enough to provide all matrix elements that contribute to the many-body model space,

such that E4,max poses an additional truncation.

In the following, we use the 16O ground-state energy as prime example for studying induced

4N effects and analyzing their sensitivity to the four-body truncations. Based on these studies,

we present the results for different Hamiltonians and nuclei including for the first time explicit

4N contributions with estimated uncertainties.

6.4.1 SRG-Space and Subtraction-Scheme Dependence

Due to the rapid growth of the model-space dimensions in the four-body Jacobi-HO basis with

the energy quantum number and the angular momentum (see Fig. 3.1 on page 47), the SRG

evolution is restricted to partial waves with low J123 in model spaces with rather small energy

quantum numbers compared to the three-body space (see Sec. 5). In the following, we examine
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6.4 Inclusion of Induced 4N Forces

PW pJπ
123

T123q-channels

0 -
1 0`0

2 0`0, 0´0

3 0`0, 0´0, 0`1

4 0`0, 0´0, 0`1, 0´1

5 0`0, 0´0, 0`1, 0´1, 0`2

6 0`0, 0´0, 0`1, 0´1, 0`2, 0´2;
7 0`0, 0´0, 0`1, 0´1, 0`2, 0´2; 1`1

8 0`0, 0´0, 0`1, 0´1, 0`2, 0´2; 1`1, 1´1
...

...
12 0`0, 0´0, 0`1, 0´1, 0`2, 0´2; 1`0, 1´0, 1`1, 1´1, 1`2, 1´2;
...

...
18 0`0, 0´0, 0`1, 0´1, 0`2, 0´2; 1`0, 1´0, 1`1, 1´1, 1`2, 1´2;

2`0, 2´0, 2`1, 2´1, 2`2, 2´2

Table 6.2 Definition of four-body partial waves: In this table we define different 4N contributions.

The partial-wave index PW “ t0, . . . , 18u enumerates the 4N contributions containing a successively

increasing number of partial waves, i.e., pJπ
123

T123q-channels. An interaction corresponding to the partial-

wave index PW “ 0 does not contain 4N contributions. First we first add the positive- and then the

negative-parity channels increasing initially the isospin T123 “ t0, 1, 2u and afterwards the angular

momentum J123. For PW “ 6, 12, 18 the interaction contains all 4N contributions with J123 ď 0, 1, 2,

respectively.

if the computational tractable SRG spaces are sufficient to cover the relevant contributions of

the induced 4N interactions.

In order to reduce the computational effort and to gain an impression of the SRG space we

initially restrict our studies to NCSM calculations in a small Nmax “ 2 model space. For

this many-body model space a truncation of E4,max “ 6 provides the complete set of required

four-body matrix elements, such that we can focus exclusively on the sensitivity to the SRG

space and the subtraction scheme (see Sec. 4.7.2). To disentangle the 4N effects of the different

partial waves we define a number of Hamiltonians, for which we successively add four-body

partial waves as illustrated in Tab. 6.2.

In Fig. 6.9 we illustrate the 16O ground-state energy as function of the included four-body

partial waves. The NCSM calculations are performed at a HO frequency of ~Ω “ 24MeV with

α “ 0.08 fm4. Note, that PW “ 0 corresponds to the standard NN+3Nfull Hamiltonian. For

the larger PW we successively add the 4N channels according to Tab. 6.2, i.e., we obtain several

NN+3Nfull+4Nind Hamiltonians with different partial-wave truncations. The 4N contributions

result from an SRG evolution in a model space, truncated by E4,SRG “ 15 (blue circles), 17 (red

diamonds), 19 (green triangles), and 21 (violet squares) using the subtraction scheme SubB (see
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Figure 6.9 SRG-space dependence of the 16O ground-state energy: Plotted is the 16O ground-state

energy as function of the included four-body partial waves. The energies are calculated with the NCSM

in a small Nmax “ 2 model space at ~Ω “ 24MeV. The standard NN+3N interaction is SRG evolved

for α “ 0.08 fm4 using the four-body SRG space E4,SRG “ 15 ( •), 17 ( ), 19 (N), and 21 (�) combined

with the subtraction scheme SubB. See text further details.

Sec. 4.7.2 for the definition of the subtraction schemes).

The sensitivity of the ground-state energy to the SRG space increases with the number of in-

cluded partial waves. In particular, when we include the pJπ
123

T123q “ p1´1q and p2´1q channels

(corresponding to PW “ 9 and PW “ 15) the sensitivity increases dramatically. Unfortunately,

the partial waves that are most sensitive to the SRG-space truncation have the largest model-

space dimensions. The SRG evolutions of the pJπ
123

T123q “ p1´1q and p2´1q channels for

E4,SRG “ 21 and 19, respectively, are computationally highly demanding and constitute the

limit for the current implementation. The corresponding model-space dimensions are much

larger than the ones for the three-body SRG evolution discussed in Sec. 5.3. To increase E4,SRG

further, one needs to distribute the solution of the SRG flow equation (128) over several nodes,

since memory and computing time simultaneously become an obstacle. Also the production of

the CFPs limits the access to larger model spaces as discussed in Sec. 3.1.3 and needs to be

improved. Due to the significant growth of the model-space dimensions the treatment of the

4N contributions rapidly starts to exceed the computational cost of the subsequent many-body

calculations.

If we compare the energies for PW “ 6, 12, 18 including all partial waves with J123 ď 0, 1, 2,

respectively, we observe a strong increase of the E4,SRG sensitivity with the angular momentum.

For instance, the differences between the E4,SRG “ 17 and 19 results correspond to about 8, 50,

and 127MeV for these PW indices, respectively. Although, the deviations decrease rapidly with

increasing E4,SRG the J123 “ 2 contributions cannot be evolved in sufficiently large model spaces

to resolve flow-parameter dependence below 10MeV, which occurs without 4N contributions (see

panel (a) of Fig. 6.5). Therefore, we have to restrict ourselves to the inclusion of the J123 ď 1

contributions.
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Figure 6.10 SRG-space dependence of the 16O ground-state energy: Similar plot as in Fig. 6.9 using

the subtraction scheme SubB (a), SubC (b), and SubD (c).

As explained in Sec. 4.4 the Jacobi-HO basis does not allow for a fully consistent model-space

truncation in the two-, three-, and four-body space. Thus, the subtraction procedure is a

potential source of error. For sufficiently large model spaces these errors become negligible.

However, since we are limited to rather small maximum energy quantum numbers in the four-

body space, the subtraction procedure can have sizable impact on the observables. To confirm

that the SRG space is sufficiently large we need to demonstrate that the results do not depend

on the subtraction scheme. In Fig. 6.10 (a) we show the same results as in Fig. 6.9, i.e., using

subtraction scheme SubB. We include only J123 ď 1 contributions and compare these results

to the energies obtained with the subtraction schemes SubC in Fig. 6.10 (b) and SubD (c)

(see Sec. 4.7.2). The dependence on the subtraction scheme is striking and indicates that the

sensitivity to the SRG space is completely biased by the subtraction procedure. While the SubB

and SubC schemes lead to opposite convergence patterns with respect to the SRG space, the

SubD scheme seems to provide an averaged convergence pattern and the ground-state energy

shows a strongly reduced sensitivity to the SRG space.14

The reduction of the SRG-space dependence with the SubD scheme seems to be very promising,

but it turns out that the E4,SRG convergence pattern is rather uncontrolled. This is illustrated in

Fig. 6.11 where we compare the 16O ground-state energies obtained with the SubD subtraction

scheme for the flow-parameter values α “ 0.04 fm4 in Fig. 6.11 (a), 0.08 fm4 (b), and 0.16 fm4

(c). Remaining details of the many-body calculation and SRG evolution are as in the previous

figures. Obviously, the E4,SRG convergence pattern changes with the flow parameter and shows

some rather uncontrolled behavior. For instance the E4,SRG dependence is largest for the

14Indeed the SubD scheme is equivalent to an averaging of the subtracted contributions in the SubB and SubC
scheme. A prove of this relation is straight-forward exercise and requires the consideration of the appearing
factors for the conversion of a two- and three-body interaction matrix elements into the four-body space.
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Figure 6.11 SRG-space dependence of the 16O ground-state energy: Similar plot as in Fig. 6.9 using

the subtraction scheme SubD and different flow-parameter values α “ 0.04 fm4 (a), 0.08 fm4 (b), and

α “ 0.16 fm4 (c).

smallest flow-parameter, which is counterintuitive, since with vanishing flow parameter also the

E4,SRG dependence vanishes. Moreover, for α “ 0.08 fm4 the convergence pattern is reversed

beyond E4,SRG “ 19, which can also happen for the other flow-parameter values.

Thus, in principle one could utilize the freedom of choosing the subtraction procedure to improve

the E4,SRG convergence. But we point out that, as long as the results are sensitive to a change of

the subtraction scheme, one cannot disentangle the spurious subtraction effects from the effects

caused by missing induced 4N contributions and generalizations to the infinite SRG space are

questionable. Therefore, we aim at a procedure that is not biased by the subtraction. The

subtraction schemes SubB and SubC have caused the largest deviations in Fig. 6.10. Thus,

we compare the results for these two schemes to validate the independence on the subtraction

procedure.

To improve the convergence without further increasing the SRG spaces we take advantage of the

experience from the three-body SRG evolution, where the ultraviolet truncation is the reason

for sensitivities to the SRG space. Hence, one can increase the HO frequency to improve the

E4,SRG convergence. In Fig. 6.12 we compare the 16O ground-state energy as function of the

included four-body partial waves for the subtraction scheme SubB (left panels) and SubC (right

panels), as well as for different HO frequencies ~Ω “ 24MeV (upper panels), 32MeV (middle

panels), and 40MeV (lower panels). We stress that the absolute energies are meaningless for

the NCSM calculations in a small Nmax “ 2 model space and, e.g., for the largest frequency the

ground state is unbound. However, we use equivalent plot ranges for all frequencies, such that

we can compare the deviations for the different partial waves and SRG spaces. With increasing

frequency the results with the SubB scheme change the convergence pattern, such that the

repulsive effect by increasing E4,SRG turns into an attractive effect. Further, we observe that
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Figure 6.12 Influence of the frequency on the SRG-space dependence: We compare the 16O ground-

state energies for the subtraction scheme SubB (left panels) and SubC (right panels) at ~Ω “ 24MeV

(upper panels), 32MeV (middle panels), and 40MeV (lower panels). The results correspond to the

four-body SRG spaces E4,SRG “ 15 ( •), 17 ( ), 19 (N), and 21 (�). Further parameter are chosen as

in Fig. 6.10.

the convergence with respect to the SRG space is enhanced for both subtraction schemes if we

increase the frequency. Even more important is that the ground-state energy for ~Ω “ 40MeV

becomes almost insensitive to the subtraction scheme, such that we can identify the effect of

missing high-energy 4N contributions, while for the lowest frequency the convergence pattern is

dominated by the subtraction procedure. At ~Ω “ 40MeV the SRG-space convergence pattern

is consistent with the observations in the three-body space, where insufficient SRG spaces cause

an artificial repulsion (see Sec. 5).

6.4.2 The Frequency-Conversion Approach

From the previous discussion it becomes evident that the four-body SRG evolution has to be

performed at large HO frequencies of about ~Ω “ 40MeV to improve the E4,SRG convergence

and to be insensitive to the subtraction procedure. But we require smaller frequencies for the

subsequent IT-NCSM calculations to achieve convergence with respect to Nmax. Therefore, we

extend the frequency-conversion approach to the four-body space as discussed in Sec. 4.7.3. The
16O ground-state energies in Fig. 6.13 are obtained from an NCSM calculation with Nmax “ 2.
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Figure 6.13 Frequency-conversion and SRG-space dependence for the 16O ground-state energy:
Illustrated is the SRG-space dependence of the 16O ground-state energy for a four-body SRG evolution

at ~ΩSRG “ 40MeV with E4,SRG “ 15 ( •), 17 ( ), 19 (N), and 21 (�) using a subsequent conversion of

the frequency to ~Ω “ 24MeV, used in the Nmax “ 2 NCSM calculations. Independent of the used flow

parameters α “ 0.04 fm4 (a), 0.08 fm4 (b), and 0.16 fm4 (c) the ground-state energies for subtraction

scheme SubB (solid symbols) and SubC (open symbols) are almost on top of each other. The black

circles correspond to the extrapolated energies to an infinite SRG space as described in the text.

The 3N contributions are obtained from an SRG evolution at ~Ω “ 24MeV in a sufficiently large

three-body space. The four-body SRG evolution, as well as the evolutions for the subtraction

procedure, are performed at ~ΩSRG “ 40MeV. We subsequently convert the frequency of

the four-body interaction matrix elements to ~Ω “ 24MeV that is used in the many-body

calculation. We perform the four-body SRG evolutions in model spaces truncated by E4,SRG “
15 (blue circles), 17 (red diamonds), 19 (green triangles), and 21 (violet squares) and compare

the results for subtraction scheme SubB (solid symbols) and SubC (open symbols) for α “
0.04 fm4 in Fig. 6.13 (a), 0.08 fm4 (b), and 0.16 fm4 (c). The black circles correspond to the

energies extrapolated to an infinite SRG space and we discuss this extrapolation later, but

focus initially on the results obtained in finite SRG spaces.

The ground-state energies for the two subtraction schemes are almost on top of each other, in

particular, for the larger E4,SRG. This is remarkable especially in view of the large discrepancies

observed without the frequency-conversion approach in Fig. 6.10. In accordance with intuition,

the SRG-space dependence slightly increases with increasing flow parameter and shows a similar

monotonic convergence pattern for all α values. Moreover, the E4,SRG convergence is strongly

improved by the frequency-conversion approach. If we include only the J123 “ 0 contributions,

i.e., PW “ 1 ´ 6, we achieve good convergence, where the PW “ 6 results for E4,SRG “ 19 and

21 differ by about 1MeV but rapidly decrease with increasing E4,SRG. The 4N contributions up

to PW “ 6 seem to be too small to explain a flow-parameter dependence of about 10MeV that

appears for the Nmax converged results when we omit all 4N contributions. This is interesting,
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6.4 Inclusion of Induced 4N Forces

since for 16O one might have assumed that the 4He-channel provides the dominant contributions.

The results in Fig. 6.10 indicate that it is important to include J123 ą 0 contributions as well.

Including the partial waves with J123 “ 1 increases the SRG-space dependence considerably,

such that for the two largest SRG spaces the deviation of the PW “ 12 results are about

4 ´ 7.5MeV, increasing with the flow parameter.

However, the SRG-space dependence rapidly and monotonically decreases with E4,SRG, such

that we can extrapolate the ground-state energies to an infinite SRG space (black circles). We

use an exponential fit of the results of the three largest SRG spaces. The error is conservatively

estimated by the deviation from the energies in the largest SRG space and reflects the quality

of the SRG-space convergence. In particular, the inclusion of the pJπ
123

T123q “ p1´1q channel

(i.e., PW “ 9) increases the extrapolation error. Interestingly, the pJπ
123

T123q “ p1´0q channel

(i.e., PW “ 8) leads to a strong repulsive effect that increases with the flow parameter.

To make quantitative conclusions about the induced 4N effects it is advisable to increase the

many-body model space, since the change of the ground-state structure has an impact on the

4N effects. Thus, we study the 4N effects as function of Nmax in the next section.

6.4.3 Final Results

The frequency-conversion approach in combination with the extrapolation to infinite SRG

spaces enables the access to the induced 4N contributions for all partial waves with J123 ď 1.

In the following, we study the effect of the induced 4N forces for different Hamiltonians and p-

shell nuclei in IT-NCSM calculations as function of Nmax. We also focus on the flow-parameter

dependence, which is expected to be reduced or even vanish by including the induced 4N con-

tributions.

We compare the 16O ground-state energy obtained with the NN+3Nfull Hamiltonian in Fig. 6.14

(a) to those obtained with the NN+3Nfull+4Nind Hamiltonians, where we included all 4N con-

tributions with J123 “ 0 in Fig. 6.14 (b) and J123 ď 1 in Fig. 6.14 (c). We start with the

standard NN+3N interaction for Λ3N “ 500MeV/c and evolve it in four-body space truncated

by E4,SRG “ 21 at ~ΩSRG “ 40MeV. Subsequently we use the frequency conversion to con-

struct the interaction matrix elements at ~Ω “ 24MeV that are applied in the many-body

calculation up to E4,max “ 6. The results correspond to α “ 0.04 fm4 (blue circles), 0.08 fm4

(red diamonds), and 0.16 fm4 (green triangles). To confirm the insensitivity to the subtraction

procedure we compare in panel in Fig. 6.14 (b) and (c) the results obtained by using the schemes

SubB (solid symbols) and SubC (open symbols), which are essentially on top of each other.

As observed in the previous section, the 4N contributions with J123 “ 0 in Fig. 6.14 (b) have

an almost negligible effect. The repulsion to the converged result caused by these contributions

corresponds to about 0.6, 1.0, and 1.6MeV for the flow-parameter values α “ 0.04, 0.08, and

0.16 fm4, respectively, leading to a slight reduction of the flow-parameter dependence. The
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Figure 6.14 Effect of the induced 4N contributions for the 16O ground-state energy: Illustrated

is the 16O ground-state energy calculated with the IT-NCSM at ~Ω “ 24MeV as function of the Nmax.

We compare the results for the standard NN+3Nfull Hamiltonian (a) with those obtained for included

4N contributions of all partial waves with J123 “ 0 (b) and J123 ď 1 (c) using the flow parameters

α “ 0.04 fm4 ( •/ ˝), 0.08 fm4 ( / ˛), and 0.16 fm4 (N/△), as well as E4,max “ 6. The four-body SRG

evolution is performed with E4,SRG “ 21 at ~ΩSRG “ 40MeV using the frequency-conversion approach

and the subtraction scheme SubB (solid symbols) and SubC (open symbols). The solid and dashed

curves correspond to the Nmax-extrapolated results for the SubB and SubC scheme, respectively. See

text for further information.

J123 “ 0 contributions are rather well converged with respect to the SRG space. To conclude

about the E4,SRG we also calculate the ground-state energies for E4,SRG “ 19. The converged

results differ from those with E4,SRG “ 21 in the figure by about 0.5MeV, such that the J123 “ 0

contribution obtained in an infinite SRG space have a slightly smaller impact. Therefore, we

focus on the induced 4N forces including also the J123 “ 1 contributions (c). This inclusion

leads to sizable repulsive effects that almost completely reduce the flow-parameter dependence

from 6MeV to less than 800 keV for the considered α regime.

Note that the J123 “ 1 contributions are not fully converged with respect to the SRG space. We

illustrate the lack of convergence in Fig. 6.15, where the 16O ground-state energies of Fig. 6.14(c)

for α “ 0.08 fm4, subtraction scheme SubB and E4,SRG “ 21 (violet squares) are compared to

those obtained with E4,SRG “ 19 (green triangles). The discrepancy slightly increases with

Nmax from about 6 to 7.5MeV. In principle, one can extrapolate the ground-state energy to an

infinite SRG space by performing the IT-NCSM calculations for the smaller E4,SRG and use the

results for an exponential fit to E4,SRG Ñ 8. Such an extrapolation procedure requires multiple

many-body calculations for each parameter set. In order to obtain a first impression we perform

an extrapolation exclusively for the Nmax “ 2 results, yielding an estimate for the ground-state

energy shift from E4,SRG “ 21 to the infinite SRG space. Eventually, we add this shift to the
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ground-state energies for the larger Nmax and use the energy shift as a conservative estimate

of error from the extrapolation of the SRG space. The corresponding results for the infinite

SRG spaces are indicated by the black circles in Fig. 6.15. Note that the discrepancy of the

E4,SRG “ 19 and E4,SRG “ 21 ground-state energy is slightly dependent on Nmax. Therefore, a

separate extrapolation for each Nmax is recommended when aiming at an improved estimate of

the induced 4N-force effects.

After the elimination of the sensitivity to the subtraction procedure as well as the reduction

and quantification of the uncertainty due to the remaining SRG-space dependence we are left

with the E4,max truncation. To provide all four-body matrix elements that appear in an Nmax

many-body model space for 16O one requires the 4N contributions up to E4,max “ Nmax `
4. With increasing E4,max the many-body Hamilton matrix becomes less sparse, such that

the computational demands of the NCSM-type calculations increase [100]. In this section we

typically use a four-body truncation of E4,max “ 6. To validate this truncation Fig. 6.15

also shows ground-state energies obtained for E4,max “ 8 for the largest SRG space. The

E4,max “ 6 (solid symbols) and E4,max “ 8 (open symbols) are almost on top of each other

indicating that this truncation causes negligible uncertainties compared to those of the SRG-

space dependence. Nevertheless, the uncertainty of the E4,max truncation increases with Nmax

and for high-precision applications one needs to increase E4,max further.15

To verify the four-body developments, from the SRG evolution in the Jacobi-HO representation

over the frequency conversion to the transformation into the JT coupled scheme, we study initial

interactions that are expected to induce 4N forces with minor or vanishing effects. In Fig. 6.16

we compare the 16O ground-state energies obtained without 4N forces (left panels) to the results

including all four-body partial waves with J123 ď 1 (right panels). We start with the NN (upper

panels) and NN+3N interactions for Λ3N “ 400MeV/c (middle panel) and 500MeV/c (lower

panels). Further parameters of the SRG evolution and IT-NCSM calculation are chosen as in

Fig. 6.14 using exclusively subtraction scheme SubB.

The results for the NN+3N interaction for Λ3N “ 500MeV/c in Fig. 6.16 (e,f) are identical to

those shown in Fig. 6.14. In comparison to this initial interaction the other two interactions are

expected to cause an almost vanishing induced 4N effect, indicated by the small flow-parameter

dependence for the results without 4N contributions. Surprisingly, the included 4N forces

obtained for E4,SRG “ 21 lead to a rather large repulsion that increases the flow-parameter

dependence. To understand this observation it is important to note that also the NN and

NN+3N interactions with Λ3N “ 400MeV/c induce 4N contributions during the SRG, which

have a small but not completely vanishing effect to the 16O ground-state energy. For instance in

Sec. 7 we show that these 4N contribution have a sizable impact for heavier nuclei. Therefore,

15With the current implementation the four-body matrix elements in the JT -coupled scheme can be produced
up to E4,max “ 10 on a single node. But to reduce the computational cost of the many-body calculations we
typically include the four-body matrix elements only up to E4,max “ 6.
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Figure 6.15 Extrapolation to infinite SRG space: Illustrated are the 16O ground-state energies for

the NN+3Nfull+4Nind Hamiltonian, starting from the standard NN+3N interaction and including all

induced 4N contributions with J123 ď 1. The four-body SRG evolution is performed in the SRG spaces

E4,SRG “ 19 (N) and 21 (�/ ˝) for α “ 0.08 fm4. The 4N contributions are included up to E4,max “ 6

(solid symbols) and E4,max “ 8 (open symbols). Further we used ~ΩSRG “ 40MeV, ~Ω “ 24MeV and

subtraction scheme SubB. The black circles correspond to the results achieved by an extrapolation to

infinite SRG space as described in the text. The solid curves corresponds to the Nmax-extrapolated

results.

the four-body SRG-space truncation might lead to an artificial repulsion as well. In fact, if one

studies the convergence with respect to the SRG space, one finds a similar convergence pattern

as in the previous sections for the standard NN+3N interaction.

To account for this effect we perform a schematic extrapolation to infinite SRG spaces, as

discussed above, and illustrate the corresponding results for all three interactions in Fig. 6.17.

As expected the extrapolation to infinite four-body SRG space lowers the energy compared

to the energies for E4,SRG “ 21 in Fig. 6.16. The ground-state energies for the initial NN

interaction in Fig. 6.17 (a) and (b) agree within the error of the SRG-space extrapolation,

which confirms that the 4N contributions are under control for the included four-body partial

waves.

For the initial NN+3N interactions the 4N forces are repulsive and lead to a reduction of the

flow-parameter dependence, in particular, for the Λ3N “ 500MeV/c case. It is important to

note that by including the induced 4N contribution with J123 ď 1 we achieve a flow-parameter

independent result within the uncertainties for all initial interactions. This indicates that effects

of omitted four-body partial waves with J123 ě 2 and also higher many-nucleon contributions

beyond the 4N level are smaller than the conservatively estimated errors of the SRG-space

extrapolation.

Finally, we study the effect of induced 4N contribution for different p-shell nuclei. We compare
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Figure 6.16 Effect of the induced 4N contributions for the 16O ground-state energy: We compare

the flow-parameter dependence (color code as in Fig. 6.14) of the 16O ground-state energy performing the

SRG evolution up to the three- (left panels) and four-body space (right panels) for the standard initial

NN interaction (upper panels) as well as for the initial NN+3N interactions with Λ3N “ 400MeV/c

(middle panels) and Λ3N “ 500MeV/c (lower panels). The IT-NCSM calculations are performed at

~Ω “ 24MeV. All four-body partial waves with J123 ď 1 are included using E4,SRG “ 21, ~ΩSRG “
40MeV, E4,max “ 6 and subtraction scheme SubB.
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Figure 6.17 16O ground-state energies with extrapolated induced 4N contributions: We compare

the flow-parameter dependence (color code as in Fig. 6.14) of the 16O ground-state energy performing

the SRG evolution up to the three- (left panels) and four-body space (right panels) for the standard

NN interaction (upper panels) as well as for the NN+3N interactions with Λ3N “ 400MeV/c (middle

panels) and Λ3N “ 500MeV/c (lower panels). The 4N contributions are included for all partial waves

with J123 ď 1 using the extrapolation to infinite SRG spaces. The solid curves correspond to the

Nmax-extrapolated results. See text for more information.
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Figure 6.18 Induced 4N contributions in 6Li and 12C: Plotted are the ground-state energies calcu-

lated with the IT-NCSM of 6Li (a) and 12C (b) for the standard NN+3Nfull Hamiltonian (open symbols)

and the NN+3Nfull+4Nind Hamiltonian (solid symbols). The solid and dashed curves correspond to the

Nmax-extrapolated results with and without induced 4N contributions, respectively. Further parameters

are chosen as in Fig. 6.17.

the ground-state energies of 6Li in Fig. 6.18 (a) and 12C in Fig. 6.18 (b) for the NN+3Nfull

(open symbols) and NN+3Nfull+4Nind (solid symbols) Hamiltonian, starting from the standard

NN+3N interaction with Λ3N “ 500MeV/c. The IT-NCSM calculation and SRG evolution are

performed with the same parameters as in Fig. 6.17, where the 4N contributions are extrapolated

to infinite E4,SRG. The results correspond to the flow-parameter values α “ 0.04 fm4 (blue

circles), 0.08 fm4 (red diamonds), and 0.16 fm4 (green triangles). The 6Li ground-state energy

is essentially not effected by the induced 4N forces and the converged results are independent of

the flow parameter. As indicated by the small error bars for the NN+3Nfull+4Nind Hamiltonian

the four-body SRG space for E4,SRG “ 21 is sufficiently large to cover the relevant contributions.

The 12C ground-state energy shows a noticeable flow-parameter dependence without the induced

4N contributions. Analogously to the 16O the inclusion of the J123 ď 1 4N contributions leads

to a repulsive effect that suppresses the flow-parameter dependence.

In summary, this work presents the first application of 4N forces in nuclear structure calcu-

lations and focuses on a prove of concept to lay the foundation for future calculations with

induced as well as initial 4N forces. With the developed four-body machinery we are able to

include all induced 4N contributions with J123 ď 1 with controlled uncertainties and moderate

computational costs. While the J123 “ 0 contributions have only a minor effect, the inclusion

of the J123 “ 1 contributions yields approximately flow-parameter independent results, within

the estimated uncertainties, for all initial interactions and p-shell nuclei that we have been con-

sidered in this section. This indicates that we can include the dominant induced 4N forces in ab

initio nuclear structure calculations. The NN+3Nfull+4Nind results for the standard NN+3N

interaction with Λ3N “ 500MeV/c have uncertainties of the order of the flow-parameter depen-

139



6 SRG-Induced Many-Nucleon Contributions

dence of the NN+3Nfull results. Nevertheless, the inclusion of the induced 4N forces indicate

that the initial Hamiltonian overbinds the experimental ground-state energy by about 4MeV

and 10MeV for 12C and 16O, respectively.

Unfortunately, the uncertainties due to the SRG-space truncation do not allow to resolve the

effect of the omitted J123 ě 2 or possibly induced beyond-4N contributions. To reduce the

uncertainties further one can increase the four-body SRG space as discussed above. Due to

rapid convergence with respect to E4,SRG one should achieve sufficiently small extrapolation

errors in feasible SRG spaces. If the J123 ě 2 contributions become accessible by such a

procedure remains questionable, in particular, because their effects in the p shell seem to be

rather small and, thus, require a highly accurate treatment. Nevertheless, to estimate the

contributions for the larger angular momenta one can aim at the inclusion of selected partial

waves that do not significantly increase the SRG-space dependence.
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7 NN+3N forces in Medium-Mass and Heavy Nuclei

The major obstacle for the use of chiral NN+3N interactions in ab initio nuclear structure

calculations are the SRG-induced contributions beyond the three-body level that have a sizable

effect beyond the mid-p shell. Hence, reliable predictions for ground-state energies using the

standard NN+3N interaction with the cutoff Λ3N “ 500MeV/c are restricted to p-shell nuclei.

In the previous section we have discussed the emergence, origin, and treatment of SRG-induced

4N forces. The explicit inclusion of the 4N forces without an intermediate normal-ordering

approximation is so far restricted to applications in the p shell using the IT-NCSM. While

there will be exciting future developments in these directions, the suppression of the induced

many-body forces by reducing the three-body cutoff to Λ3N “ 400MeV/c extends the range of

applicability to heavier nuclei and has led to several publications [23, 28–30,35, 36, 145].

An important example is the systematic analysis of the oxygen isotopic chain [36], illustrated

in Fig. 7.1, where we compare the ground-state energies of all even oxygen isotopes from the

proton to the neutron drip line, obtained with different ab initio many-body methods. The

details of the calculations can be found in the figure caption and in Ref. [36]. The application

of the initial chiral NN interaction by using the NN+3Nind Hamiltonian in Fig. 7.1 (a) leads

to a systematic underbinding of the experimental values. Remarkably, the inclusion of the

initial chiral 3N interaction with Λ3N “ 400MeV/c in Fig. 7.1 (b) improves the description

dramatically. Except for larger deviations in 12O and 26O, the experimental binding energies

are reproduced within 2 ´ 3MeV, revealing the predictive power of the chiral interactions

and highlighting the importance of the chiral 3N forces. Even more impressive is that the

different many-body methods provide a consistent description indicating that in terms of the

many-body approaches this mass regime is well under control. By starting from the same

Hamiltonian one can benchmark novel approaches such as the extension of the in-medium

similarity renormalization group (IM-SRG) [34, 35], i.e., the multi-reference IM-SRG in the

two-body normal ordering approximation (MR-IM-SRG(2)) [36], to established methods such as

the IT-NCSM as well as the coupled cluster with singles and doubles (CCSD) and perturbative

triples corrections (ΛCCSD(T)) [28–30, 93–95]. These calculations verify the reliability of the

many-body methods, prove the ability of the chiral interactions to predict the neutron drip line

in the oxygen isotopic chain and motivate the study of heavier nuclei.

141



7 NN+3N forces in Medium-Mass and Heavy Nuclei

æ

æ

æ
æ

æ

æ

æ æ

à

à

à

à

à

à

à
à

ô

ô

ô
ô

ó

ó

ó
ó

-175

-150

-125

-100

-75

-50

.

E
[M

eV
]

(a) NN+3N-induced

æ

æ

æ

æ

æ

æ

æ æ

à

à

à

à

à

à

à à

ô

ô

ô
ô

ó

ó

ó
ó

æ

à

ô

ó

12 14 16 18 20 22 24 26

A

-175

-150

-125

-100

-75

-50

.

E
[M

eV
]

(b) NN+3N-full

MR-IM-SRG(2)
IT-NCSM
CCSD
Λ-CCSD(T)

(a)
NN+3Nind

(b)
NN+3Nfull

Figure 7.1 Ground-state energies of the oxygen isotopic chain: Plotted are the ground-state energies

for the even oxygen isotopes with mass number A “ 12 ´ 26, using the NN+3Nind (upper panel) and

the NN+3Nfull Hamiltonian (lower panel) with Λ3N “ 400MeV/c. The Hamiltonians are SRG evolved

using rampA up to α “ 0.08 fm4. The curves correspond to different ab initio many-body methods.

The IT-NCSM energies are obtained by calculations up to Nmax “ 12 using a subsequent exponential

extrapolation to infinite model space, the MR-IM-SRG(2), CCSD, and ΛCCSD(T) results, are obtained

in a many-body model space truncated by emax “ 14. All calculations are performed at optimal HO

frequencies. The black bars indicate the experimental values [170,171]. For further details see Ref. [36],

where the results are published.

7.1 Normal-Ordering Approximation

The rapidly growing number of three-body interaction matrix elements with increasing E3,max,

presents a serious limitation for their explicit inclusion in large many-body model spaces. More-

over, the explicit inclusion of 3N interactions typically requires non-trivial formal extensions of

the medium-mass methods. Thus, a crucial step towards the application of chiral 3N interac-

tions beyond p- and sd-shell nuclei is the reduction of the 3N information to a lower particle-rank

interaction. For this purpose we use the normal-ordering approximation discussed in Sec. 3.3

and study its quality.

In Fig. 7.2 we illustrate the expectation values of the 3N interaction with respect to the ground

state of 4He,16O, and 40Ca. The eigenstates are obtained in IT-NCSM calculations for a fixed
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Figure 7.2 Anatomy of the NOnB approximation: Illustrated are the expectation values of the

3N interaction computed at different levels of the normal-ordering approximation, i.e., NO0B, NO1B,

NO2B as well as using the exact 3N interaction. The eigenstates correspond to the ground states of
4He and 16O obtained in an IT-NCSM calculation using Nmax “ 10, as well as to 40Ca using Nmax “ 8.

We use ~Ω “ 20MeV for all calculations. We investigate the anatomy of the 3N interaction using the

NN+3Nind and NN+3Nfull Hamiltonian for two flow-parameters values (see labels). The interaction

is normal-ordered regarding the unperturbed HO Slater determinant. The results are published in

Ref. [145].

Nmax at ~Ω “ 20MeV using the NN+3Nind and NN+3Nfull Hamiltonians for two flow-parameter

values and treating the 3N contributions explicitly. The 3N interactions used to evaluate the ex-

pectation value result from a normal-ordered n-body approximation (NOnB) with n “ t0, 1, 2u
or are used without approximations, i.e., “exact”. The normal ordering is performed with respect

to the unperturbed HO Slater determinant.

We discuss the anatomy of the expectation values with respect to the additional n-body (nB)

terms that appear at NOnB. Note that the expectation values in Fig. 7.2 result for the sum of

NO terms up to the nB level. For 16O and 40Ca the expectation values show a similar pattern,

while the zero-body (0B) term provides the largest positive contribution, the one-body (1B)

contribution is negative and reduces the expectation value. The absolute value and sign of

the two-body (2B) contribution depend on the inclusion of the initial 3N interaction and have

almost the same magnitude for the NN+3Nfull Hamiltonian. It is important to note that the

additional three-body (3B) terms of the exact 3N treatment have only a minor effect, indicating

the NO2B approximation to be accurate. The choice of the flow parameter slightly influences
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Figure 7.3 Benchmark of CCSD with the IT-NCSM: We compare the ground-state energies of 16O

obtained in IT-NCSM and CCSD calculations including 3N interactions in the NO2B approximation

for the NN+3Nind and the NN+3Nfull Hamiltonians. The SRG evolution is performed for α “ 0.04 fm4

( •), 0.05 fm4 (✚), 0.0625 fm4 (�), and 0.08 fm4 ( ), starting from the standard initial NN or NN+3N

interaction. The dashed horizontal lines correspond to the converged IT-NCSM results, treating the

3N contributions exactly (the flow-parameters are indicated by the same color coding as for the NO2B

results). We use E3,max “ 14 and ~Ω “ 20MeV. Solid curves indicate the Nmax-extrapolated results.

The results are published in Ref. [145].

the deviation, but does not change the general trend.

The picture is different for the lightest nucleus, i.e., the 4He ground-state expectation values. In

particular the inclusion of the initial 3N interaction changes the pattern completely, such that

the 0B term does not necessarily provide the largest contribution. This indicates that there is

no universal hierarchy of the individual NOnB contributions for this nucleus. Moreover, the

deviation of the NO2B approximation from the exact 3N treatment is noticeable and depend

on the Hamiltonian and the flow parameter. Nonetheless, these studies demonstrate that the

NO2B approximation is very accurate beyond the lightest nuclei. We have published these

investigations of the normal-ordering approximation in Ref. [145].

Since the IT-NCSM is typically limited to nuclei in the sd shell (see Sec. 2.2) we use the CC

approach (see Sec. 2.3) for heavier nuclei. We demonstrate the agreement of the CC approach

with the exact IT-NCSM in more detail in Fig. 7.3. Shown are the 16O ground-state energies

obtained with the IT-NCSM (left panels) and the CCSD (right panels) for the NN+3Nind (upper
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7.1 Normal-Ordering Approximation

panels) and NN+3Nfull Hamiltonian (lower panels). We use different flow-parameter values and

include the 3N interaction in the NO2B approximation, where the normal ordering is performed

with respect to the unperturbed HO Slater determinant.

In Fig. 7.3 (a) and (c) we compare the Nmax-extrapolated results (solid curves) with the NO2B

approximation to the converged IT-NCSM results obtained with the exact treatment of the 3N

interaction (dashed horizontal lines). For the NN+3Nind Hamiltonian the NO2B approximation

leads to an overestimation of the binding energy by less than 1MeV for all flow parameters.

For the NN+3Nfull Hamiltonian the NO2B approximation leads to an underestimation of the

binding energy for the smallest flow parameter, which turns into an overestimation with in-

creasing α. However, the deviations caused by the NO2B approximation are below 1% for the
16O ground-state energy, confirming the reliability of this approximation.

The CCSD method in Fig. 7.3 (b,d) can access large model spaces and achieves an advanced

convergence with respect to the model space compared to the IT-NCSM method in Fig. 7.3 (a,b)

at substantially reduced computational costs. The CCSD predicts 1 ´ 2MeV less binding

energy than the IT-NCSM. This slight discrepancy results from missing triples and higher

excitations as well as 3N contributions beyond E3,max “ 14, which are considered in the IT-

NCSM calculations by an extrapolation to infinite model space (solid lines). These are the

only additional truncations of the CCSD approach compared to the IT-NCSM calculations (see

Refs. [28–30] and, in particular, Ref. [99] for further discussions regarding the CC truncations).

Having determined the errors from the NO2B approximation as well as the further truncations

of the CCSD approach to be less than 2% for the ground-state energy of 16O, we can increase the

mass number beyond the sd shell and study the effect of the induced many-body contributions

in analogy the p-shell investigation in Sec. 6.1. In Fig. 7.4 we illustrate the ground-state

energies for 16O, 24O, 40Ca, and 48Ca as function of emax using the NNonly, NN+3Nind, and

NN+3Nfull Hamiltonian for a set of flow-parameter values. As in the p shell when starting with

the initial NN interaction the induced 3N contributions lead to a sizable repulsion and their

inclusion (NN+3Nind) provides flow-parameter independent results. Moreover, when we include

the standard initial 3N interaction with Λ3N “ 500MeV/c (solid symbols) the omitted induced

beyond-3N contributions cause a strong flow-parameter dependence that is absent when using

the initial 3N interaction with the reduced cutoff Λ3N “ 400MeV/c (open symbols). With the

exception of 48Ca, where the NN+3Nind Hamiltonian already provides an accurate description

of the ground-state energy, the attractive effect of the initial 3N interaction with the reduced

cutoff improves the description of the experimental ground-state energy (dashed horizontal

line).

It is important to note that the calculations contain truncations that need to be verified for ap-

plications beyond the p shell in order to make quantitative conclusions. In the next section we

discuss and improve on these truncations. For instance, we show in the following that the almost

perfect flow-parameter independence of the ground-state energies with the NN+3Nind Hamil-
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Figure 7.4 Ground-state energies with CCSD beyond the p-shell nuclei: We illustrate ground-state

energies of 16O, 24O, 40Ca, and 48Ca using NNonly, NN+3Nind, and NN+3Nfull Hamiltonians. The filled

symbols for the NN+3Nfull Hamiltonian correspond to the chiral 3N interaction with cutoff 500MeV/c,

the open symbols to the 3N interaction with reduced cutoff 400MeV/c. Further parameters of the CCSD

calculations are chosen as in Fig. 7.3. The dashed horizontal line indicates the experimental value [164]

and the results are published in Ref. [145].
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7.2 Towards Heavy Nuclei with Coupled Cluster

tonian is due to a cancellation of different truncation effects, such that the induced beyond-3N

forces, which become noticeable in the calcium isotopes, are concealed. Nevertheless, the results

in Fig. 7.3 clearly emphasize that the SRG evolution in the three-body space is indispensable for

applications of the chiral NN and NN+3N interactions and that the induced 3N contributions

have a large impact. Moreover, the beyond-3N contributions that originate from the chiral 3N

interaction with the reduced three-body cutoff are moderate over the considered mass range.

7.2 Towards Heavy Nuclei with Coupled Cluster

The NO2B approximation allows for the consideration of the relevant 3N contributions by

treating the normal-ordered interaction up to the two-body level. The combination with the

reduced three-body cutoff that suppresses the induced many-nucleon contributions enables the

application to heavy nuclei. We briefly discuss the truncations in the coupled-cluster (CC)

approach that need to be addressed when increasing the mass number and present the final

state-of-the-art results for a mass-trend investigation up to heavy tin isotopes.

First of all, the challenges appearing with respect to the SRG evolution due to the increasing

importance of three-body partial waves with large angular momenta are discussed in Sec. 5.3.

As we have shown in this section calculations beyond the sd shell require a substantial increase of

the SRG space. Thus, we use the SRG space denoted by rampD (see Fig. 5.7) for a sufficiently

large HO frequency of ~ΩSRG “ 36MeV, performing a subsequent frequency conversion to

~Ω “ 24MeV that is used for the CC calculations. As demonstrated, the uncertainties that

originate from the SRG space truncation are well below 1% for the mass regime up to the tin

isotopes.

The model-space truncation of the CC calculations by the maximum single-particle energy emax

needs to be examined. While the ground-state energies converge rather fast with respect to

emax for the medium-mass regime the heavier nuclei require larger model spaces manifested in

a slower convergence. For the model space truncations of emax “ 12 used in the following, the

convergence uncertainties are at the order of 1% for the considered mass range up to 132Sn [30].

The model space defined by emax “ 12 in principle contains 3N contributions up to E3,max “ 36,

which is far beyond reach. It is crucial to study the impact of the E3,max truncation in the

calculations. In order to increase E3,max as far as possible we perform the normal-ordering

approach during the transformation to the single-particle scheme as described in Sec. 3.3. This

procedure prevents explicit storage of the 3N interaction matrix elements for such large E3,max

and reduces the number of computed 3N interaction matrix elements to those required for the

normal-ordering approach.

Note that the reference state for the normal-ordering procedure follows from a Hartree-Fock

calculation with E3,max “ 14, which provides an improved approximation of the ground state

compared to the unperturbed Slater determinant. However, the reference state contains no
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7 NN+3N forces in Medium-Mass and Heavy Nuclei

information of 3N contribution with E3,max ą 14. Thus, we use the iterative normal-ordered JT -

coupling as explained in Sec. 3.3 (see Refs. [99,116]). In order to further reduce the uncertainties

related to the normal-ordering approximation the CC method is extended to explicitly include

the 3N contributions up to E3,max “ 12 [99] and combines them with 3N contributions for the

larger energies up to E3,max “ 18 in the NO2B approximation.

Finally, it is important to consider the cluster truncation of the CC method, i.e., the restriction

to singles and doubles excitations with the CCSD method. Due to the pioneering work in

Ref. [99] the 3N contributions in the NO2B approximation can be included to estimate the effect

of the triples excitations via an a posteriori correction to the energy using the left-eigenstate

completely renormalized coupled-cluster method with singles, doubles and non-iterative triples

excitations [134, 135], CR-CC(2,3) for short, or the ΛCCSD(T) [28–30, 93–95] method. The

energy contribution of the triples corrections allows to estimate the uncertainty due to the

cluster truncation, e.g., by conservatively assuming the effect of higher excitations to be of the

order of the triples corrections. An investigation of the uncertainties of the cluster truncation

as well as of the normal-ordering approximation is published in Ref. [28].

By novel developments and substantial improvements regarding the interaction matrix elements

treatment, i.e., the SRG evolution, the transformation to the JT -coupled scheme, and the

normal-ordering approach, as well as regarding the CC method, a new physics regime becomes

accessible to ab initio many-body methods with chiral NN+3N interactions. A comprehensive

investigation of the listed truncations is published in Ref. [30] and the final results are illus-

trated in Fig. 7.5, where we plot the ground-state energies per nucleon for several closed-shell

nuclei from 16O to 132Sn obtained from the CR-CC(2,3) method. From a careful analysis of

all truncations that have been discussed above, the uncertainties are of the order of 2% and

increase through the tin isotopes to about 4%. The cluster truncation, indicated by the triples

corrections, leads to a rather constant energy contribution per nucleon [30]. This is in agree-

ment with the size extensivity argument of the CC theory [172, 173]. The uncertainties of the

remaining truncations grow with the mass number, particularly throughout the tin isotopes,

such that 132Sn is identified to be the current limit of ab initio calculations with the presented

developments.

Eventually, we come to the interpretation of the results in Fig. 7.5. The boxes indicate the

spread of the ground-state energies per nucleon for α “ 0.04 fm4 to 0.08 fm4, where the tip

points to the smaller flow-parameter value. Typically, the SRG evolution affects the impact of

all employed truncations, such that a dependence on the flow parameter might have multiple

reasons. However, the uncertainties of all employed truncations, besides the omission of SRG-

induced beyond-3N forces, are determined to be of the order of 2 ´ 4%. Therefore, the flow-

parameter dependence can be almost exclusively attributed to the omission of induced beyond-

3N contributions. The CR-CC(2,3) calculations for the ground-state energies with the standard

NN+3Nind Hamiltonian (upper plot) depict a noticeable flow-parameter dependence already
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Figure 7.5 Ground-state energies throughout the nuclear chart: Illustrated are the ground-state

energies per nucleon obtained with the CR-CC(2,3) method for the NN+3Nind Hamiltonian (upper

plot) starting from the standard N3LO and the POUNDerS N2LO NN interaction and for the stan-

dard NN+3Nfull Hamiltonian (lower plot) with the reduced three-body cutoffs Λ3N “ 400MeV/c and

350MeV/c. The three-body SRG evolution is performed in the significantly larger model space rampD

(see Fig. 5.7) for ~ΩSRG “ 36MeV, subsequently converted to ~Ω “ 24MeV that is used in the CC

calculations. The boxes represent the spread of the results from α “ 0.04 fm4 to 0.08 fm4. The tip

points into the direction of the smaller flow parameter. All results employ the 3N contributions up

to E3,max “ 18 in NO2B approximation and explicit inclusion of the 3N interaction in CCSD up to

E3,max “ 12. Black bars correspond to data taken from Ref. [164]. The results are published in Ref. [30].
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7 NN+3N forces in Medium-Mass and Heavy Nuclei

for the calcium isotopes that increases with the mass number. For 132Sn the deviation for the

considered α regime is almost 1MeV per nucleon. This indicates that the omitted induced

beyond-3N contributions that originate from the initial NN interaction have a sizable impact

beyond the sd shell and make a reliable prediction of the result for the bare Hamiltonian hardly

feasible. In addition, to the standard NN interaction at N3LO we also present the ground-state

energies with the POUNDerS NN interaction at N2LO, showing a similar pattern regarding the

flow-parameter dependence. Therefore, the induced contributions are not a unique property

of the standard NN interaction, and the operator structures that cause these contributions

already appear in N2LO. Provided that the impact of the beyond-3N contributions increases

monotonously with the flow parameter up to α “ 0.08 fm4 they become strongly attractive with

the mass number, such that the ground-state energies for the bare Hamiltonian considerably

overbind the ground states compared to experiment.

The results obtained with the NN+3Nfull Hamiltonian including the initial reduced-cutoff 3N

interactions with Λ3N “ 350MeV/c and 400MeV/c are surprising. We observe a cancellation of

the attractive and repulsive effects of the beyond-3N contributions that originate from the initial

NN and 3N interaction, respectively, yielding a moderate dependence on the flow parameter

throughout a wide mass range. Provided that the beyond-3N contributions increase with α the

direction of the small flow-parameter dependence for Λ3N “ 350MeV/c indicate that the net

effect of the beyond-3N contributions is attractive, i.e., the induced beyond-3N contributions

originating from initial NN interaction a slightly larger than those originating from the initial

3N interaction. In contrast, for Λ3N “ 400MeV/c the repulsive beyond-3N contributions from

the initial 3N interaction seem to be larger. This is in agreement with the assumption that a

lower three-body cutoff suppresses the induced many-nucleon contributions that originate from

the initial 3N interaction. This indicates that the beyond-3N contributions from the initial 3N

interactions with a three-body cutoff between Λ3N “ 350MeV/c and 400MeV/c cancel with

the beyond-3N contributions from the initial NN interaction.

From the investigation in Sec. 4.7.1 regarding the flow-parameter dependence in 4He we have

observed that the effect of the induced 4N contributions does not necessarily behave monotoni-

cally, in particular, for large flow parameters. Of course the behavior can change with the mass

number, and it could be that the chosen α range leads to a small flow-parameter dependence

by coincidence. It is important to confirm that the flow-parameter dependence remains small

also for larger α ranges. Unfortunately, a reduction of the flow parameter increases the uncer-

tainties discussed above. Therefore, we increase the flow-parameter and study the beyond-3N

contributions.

In Fig. 7.6 we show the mass trend obtained with the standard NN and NN+3N interaction

with Λ3N “ 400MeV/c and compare the results of the flow-parameter regime of Fig. 7.5 α “
0.04 ´ 0.08 fm4 to α “ 0.08 ´ 0.16 fm4. For the NN+3Nind Hamiltonian the induced many-

nucleon contributions seem to have an attractive effect monotonously increasing with the flow
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Figure 7.6 Ground-state energies throughout the nuclear chart: In addition to the results with the

standard NN+3Nind and NN+3Nfull Hamiltonian using Λ3N “ 400MeV/c with α “ 0.04 ´ 0.08 fm4 of

Fig. 7.5, we show the corresponding ground-state energies per nucleon in the regime α “ 0.08´0.16 fm4.

Data taken from [99].

parameter. For the NN+3Nfull Hamiltonian the additional effect of the induced many-nucleon

contributions seems to be repulsive for α “ 0.04 ´ 0.08 fm4 with increasing flow parameter and

attractive for α “ 0.08 ´ 0.16 fm4. This hints to a complex beyond-3N contribution to the

ground-state energies that does not increase monotonously we the flow parameter.

Nevertheless, the observed flow-parameter dependence for the large α regime is still moderate.

Moreover, the observed cancellation of the induced beyond-3N effects over the complete mass

range is a strong indication that we can reliably predict on the chiral NN+3N interactions.

The effects caused by the omission of induced many-nucleon forces are indicated by the de-

pendence on the flow parameter. However, the boxes for the NN+3Nind results in Fig. 7.5

and 7.6 cannot be interpreted as typical error bars, since an extrapolation to the energies of

the bare Hamiltonian is uncontrolled. Furthermore, fundamental uncertainties of the chiral 3N

interaction can be estimated by the three-body cutoff variation. Within these uncertainties, we

observe a rather accurate description of the oxygen masses, that turns into an almost constant

overbinding of around 1MeV per nucleon for the heavier systems. It is remarkable that the

quantitative systematics of the binding energies can be reproduced with ab initio calculations,

starting from chiral NN+3N interactions that are constrained in A ď 4 systems.

The results confirm the predictive power of the chiral interaction and in addition raise the

question, whether initial 4N interactions that appear at N3LO might become relevant for such

heavy systems. This question is supported by the fact that the effect of the initial 4N force
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7 NN+3N forces in Medium-Mass and Heavy Nuclei

in 4He is estimated to be of the order of a view hundred keV [174] while for the considered

flow-parameter range the induced 4N forces have an even smaller impact of about 50 keV (see

Sec. 4.7.1), but rapidly increase with the mass number. Thus, the techniques developed within

this work for the inclusion of the 4N contributions will be relevant in the future for the accurate

description of medium-mass and heavy nuclei including initial and induced 4N effects.
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8 Sensitivity Analysis and Spectroscopy with Chiral Interactions

We dedicate the first part of this section to the investigation of nuclear spectra in the p shell

utilizing the IT-NCSM. In particular, we study the sensitivity of excitation energies to variations

of the standard local 3N interaction. In the second part we focus on a comparison of nuclear

ground-state and excitation energies obtained with a variety of currently available chiral NN+3N

interactions introduced in Sec. 1.3.3. These investigations provide important information about

the structure of the eigenstates and mark a first step towards a systematic determination of the

uncertainties caused by the LECs fit, the regularization and the truncation to a certain chiral

order. Moreover, these studies provide hints to the few-body community for the construction

of future chiral potentials.

8.1 Sensitivity Analysis of Local 3N Interaction

The local 3N interaction at N2LO that we have introduced as standard 3N interaction consists of

the short-range three-nucleon contact term proportional to cE , the medium-range two-nucleon

contact one pion-exchange term proportional to cD and the long-range two-pion exchange term

that depends on ci “ tc1, c3, c4u (see Sec. 1.3.2). In the following, we study the sensitivity of

nuclear spectra to variations of the 3N parameters, i.e., the LECs and the cutoff. In Tab. 8.1

we summarize the 3N parameters of the standard NN+3N interaction and of the interactions

employed for the sensitivity analysis. For the latter interactions the cE value is refitted to

the 4He ground-state energy, while for the interactions where we do not explicitly vary the

parameter cD we use cD “ ´0.2 to reproduce the triton beta-decay half-life [77].

There are several reasons for such investigations. First of all, identifying sensitivities to varia-

tions of certain parameters determines the dominant operator structures affecting the relevant

observables. This allows to draw conclusions about the underlying structure of the nuclear

eigenstate. Furthermore, the LECs are not unique but depend on the fit procedure and the ob-

servables utilized for the fit. There are various sets of the ci “ tc1, c3, c4u values in the literature

from different fits to nucleon-nucleon and pion-nucleon data [8, 10, 62, 175–179] (see Ref. [180]

for a recent summary of the fits). From these fits one obtains a large spread for the LECs of

the two-pion exchange term c1 “ p´0.8, . . . ,´1.2GeV´1q, c3 “ p´3.2, . . . ,´5.9GeV´1q, and

c4 “ p`3.4, . . . ,`5.4GeV´1q. Moreover, there are subleading 3N contributions of the two-pion

exchange topology, that can be partially absorbed via a shift of the ci values as proposed in
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8 Sensitivity Analysis and Spectroscopy with Chiral Interactions

NN+3Nfull
Λ3N c1 c3 c4 cD cE

rMeV/cs rGeV´1s rGeV´1s rGeV´1s
standard 500 ´0.81 ´3.2 `5.4 ´0.2 ´0.205

ci shifted 500 ´0.94 ´2.3 `4.5 ´0.2 ´0.085

c1 shifted 500 ´0.94 ´3.2 `5.4 ´0.2 ´0.247

c3 shifted 500 ´0.81 ´2.3 `5.4 ´0.2 ´0.200

c4 shifted 500 ´0.81 ´3.2 `4.5 ´0.2 ´0.130

c3 “ 0 500 ´0.81 0 `5.4 ´0.2 ´0.228

cD “ ´1 500 0 ´3.2 `5.4 ´1.0 ´0.207

cD “ `1 500 ´0.81 0 `5.4 `1.0 ´0.228

Λ3N “ 450MeV/c 450 ´0.81 ´3.2 `5.4 ´0.2 `0.098

Λ3N “ 400MeV/c 400 ´0.81 ´3.2 `5.4 ´0.2 ´0.016

Table 8.1 LECs for local chiral 3N interactions with excluded contributions: Besides the standard

NN+3N interaction [77] the table summarize the LECs of the local 3N interaction for variations of the

LECs and the three-body cutoff, keeping the standard NN interaction at N3LO fixed.

Refs. [75, 83, 85]. The “ci shifted” parameters in Tab. 8.1 uses exactly these shifts. Thus, the

variations we perform in the following provide additional constraints for the LEC fit and, in

addition, allow to estimate partial effects from subleading 3N contributions. Finally, we vary

the cutoff to examine the impact of the regularization and to perform a first step towards a

systematic quantification of the theoretical uncertainties of the chiral EFT approach.

Before we start the sensitivity analysis we briefly reconsider the results of the 12C excitation

spectrum of Fig. 6.3 on page 114. While the SRG-induced beyond-3N forces considerably affect

the absolute energies beyond the mid-p shell, the excitation spectra are essentially independent

of the flow parameter. Furthermore, the excitation energies rapidly converge with respect to

Nmax, such that the typically applied IT-NCSM model spaces of Nmax “ 8 at ~Ω “ 16MeV are

sufficient to obtain well converged results. The SRG evolutions are performed using the SRG

space corresponding to rampA (see Fig. 5.1) up to α “ 0.08 fm4.

In Figs. 8.1 and 8.2 we show the excitation spectra of 12C obtained with the initial NN inter-

actions (NN+3Nind), as well as with the initial NN+3N interactions (NN+3Nfull) defined in

Tab. 8.1. From a comparison of the NN+3Nind spectrum to the one obtained with the standard

NN+3Nfull Hamiltonian in Fig. 8.1, we observe that the initial 3N interaction has a strong im-

pact on the excitation energies of the first excited 0`, 1` and 4` state. As discussed in Sec. 6.1

the first excited 0` state is known to exhibit a complicated cluster structure that requires too

large model spaces for an adequate description in the HO representation. Thus, the excitation

energy of this state is not yet converged for Nmax “ 8 and substantiated conclusions on the 3N

effects cannot be drawn. Interestingly, the initial 3N force reduces the first 1` excitation energy

by about 2.5MeV, which worsens the rather good agreement with the experimental value we

find with the initial NN interaction. Simultaneously, the increase of the 4` excitation energy

by more than 2MeV improves the experimental agreement. The remaining excitation energies
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Figure 8.1 Sensitivity analysis in 12C spectrum: Excitation spectra of 12C for the standard NN+3Nind

and NN+3Nfull Hamiltonians, as well as for the Hamiltonians with varied LECs of the two-pion exchange

term according to Tab. 8.1. The results are obtained with the IT-NCSM at ~Ω “ 16MeV in an Nmax “ 8

model space. The SRG evolution is performed using rampA up to α “ 0.08 fm4. Experimental data

taken from Ref. [167].
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Figure 8.2 Sensitivity analysis in 12C spectrum: Excitation spectra of 12C obtained with the

NN+3Nind and the NN+3Nfull Hamiltonians for different values of cD and the three-body cutoff Λ3N.

Remaining parameters are identical to Fig. 8.1.

are slightly increased leading to an overall improved description of the experimental spectrum.

In the following, we concentrate on the excitation energies of the first excited 1` and 4`

states, when changing the parameters of the initial 3N interaction. The 12C spectrum is rather

insensitive to the shifts of the two-pion exchange LECs. The only exception is the first 1`

excitation energy that is increased by about 1MeV towards experiment. When performing the

ci-shifts separately, we identify the operator structures proportional to c3 to be responsible for

this pronounced sensitivity. If we neglect this term by setting c3 “ 0 almost all excitation

energies are noticeably increased, in particular, the one of the first 1` state. The exceptions are

the excitation energies of the 2` and 4` states that show almost no sensitivity to the long-range

two-pion exchange contributions.

A similar strong sensitivity of the first 1` excitation energy can be observed in Fig. 8.2 for

variations of cD and Λ3N while the remaining spectrum shows a comparatively small depen-

dence. With decreasing Λ3N cutoff the 1` excitation energy seems to rapidly approach the
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Figure 8.3 Convergence of 10B spectrum: Excitation spectrum of 10B for the standard NN+3Nfull

Hamiltonian as function of Nmax. Remaining parameters are identical to Fig. 8.1. Experimental data

taken from Ref. [181].

value obtained for the NN+3Nind Hamiltonian. This might indicate that the complex structure

of this state is mostly effected by the high-energy components of the initial 3N force. The 4`

excitation energy does not show a strong sensitivity to the parameter changes, indicating that

its improved description by the initial 3N interaction is caused by all 3N terms simultaneously.

See also Ref. [22] for a recent investigation of the 12C spectrum with the NCSM and IT-NCSM,

including also negative parity states.

An even more interesting case to study the 3N-force effects is the 10B excitation spectrum. As

demonstrated in Fig. 8.3 we obtain an appropriate convergence with respect to Nmax for the HO

frequency of ~Ω “ 16MeV, and in the following we perform the analogous sensitivity analysis

with respect to the 3N parameters as illustrated in Fig. 8.4 and 8.5.

As known from calculations with the Argonne V18 and CD-Bonn potentials the initial NN forces

typically predict the wrong ground state [4] and one requires an initial 3N force to predict the

3` state to be the energetically lowest eigenstate, rather than the 1` state. The same applies

to the standard chiral NN and NN+3N interaction used in the first two panels of Fig. 8.4.

While the excitation energy of the second 1` with respect to the 3` state is almost insensitive

to the 3N force, the remaining excitation energies increase. In general, the initial 3N force

improves the agreement with experiment, although the order of the first 0` and second 1`

state is reversed. Furthermore, the second 3` excitation energy is strongly increased by the

initial 3N interaction, such that the state is not anymore within the computed eight lowest

eigenstates and has an excitation energy large than 5.5MeV.
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Figure 8.4 Sensitivity analysis in 10B spectrum: Calculations performed as in Fig. 8.1.

By considering the results obtained for variations of the two-pion exchange term LECs in

columns 3 ´ 5 we again observe a substantial sensitivity of the first 1` excitation energy origi-

nating from the operator structures proportional to c3. In comparison to the 12C spectrum the

c3 contributions improve the agreement with experiment and we reconsider this correlation later

on. A striking impact on the spectrum occurs when setting c3 “ 0. Besides small variations,

the spectrum shows the same ordering and essentially an equivalent result as with initial NN

interaction, identifying the c3 term to have the major impact on the changes caused by the 3N

force.

This is also consistent with the results obtained for the cD and cutoff variation in Fig. 8.5.

The variation of cD generates minor changes in the spectrum and, in particular, no changes of

the level ordering. For the reduction of the three-body cutoff, which has an impact on all 3N

force terms, the spectrum seems to approach the results for the initial NN interaction. The

strong impact of the cutoff variation indicates the sensitivity of the excitation spectrum to

high-momentum components. Moreover, we have identified the c3 term to dominate the 3N

effects. Thus, the 3N contributions that are responsible for sizable induced beyond-3N forces

(see Sec. 6), i.e., the high-momentum components of the c3 term, have also a strong impact on
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Figure 8.5 Sensitivity analysis in 10B spectrum: Calculations performed as in Fig. 8.2.

the details of the 10B spectrum.

From the variation of the three-body cutoff a further interesting property of the 10B spectrum

can be observed. For the larger Λ3N of 500MeV/c the order of the 3` ground state with

respect to the first 1` state agrees with experiment while the order of the 0` and second

1` state is reversed compared to experiment. When reducing the cutoff this is inverted. It

seems that we cannot describe both orderings simultaneously. In other words, although the 3N

force generally improves the description of the spectra, there are still discrepancies for certain

excitation energies, which cannot be resolved by adjusting the parameters of the 3N interaction.

These excitation energies can be used as benchmark cases for future interactions.

Moreover, one can identify to types of states that show similar changes of the energy under

variations of the 3N interaction. The one type of states are the first 3` and second 1` states,

which keep an almost constant energy distance. The remaining excitation energies belong to

the other type of states and show similar qualitative changes. In particular, the 3N impact to

the energies of the 2` states is almost the same.

Finally we concentrate on the strong sensitivity of the first 1` excitation energies of 12C and
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Figure 8.6 Correlation of the 1` excitation energies of 10B and 12C: Plotted is the excitation

energy of the first 1` with respect to 0` ground state in 12C, as function of the excitation energy of

the first 1` with respect to the first 3` in 10B. The parameters of the IT-NCSM calculations are are

identical to Fig. 8.1 using the standard NN+3Nind ( ˝) and NN+3Nfull (�) Hamiltonian, as well as those

obtained from the ci ( •), cD (N), and Λ3N ( ) variations. The thin cross indicates the experimental

value.

10B and illustrate their correlation in Fig. 8.6 by plotting the corresponding excitation energy

for 12C as function of the one for 10B, obtained for the NN+3Nind, as well as the Hamiltonians

introduced in Tab. 8.1. The result is surprising: The data point for the initial NN interaction

(gray open box) leads to a rather accurate description of the 1` excitation energy for 12C, but

is almost 2.5MeV too low for the 1` excitation energy for 10B. By including the 3N forces with

the parameter variations, the results lie on a line in the correlation plot that does not intersect

with the experimental data point (thin cross). Obviously, we cannot describe both excitation

energies correctly by variations of the three-body parameters. Thus, these results either hint

to an insufficiency of the NN force, or a lack of operator structure in the 3N force that, e.g.,

could be found at N3LO.

In summary, spectra of p-shell nuclei constitute a powerful testbed for chiral NN and 3N forces

and we have observed a general improvement of the spectra by including the standard chiral 3N

interaction. In addition, we have identified certain excitation energies that cannot be described

properly and require changes in the Hamiltonian beyond the adjustment of 3N parameters.

These observables can be consulted to examine the reliability of future chiral interactions.
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8.2 Comparison of Present Chiral NN+3N Interactions

We now focus on a comparison of the standard interaction, i.e., the NN at N3LO by Entem &

Machleidt and the local 3N interaction at N2LO, to the consistent N2LO NN+3N interactions

introduced in Sec. 1.3.3. For this purpose we apply the N2LO NN+3N interactions to nuclear

spectra in the p shell. Finally, we examine the ground-state energy of 16O to conclude about

the effects of the initial 3N interactions and the SRG-induced beyond-3N contributions.

The starting point for the POUNDerS and Epelbaum NN forces are interaction matrix elements

in the two-body partial-wave momentum representation. The corresponding matrix elements

are SRG evolved and transformed to the two-body Jacobi-HO representation. We refer to

Ref. [182] for an investigation of the Epelbaum NN interaction at N2LO and at N3LO for the

ground state of the deuteron and 4He. There, one can find illustrations of the NN potentials

in the momentum and HO representation for the partial-wave channels that contribute to the

deuteron. From these studies one finds that, in particular, the Epelbaum NN interaction at

N3LO for the largest cutoffs show striking properties, e.g., a sign change of the deuteron S-

wave function at short distances or untypical large amplitudes of the of the interaction matrix

elements in the momentum and HO representation for the S-wave channel. Apart from that,

the remaining Epelbaum interactions at N2LO and N3LO show a rather consistent picture

compared to the standard NN interaction at N3LO, e.g., the form of the potential, the resulting

deuteron wave function, or the 4He ground-state energies are comparable. In particular, after

softening the interactions by the SRG the universality property, i.e., the independence of the

high-momentum details in the initial potential, becomes obvious (see Ref. [159] for an detailed

overview). For instance, one observes similar deuteron S-wave functions that exhibit only minor

discrepancies at short distances.

However, in the following we focus on the impact of the initial 3N force to nuclear energies in

the p shell. The POUNDerS NN interaction is combined with the standard local 3N interaction,

such that the resulting Hamiltonian can be treated as the standard NN+3N Hamiltonian.

In case of the non-local Epelbaum 3N interaction at N2LO, the procedure is different. The start-

ing point are matrix elements in the partial-wave decomposed momentum representation, that

are unregularized and, in general, only partially antisymmetrized. These matrix elements result

from the automatized partial-wave decomposition (aPWD) developed by Skibiński et. al [75].

The procedure does not account for the locality of the interaction.16 Thus, the calculation of

the interaction matrix elements is computationally demanding and the model space needs to

be reduced compared to the one used for the local 3N interaction. This reduction is typically

achieved by introducing additional physical motivated truncations of the angular momenta. In

the following, the applied non-local 3N interaction matrix is calculated on a four-dimensional

16The fundamental operator structure of the 3N force at N2LO is local in coordinate space, but the applied
regularization for the Epelbaum interactions causes non-local contributions.
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Figure 8.7 Excitation spectra for 6Li: Excitation spectrum of 6Li for the NN+3Nind and NN+3Nfull

Hamiltonians using the standard interaction (left-hand side) and the Epelbaum interaction for the

p450{500q MeV/c cutoff combination (right-hand side). The IT-NCSM calculations are carried out for

Nmax “ 12 at ~Ω “ 20MeV and the SRG evolution is performed up to α “ 0.08 fm4 for the SRG space

corresponding to rampA . In the middle we show the experimental values [183].

momentum grid using 8 ´ 14 grid points for each dimension, which is sufficient for a reliable

interpolation. The coupled relative angular momentum is typically truncated to J12 ď 7

2
and

the angular momentum corresponding to the first Jacobi coordinate is truncated to J1 ď 7

for J12 “ 1

2
and J1 ď 6 for the remaining partial waves. In order to apply these 3N interac-

tions to nuclear structure calculations, we perform the regularization, antisymmetrization and

transformation to the Jacobi-HO representation as discussed in Sec. 3.5. From thereon we can

treat the non-local 3N interactions in the same manner as the standard 3N interaction with the

three-body HO framework. Thus, all novel techniques regarding the matrix-element treatment

in the HO representation are directly applicable to the non-local 3N interactions.

8.2.1 Spectroscopy of p-Shell Nuclei

We examine the spectroscopy for p-shell nuclei and compare the results to those obtained

from the standard interactions. While the POUNDerS interaction has been applied recently to

nuclear structure calculations for to oxygen and calcium isotopes [11] the Epelbaum interactions

are rather untested in nuclear structure calculations. We begin with a simple case, the excitation

spectrum of 6Li, to provide a proof of concept for the inclusion of the Epelbaum 3N forces to

the HO framework and to verify the principal applicability of the Epelbaum interactions to

nuclear structure calculations.

The corresponding results for the Epelbaum interaction with pΛ{Λ̂q “ p450{500q MeV/c are
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shown in Fig. 8.7 and are compared to the results for the standard interaction. The calcu-

lations are carried out with the IT-NCSM at Nmax “ 12 and ~Ω “ 20MeV, such that an

adequate convergence with respect to Nmax is reached. The interactions are SRG evolved at

the three-body level up to α “ 0.08 fm4. While for the standard interaction the initial 3N force

considerably improves the description of the 3` excitation energy, the Epelbaum NN interaction

already provides a good description that is only slightly affected by the 3N force. Also the 0`

excitation energy is in slightly better agreement with experiment for the Epelbaum interaction.

For the 2` excitation energy the 3N force worsens the agreement with experiment for both

interactions leading to an overestimation of the excitation energy. In total, both interactions

provide reasonable results for the 6Li spectrum and we proceed to the 12C and 10B spectra.

We concentrate on a comparison of the spectra for the standard interaction to several NN+3N

interactions at N2LO, i.e., the POUNDerS interaction with pΛ{Λ̂q “ p450{700q MeV/c and four

Epelbaum interactions with cutoff combinations pΛ{Λ̂q “ p450{500q, p600{500q, p550{600q, and

p450{700q MeV/c. Note, that we omit the fifth available Epelbaum with pΛ{Λ̂q “ p600{700q MeV/c,

since it has a rather large cutoff already close to the critical value where spurious bound states

violate the naturalness of the LECs [42] and only differs from the other Λ “ 600MeV/c in-

teraction by the spectral-function regularization (SFR). However, we use both Λ “ 450MeV/c

interactions to study the impact of the SFR cutoff. The calculations are performed with the

IT-NCSM at Nmax “ 8 and ~Ω “ 20MeV for the POUNDerS interaction and at ~Ω “ 16MeV

for the remaining interactions. The SRG evolution is carried out for the model space rampA

up to α “ 0.08 fm4.

In Fig. 8.8 we show a comparison for the 12C excitation spectrum. The left-hand spectra for

each interaction are obtained with the NN+3Nind Hamiltonians including exclusively the initial

NN force while the right-hand spectra correspond to the NN+3Nfull Hamiltonians including the

initial NN+3N force. We first focus on the effect of the initial 3N force. The excitation energy of

the first 1` state that has been identified to be highly sensitive to the initial 3N force decreases

for all interactions owing to the initial 3N interaction. Furthermore, except for the Epelbaum

interaction with pΛ{Λ̂q “ p450{700q MeV/c the initial 3N force increases the excitation energy

of the rotational 2` and 4` states, indicating an enhancement of the momentum of inertia. The

exceptional behavior with this Epelbaum interaction is surprising since the regularization only

differs by the SFR cutoff from the first Epelbaum interaction with pΛ{Λ̂q “ p450{500q MeV/c.

The distinct differences of the 3N-force effects for these two interactions reveal the importance

of changes in the NN force that have a strong impact on nuclear structure observables.

The standard and POUNDerS interactions provide a rather consistent description of the lowest

excited eigenstates regarding the 3N-force effect and the level ordering with and without initial

3N interactions. There is work in progress to produce additional POUNDerS interactions for

further cutoff combinations and it will be interesting to investigate if the spectroscopy changes

for these interactions.
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Figure 8.8 Excitation spectra for 12C with different chiral interactions: Excitation spectra of 12C

for the NN+3Nind and NN+3Nfull Hamiltonians using the standard interaction with Λ “ 500MeV/c, the

POUNDerS interaction with pΛ{Λ̂q “ p450{700q MeV/c and four different Epelbaum interactions with

the cutoff combinations pΛ{Λ̂q “ p450{500q, p600{500q, p550{600q, and p450{700q MeV/c (left to right).

The calculations are performed with the IT-NCSM at ~Ω “ 20MeV for the POUNDerS interaction and

at ~Ω “ 16MeV for the remaining interactions. Further, we use Nmax “ 8 and α “ 0.08 fm4.

The spectra for the Epelbaum NN+3Nind Hamiltonians show a strong dependence on the cutoff,

such that the level ordering and agreement with experiment changes. Moreover, it is hardly

possible to identify a certain systematic trend with respect to the cutoff variation, as it has

been the case for an exclusive three-body cutoff variation in Sec. 8.1. In particular, the fourth

interaction with pΛ{Λ̂q “ p450{700q MeV/c predicts a spectrum that differs from those of the

remaining Epelbaum NN+3Nind interactions. It is questionable if the large variations for the

Epelbaum NN+3Nind Hamiltonians reflect the theoretical uncertainty of the chiral interaction

at this order or if the spectra are biased by an insufficient LEC-fit procedure.

If we concentrate on the spectra with the Epelbaum NN+3Nfull Hamiltonians we observe a

rather consistent description. It seems that the adjustment of the 3N-force LECs cD and cE

accounts for the changes in the NN sector and leads to a rather consistent description that, in

addition, agrees with the results with the standard NN+3Nfull Hamiltonian. This indicates that

the 3N force is not a small correction to the NN force, but an essential ingredient required to

stabilize the chiral N2LO force regarding variations of the cutoff. However, further studies along

these lines are mandatory, including variations of the NN force combined with an improved fit
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Figure 8.9 Excitation spectra for 10B with different chiral interactions: Calculations performed as

in Fig. 8.8.

procedure.

To extend the examinations of the NN+3N interactions at N2LO we consider the analogous

calculations for the 10B spectra in Fig. 8.9. As expected from the previous discussions the Epel-

baum NN+3Nind results strongly depend on the cutoff. While the majority of the interactions

predict an almost degenerate ground state, the pΛ{Λ̂q “ p450{500q MeV/c interaction distinctly

predicts the correct ground state without an initial 3N force. In contrast to the 12C nucleus

the consistency of the spectra is not substantially improved when including the initial 3N force.

For instance, the Epelbaum NN+3N interaction with pΛ{Λ̂q “ p600{500q MeV/c predicts rather

large excitation energies compared to the other interactions. Further, the ordering of the sec-

ond 1` state with respect to the 0` state changes for the different cutoff values. As for 12C,

systematics regarding the cutoff variation are not recognizable.

Note that the Epelbaum 3N interaction contains a truncation regarding the angular momenta

and their convergence behavior with respect to Nmax might be different compared to the stan-

dard interaction, in particular, for the 10B spectrum (see Fig. 8.3). To confirm the reliability

of the presented calculations we study the convergence of the spectra with respect to the IT-

NCSM model space and the applied angular-momentum truncation of the 3N interaction. In

Fig. 8.10 we exemplarily illustrate the 10B excitation spectrum for the Epelbaum interactions

with pΛ{Λ̂q “ p450{500q MeV/c (upper panel) and pΛ{Λ̂q “ p450{700q MeV/c (lower panel). In
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Figure 8.10 Convergence of 10B spectrum: Excitation spectra of 10B for the Epelbaum NN+3Nfull

Hamiltonians with pΛ{Λ̂q “ p450{500q MeV/c (upper panel) and p450{700q MeV/c (lower panel) as

function of Nmax. The calculations are performed with the same parameters as in Fig. 8.8.
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Figure 8.11 Correlation of the 1` excitation energies of 10B and 12C: Same plot as in Fig. 8.6

including the results for the POUNDerS interaction (light-blue crosses) as well as for the Epelbaum

interactions (stars) with pΛ{Λ̂q “ p450{500q MeV/c (orange), p600{500q MeV/c (blue), p550{600q MeV/c

(red), and p450{700q MeV/c (green). The open symbols correspond to NN+3Nind Hamiltonians and the

solid symbols to NN+3Nfull Hamiltonians.

general, the 10B excitation spectra at Nmax “ 8 are reasonably well converged with respect to

Nmax (also for the remaining interactions) and the ordering of the eigenstates is not expected

to change for larger model spaces. An exception is the first excited 1` state for the Epelbaum

NN+3Nfull interaction with the cutoff combination p450{700q MeV/c that shows a surprisingly

slow convergence. For an infinite model space this particular interaction seems to predict the

wrong ground state of 10B with the initial 3N force.

To benchmark the validity of the J12 truncation we compare the results with J12 ď 5

2
to those

with J12 ď 7

2
for the 10B spectrum using exemplarily the Epelbaum NN+3Nfull interaction

with the p450{500q MeV/c cutoff combination. We find discrepancies below 350 keV for the

absolute energies and about 150 keV for the excitation energies. Therefore, the omitted angular-

momentum contributions of the 3N force are expected to cause minor changes of the presented

results and the general conclusions are not affected.

Finally, we reconsider the correlation of the first 1` excitation energies in 12C and 10B that

has been identified for the parameter variations of the standard 3N force in Sec. 8.1. Fig-

ure 8.11 shows the similar correlation plot as in Fig. 8.6 including the results obtained with

the POUNDerS and Epelbaum interactions at N2LO. The variation of the 3N-force parameters

of the standard interaction yields only data points on a line that does not intersect with the

experimental data point (thin cross). The POUNDerS (light-blue cross) and Epelbaum (stars)

results are typically located to the upper right of this line, i.e., on the side where experiment
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can be found. Obviously, the different initial NN interactions provide an opportunity to leave

this line, even though none of the investigated NN+3Nind (open symbols) or NN+3Nfull (open

symbols) Hamiltonians provide results close to the experiment.

The analogous sensitivity analysis to the 3N-force parameters, as in Sec. 8.1 for the standard

interaction, can be performed for the NN+3N interactions at N2LO. Although such studies

are important to identify the impact of certain 3N-force contributions, presently the NN forces

of the Epelbaum interactions are not fully satisfying. These N2LO forces show a rather large

χ2{datum for the description of the NN data compared to the standard NN interaction at N3LO

and we observe a strong dependence of the 3N-force effects on the NN interaction.

The agreement of the results with the POUNDerS and the standard NN and NN+3N interac-

tions is remarkable, revealing accurate spectroscopic predictions even without NN contributions

at N3LO. However, an investigation of further interactions constructed in the same manner as

the POUNDerS interaction for different cutoff combinations is required to assess the uncertain-

ties. The variations in the excitation spectra obtained with the Epelbaum interactions for the

different cutoff combinations can be interpreted as the actual uncertainties of these interactions

at N2LO. Although, the resulting error bands are rather large the experimental energies typical

can be reproduces within these uncertainties. It will be interesting to study if improvements of

the LEC-fit procedure or inclusions of the N3LO contributions can decrease the uncertainties

and retain the agreement with experiment.

8.2.2 Ground-State Energies and Induced Many-Nucleon Force

After discussing nuclear spectroscopy in the p shell we study the POUNDerS and Epelbaum

interactions with respect to the description of the 16O ground-state energy. For instance, the

POUNDerS interaction has shown success in the description of the oxygen isotopic chain without

an initial 3N force [11], and we investigate if the experimental agreement persist when the initial

3N contributions at N2LO are included. Moreover, we study the effect of SRG-induced many-

nucleon contributions beyond the three-body level indicated by the flow-parameter dependence

of the converged ground-state energies.

In Fig. 8.12 we show the ground-state energies of 16O computed with the standard (left-hand

panels), POUNDerS (middle panels) and Epelbaum (right-hand panels) interactions as func-

tion of Nmax. We exemplarily use the Epelbaum interaction with the cutoff combination

p450{500q MeV/c. The IT-NCSM calculations are performed at ~Ω “ 20MeV and we use

an SRG evolution up to α “ 0.04 fm4 (blue circles), 0.08 fm4 (red diamonds), and 0.16 fm4

(green triangles). For all three NN+3Nind Hamiltonians we observe an almost negligible flow-

parameter dependence. This reveals the small impact on the 16O ground-state energy of the

omitted induced beyond-3N contributions originating from the initial NN force. While the stan-

dard NN interaction in Fig. 8.12 (a) considerably underbinds by about 10MeV, the POUNDerS
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interaction in Fig. 8.12 (b) already reproduces the experiment without an initial 3N force, as

observed in Ref. [11]. The Epelbaum NN interaction in Fig. 8.12 (c) leads to a large overbinding

of the ground state by about 30MeV.

In the lower panels of Fig. 8.12 we depict the energies for the initial NN+3N interactions

(NN+3Nfull). We add the local 3N force with Λ3N “ 500MeV/c (solid symbols) and 400MeV/c

(open symbols) to the standard (c) and POUNDerS (d) NN interactions. The Epelbaum in-

teraction is combined with the corresponding non-local 3N force with Λ3N “ 450MeV/c. As

observed in Sec. 6 the standard NN+3N interaction with Λ3N “ 500MeV/c induced beyond-3N

forces that have a sizable repulsive effect. For the Λ3N “ 400MeV/c interaction the many-

nucleon effects are successfully suppressed and one achieves an accurate description of the

ground-state energy. A similar pattern regarding the flow-parameter dependence is also ob-

served for the POUNDerS interactions. The effects of the omitted induced many-nucleon forces

are slightly smaller but also repulsive and get suppressed by reducing the three-body cutoff.

The similar flow-parameter dependence for the Epelbaum and standard NN+3N interaction

with Λ3N “ 500MeV/c indicates that both 3N forces induce repulsive many-nucleon effects of

the same order.

However, in contrast to the standard interaction, the NN+3Nfull Hamiltonians of the other

interactions lead to an underbinding of the experimental ground-state energy. The omitted in-

duced beyond-3N forces have a repulsive effect, such that the results for the standard interaction

with Λ3N “ 500MeV/c is shifted towards the experimental value (see Sec.6.4.3). This is not

the case for the POUNDerS interaction with Λ3N “ 500MeV/c and the Epelbaum interaction,

where the bare result is expected to be even less bound.

In summary, the present NN+3N interactions at N2LO induce beyond-3N contributions with a

sizable repulsive effect and the investigations and developments, regarding their suppression or

the inclusion of 4N contributions in Sec. 6 are relevant for these chiral forces as well. Moreover,

we have identified a fundamental problem when combining the POUNDerS NN interaction

with an initial 3N interaction. The repulsion of the initial 3N force destroys the experimental

agreement of the 16O ground-state energy. In view of heavy nuclei this observation might

become interesting. As we have shown in Sec. 7.2 the standard NN+3N interactions with the

reduced three-body cutoff provide an accurate description of the oxygen binding energies, but

systematically overbind the heavier nuclei by about 1MeV per nucleon. The repulsive effect of

the 3N force for the POUNDerS interaction could correct for this overbinding, yielding a better

agreement with experiment. Finally, we have illustrated that the applied Epelbaum NN or

NN+3N interaction over- or underbinds the absolute ground-state energy, respectively. These

deviation might be due to the large uncertainties of the actual Epelbaum interactions at N2LO

and there is work in progress [79] to revisit the LEC-fit procedure to improve these interactions.
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Figure 8.12 Ground-state energy for 16O: Ground-state energies of 16O computed with the IT-

NCSM at ~Ω “ 20MeV as function of Nmax using the flow parameters α “ 0.04 fm4 ( •), 0.08 fm4 (

), and 0.16 fm4 (N). We show results with the NN+3Nind (upper row) and NN+3Nfull (lower row)

Hamiltonians using the standard (left panels) and POUNDerS (middle panels) interaction with Λ3N “
500MeV/c (solid symbols) and 400MeV/c (open symbols), as well as the Epelbaum interaction with

pΛ{Λ̂q “ p450{500q MeV/c (right panels). The solid and dashed curves indicate the Nmax-extrapolated

results.
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In the following, we show first ab initio nuclear structure results with next-generation chiral

interactions, i.e., we employ the NN and 3N contributions consistently at N3LO (see Sec. 1.4).

The Epelbaum NN+3N interaction at N3LO allows to study the numerous operator structures

that appear at this chiral order. In particular, the 3N contributions at N3LO have never been

studied in nuclear structure calculations beyond the s shell. Moreover, this next-generation

interaction enables to extend the uncertainty quantification for the Epelbaum interactions. In

Sec. 8.2.1 we have studied the chiral uncertainty at N2LO via a cutoff variation. For a complete

uncertainty quantification we need to study the impact of the truncation with respect to the

chiral order, which we present in this section.

The non-local 3N contributions at N3LO are produced within the LENPIC collaboration [76],

and are available in the partial-wave decomposed Jacobi-momentum representation. We treat

these matrix elements with the same techniques and truncations as before for the application

of the non-local 3N interactions at N2LO (see Sec. 8.2). This means, we truncate the angular

momenta of the 3N interactions to J12 ď 7

2
and J1 ď 6 or 7 and perform the transformation

to the Jacobi-HO representation as discussed in Sec. 3.5. Subsequently, we utilize the HO

three-body machinery to apply the interaction in nuclear structure calculations.

We concentrate on the Epelbaum interaction with pΛ{Λ̂q “ p450{500q MeV/c and compare the

p-shell spectra obtained from the Epelbaum interactions at N2LO (see Sec. 1.3.3) and N3LO (see

Sec. 1.4) to those for the standard interaction. In Fig. 9.1 we show the 6Li excitation spectra for

these three NN+3N Hamiltonians. The IT-NCSM calculations are performed at Nmax “ 12 and

~Ω “ 16MeV using α “ 0.08 fm4. All three Hamiltonians provide reasonable predictions for the

excitation spectrum and can reproduce the level ordering of the investigated states. However, a

noteworthy general improvement compared to experiment cannot be achieved when increasing

the chiral order for the Epelbaum interactions. Moreover, we observe large changes of about

1MeV for the 3` and 2` excitation energies when we compare the N2LO and N3LO results.

It is interesting to observe that the variations of the excitation energies with the Epelbaum

interactions at both chiral orders include the experimental energies as well as the energies

obtained with the standard NN+3N interaction.

We proceed to the 12C excitation spectrum depicted in Fig. 9.2. In addition to the NN+3N

energies (NN+3Nfull) of the three interactions we also quote the energies for the corresponding

initial NN interactions (NN+3Nind). The parameters of the calculations are identical to those

in Fig. 9.1 using a smaller IT-NCSM model space truncated at Nmax “ 8. The depicted spectra
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Figure 9.1 Excitation spectra of 6Li with present and next-generation chiral interactions: Exci-

tation spectra of 6Li obtained with the NN+3Nfull Hamiltonians using the standard interaction with

Λ3N “ 500MeV/c and the Epelbaum interaction with pΛ{LamSFRq “ p450{500q MeV/c at N2LO and

N3LO. The IT-NCSM calculations are carried out at Nmax “ 12 and ~Ω “ 16MeV using α “ 0.08 fm4.

In the right-hand column we show the experimental values [183].

show a similar effect when including the initial 3N force. For instance, the excitation energies

of the rotational band (first 2` and 4` state) increase and the excitation energy of the first

1` state decreases. The Epelbaum NN+3N interaction at N3LO predicts a rather large 0`

excitation energy and small excitation energies of the rotational band, in particular, of the 4`

state compared to the other NN+3N interactions and to experiment. Note that the observed

deviations for the N2LO and N3LO interactions already appear for the results of the initial NN

interactions, which seem to be the origin of the discrepancies. However, again we observe large

discrepancies when we compare the spectra for the Epelbaum NN+3N interaction at N2LO and

N3LO. Also the absolute ground-state energies deviate by more than 10MeV.

Finally, we consider the 10B excitation spectrum in Fig. 9.3 that constitutes an excellent bench-

mark case for chiral interactions. The results are striking: While the standard interaction and

the Epelbaum interaction at N2LO provide comparable predictions when the initial 3N forces

are included, the spectrum for the N3LO interaction is quite different. The excitation energies

with respect to the 3` state are generally underestimated compared to experiment or to the

other NN+3N interactions. In particular, the first and second 2` as well as the first 1` excita-

tion energies are too small, such that the level ordering is not well reproduced and the ground

state is predicted to be a 1` state.

However, the effect caused by the inclusion of the chiral 3N force at N3LO seems to be reasonable

and generally improves the agreement with experimental. The observed deviations due to

the increase of the chiral order for the 12C and, in particular, for the 10B spectrum seem to
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Figure 9.2 Excitation spectra for 12C with the next-generation chiral interactions: Similar plot

as in Fig. 8.8 comparing the excitation spectrum for the standard interaction to those for the Epel-

baum interactions with pΛ{Λ̂q “ p450{500q MeV/c at N2LO and N3LO. Experimental data taken from

Ref. [167].

originate from the initial NN interaction. As mentioned in Sec. 8.2 one should revisit the LEC-fit

procedure to improve the NN forces, which could be the reason for the unsatisfying results with

the consistent NN+3N interaction at N3LO. An indication for problems with the fit procedure

of the N3LO interaction is the unnaturally large cD value. One can interpret this large value

as the requirement of a strong 3N correction to account for the ill defined NN interactions and

to describe the A “ 3 systems properly.

In summary, with the developments of this work we have the ability to apply the present and

also the next-generation chiral NN+3N interactions to ab initio nuclear structure calculations.

From a comparison of the p-shell spectra one can draw conclusions about the uncertainties of the

studied chiral NN+3N interactions. From these observations we conclude that the Epelbaum

NN interactions seem to be the origin for the strong variations in the studied spectra when we

increase the chiral order from N2LO to N3LO. For future applications one needs to study the

error bands caused by a cutoff variation at both chiral orders and should try to reduce these

error bands by improving the LEC-fit procedure. An exciting question is whether the next-

generation chiral interactions can reproduce the experimental results within the error bands

and whether the uncertainties shrink with increasing chiral order,
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Figure 9.3 Excitation spectra for 10B with the next-generation chiral interactions: Similar plot as

in Fig. 9.2 for the excitation spectra of 10B. Experimental data taken from Ref. [181].
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10 Conclusion and Outlook

Starting from interaction matrix elements in the Jacobi-momentum or harmonic-oscillator (HO)

representation we have developed a complete toolchain to efficiently employ present and future

chiral nucleon-nucleon (NN), three-nucleon (3N), and four-nucleon (4N) interactions in nuclear

structure calculations. This toolchain includes the consistent similarity renormalization group

(SRG) evolution, the frequency-conversion approach, and the Talmi-Moshinsky transformation

in the three- and four-body space.

The SRG is an important ingredient for many practical computations in nuclear structure the-

ory. By softening the interaction with the SRG the convergence of the many-body calculations

with respect to the model space is accelerated and the impact of further truncations, e.g.,

regarding the inclusion of 3N matrix elements or the truncations in the many-body method

is reduced. However, during the evolution the SRG induces many-nucleon forces that gener-

ally cannot be fully included in the calculations and, thus, pose a great challenge for reliable

applications.

Initially we have focused on the standard NN+3N interaction to study the effects of truncations

in three-body space and of the induced many-body forces. The induced 3N contributions orig-

inating from the initial NN interactions generally have sizable repulsive effects on the ground-

state energies and need to be included in order to allow for quantitative predictions. Moreover,

the two-pion exchange contributions in the initial 3N force, mainly the c3 terms, have been

identified as main source of induced beyond-3N forces that have sizable repulsive contributions

to the ground-state energies for nuclei beyond the mid-p shell. This limits the range of appli-

cability of the standard NN+3N interaction. To address this issue we have presented a way to

suppress the impact of induced many-nucleon forces by reducing the three-body cutoff Λ3N to

enable applications beyond the p and sd shell.

It is important to carefully study the impact of truncations when entering a new physical

regime, such as the regime of heavy nuclei. While the truncations of the ab initio coupled-cluster

approach are rather well under control, the treatment of the 3N matrix elements poses some

unexpected challenges. In particular, the SRG-induced 3N contributions with large angular

momenta originating from the initial NN force become significant for the description of the

ground-state energies and require a substantial extension of the SRG space. The frequency

conversion has proven to be a useful tool to accelerate the convergence with respect to the SRG

space and to reduce the computational demands when targeting at calculations for multiple

frequencies.
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Beyond the sd shell also induced 4N and many-nucleon forces originating from the initial NN

interaction become significant for ground-state energies and we have verified this observation

for the POUNDerS NN interaction as well. For a three-body cutoff between 350MeV/c and

400MeV/c we have found a cancellation of the induced beyond-3N contributions that originate

from the standard initial NN and 3N interactions. This cancellation enables us to study the

nuclear ground-state energies up to the tin isotopes using the chiral NN+3N interactions with

reduced three-body cutoff. The ground states beyond the sd shell are overbound by an almost

constant energy shift of about 1MeV per nucleon, such that the systematic mass trend can be

reproduced. In consideration of the fact that the parameters of the chiral interactions have been

fixed in A ď 4 systems, this constitutes an impressive demonstration of the predictive power of

the chiral interactions. Nevertheless, the cancellation of the induced beyond-3N contributions

does not appear for all three-body cutoffs.

In order to prevent the induced many-body forces from the outset we have introduced physically

motivated alternatives to the canonical SRG generator, which exclude the initial 3N forces or

restrict the range in coordinate space. We have observed that a reduction of the induced many-

body forces and, typically, worsens the convergence acceleration of the many-body calculations

with respect to the model space. These studies provide a deeper insight in the nature and origin

of the induced many-nucleon forces and indicate that induced many-nucleon contributions of

the initial NN interaction primarily originate from medium-range components that need to be

softened by the SRG to accelerate the convergence in the many-body calculations. The findings

of this work might be crucial for the development of future SRG generators.

To include the dominant induced many-nucleon forces explicitly we have extended the three-

body developments to the four-body space. This extension is of particular importance since it

enables us to include SRG-induced as well as initial 4N forces. We have discussed the truncations

in four-body space and have studied their impact on the 16O ground-state energy. The model-

space dimensions in the four-body space rapidly increase with the maximum energy quantum

number and the SRG-space truncation constitutes the major limitation for the inclusion of 4N

contributions. Therefore, the frequency conversion is indispensable to reduce the dependence

on the SRG space truncation. We have presented first ab initio nuclear structure results ob-

tained with the importance-truncated no-core shell model (IT-NCSM) for ground-state energies

in the p shell explicitly including 4N contributions for the lowest angular momenta. The inclu-

sion of the 4N contributions reduces the impact omitted induced contributions and decreases

the flow-parameter dependence. Due to the rather large uncertainties of the approach the im-

pact of missing 4N contributions with larger angular momenta as well as higher particle-rank

contributions cannot be assessed.

However, the studies indicate that a further increase of the SRG space will strongly reduce

the actual uncertainties, such that missing contributions can be estimated by the remaining

flow-parameter dependence. The four-body techniques developed in this work are the basis
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for future employments of induced as well as initial 4N forces. Through a straight-forward

extension of the normal-ordering (NO) approach the 4N contributions can be included in a

variety of many-body methods. In particular, for increasing mass number the sensitivity to the

SRG space is expected to become critical, such that careful studies and further improvements

regarding the SRG space are required.

While the ground-state energies show a strong sensitivity to the induced many-nucleon forces,

excitation spectra are only weakly affected and the chiral NN+3N forces can be used without

restrictions to lower three-body cutoffs. We have studied the significance of local 3N contri-

butions at N2LO in a comprehensive sensitivity analysis for excitation spectra in the p shell.

The components of the two-pion exchange term proportional to c3 have a strong impact on

the excitation spectrum and dominate the total effect of the 3N forces. Moreover, the excita-

tion energies of the first 1` state of 12C and 10B are highly sensitive to the 3N force and we

have identified a correlation between these two excitation energies that prevent a simultaneous

description of the experimental values by adjusting the parameters of the 3N force at N2LO.

This observation indicates the need for additional 3N operator structures that emerge, e.g., in

the subleading 3N force or in a ∆-full formulation of the chiral EFT, but might also hint at

deficiencies of the NN sector. Thus, it is important to construct a whole family of consistent

NN+3N interactions with varying cutoff and chiral order to assess the uncertainties of the chiral

interaction.

As a first step towards a systematic uncertainty quantification we have investigated different sets

of presently available chiral NN+3N interactions obtained at N2LO. While the POUNDerS NN

interaction currently exist for a single cutoff combination and has been augmented by local 3N

forces, there is a whole set of Epelbaum NN+3N interactions for different cutoff combinations.

The inclusion of the initial 3N force generally improves the agreement of the excitation spectra

with experiment for the considered interactions. However, we have found large discrepancies in

the excitation energies obtained with the different Epelbaum interactions that originate from

the NN force. This indicates deficiencies in the NN sector of the Epelbaum interactions that

also influence the effect of the 3N forces and we stress that the parameter fit of these NN

interactions needs to be revisited for reliable nuclear structure applications.

In addition, we also have compared the ground-state energy of 16O for the standard interaction

to the results obtained with the POUNDerS and Epelbaum interactions. The standard NN

interaction typically underbinds the ground-state energies in the p shell and the attractive effect

of the initial 3N force substantially improves the experimental agreement. The POUNDerS NN

interaction already predicts the 16O ground-state energy in agreement with experiment, but the

inclusion of the local 3N interaction worsens the agreement and its repulsive effect leads to a

strong underbinding. The Epelbaum NN and NN+3N interactions strongly over- or underbind

the ground state, respectively, once again indicating fundamental problems with these forces.

An important aspect are the SRG-induced beyond-3N forces that have become sizable also
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for the Epelbaum and POUNDerS interactions, such that the investigations and developments

regarding the suppression or inclusion of the induced many-nucleon forces are of general interest

for the present and, without much doubt, also future chiral interactions.

Finally, we have presented the first nuclear structure results for p-shell nuclei using the next-

generation Epelbaum NN+3N interaction at N3LO that has been constructed within the LENPIC

collaboration. This interaction enables us to study the impact of the chiral-order truncation by

comparing to results with the Epelbaum interaction at N2LO. The discrepancies observed in the

excitation spectra for the different chiral orders are very large and again seem to originate from

the NN sector. Besides, the 10B excitation spectrum obtained with the NN+3N interaction at

N3LO shows large deviations from the experimental values, e.g., the ground state is predicted

to be a 1` state instead of a 3` state found in experiments.

In conclusion, we have presented the developed techniques to efficiently include the currently

available and future chiral NN+3N+4N interactions in a variety of ab initio nuclear struc-

ture and also reaction calculations. The construction of interaction matrix elements for chiral

NN+3N forces at N3LO within the LENPIC collaboration will have a significant impact on

the nuclear structure community. Nevertheless, the studies of this work reveal the necessity for

systematic and accurate refits of the NN parameters at N2LO and N3LO.

The presented nuclear structure results provide constraints for the fit of the LECs. In par-

ticular, the c3 parameter has a strong influence on spectroscopic observables and its accurate

and appropriate determination is recommended. Finally, we stress the importance of construct-

ing the chiral interactions for several cutoffs at different chiral orders to enable a systematic

quantification of the uncertainties.
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A Notation and Conventions

Acronyms

1PE one-pion exchange

2PE two-pion exchange

3N three-nucleon

4N four-nucleon

ΛCCSD(T) coupled-cluster method with singles, doubles, and pertur-

bative triples corrections

aPWD automatized partial-wave decomposition

CC coupled-cluster

CCSD coupled-cluster method with singles and doubles excita-

tions

CCSDT coupled-cluster method with singles, doubles, and triples

excitations

CFP coefficient of fractional parentage

ChPT chiral perturbation theory

CI configuration interaction

CR-CC(2,3) left-eigenstate completely renormalized coupled-cluster

method with singles, doubles and non-iterative triples ex-

citations

ct three-nucleon contact

EFT effective field theory

GFMC Green’s function Monte Carlo

HO harmonic oscillator

HOB harmonic-oscillator bracket

IM-SRG in-medium similarity renormalization group

IT importance truncation

IT-NCSM importance truncated no-core shell model

LEC low-energy constant

LENPIC low-energy nuclear physics international collaboration
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LO leading order

MFDn many-fermion dynamics for nuclei

MR-IM-SRG multi-reference in-medium similarity renormalization

group

MR-IM-SRG(2) multi-reference in-medium similarity renormalization

group in the normal-ordered two-body approximation

N2LO next-to-next-to-leading order

N3LO next-to-next-to-next-to-leading order

NCSM no-core shell model

NCSMC no-core shell model combined with continuum

NCSM/RGM no-core shell model combined with the resonating group

method

NLO next-to-leading order

NN nucleon-nucleon

NO normal ordering

NOnB normal-ordered n-body approximation

POUNDerS practical optimization using no derivatives (for squares)

algorithm

QCD quantum chromodynamics

SFR spectral-function regularization

SRG similarity renormalization group

UCOM unitary correlation operator method
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Short-Hand Notations

Thoughout this work we introduce some short-hands to denote different Hamiltonians, model

spaces, or procedures that are used in the interaction toolchain.

Chiral NN+3N interactions (see Tab. 1.1 on page 18)

standard NN interaction at N3LO by Entem and Machleidt com-

bined with local 3N force at N2LO

Epelbaum NN+3N interaction by Epelbaum et. al at N2LO and

N3LO using a non-local 3N force

POUNDerS NN interaction at N2LO fitted with POUNDerS algorithm

combined with local 3N force at N2LO

SRG-evolved Hamiltonians (see Tab. 4.1 on page 75)

NNonly NN interaction evolved at the two-body level

NN+3Nind NN interaction evolved at the three-body level

NN+3Nfull NN+3N interaction evolved at the three-body level

NN+3Nind+4Nind NN interaction evolved at the four-body level

NN+3Nfull+4Nind NN+3N interaction evolved at the four-body level

SRG model spaces

rampA - C SRG spaces applied in the p shell (see Fig. 5.2 on page 99)

rampD -H SRG spaces applied beyond the p and sd shell (see Fig. 5.7

on page 106)

Subtraction procedures in the four-body space

SubA -D Subtraction schemes increasing in complexity (see

Sec. 4.7.2)
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