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We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a sim-
ple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence
properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning
for convergence. The use of a simple Hartree-Fock solution for the unperturbed basis leads to a convergent
MBPT series for soft interactions, in contrast to the divergent MBPT series obtained with a harmonic oscillator
basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation is not feasible,
we perform third-order calculations and compare to advanced ab initio coupled-cluster results for the same in-
teractions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei
up into the tin isotopic chain in excellent agreement with the best available coupled-cluster calculations at a
fraction of the computational cost.

Introduction. The solution of the Schrödinger equation
for atomic nuclei using realistic nuclear interactions is at the
heart of ab initio nuclear structure theory. In practice this
problem is addressed by constructing approximate methods
for a truncated, i.e., finite-dimensional Hilbert space. How-
ever, for the calculation of ground-state energies of heavy
nuclei significant algorithmic and computational efforts are
needed. There is a plethora of different ab initio methods,
e.g., coupled cluster (CC) theory [1–6], in-medium similarity
renormalization group (IM-SRG) [7–11], or self-consistent
Green’s function methods [12–14]. However, it is desir-
able to have an alternative, light-weight framework available.
A conceptually simple method to solve for the eigenener-
gies of a physical system is many-body perturbation theory
(MBPT) [15–17]. A perturbative treatment is the standard ap-
proach for many problems from different fields of theoretical
physics. The advantage of MBPT compared to other ab initio
approaches is its simplicity, which also allows for straight-
forward generalizations to excited states and open-shell nu-
clei [18] without the need of sophisticated equation-of-motion
techniques. The reasons, why MBPT usually is not consid-
ered as an ab initio technique, are convergence issues of the
underlying perturbation series. Several studies of high-order
MBPT based on Slater determinants constructed from har-
monic oscillator (HO) single-particle states (HO-MBPT) have
shown that the perturbation series is divergent in almost every
case [18, 19]. In such cases one heavily relies on the use of
resummation techniques, e.g., Padé approximants, that enable
a robust extraction of observables although the perturbative
expansion diverges [19–21].

In this Letter, we formulate MBPT based on Hartree-Fock
(HF) single-particle states (HF-MBPT), and, for the first time,
investigate the convergence behavior of the perturbation se-
ries up to 30th order. We compare the ground-state energies
of 4He and 16,24O to results from exact diagonalizations in
the configuration interaction (CI) approach using the same
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model space [22–24]. Based on the rapidly converging per-
turbation series resulting from the use of HF basis states, we
study ground-state energies of selected closed-shell medium-
mass and heavy nuclei at third-order MBPT, and compare to
recent CC calculations [6].

The Nuclear Hamiltonian. For all following investiga-
tions we start from the chiral nucleon-nucleon (NN) interac-
tion at next-to-next-to-next-to leading order (N3LO) by En-
tem and Machleidt [25] combined with the three-nucleon (3N)
interaction at next-to-next-to leading order N2LO in its local
form [26] with three-body cutoff Λ3N = 400 MeV/c. Addi-
tionally, we use the similarity renormalization group (SRG) to
soften the Hamiltonian through a continuous unitary transfor-
mation controlled by a flow parameter α [27–31]. In princi-
ple this transformation induces beyond-3N operators, which
we have to neglect. To avoid the complication of dealing
with explicit 3N interactions, we make use of the normal-
ordered two-body approximation (NO2B) of the 3N interac-
tion that was found to be very accurate for medium-mass nu-
clei, see Refs. [32, 33]. For the matrix-element preparation we
adopt the procedure introduced in Ref. [6], in particular, we
use large SRG model spaces and exploit the iterative scheme
where necessary. Thus, the matrix elements and the treatment
of the chiral NN+3N interaction are identical to Ref. [6] and
we can compared directly to the CC results presented there.

Many-Body Perturbation Theory. The essence of
Rayleigh-Schrödinger perturbation theory is the definition of
an additive splitting, referred to as partitioning, of a given
Hamiltonian H into an unperturbed part H0 and a perturbation
W. By introducing an auxiliary parameter λ we obtain a
one-parameter family of operators,

Hλ = H0 + λW, (1)

where the perturbation is defined by W = H − H0. As ansatz
for the solution of the eigenvalue problem of H we take a
power series expansion of the energy and eigenstate in terms
of an auxiliary parameter λ, where the expansion coefficients
are given by the energy corrections and state corrections, re-
spectively. We choose H0 to be the HF Hamiltonian aris-
ing from an initial NN+3N interaction. We have shown in
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Refs. [18, 19] that high-order MBPT corrections are accessi-
ble by means of a recursive scheme, allowing for detailed in-
vestigations of the convergence characteristics of the perturba-
tion series. In general we cannot expect that a perturbation se-
ries is convergent [34–36], but one can exploit resummation-
theory techniques to extract information on the observables of
interest. There are different schemes and transformations that
can be used to extract, e.g., the ground-state energy from a
divergent expansion [37–39]. Padé approximants have proven
to be particularly useful in the treatment of high-order HO-
MBPT [18, 19]. Additionally, they are well-known to math-
ematicians especially in the field of convergence acceleration
[21, 36, 37]. However, the calculation of energy corrections
up to sufficiently high orders is only feasible for light nuclei
due to increasing computational requirements. When pro-
ceeding to the medium-mass region, one has to choose a dif-
ferent strategy. Depending on the rate of convergence, one
might expect low-order partial sums of the perturbation se-
ries to be reasonable approximations to the exact ground-state
energy. Having only low-order information available, resum-
mation methods are less effective, because one is limited to
a small number of approximants that yield valid approxima-
tions only if the transformed sequence converges sufficiently
fast [18]. However, an alternative is to exploit the freedom in
the partitioning, i.e., the choice of the unperturbed basis, to
improve the convergence of the perturbation series.

We specifically explore a partitioning defined by a prior
HF calculation, which optimizes the single-particle basis [17].
Note that the HF ground-state energy corresponds to the first-
order partial sum,

EHF = E(0) + E(1) . (2)

Therefore, the first contribution to the correlation energy ap-
pears in second-order HF-MBPT. The second- and third-order
contributions to the ground-state energy for a two-body oper-
ator W are given by [40]

E(2) =
1
4

>εF∑
ab

<εF∑
i j

〈ab|W |i j〉〈i j|W |ab〉
(εa + εb − εi − ε j)

,

E(3) =
1
8

>εF∑
abcd

<εF∑
i j

〈ab|W |i j〉〈i j|W |cd〉〈cd|W |ab〉
(εa + εb − εc − εd)(εa + εb − εi − ε j)

+
1
8

>εF∑
ab

<εF∑
i jkl

〈ab|W |i j〉〈i j|W |kl〉〈kl|W |ab〉
(εa + εb − εi − ε j)(εa + εb − εk − εl)

+

>εF∑
abc

<εF∑
i jk

〈ab|W |i j〉〈c j|W |kb〉〈ik|W |ac〉
(εa + εb − εi − ε j)(εa + εc − εi − εk)

. (3)

In the third-order energy correction the first, second, and
third term are called particle-particle (pp), hole-hole (hh),
and particle-hole (ph) correction, respectively. The εi corre-
spond to the HF single-particle energies and all matrix ele-
ments are taken to be antisymmetrized. Summation indices
a, b, c, ... correspond to particle indices, i.e., states above the
Fermi level εF, whereas i, j, k, ... correspond to hole indices
up to the Fermi level. The zero and one-body parts of the

normal-ordered Hamiltonian only enter in the first-order en-
ergy correction. Brillouin’s theorem states that there is no
mixing of the HF state with singly-excited determinants [17]
and by orthogonality the zero-body part is only present in
the expectation value of the perturbation. In principle, the
derivation of energy corrections beyond third order is straight
forward. However, considering a diagrammatic approach in
terms of Hugenholtz diagrams, the number of contributing di-
agrams at a given perturbation order p increases rapidly [41]
such that it becomes challenging to go beyond third-order in
practice. Additionally, terms from higher-order corrections
involve expressions that are notoriously hard to compute, be-
cause their efficient implementation, e.g., by means of BLAS-
enabled matrix operations, is not obvious. The computational
power needed to perform third-order MBPT calculations up
into the medium-mass region can be provided by a single com-
pute node within 1 − 3% of the computing time needed for
state-of-the-art CC calculations.

Convergence Characteristics of Hartree-Fock Many-Body
Perturbation Theory. We start by comparing perturbation
series from HO and HF-MBPT, and we focus on their con-
vergence characteristics and sensitivity to the SRG flow pa-
rameter. In Fig. 1 we present a direct comparison of the
order-by-order behavior for the two partitionings up to 30th
order for 16O. For these high-order calculations we use an
Nmax-truncation of the many-body model space, similar to the
no-core shell model (NCSM) [23]. The left-hand column of
Fig. 1 shows the high-order partial sums and the right-hand
column the individual energy corrections for each order. Panel
(a) shows the partial sums from HO-MBPT for a sequence of
model spaces with fixed SRG flow parameter α = 0.08 fm4.
The partial sums are divergent for every model space. The
divergence is also apparent from panel (c) which reveals ex-
ponentially increasing energy corrections. In contrast, panel
(b) shows the partial sums arising from HF-MBPT that are
convergent for all model spaces. Furthermore, the converged
values agree with direct CI results. As seen in panel (d), the
energy corrections are exponentially suppressed for higher or-
ders, giving rise to a robust convergence.

In Fig. 2 we show the high-order partial sums and energy
corrections in HF-MBPT for different SRG flow parameters.
Panels (a), (b) and (c) show the convergent perturbation series
for 4He,16O and 24O, respectively. The calculations are per-
formed for fixed Nmax = 6 for 4He, 16O and Nmax = 4 for 24O,
and the flow-parameter dependence of the absolute energies
results from the varying degree of convergence with respect
to the many-body model space.

A more interesting flow-parameter dependence can be ob-
served for the individual energy corrections in panels (d), (e),
and (f). There is a clear dependence of the convergence rate
on the flow parameter for the oxygen isotopes. For 16O the
series converges exponentially in all three cases. The larger
the flow parameter, i.e. the softer the Hamiltonian, the more
rapid the convergence—as might be naively expected. For
24O the behavior is slightly more complicated. For the softest
interaction with α = 0.08 fm4 there is still a clear exponen-
tial convergence. However, for the harder interactions, i.e.,
α = 0.02 and 0.04 fm4, we observe no systematic decrease
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FIG. 1. Partial sums for the ground-state energy of 16O in the HO
basis (a) and the HF basis (b) for the NN+3N-full interaction with
α = 0.08fm4 and model-space truncation parameters Nmax = 2 (l), 4
( H), and 6 (F). The corresponding energy corrections for each order
are displayed in panels (c) and (d), respectively. All calculations are
performed at frequency ~Ω = 24 MeV.

of the high-order perturbative contributions anymore, they re-
main approximately constant and cause a small-amplitude os-
cillatory behavior of the partial sums. However, even in these
cases we can easily extract a robust estimate for the asymp-
totic value. In the case of 4He the suppression is independent
of α and we observe the same rapid convergence for all inter-
actions.

The numerical values of the partial sums for selected or-
ders of HF-MPBT for the three nuclei and the different flow
parameters are summarized in Tab. I together with the results
of direct CI calculations for the same Hamiltonians and model
spaces. The higher-order partial sums are in good agreement
with the CI results—in most cases the deviation of the ground-
state energy is much smaller than 0.1%.

Based on our detailed analysis of high-order HF-MBPT and
due to the exponential suppression of the energy corrections,
we can take low-order partial sums as a reasonable approxi-
mation to the converged results. This motivates the investi-
gation of third-order HF-MBPT for medium-mass and heavy
closed-shell nuclei in the following.

Explicit Summation for Heavy Nuclei. For heavier nuclei
and larger model spaces we cannot compute the high-order
perturbation series explicitly and, thus, we cannot investigate
the convergence characteristics explicitly. We can, however,
evaluate the perturbative contributions up to third order very
efficiently. To demonstrate the validity of a low-order per-
turbative approximation, we need to compare our results to
established ab initio techniques, in our case, CC calculations
with sophisticated triples corrections.

We consider a sequence of closed-shell nuclei ranging from
4He to 132Sn and perform calculations in second and third-
order HF-MBPT in a large model space truncated with respect
to the single-particle principal quantum number emax = 12.
We restrict ourselves to SRG-evolved Hamiltonians with flow
parameter α = 0.08 fm4, which were used extensively in pre-
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FIG. 2. Partial sums for varying flow parameters in HF-MBPT for
4He (a), 16O (b), and 24O (c). The corresponding energy corrections
are shown in panels (d), (e) and (f), respectively. The model space
is truncated at Nmax = 6 for 4He and 16O, and at Nmax = 4 for 24O.
The flow parameters for the different data sets are α = 0.02 fm4 (l),
0.04 fm4 ( H), and 0.08 fm4 (F). All calculations use a NN+3N-full
interaction and frequency ~Ω = 24 MeV.

vious calculations and showed favorable order-by-order con-
vergence in our high-order studies. We cannot perform CI cal-
culations for these large spaces, however, the coupled-cluster
framework has proven to provide accurate results for ground-
state energies of closed-shell nuclei [1–4]. We compare the
HF-MBPT results to recent CC calculations at the CCSD and
the CR-CC(2, 3) level [5, 6, 42]. Starting from a HF reference
state, this approach provides a complete inclusion of singly
and doubly excited clusters on top of the reference state and,
in the case of CR-CC(2, 3) an approximate non-iterative in-
clusion of triply excited clusters [43–46].

In Figs. 3 and 4 the ground-state energies per nucleon (a) as
well as the correlation energies Ecorr = E−EHF per nucleon (b)
from HF-MBPT and CR-CC(2, 3) are depicted for an initial
chiral NN+3N and an initial chiral NN interaction. The SRG-
induced three-nucleon contributions are taken into account in
both cases, leading to the NN+3N-full and NN+3N-induced
interactions, respectively.

These figures show a remarkable result: The binding ener-
gies in third-order HF-MBPT and CR-CC(2,3) are in excel-
lent agreement with each other. The relative differences are
much smaller than 1% in most cases. The same observation
holds for the correlation energy, i.e., the correction to the HF
energy. The third-order energy corrections contribute approx-
imately 0.2 MeV to the overall binding energy per nucleon
and are, therefore, one order of magnitude smaller than the
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FIG. 3. Panel (a) shows the ground-state energies per nucleon from third-order HF-MBPT (l) in comparison to CR-CC(2, 3) ( H) results
for selected closed-shell nuclei. Panel (b) shows the correlation energies per nucleon, E(2)

0 (◦) as well as E(2)
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0 (l) for HF-MBPT.
Additionally, the correlation energy per nucleon for CCSD (4) and CR-CC(2,3) ( H) are shown. All calculations are performed with the
NN+3N-full interaction with α = 0.08 fm4, ~Ω = 24 MeV in an emax = 12 model space. Experimental values are indicated by black bars.
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FIG. 4. Ground-state and correlation energies for the NN+3N-induced interaction. All other parameters as in Fig 3.

second-order correction but not negligible.

The third-order energy contribution (3) consists of three
terms corresponding to three Hugenholtz diagrams. Figure 5
disentangles their individual contributions to the overall third-
order energy correction. The contribution of the pp, hh, and ph
terms vary mildly over the entire mass range. For the tin iso-
topes, the total third-order energy correction contributes 3%
to the overall binding energy and is not negligible. In partic-
ular we observe that the main contribution to the third-order
energy correction arises from the ph diagram. In the case of
a NN+3N-induced interaction all three terms are suppressed
with increasing mass number, whereas for the NN+3N-full in-
teraction the ph contribution remains sizeable. These system-
atic dependencies of the individual third-order contributions

on the input Hamiltonian show that a partial inclusion of se-
lected third-order terms may lead to wrong estimates.

Conclusions. We have discussed Rayleigh-Schrödinger
MBPT as an efficient approach to compute ground-state en-
ergies for closed-shell nuclei throughout the medium-mass
region. The use of a HF basis has enabled us to overcome
convergence problems that generally arise in HO-MBPT. In-
vestigating 16O in different model spaces showed convergent
partial sums when using HF-MBPT coinciding with the re-
sults from explicit CI calculations. Additionally, we found
systematic dependencies of the convergence rate on the SRG
parameter, i.e. the softness of the interaction, in the case of
16O and 24O. Thus, in HF-MBPT we can improve the conver-
gence behavior of the perturbation series by further evolving
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TABLE I. Ground-state energies for 4He, 16O and 24O in units of
[MeV] obtained in HF-MBPT for different orders up to p = 30 and
in CI calculations with NN+3N-full interactions for different flow
paramters α. The model spaces are truncated by Nmax = 6 for 4He
and 16O and Nmax = 4 for 24O. The HO frequency is ~Ω = 24 MeV.

α [fm4]
0.02 0.04 0.08

4He

E(2)
sum -19.204 -20.269 -23.588

E(3)
sum -20.334 -23.224 -26.589

E(10)
sum -20.507 -24.444 -26.947

E(20)
sum -20.526 -24.462 -26.964

E(30)
sum -20.537 -24.469 -26.971

CI -20.539 -24.483 -26.994

16O

E(2)
sum -85.620 -107.241 -120.699

E(3)
sum -89.315 -110.861 -123.863

E(10)
sum -83.780 -107.199 -122.561

E(20)
sum -84.180 -107.341 -122.577

E(30)
sum -84.018 -107.331 -122.577

CI -84.043 -107.330 -122.577

24O

E(2)
sum -125.460 -124.459 -149.053

E(3)
sum -122.880 -126.670 -151.059

E(10)
sum -119.705 -121.233 -147.446

E(20)
sum -119.335 -121.314 -147.508

E(30)
sum -119.483 -120.948 -147.489

CI -119.131 -120.947 -147.488
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FIG. 5. Individual contributions of the diagrams appearing at third-
order perturbation theory. Shown are the contributions per nucleon
from the pp diagram ( �), the hh diagram (F), and the ph diagram
( H). The overall contribution of the third-order correction is depicted
in (l). The first panel corresponds to the NN+3N-full interaction and
the second panel to a NN+3N-induced interaction with α = 0.08 fm4,
~Ω = 24 MeV, and emax = 12.

the Hamiltonian, whereas the divergence of the HO-MBPT
series will not be cured.

We can identify a hierarchy of elements influencing the
convergence properties of the perturbation series. Defining
a partitioning, or equivalently, defining a starting point for
the perturbative treatment is the most important part. The
radically different behavior of the perturbation series in HF-

MBPT and HO-MBPT shows that the order-by-order conver-
gence of the partial sums is very sensitive to the partitioning.
When using HF-MBPT we can improve the convergence by
using softer interactions corresponding to larger SRG flow pa-
rameters. Even for HF basis sets harder interactions can spoil
convergence. The ‘softness’ of the interaction has been char-
acterized in terms of Weinberg eigenvalues, which are con-
nected to the spectrum of two-body Green’s functions [47–
49]. Similar expressions also appear in the equations for
the first-order state correction. Though the general connec-
tion seems obvious, one should be careful with conclusions
about the convergence of MBPT for a finite nucleus based on
the softness of the interaction. Our work has shown that the
partitioning is key for convergence. Our observation that the
convergence of HF-MBPT deteriorates for harder interactions
could simply be explained by the fact that the unperturbed HF
solution becomes a much worse approximation for the ground
state in these cases.

The superior convergence properties of HF-MBPT is a mo-
tivation to use low-order approximations to investigate nuclei
in the medium-mass region. We have validated these low-
order approximations by comparing to the most sophisticated
CC calculations and found excellent agreement of third-order
HF-MBPT and CR-CC(2,3) at the level of better than 1%. The
consistency of high-order partial summations with exact CI
diagonalizations as well as the agreement of low-order sum-
mations with CC results may qualify HF-MBPT as an ab ini-
tio approach. However, the strong dependence of the conver-
gence on the partitioning should be a reason for caution. The
HF partitioning seems to be robust for sufficiently soft inter-
actions, but there is no formal guarantee for convergence.

The great advantage of low-order HF-MBPT is its simplic-
ity: Computationally, the third-order calculations are much
cheaper than CC or IM-SRG calculations. They are, therefore,
ideal for survey calculations over a large range of medium-
mass nuclei, e.g., to explore the ground-state systematics
with new interactions. Formally, the underlying equations
and algorithms are trivial compared to CC or IM-SRG. As
a result, extensions to the description of excited states and
open-shell nuclei are straight-forward. We have demonstrated
this already for light nuclei using high-order degenerate HO-
MBPT [18]. Alternative multi-configurational formulations
for open-shell nuclei are under investigation.
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