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Abstract
The exact solution of quantum mechanical many-body problems is only possible for few particles. There-
fore, numerical methods were developed in the fields of quantum physics and quantum chemistry for
larger particle numbers. Configuration Interaction (CI) methods or the No-Core Shell Model (NCSM)
allow ab initio calculations for light and intermediate-mass nuclei, without resorting to phenomenology.
An extension of the NCSM is the Importance-Truncated No-Core Shell Model, which uses an a priori
selection of the most important basis states. The importance truncation was first developed and applied
in quantum chemistry in the 1970s and latter successfully applied to models of light and intermediate-
mass nuclei. Other numerical methods for calculations for ultra-cold fermionic many-body systems are
the Fixed-Node Diffusion Monte Carlo method (FN-DMC) and the stochastic variational approach with
Correlated Gaussian basis functions (CG). There are also such method as the Coupled-Cluster method,
Green’s Function Monte Carlo (GFMC) method, et cetera, used for calculation of many-body systems.

In this thesis, we adopt the IT-NCSM for the calculation of ultra-cold Fermi gases at unitarity. Ultra-
cold gases are dilute, strongly correlated systems, in which the average interparticle distance is much
larger than the range of the interaction. Therefore, the detailed radial dependence of the potential
is not resolved, and the potential can be replaced by an effective contact interaction. At low energy,
s-wave scattering dominates and the interaction can be described by the s-wave scattering length. If
the scattering length is small and negative, Cooper-pairs are formed in the Bardeen-Cooper-Schrieffer
(BCS) regime. If the scattering length is small and positive, these Cooper-pairs become strongly bound
molecules in a Bose-Einstein-Condensate (BEC). In between (for large scattering lengths) is the unitary
limit with universal properties.

Calculations of the energy spectra (ground-state and first excited-state) have so far only been per-
formed for up to five particles using CI or NCSM methods or for up to six particles using the CG method.
Calculations with larger particle numbers have only been performed with Monte Carlo methods and
only for the ground state of up to 30 particles. We extend ab initio calculations of the energy spectra of
ultra-cold Fermi gases at unitarity for up to 20 particle using the IT-NCSM.

For our calculations we use different interactions: an effective interaction introduced by Alhassid,
Bertsch and Fang and an interaction constructed using an effective field theory (EFT) approach. Further-
more, we use a Gauss-shaped potential as it is also used for the calculations of ultra-cold Fermi gases
at unitarity using CG or FN-DMC methods. Although more effort must be invested to make the Gauss-
shaped potential suitable for IT-NCSM calculations of ultra-cold Fermi gases, calculations with the other
two interactions yield ground-state energies which agree excellently with the results obtained using the
FN-DMC method. The IT-NCSM extends the range of the NCSM and permits the calculation of energy
spectra (ground-state and excited-state energies) of fermionic systems with large particle numbers for
which previously only the ground states could be calculated using Monte Carlo methods.
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Zusammenfassung
Im Allgemeinen ist eine exakte Lösung für quantenmechanische Vielteilchensysteme nur für sehr wenige
Teilchen möglich. Deshalb wurden sowohl in der Quantenchemie als auch Quantenphysik numerische
Verfahren zur Lösung von Vielteilchensystemen entwickelt. Ab initio Methoden wie Configuration In-
teraction (CI) oder das No-Core-Schalenmodel (NCSM) werden für leichte sowie mittelschwere Kerne
angewandt und ermöglichen eine ab initio-Beschreibung ohne Zurückgreifen auf phänomenologische
Ansätze. Eine Optimierung des NCSM stellt das Importance-trunkierte No-Core-Schalenmodel (IT-NCSM)
dar, das eine a priori-Selektion der wichtigen Zustände beinhaltet. Die Importance-Trunkierung wurde
zuerst in der physikalischen Chemie in den 1970er Jahren entwickelt und angewandt und später er-
folgreich auch für leichte und mittelschwere Kerne angewandt. Weitere Methoden zur Berechnung
von ultrakalten fermionischen Vielteilchensystemen sind die Fixed-Node-Diffusion-Monte-Carlo-Methode
(FN-DMC) und stochastische Variationsrechnungen mit Correlated-Gaussian-Basisfunktionen (CG). Es
gibt noch weitere Methoden wie zum Beispiel die Coupled-Cluster-Methode, die Green’s-Function-Monte-
Carlo-Methode (GFMC) und andere, die für Berechnungen von Vielzeichensysteme verwendet werden.

In dieser Arbeit wird das IT-NCSM zur Berechnung ultrakalter Fermigase im unitären Limit verwen-
det. Ultrakalte Gase sind verdünnte, stark korrelierte Systeme, in denen der mittlere Teilchenabstand
viel größer ist als die Reichweite der Wechselwirkung. Dies hat zur Folge, dass die detaillierte Radi-
alabhängigkeit des Potentials nicht aufgelöst wird. Somit kann das Potential durch eine effektive Kon-
taktwechselwirkung ersetzt werden. Bei niedrigen Energien dominieren die Streuprozesse der s-Welle
die Streuung. So kann die Wechselwirkung durch die s-Wellen-Streulänge beschrieben werden. Bei
kleinen negativen Streulängen bilden sich Cooper-Paare im Bardeen-Cooper-Schrieffer-Regime (BCS),
bei kleinen positiven Streulängen stark gebundene Molekülen eines Bose-Einstein-Kondensats (BEC).
Dazwischen (bei sehr großen Streulängen) befindet sich das unitäre Regime mit universellen Eigen-
schaften.

Berechnungen des Energiespektrums (Grundzustand und erster angeregter Zustand) wurden bisher
nur für höchstens fünf Teilchen mit CI- oder NCSM-Methoden und für bis zu sechs Teilchen mit der
CG-Methode durchgeführt. Höhere Teilchenzahlen konnte man bislang nur mit Monte-Carlo-Methoden
erreichen und auch nur den Grundzustand von bis zu 30 Teilchen berechnen. Diese Arbeit erweitert ab
initio-Berechnungen des Energiespektrums auf bis zu 20 Teichen unter Verwendung des IT-NCSM.

In dieser Arbeit kommen für die IT-NCSM Rechnungen eine Wechselwirkung auf Basis effektiver
Feldtheorien sowie eine effektive Wechselwirkung nach Alhassid, Bertsch und Fang zum Einsatz. Diese
Wechselwirkungen werden erfolgreich zur Berechnung des Energiespektrums im unitären Limit ange-
wandt und ihre Ergebnisse mit denen von anderen Methoden (CI und FN-DMC) verglichen. Weiterhin
wird auch eine einfache Gauss-förmige Wechselwirkung betrachtet, wie sie zur Berechnung der Energie
im unitären Limit mit CI- oder FN-DMC- Methoden zum Einsatz kommt. Während für die Gauss-förmige
Wechselwirkung noch weitere Forschung notwendig ist, um es für IT-NCSM Berechnungen nutzbar zu
machen, liefern Berechnungen mit den beiden anderen Wechselwirkungen Grundzustandsenergien, die
hervorragend mit den Ergebnissen der FN-DMC-Methode übereinstimmen. Das IT-NCSM erweitert somit
den Anwendungsbereich des NCSM auf deutlich größere Teilchenzahlen und erlaubt die Berechnung von
Energiespektren (Grundzustand und angeregte Zustände) von fermionischen Systemen, für die bislang
nur die Grundzustandsenergie mit Monte-Carlo-Methoden numerisch berechnet werden konnte.
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1 Introduction
Ultra-cold atomic gases are dilute systems at extremely low temperatures of the order of nano-Kelvin, in
which quantum statistical effects become significant and can be observed. Experimentally, such systems
can be prepared for example by trapping atoms with laser light or with magnetic fields, precooling them
using laser beams and finally cooling them using evaporative cooling [49, 50, 93]. Such temperatures
and densities can only be reached if the sample does not come into contact with other matter; hence,
magnetic and laser traps must be employed. These systems are pure and controllable, and only contain
impurities if they are intended to. With optical lattices, cold Bose or Fermi gases or mixtures of them can
be trapped in one-, two- or three-dimensional periodic structures. One-dimensional structures with a
periodic potential can be created by using two counter-propagating laser beams. With more laser beams,
two- or three-dimensional lattices can be formed [9]. The depth and geometry of the trapping potentials
can be controlled. Experimentally the interparticle interaction between the fermions in the optical or
magnetic trap can be controlled by means of Feshbach resonances (see chapter 2.4); the strength of the
interaction can be varied and the interaction can be chosen to be either attractive or repulsive.

Theoretical methods have been developed to describe these systems; for an overview of such methods
for Bose gases, see the publications by Dalvovo et al. [26], and Stoof [93], and for an overview of such
methods for Fermi gases, see the publications by Ketterle and Zwierlein [50], Blume [10], and Stoof [93].
A summary of the current status in experimental and theoretical research on cold Bose and Fermi gases
can be found in the publications by Blume et al. [11], by Giorgini et al. [34], by Krems et al. [54] and in
[43].

Bose gases, which consist of particles with integer spin and hence obey Bose-Einstein statistics, form
Bose-Einstein condensates (BEC) at low temperature, in which particles occupy the same single-particle
state with minimal energy. This behavior has been predicted theoretically by Bose [13] and Einstein [29].
Cold gases received great interest in recent years after the first BEC were successfully produced in 1995
by Anderson et al. [4] and by Davis et al. [28]. In the former experiment, a system of bosonic 87Rb atoms
was confined in a magnetic field and cooled evaporatively. The system was cooled to a temperature
of around 170 nK and had a density of 2.5 · 1012 cm−3. Since then, many experimental and theoretical
studies of Bose gases and BECs have been carried out. Experiments using Fermi gases followed later
[34].

The Pauli principle states that two identical fermions cannot occupy the same quantum state. There-
fore, an ideal Fermi gas, which obeys the Fermi-Dirac statistics, does not undergo Bose-Einstein con-
densation. According to Bardeen-Cooper-Schrieffer (BCS) theory, Fermi gases with weak attractive
interactions enter a superfluid phase at sufficiently low temperature T by forming so-called Cooper
pairs (fermionic superfluidity) that can occupy the same state [34, 45, 103]. Superfluids are irrotational
gases with zero viscosity. For charged particles like electrons the formation of Cooper pairs leads to su-
perconductivity at low temperatures [7]. Since the attractive interaction between the fermions is much
smaller than the Fermi energy, the size of Cooper pairs is larger than the average interparticle spacing by
a factor of the order 103 in conventional superconductors.

The interaction in the BCS limit is too weak to support a bound state, hence the s-wave scattering
length is negative. For a stronger interparticle interaction, the scattering length is positive and the
fermions form strongly bound diatomic molecules (dimers), which form a BEC whose ground state is
superfluid. The transition between the fermionic system described by BCS theory and the system of
molecular bosons described by the BEC is the so-called BCS–BEC crossover, in which the scattering
length diverges — as the interparticle interaction in the BCS regime grows stronger, the scattering length
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Figure 1.1.: Phase diagram of the BCS–BEC crossover as a function of (kF a0)−1, where kF is the Fermi
momentum, a0 (as in the figure) the s-wave scattering length, and the temperature T is in
units of the Fermi energy EF . The figure shows schematically the evolution from the BCS limit
with Cooper pairs to the BEC limit with tightly bound molecules. In between is the BCS–BEC
crossover with the unitary limit ((kF a)−1 = 0) where the scattering length diverges. Away
from the transition temperature Tc , the pair-formation crossover scale T ∗ diverges (figure
taken from [66]).
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becomes more negative and approaches −∞, and as the interparticle interaction in the BEC grows
weaker, the scattering length becomes more positive and approaches +∞.

Figure 1.1 shows the phase diagram of the BCS–BEC crossover in a dilute Fermi gas as a function of
(kFa0)−1, where kF is the Fermi momentum and a0 the s-wave scattering length and the temperature T
in units of the Fermi energy EF . This figure also shows the dependence of behavior of the Fermi gas on
the temperature T and the strength of the interaction. At temperatures below T ∗, pairing starts [50].
For T < Tc, superfluidity can be observed for positive (kF a0)−1 in BECs of tightly bound molecules and
for negative (kF a0)−1 in the BCS limit of fermions forming Cooper pairs.

The weak attractive interaction between the fermions forming the Cooper pairs can be tuned using
Feshbach resonances, which allows precise control of the sign and magnitude of the scattering length a0.
The resonant limit with infinite scattering length is the so-called unitary limit. More details on Feshbach
resonances can be found in the literature [11, 22, 54, 34, 93, 103] and in chapter 2.4.

Experiments with ultra-cold Fermi gases were motivated by the search for superfluidity, which BCS
theory predicted for low temperatures. The experiments showed that superfluidity can be achieved
using Feshbach resonances [104]. O’Hara et al. [39] and Bourdel et al. [14] arrived at the strongly
interacting regime in an optically trapped fermionic 6Li using Feshbach resonances. Later, condensation
of fermionic atom pairs in the BCS-BEC crossover regime was observed by Regal et al. [67] and the
observation of BEC of fermionic molecules were reported in [35, 105]. The first convincing proof of
superfluidity was obtained by Zwierlein et al. [104], where quantized vortices in a rotating gas were
observed; which are a direct consequence of the existence of a macroscopic wave function that describes
the superfluid.

Systems in the unitary limit have been studied experimentally by confining atoms in traps or optical
lattices (see, for instance, [103, 11, 54, 34, 93] and the references given therein, as well as [51, 92]).
For example, Serwane et al. [83] confined between one and ten two-component equal-mass fermionic
atoms in precisely defined quantum states in an optical dipole trap by focussing a single laser beam. They
used a mixture of 6Li in two different hyperfine states. In optical lattices at extremely low temperatures,
the lattice sites can be considered as independent harmonic oscillator (HO) traps, containing only a few
atoms each.

Theoretical calculations of thermodynamical properties for trapped many-body fermionic systems
were performed in [16, 21] using a Monte Carlo method and density-functional theory for up to
about 30 fermions. Many-body calculations of the ground-state energy of trapped two-component
equal-mass fermionic systems in the unitary limit have been performed using Monte Carlo methods
[5, 12, 18, 21, 85, 87, 88] (up to about 30 fermions). Ab initio calculations can also describe the ex-
cited states, but have been successfully used with at most about 6 fermions so far. Furthermore, ab
initio calculations are exact methods without any approximation applied to the many-body system, with
controlled truncation applied to the many-body system. Calculations of ground-state energy and excited-
state energies were performed using the correlated Gaussian basis set expansion [25, 86, 87, 88] (up to
6 fermions), the Configuration Interaction (CI) method (for three and four fermions) [1] and No-Core
Shell Model (NCSM) calculations (for up to five fermions) at unitarity [76, 77]. The complete analytical
solution for the ground-state energy was obtained only for A = 3 fermions at unitarity by Werner et al.
[102].

CI approaches are widely used for the description of quantum many-body systems in atomic and molec-
ular physics, quantum chemistry, condensed matter, and nuclear physics and have also been used for the
description two-component fermionic systems at unitarity using contact interactions and an effective in-
teraction introduced by Alhassid, Bertsch and Fang [1, 33]. We refer to it as the Alhassid-Bertsch-Fang
(ABF) interaction. NCSM calculations were performed for fermions at unitarity using an interaction
constructed with an effective field theory (EFT) approach [91]. The NCSM is a CI method successfully
used in nuclear many-body problems. In the NCSM, the many-body Hamiltonian is expanded on a basis
of harmonic-oscillator Slater determinants up to a certain excitation energy Nmaxħhω and diagonalized to
get energies and wave functions of its eigenstates.
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The basis states of the many-body basis in the CI approach are often Slater determinants constructed
from single-particle HO wave functions in the laboratory frame. In contrast to the NCSM, where the
excitation energy is used as a truncation, in general CI method one uses only the single-particle energy
of the HO as a truncation. Basis states depending only on internal (Jacobi) coordinates are also used
(for instance in [76, 77]), where the radial part is described by HO wave functions. While in the Jacobi
coordinate basis the antisymmetrization becomes increasingly difficult with growing number of particles,
the dimension of the full space grows factorially with the number of particles and single-particle orbitals
when using Slater determinants. Using the Jacobi coordinate basis is more computationally efficient
than using Slater determinants only for up to five particles [77]. The basis required to obtain converged
results for large particle numbers becomes extremely large and hence difficult to treat with existing
computer technology.

However, since we search for the ground state and few excited states, the model space contains many
states which are irrelevant for the calculation. Introducing an importance measure that allows to iden-
tify and omit these irrelevant basis states changes the results very little but reduces the model space
dimension greatly, enabling the calculation of previously intractable model spaces or particle numbers.
The importance truncation scheme was first developed in quantum chemistry in the 1970s. Roth et al.
[71, 75] derived an importance truncation scheme for nuclear structure calculations using the NCSM,
the so-called Importance-Truncated No-Core Shell Model (IT-NCSM). Using an a priori measure for the
importance of a basis state one can reduce the dimension of the model space, allowing converged ab
initio calculations for 16O and beyond [71, 75]. For example, ab initio IT-NCSM calculation of oxygen
isotopes with even mass number up to 26O were performed with chiral two- plus three-nucleon inter-
action [40]. To that end, an importance measure is constructed using many-body perturbation theory.
We use the importance truncation for the calculation of the energy of a two-component Fermi gas in
the unitary limit. As in the nuclear structure calculation, the importance truncation allows converged
calculation of larger systems compared to the full NCSM method.

In this thesis, we focus on ultra-cold two-component equal-mass Fermi gases in a trap in the unitary
limit, and extend the previously described ab initio calculations to higher particle numbers and model
spaces. We consider two-component fermion systems with A= 4, . . . , 20 consisting of A1 and A2 particles
with either A1 = A2 or A1 = A2 − 1, where A1 are the number of atoms of the one species and A2 of the
other and A1 + A2 = A. We calculate the energies of the trapped fermion systems in the unitary limit
using the IT-NCSM.

The remainder of this thesis is structured as follows: In chapter 2 we briefly summarize the scattering
theory for particles at low temperature, introduce in more detail the BCS–BEC crossover and the unitary
limit in particular. Also, we briefly discuss the Feshbach resonances used to tune the strength of the
interaction.

Chapter 3 covers the interactions used in this thesis, that is, the EFT approach by Stetcu et al. [91],
the ABF interaction [1], and a Gaussian-shaped potential as used in Monte Carlo calculations [12].
For our many-body calculations we need the interaction matrix elements. The interaction matrix ele-
ments are calculated in relative coordinates. The relative matrix elements have to be transformed into
laboratory-frame coordinates, which is done using Talmi-Moshinsky transformation. This transformation
is described in chapter 3.2.1.

Chapter 4 explains the ab initio many-body methods used for our calculations, the NCSM and the IT-
NCSM, in more detail. We perform our many-body calculations in the m-scheme; the Jacobi coordinates
and the m-scheme are described in section 4.2. Furthermore, we discuss the uncertainties of the results
calculated using NCSM in that chapter. We use results calculated by other groups with other methods like
the Fixed-Node Diffusion Monte Carlo (FN-DMC) method and variational approaches using a correlated
Gaussian basis set expansion as a benchmark for our calculations of two-component fermion systems at
unitarity. We discuss these methods in sections 4.5 and 4.6.

We present our results for the energy spectra of systems in the unitary limit in chapter 5. The extrap-
olation to the infinite model space is also described in chapter 5. For these calculations, we used the

4 1. Introduction



EFT and the ABF interaction. We compare our results with benchmark calculations obtained by [12].
Chapter 5 contains also the results of our calculations using a Gaussian interaction.
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2 Ultra-Cold Gases
We consider ultra-cold two-component fermionic systems in a harmonic oscillator (HO) trap. The
fermions are not self-bound. The systems are dilute and the interaction can be characterized using
only the s-wave scattering length, which can be tuned via a Feshbach resonance. In the following, we
discuss briefly the collision physics at low temperatures in order to understand the properties of ultra-
cold gases. We define the scattering length and analyze its behavior for a simple potential. We briefly
discuss the BCS-BEC crossover and, in particular, the unitary limit in section 2.2. At low temperature
only different components of the Fermi gas can interact (see section 2.1), these components we describe
in the section 2.3. The strength of the potential between the interacting particles can be modified by
Feshbach resonances that we describe briefly in section 2.4.

2.1 Scattering Properties of Ultra-Cold Gases

We consider dilute, ultra-cold systems. Because of their diluteness, the two-body collisions dominates
over the three-body or multi-body collisions. As a consequence, the scattering properties of the ultra-
cold atoms can be understood by considering two-body collisions in which the interparticle interaction
is described by a central potential V (r) and the weak magnetic dipole interaction between the spins is
neglected[50].

The exact description of the interparticle potential is complicated [50]. At short distances on the
order of few Bohr radii aB, mutual repulsion of the two electron clouds becomes significant. At large
distances, atoms interact with the van-der-Waals potential ∝ r−6. Hence, when the gases are ultra-cold
and ultra-dilute, the range of the interparticle potential Rint (for 6Li, for example, Rint ∝ 50aB) is much
smaller than the interparticle distance n−1/3 ∼ 5000aB to 10000aB, as well as the de Broglie wavelength
λ2 = 2πħh2/mkB T and the inverse Fermi wave number k−1

F : Rint� λ, Rint� k−1
F [34, 50, 70]. As a result the

relative wave function of two interacting atoms of the system is so broad and its derivatives so small in
comparison to the range of the interaction that the details of the short-range potential cannot be resolved
[50, 70]. At large distances, different many-body systems may show the same behavior although their
short-distance behavior can be quite different. Their constituents and, consequently, the potentials may
be different, but if the scattering length is the same, their macroscopic behavior is the same as well [15].
Therefore, the details of the interaction can be neglected and the interaction can be approximated by the
delta function (δ for short), whose effect on the system behavior is no different from that of the actual
potential [15]. Such many-particle systems, whose properties can be described by the s-wave scattering
length only, are called universal.

Due to the short range of the interaction and the diluteness of the ultra-cold Fermi gas, the length of
the HO trap

aHO =

r

ħh
mω

(2.1)

with HO frequency ω and mass m has to be large compared to the range of the interparticle potential:
Rint � aHO [103].

We consider the scattering properties (collision process) of two particles with equal mass m interacting
through a central potential V (r). The eigenstates of the relative Hamiltonian Hrel can be determined by
a Schrödinger equation of the form

�

−
ħh2

2µ
~∇2+ V (r)

�

Ψ~k(~r) = E~kΨ~k(~r) (2.2)
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with reduced mass µ and wave vector ~k. The asymptotic behaviour as ~r →∞ can be described as the
sum of the plane wave and an outgoing spherical wave:

ψk(~r)
r→∞
∝ ei~k~r + fk(θ ,ϕ)

eikr

r
, (2.3)

where fk(θ ,ϕ) is the scattering amplitude. We can now determine the differential cross section

dσ

dΩ
=
�

� fk(θ ,ϕ)
�

�

2
(2.4)

and the total cross section

σtot =

∫

dσ

dΩ
dΩ (2.5)

for distinguishable particles for this potential, where the total cross section is obtained by integrating
over the solid angle dΩ, the azimuthal angle ϕ, and the scattering angle θ .

For a central potential V (~r) = V (r), the Schrödinger equation has spherical symmetry and angular
momentum is conserved. The solutions are also eigenfunctions of the angular momentum L and can be
expanded on a basis set of eigenfunctions of L2 and Lz, the so-called partial wave expansion. The z-axis
is fixed through the incident wave, which is an eigenstate of Lz with eigenvalue 0 and the expansion
is independent of the azimuthal angle around the z-axis. Therefore, we can omit all coefficients with
ml 6= 0. Using the partial wave expansion, we can resolve the asymptotical solution (2.3) and the
scattering amplitude fk(θ ,ϕ). The scattering amplitude can then be written as

fk(θ ,ϕ) =
∞
∑

l=0

2l + 1

k cotδl(k)− ik
Pl(cosθ) =

∞
∑

l=0

(2l + 1)Pl(cosθ)
eiδl (k)

k
sinδl(k), (2.6)

where l is the relative angular momentum, ml the projection of the relative angular momentum and
Pl(cosθ) are the Legendre polynomials and δl the phase shifts. The corresponding scattering cross-
section for two distinguishable particles is therefore given by

σtot(k) =
4π

k2

∑

l

(2l + 1) sin2δl(k). (2.7)

Furthermore, using the symmetry of the problem, the wave function can be written as

Ψ~k(~r) =
∞
∑

l=0

l
∑

ml=−l

Ylml
(θ ,ϕ)

ukl(r)
r

, (2.8)

where Ylml
(θ ,ϕ) are the spherical harmonics. The radial functions ukl(r) are unknown.

Using eq. (2.8) and assuming that ukl (r)/r is regular in r = 0 and because the interaction has a radial
symmetry, eq. (2.2) can be written as:

u′′kl(r) +
�

k2−
l(l + 1)

r2 −
2µV (r)

ħh2

�

ukl(r) = 0. (2.9)

Figure 2.1 shows the interparticle interaction for s-wave scattering (a) and higher partial waves (b).
For the partial wave with l = 0, the potential is simply given by the interatomic potential V (r). For
higher partial waves, the centrifugal barrier has to be added to the potential, which therefore takes the
form

Veff(r) =
ħh2l(l + 1)

2µr2 + V (r). (2.10)
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Veff(r)

E

r

(a) l = 0
Veff(r)

E

r

(b) l = 1, 2, ...

Figure 2.1.: The interparticle potential of two particles with energy E entering into the radial Schrödinger
equation (2.9) for the s-wave scattering (a) and higher partial wave (b). The dotted line is
the centrifugal barrier ħh2 l(l+1)/(2µr2) [27].

We consider ultra-cold gases at very low energies, lower than the height of the centrifugal barrier (see
fig. 2.1). Therefore, almost all particles with l > 0 are being reflected at the centrifugal barrier. That
barrier does not exist for particles with l = 0, so that we only need to take s-wave scattering into account.
The contributions of the p-, d- and higher-order waves are insignificant and can be neglected.

The above statement only holds for distinguishable particles. The wave function of an identical one-
component Fermi gas must be antisymmetric; as a consequence, the only partial waves contributing to
the scattering cross-section are those with odd values of l. In a one-component Fermi gas, the particles
interact mainly via p-wave scattering because the Pauli principle precludes s-wave scattering. At ultra-
low temperatures, p- and higher wave scattering is very weak and, therefore, one-component Fermi
gases are practically non-interacting; cooling them is very difficult. For a two-component Fermi system
the s-wave interaction between the different components of Fermions becomes important, in addition to
the p-wave scattering which is relevant for the so-called p-wave Feshbach resonances [19, p. 15]. For
the calculation of ultra-cold two-component Fermi gases away from p-wave Feshbach resonances, the
p- and higher wave scattering can be omitted and pure s-wave scattering is a good approximation [19].
According to Roth, the interplay of s- and p-wave scattering causes several important effects, but only
for systems with large particle numbers (> 105 [70, p. 194]). We consider only systems with up to 20
particles. Therefore, we only take s-wave scattering into account in this thesis.

At low energy the phase shift δ0 is given by the effective range expansion,

k cotδ0(k) =−
1

a0
+

1

2
r0k2, (2.11)

where r0 is the effective range of the potential. Therefore the s-wave scattering length can be written as

a0 =− lim
k→0

tanδ0(k)
k

. (2.12)

For k→ 0 the scattering amplitude f0 → a0 and we get for the scattering cross-section (see eq. (2.6)
and (2.7)):

lim
k→0
σl=0(k) = 4πa2

0, (2.13)

which corresponds to four times the classical scattering cross-section for hard spheres with radius a0. All
scattering properties can now be described by the s-wave scattering length alone; the form of the actual
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potential is not important for the description of the scattering process. The properties of the system
become independent of the details of the interaction, and the potential can be approximated by a simple
contact interaction (δ-function).

The asymptotic scattering solution for the radial function can be given for l = 0:

ukl=0 (r)
r→∞
∝ k−1 sin(kr +δ0(k)). (2.14)

As mentioned previously, the interaction potential between two atoms can be described by the van-der-
Waals potential, which falls off quickly (it is proportional to r−6) and is therefore a so-called short-range
potential. As a consequence, at large distances, eq. (2.9) reduces to the free Schrödinger equation. Since
we consider particles with low energy (k→ 0) and l = 0 holds additionally, eq. (2.9) further reduces to

u′′k→0,l=0(r) = 0 (2.15)

with the trivial solution

u(r) = uk→0,l=0(r)
r→∞
∝ r − a0 (2.16)

for the asymptotic behavior of the radial wave function, where a0 is the s-wave scattering length.
We can understand the physical meaning of the scattering length by considering fig. 2.2, which shows

the scattering length for different potentials. In fig. 2.2 the blue curves are the potentials and the red
curve is the radial wave function u(r). The dashed line shows the extrapolated asymptotic behavior
uas(r) of u(r) for r → ∞ (eq. (2.16)). The extrapolation of uas(r) intersects the r-axis at r = a0 [82,
p. 357].

The s-wave scattering lengths take different values for different potentials. For a repulsive poten-
tial, the phase shift is negative and the scattering length is positive, see fig. 2.2 (a). The scattering
length is negative for an attractive potential without bound state, see fig. 2.2 (b), and the phase shift
limk→0δl=0(k) < π/2. By increasing the potential to a critical value, the scattering length goes to infinity
when the phase shift approaches π/2. The potential is now strong enough to support a bound state at
E = 0 (see fig. 2.2(c), dashed green line). The scattering length is positive for an attractive potential
with a bound state (dashed green line), see fig. 2.2 (d). The phase shift is negative and takes values
from −π to −π/2.

Normally, the scattering length is approximately equal to the range of the interaction [15, 27]. Some
atoms have large scattering length, also there are atoms with tuneable scattering length, which can be
experimentally tuned to an arbitrary size. By cooling those atoms to sufficiently low temperature, the
universal regimes can be reached, with such phenomena like Bose-Einstein condensation for bosonic
atoms or superfluidity for fermions [15]. There are also systems in particle and nuclear physics, for
example, neutrons, neutron-proton systems or αα-systems, where α stands for the 4He nucleus [15].

2.2 BCS-BEC Crossover and Unitary Limit

In dilute ultra-cold Fermi gases in BCS or dilute ultra-cold Bose gases in BEC, the details of finite-
range interactions are unimportant [77] and universal behavior of the system is expected (see [34,
50, 77], etc.). The properties of the system are determined by the scattering length. The BCS theory
describes an ultra-cold Fermi gas at absolute zero temperature interacting through a weak attractive
potential. The potential does not support a two-body bound state. As already mentioned, at sufficiently
low temperature, the fermionic atoms form Cooper pairs and enter the superfluid or superconducting
phase. Since the attractive interaction between the fermions is very weak, the size of the Cooper pairs
is larger than the interparticle distance between the fermions. In the real space, the pairs are highly
overlapping as can be seen in fig. 2.3, which shows the BEC and BCS states as well as the BCS–BEC
crossover schematically. As the attraction becomes stronger, the size of the Cooper pairs decreases, and
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Figure 2.2.: Sketch of the scattering length for a repulsive (a) and an attractive (b),(c),(d) potential. The
solid line is the wave function u(r) and the dotted line is its extrapolation. The intersection
of the dotted line with the r -axis corresponds to the s-wave scattering length. For a weak
potential without a bound state, the scattering length is negative. The scattering length
diverges for a potential with a state at E = 0 and becomes positive for a potential with a
bound state.
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Fig. 1. – The BEC-BCS crossover. By tuning the interaction strength between the two fermionic
spin states, one can smoothly cross over from a regime of tightly bound molecules to a regime of
long-range Cooper pairs, whose characteristic size is much larger than the interparticle spacing.
In between these two extremes, one encounters an intermediate regime where the pair size is
comparable to the interparticle spacing.

interaction V , explaining why earlier attempts using perturbation theory had to fail.

Also, this exponential factor can now account for the small critical temperatures TC !
5 K: Indeed, it is a result of BCS theory that kBTC is simply proportional to ∆0, the pair

binding energy at zero temperature: kBTC ≈ 0.57 ∆0. Hence, the critical temperature

TC ∼ TD e−1/ρF |V | is proportional to the Debye temperature TD, in accord with the

isotope effect, but the exponential factor suppresses TC by a factor that can easily be

100.

1
.
3.2. The BEC-BCS crossover. Early work on BCS theory emphasized the different

nature of BEC and BCS type superfluidity. Already in 1950 Fritz London had suspected

that fermionic superfluidity can be understood as a pair condensate in momentum space,

in contrast to a BEC of tightly bound pairs in real space [35]. The former will occur

for the slightest attraction between fermions, while the latter appears to require a true

two-body bound state to be available to a fermion pair. Schrieffer points out that BCS

superfluidity is not Bose-Einstein condensation of fermion pairs, as these pairs do not

obey Bose-Einstein statistics [36]. However, it has become clear that BEC and BCS

superfluidity are intimately connected. A BEC is a special limit of the BCS state.

It was Popov [37], Keldysh and collaborators [38] and Eagles [39] who realized in

different contexts that the BCS formalism and its ansatz for the ground state wave

function provides not only a good description for a condensate of Cooper pairs, but also

for a Bose-Einstein condensate of a dilute gas of tightly bound pairs. For superconductors,

Eagles [39] showed in 1969 that, in the limit of very high density, the BCS state evolves

into a condensate of pairs that can become even smaller than the interparticle distance

and should be described by Bose-Einstein statistics. In the language of Fermi gases, the

scattering length was held fixed, at positive and negative values, and the interparticle

spacing was varied. He also noted that pairing without superconductivity can occur

above the superfluid transition temperature. Using a generic two-body potential, Leggett

9

Figure 2.3.: The BCS–BEC crossover. By tuning the interparticle interaction in an ultra-cold Fermi gas in
the vicinity of the Feshbach resonance, the Fermions undergo a crossover from long-range
Cooper pairs to a BEC of tightly bound molecules. The strongly interacting regime with pair
size comparable to interparticle spacing is in between these two limits. Figure taken from
[50].

the fermions enter the BEC–BCS crossover; for an even stronger interaction, the fermionic atoms form
tightly bound diatomic molecules. The size of these diatomic molecules is much smaller than the average
interparticle distance.

In the BCS–BEC crossover, the point where the s-wave scattering length diverges defines the unitary
limit with universal properties. As the two-body scattering length a0 approaches infinity, the scattering
cross-section reaches the maximal value with eq. (2.13). The only relevant scale for the ground state
is the interparticle spacing n−1/3, where n is the particle density of the system, and the only relevant
energy scale is the Fermi energy EF for fermionic systems [41]. Quantities such as the average energy
of the gas, the binding energy of a pair and the critical temperature are proportional to EF [50]. In the
BCS–BEC crossover, the interparticle potential is just strong enough to bind two particles in free space;
the scattering length tends to infinity and is larger than the range of interatomic potential. The fermions
are strongly interacting, with the pair size being of the order of the spacing between fermions [45]. At
the same time, the gas is dilute, since the range of the interatomic potential is much smaller than the
interparticle distance. The system is dilute and strongly interacting at the same time [34]. The unitary
limit is characterised by a0� aHO and Rint� aHO.

The behavior of the scattering length as a function of the magnetic field B in the vicinity of the Feshbach
resonance is shown in fig. 2.4. Region I is the BCS, region III the BEC and in the middle, region II is the
unitary regime with diverging scattering length. At the critical field B, the sign of the scattering length
changes from negative to positive. For a bound state near the threshold (E = 0), the scattering length is
large, see fig. 2.2 (c). As the strength of the interaction increases, the scattering length diverges and goes
to infinity for a particular critical strength of B. Experiments [39, 44] have shown that the scattering
length a0 can be tuned using Feshbach resonances (see section 2.4).

2.3 The Two Components of the Fermi Gas

We consider in this section the electronic structure of the atoms used in the ultra-cold collisions experi-
ments. The atoms have the electronic orbital angular momentum L and electronic spin S. The spin-orbit
couples L with S to the total electronic angular momentum J . For ultra-cold collision experiments, alkali
atoms in the ground state are used. In the ground state, their total electronic orbital momentum is zero
(L = 0), since all electrons in the core occupy closed shells, and the outer electron is in the s orbital.
Therefore the total electronic angular momentum J is equal to the spin of the valence electron s = 1/2,
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FIGURE 10.1 The dependence of the scattering length on the magnetic field near a Feshbach
resonance. The symbols I, II, and III label the regime of a weakly interacting degenerate atomic
Fermi gas, the strongly interacting regime of BCS–BEC crossover, and the regime of weakly
bound molecules. At sufficiently low temperatures region I corresponds to the BCS superfluid
pairing, and region III to the Bose–Einstein condensation of molecules.

length) is larger than the mean separation between particles, and in the quantum
degenerate regime the conventional mean field approach is no longer valid.

For large detuning from resonance the gas is in the weakly interacting regime, that
is, the inequality n|a|3 ! 1 is satisfied. On the negative side of the resonance (a < 0),
at sufficiently low temperatures of the two-species Fermi gas one expects the BCS
pairing between distinguishable fermions, which is well described in the literature [1].
On the positive side (a > 0), two fermions belonging to different components form
diatomic molecules. For a " Re, these molecules are weakly bound and their size is
of the order of a.

The crossover from BCS to BEC behavior has recently attracted a great deal
of interest, in particular with respect to the nature of superfluid pairing, transition
temperature, and elementary excitations. This type of crossover has been earlier dis-
cussed in the literature in the context of superconductivity [34–37] and in relation to
superfluidity in two-dimensional films of 3He [38,39]. The idea of resonant coupling
through a Feshbach resonance for achieving a superfluid phase transition in ultracold
two-component Fermi gases has been proposed in Refs. [40] and [41], and for the
two-dimensional case it has been discussed in Ref. [42].

The two-body physics of the Feshbach resonance is the most transparent if the
(small) background scattering length is neglected. Then, for low collision energies ε,
the scattering amplitude is given by [26]:

F(ε) = − !γ/
√

2µ

ε + δ + iγ
√

ε
, (10.1)

where the quantity !γ/
√

2µ ≡ W characterizes the coupling between the open and
closed channels and µ is the reduced mass of the two atoms. The scattering length is

© 2009 by Taylor and Francis Group, LLC

Figure 2.4.: Feshbach resonance. The scattering length can be tuned using a magnetic field from a regime
with weakly bound molecules, with positive scattering length (regime III) to the weakly-
interacting Fermi gas regime, with negative scattering length, or the other way around.
In the strongly interacting regime of the BCS–BEC crossover, the scattering length changes
from a very large negative to very large positive value [54, ch. 10]
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Figure 2.5.: Atomic energy levels of the fermionic 6Li atom, with s = 1/2, I = 1, and f = 1/2 and 3/2.
The figure shows the projection m f of f . The different hyperfine states are labeled by the
alphabetical shorthand notation qi = a,b,c,d,e and f in order of increasing energy. The figure
was taken from [22, p. 6].

and fine-structure splitting due to spin-orbit coupling does not occur. The nuclear spin I of the atom
couples with the electron spin due to the magnetic dipole–dipole interaction and the ground state of the
alkali atoms splits into the hyperfine structure. This splitting is described by the hyperfine interaction

Hhf =
αhf

ħh2
~I ·~S, (2.17)

where αhf is the hyperfine constant which connects the spin S and the nuclear spin I [93, p. 217].
Therefore, only the total angular momentum operator ~F =~I+ ~S commutes with the Hamiltonian and is
conserved.

The hyperfine eigenstates of the alkali atoms in the ground state with l = 0 are completely determined
by the quantum number f , its projection m f as well as I and s and can be written as

�

�nl; (Is) f m f
�

=
�

�00; (Is) f m f
�

. Since, for alkali atoms, s = 1/2, the allowed number for f is I ± 1/2, with m f = −(I +
1/2), · · · , (I + 1/2) and m f = −(I − 1/2), · · · , (I − 1/2). The states with different m f are degenerate in the
absence of a magnetic field (see for example fig. 2.5).

In an external magnetic field, the hyperfine coupling causes an energy shift (called the Zeeman shift)
of the hyperfine states, which lifts the degeneracy in m f of the hyperfine states. For a weak magnetic
field, the Zeeman splitting is dominated by the hyperfine states

�

�(Is), f m f
�

[93], the hyperfine state
splits into (2s+ 1)(2I + 1) = 4I + 2 sub-levels. Good quantum number are f and its z-projection m f . At
high magnetic fields strength B � αhf/(µBħh) the electronic and the nuclear spin z-projection ms and mI
are good quantum numbers [50, 97].

By controlling the external field, the hyperfine states can be manipulated. This is used in experiments.
Fig 2.5 shows the Zeeman energy levels as a function of the magnetic field B for an alkali fermion 6Li.
6Li is often used in ultra-cold experiments, because it has an experimentally easily accessible Feshbach
resonance, which allows accurate tuning of the interaction. 6Li has nuclear spin I = 1 and hence the
ground state splits into two hyperfine levels with f = 3/2 or f = 1/2. In a magnetic field, the f = 3/2

14 2. Ultra-Cold Gases



state splits into four Zeeman sub-levels and the f = 1/2 state splits into two sub-levels. These sub levels
are labeled in the figure by the standard notation of atomic Zeeman levels for any species and any field
strength. The qi refer symbolically to the ( fim fi ).

The ultra-cold atoms are prepared in two different hyperfine states, q1 and q2. For magnetic trapping
one uses a stable pair of magnetically trappable hyperfine states; hence the collisions can be considered
to be elastic and the two final states are the same as the initial ones, (q1, q2) = (q′1, q′2). A consequence
is that, in a two-component system with A particles, the sum over m fi is conserved. Since each particle
stays in its hyperfine state and particles do not change state, we can treat the hyperfine state as a particle
property like, for instance, the isospin, and introduce an additional two-valued quantum number qi,
which distinguishes the two hyperfine states. Mixtures of the lowest hyperfine states are, for example,
stable against spin relaxation, where an inelastic collision becomes possible by an exchange of angular
momentum between electrons and nuclei. Furthermore, for fermions, the states are also stable against
dipolar relaxation, where angular momentum is transferred from the electrons and/or nuclei to the
relative motion of the atom. When dipolar relaxation occurs, the only allowed state has both atoms in
the same state and the wave function becomes symmetric. Since the wave function of the fermions has
to be antisymmetric, dipolar relaxation cannot occur. The situation changes near a Feshbach resonances,
where all inelastic processes are usually strongly enhanced. For the ultra-cold experiments at unitarity
the Fermi gases are prepared in two hyperfine states near a Feshbach resonance that is used to control
the interaction. Therefore, we can still consider the mixture of the two hyperfine states as stable. More
about the collision properties in ultra-cold gases can be found, for example, in [50].

2.4 Feshbach Resonances

Feshbach resonances play an important role in the physics of ultra-cold atomic gases. They allow the
scattering length to be tuned to any values, also to the so-called unitary limit with large scattering length.
Feshbach resonances were first investigated in bosonic systems (for instance, by Inouye et al. [44] and
Courteille et al. [24]) and later in fermionic systems (first in 6Li by O’Hara et al. [39] and Bourdel et
al. [14]). With magnetically tunable Feshbach resonances it is possible to modify the interaction of two
colliding atoms by simply changing a magnetic field [54, 103].

In section 2.1 we did not consider the internal states of the atoms. For Feshbach resonances, more
realistic interactions have to be considered, where the atoms have internal states (see section 2.3). For
the description of magnetically tunable Feshbach resonances, a two-channel model is used, the channels
are the possible internal states of the colliding atoms. For alkali atoms, the spin of the valence electron
is s = 1/2. The valence electrons of the collision partners are either in the singlet state

�

�S
�

with S = 0 or
in the triplet S = 1 state

�

�T
�

, where the state (triplet or singlet) refers to the total electronic spin of the
interacting atoms. Feshbach resonances occur if the potential of the singlet state is just deep enough to
contain a bound state near the dissociation threshold. In an ultra-cold atomic gas we have for the energy
of the colliding atoms E ≈ kBT � ∆µB, where kB is Boltzmann’s constant, T the temperature. B is the
magnetic field,∆µ the difference between the magnetic moments of the colliding atoms and the product
∆µB is the difference in Zeeman energy between them due to the interaction with the magnetic field.
Therefore, the atoms collide in the triplet S = 1 configuration, since the singlet S = 0 is energetically
forbidden [93, p. 432] because of the energy conservation. Without the hyperfine coupling, two atoms
scattering in the triplet state cannot move into the singlet state, thus the singlet state is called the closed
channel and the triplet state the open channel. The different states have different Zeeman shifts in
the presence of a magnetic field, and the energy difference between these states can be experimentally
changed. Figure 2.6 shows the potential of the both channels schematically, as well as the energy of both
channels without the hyperfine coupling as a function of magnetic field. The open channel is a scattering
channel with the interaction potential VT(r) (red line in fig. 2.6). In the closed channel, the atoms are
bound in a molecule with energy Ec and interact via the interaction potential VS(r) (blue line in fig. 2.6).
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Energy

Interatomic Distance

Bound State
∆µ B

Magnetic Field

Energy

B0

Fig. 1.3 Atoms prepared in the open channel, corresponding to the interaction potential (in red),
undergo a collision at low incident energy. In the course of the collision the open channel is coupled
to the closed channel (in blue). When a bound state of the closed channel has an energy close to
zero, a scattering resonance occurs. The position of the closed channel can be tuned with respect to
the open one, e.g., by varying the magnetic field B

low energies. This coupling leads to a resonant contribution

tan δres(k)= !2k
mr"ν

(1.2)

to the scattering phase shift at small momenta k → 0 which is inversely propor-
tional to the detuning ν = $µ(B − B0) away from resonance [55]. The associated
characteristic length r" > 0 is determined by the overlap between the open channel
scattering state |φ0〉 and the closed channel bound state |φres〉. More precisely, it is
connected to the off-diagonal coupling potential W(r) via [56]

〈φres|W |φ0〉= !2

m

√
4π

r"
. (1.3)

Its inverse 1/r" is therefore a measure of how strongly the open and closed channels
are coupled. Including the phase shift tan δbg(k)= − kabg due to scattering in the
open channel potential, the total scattering length a = − limk→0 tan (δbg + δres)/k
is of the form

a = abg − !2

mr"ν
(1.4)

as given in Eq. 1.1. In particular, the phenomenological width parameter $B is deter-
mined by the combination $µ$B = !2/(mr"abg) of the two characteristic lengths
abg and r".

In addition to the tunability of the scattering length, Feshbach resonances also
allow to form weakly bound dimers by an adiabatic change in the magnetic
field that starts from the side with a < 0 and slowly crosses the resonance into
the regime a > 0, where the pseudopotential exhibits a bound state at energy
εb = !2/(ma2) [53]. The corresponding bound state has a finite closed channel

Figure 2.6.: Feshbach Resonance two-channel model [103, ch. 1]. The open channel with interaction
potential (in red) is coupled to the bound state of the closed channel (in blue) with energy
Ec . The two particles collide in the entrance (open) channel with energy E. A Feshbach
resonance occurs when the energy of the bound state is close to the dissociation energy in
the open channel. The energy of the closed channel can be tuned with respect to the open
channel. The figure was taken from [103, p. 8].

The hyperfine interaction eq. (2.17) does not commute with S2, and provides the coupling between
the singlet and triplet potentials [50, 97]. The electronic spin of the triplet state can be flipped to a
singlet configuration by the hyperfine interaction [97]. Therefore the two-channel Schrödinger equation
can be written as





−ħh
2 ~∇2

m
+ VT (~r)− E Vhf

Vhf −ħh
2 ~∇2

m
+∆µB+ VS (~r)− E





�

ΦT(~r)
ΦS(~r)

�

= 0 (2.18)

where VT and VS are the interaction potentials of the atoms in the triplet and singlet internal state,
respectively. The Vhf =




T
�

�Hhf

�

�S
�

are the matrix elements of the hyperfine coupling [93] which couples
the two channels. One assumes that 0< Vhf� VT, VS,∆µB [93].

Figure 2.7 shows the energy of the bound state calculated using Schrödinger equation (2.18) for the
two coupled square-well interaction potentials, with V = 0. The dashed line shows the bound-state
energy with Vhf = 0. For non-zero hyperfine coupling, the calculated binding energy of the singlet
state is shifted and depends quadratically on the magnetic field near Feshbach resonances (instead of
linearly). For magnetic fields larger than B0, where B0 is the magnetic field at which the scattering length
diverges, a bound state no longer exists. The molecule now decays due to the hyperfine coupling into
two free atoms, because its energy is above the two-atom continuum threshold. This was also observed
in experiments [93].

The magnetic field dependence of the s-wave scattering length near a Feshbach resonances can be
described as [22, 93]

a0(B) = abg

�

1−
∆B

B− B0

�

(2.19)

with the width ∆B of the resonance. abg denotes the off-resonant background scattering length. In
a two-body scattering process, magnetically tunable Feshbach resonances occur if the closed channel
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Figure 2.7.: Bound-state energy of the closed channel near a Feshbach resonance for the two coupled
square-well interaction potentials with V = 0. The dashed line corresponds to Vhf = 0 and
the solid line to Vhf = 0.1ħh2/mR. The figure was taken from [93, p. 438].

supports a bound state near continuum and is hence close to zero. The energy E of colliding atoms
is, as already mentioned, very low E ≈ kBT . The two channels are resonantly coupled and the energy
difference of the two channels can be modified by varying the magnetic field. The Feshbach resonance,
therefore, allows to tune the scattering length and, consequently, the collision properties of the particles,
thereby tuning the properties of the interparticle interaction in ultra-cold gases.

In the fermionic case, the gas near the Feshbach resonance is stable and long-lived, with a lifetime
between about 100 ms for 40K and 10 s for 6Li, in contrast to the bosonic case (≈ 100µs). The interacting
atoms can form molecules near a Feshbach resonance. These so-called Feshbach molecules are extremely
weakly bound and become halo dimers. Further relaxation into a more deeply bound state is possible
[50]. Another possibility to achieve resonant coupling is using optical methods, the optical Feshbach
resonances [22].

As already mentioned, for extremely large scattering length gases experience universal properties.
This regime is also called the unitary limit which we consider in this thesis.
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3 Interactions
We use ab initio many-body techniques, e.g. the no-core shell model, for the calculation of the energy
spectra of two-component ultra-cold Fermi gases at unitarity. To perform the many-body calculations
we first need to compute the matrix elements of the interaction between the fermions. In chapter 2
we discussed the scattering properties of the ultra-cold Fermi gas, introduced the scattering length and
the unitary limit. In this chapter, we give a brief summary of the interactions we apply to calculate the
ground-state and excited-state energies of the trapped two-component fermion systems at unitarity.

In the unitary limit, the s-wave scattering length a0 diverges. The details of the interparticle interac-
tion at short distances cannot be resolved (see section 2.1). Therefore, the details of the interparticle
interaction are irrelevant and the interaction can be approximated by a simple contact interaction (a δ-
function). The contact interaction is singular and must be regularized [33, 91]. In order to perform this
regularization, a momentum or energy cutoff in relative coordinates is introduced and the strength V0
of the interaction is renormalized. Calculations with different interparticle potentials provide the same
results for the ground-state energy. The only requirement on the potential is that the s-wave scattering
length must be very large.

For our IT-NCSM calculations we need matrix elements of the interparticle interaction in single-particle
coordinates. However, the two-body matrix elements of the interparticle interaction are initially com-
puted in relative coordinates. Hence we have to transform the matrix elements of the interaction cal-
culated in relative coordinates to the single-particle coordinates, which is done by a Talmi-Moshinsky
transformation [60, 96]. We briefly introduce different two-body bases as well as the Talmi-Moshinsky
transformation and our implementation in section 3.2. The Hamiltonian and the wave-function of a two-
particle two-component ultra-cold Fermi system in a trap is introduced in section 3.3. Furthermore, we
consider the energy spectrum for two cold atoms in a HO trap interacting through a contact interaction
(a regularized δ-function) for different scattering lengths in section 3.4. We use the energy in the unitary
limit for calculation of various interactions. The cutoff used to regularize the δ-potential is described in
section 3.5.

We use for our calculations an interparticle interaction derived using an effective field theory (EFT)
approach (see section 3.6 and [77]), where the interaction is approximated by a δ function and its
derivatives, the ABF interaction (see section 3.7 and [1]), and a Gaussian-shaped interaction (see sec-
tion 3.8).

3.1 Two-Component Fermions in a Trap: Formalism

We consider a two-component gas of identical fermions in a trap, such as 6Li or 40K atoms in two
different hyperfine states. The system is trapped in a HO potential with HO length aHO. The details of
the interaction are irrelevant as long as the density is small (that is, the interparticle distance is much
larger than Rint).

The non-relativistic Schrödinger equation for an A fermion system

HA

�

�ψA
�

= E
�

�ψA
�

(3.1)

is solved by numerical diagonalization by using Slater determinants constructed from a discrete single-
particle basis. We choose the eigenstates of the three-dimensional harmonic oscillator as the single-
particle basis and this introduces the HO length aHO as a length scale.
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The Hamiltonian for a non-relativistic cold trapped two-component atomic system with A fermions of
mass m has the form:

HA =
A
∑

i=1

~pi
2

2m
+

A
∑

i=1

mω2

2
~ri

2+
A
∑

i< j

Vi j + . . . , (3.2)

where ω is the trap frequency, ~pi and ~ri corresponds to the single-particle momenta and coordinates
of i-th particle, Vi j is the two-body interaction and the dots denote the contributions of possible three-
and higher-body interactions. The dominant interactions are two-body interactions (see section 2.1). In
the available literature, only two-body interactions are being taken into account; to our best knowledge,
three-body interactions have not been used so far. In this thesis, we consider a set of different two-body
interactions:

• an effective field theory approach at next-to-leading order [91] (see chapter 3.6)

• the ABF interaction used by Alhassid et al. [1] (see chapter 3.7), and

• a Gaussian-shaped potential (see chapter 3.8).

The two-body matrix elements of the interaction are calculated in the relative coordinates. In the next
section we describe the different two-body basis states as well as the transformation between them.

3.2 Two-Body Basis State and Talmi Transformation

For calculations of the energy spectra of two-component fermionic systems, we use the Hamiltonian (3.2)
with any of the two-particle interactions discussed in this chapter. Since the matrix elements of the
interaction are in relative coordinates, they first have to be transformed to the single-particle coordinates.
To this end, we use the Talmi-Moshinsky transformation. The matrix elements are stored in an L-coupled
scheme. We describe in this section the different schemes to store the two-body matrix elements as well
the transformation between them.

3.2.1 Two-Body Basis State

In the following we introduce the two-body basis states in relative and center-of-mass coordinates as
well as the antisymmetrized L-coupled states in single-particle coordinates and define the notation we
use later on. We only consider a two-particle interaction, because of the diluteness of the system (see
section 2.1). The antisymmetrized two-body L-coupled states are given by

�

�

�

n1l1, n2l2
�

LML
�

⊗
�

� f1m f1 , f2m f2

�

, (3.3)

where either the space part or the hyperfine part is antisymmetric. In the above equation ni are the
single-particle harmonic-oscillator quantum numbers, li the single-particle orbital angular momenta and
mli their projection in single-particle coordinates ~ri, i = 1, 2. The li are coupled to the total orbital
angular momentum L and the quantum number ML is the corresponding projection. The

�

� fim fi

�

denote
the two different hyperfine states of the atomic Fermi gas (see section 2.3). We store the computed
matrix elements of the interaction in the L-coupled scheme and transform them on-the-fly into the m-
scheme used for our IT-NCSM calculations (see section 4.2). The transformation into the two-body basis
state in the m-scheme from the L-coupled scheme can be easily performed using the Clebsch-Gordan
coefficients.

The interparticle interaction is translationally invariant and hence must depend on relative coordinates
only and not on center-of-mass coordinates. Therefore, matrix elements of the interaction are calculated
in relative coordinates. In this representation, the size of the matrix becomes minimal. The two particles
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with single-particle coordinates ~r1, ~r2 have the relative coordinate ~r = 1/
p

2
�

~r1− ~r2
�

and the center-of-
mass coordinate ~rcm = 1/

p
2
�

~r1+ ~r2
�

. The two-body HO states in relative and center-of-mass coordinates
are

�

�

�

ncmlcm, nl
�

LML
�

⊗
�

� f1m f1 , f2m f2

�

, (3.4)

where ncm, lcm and mcm denote the radial quantum number, the orbital angular momentum and the
projection of the orbital angular momentum of the center of mass of the two-body HO basis state, re-
spectively. The radial quantum number, the orbital angular momentum and the projection of the orbital
angular momentum in the relative frame are denoted by n, l and ml .

The center-of-mass part is symmetric under particle exchange by definition, hence the relative part or
the part with additional quantum number defining the hyperfine state must be antisymmetric, because
the complete state has to be antisymmetric. Furthermore, the two-particle interaction does not affect the
center-of-mass part, hence we can omit the center-of-mass part and only consider the matrix elements in
the relative basis and the part with the hyperfine states

�

� fim fi

�

.
As already mentioned (see section 2.1) we consider particles at low energy and the scattering occurs

in the s-wave and hence l = 0. Therefore, the spatial part of the wave function



~r
�

�nlml
�

=



~r
�

�n00
�

= φn(~r). (3.5)

is also symmetric. Since for fermions the total wave function must be antisymmetric the part with the
hyperfine states

�

� fim fi

�

(see section 2.3) has to be antisymmetric
�

�n00
�

⊗
�

� f1m f1 , f2m f2

�

a . (3.6)

The subscript a shows that the state is antisymmetric with respect to particle exchange. States where both
interacting atoms belong to the same hyperfine state

�

� fim fi

�

are symmetric, hence the corresponding
matrix elements are zero. Therefore the only states with non-zero martix elements are those with

�

� f1m f1 , f2m f2

�

a =
1
p

2

�

� f1m f1 , f2m f2

�

−
�

� f2m f2 , f1m f1

�

(3.7)

as hyperfine part, where f1m1 6= f2m2. In the following we have to transform the symmetric spatial wave
function via a Talmi-Moshinsky transformation from the relative and center-of-mass coordinates into the
L-coupled scheme. For this reason we consider first the Harmonic Oscillator Brackets (HOBs).

3.2.2 Harmonic Oscillator Brackets

In the following we use HOBs which are defined by [47]
�

�

�

n1l1, n2l2
�

LML
�

=
∑

ncm lcm,nl

�

�

�

ncmlcm, nl
�

LML
�

¬




ncmlcm, nl
�

�n1l1, n2l2; L
�

¶

d
. (3.8)

This equation describes an orthogonal transformation in general (for arbitrary values of d), with the
HOB

¬




ncmlcm, nl
�

�n1l1, n2l2; L
�

¶

d
, where d is a nonnegative real number. The transformation of the

coordinates is written as follows:

�

~rcm
~r

�

=





Æ

d
1+d

Æ

1
1+d

Æ

1
1+d

−
Æ

d
1+d





�

~r1
~r2

�

. (3.9)

We have to transform from relative and center-of-mass coordinates to single-particle coordinates. d =
m1/m2 is the ratio of the masses of the two interacting particles and we consider only particles with equal
masses, that is, d = 1.
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The HOB conserve total energy on both sides of the bracket, i. e.,

e1+ e2 = ecm+ erel (3.10)

with ei = 2ni + li, ecm = 2ncm + lcm and erel = 2n+ l the principal oscillator quantum numbers of the
relative, center-of-mass or single-particle frame, respectively, so that only those HOBs that satisfy

2n1+ l1+ 2n2+ l2 = 2ncm+ lcm+ 2n+ l (3.11)

can be nonzero. The sum in eq. (3.8) is finite because of this conservation property since ncm, lcm and
n, l are nonnegative integers. Furthermore, the conservation of energy also implies the conservation of
parity in the wave function, i. e.,

(−1)l1+l2 = (−1)lcm+l (3.12)

The HOBs defined this way are real. Furthermore,

¬




n1l1, n2l2
�

�nl, ncmlcm; L
�

¶

d
=
¬




nl, ncmlcm

�

�n1l1, n2l2; L
�

¶

d
. (3.13)

In the remainder of this thesis the subscript d is omitted since d = 1.

3.2.3 Talmi-Moshinsky Transformation

Now we perform the transformation of relative two-body matrix elements of the interaction V into
L-coupled two-body matrix elements; the operator V represents an arbitrary two-body interaction. As
already mentioned (see section 3.2.1) the spatial part of the wave function in relative and center-of-mass
frame is symmetric and hence the part with hyperfine states

�

� f1m f1 , f2m f2

�

has to be antisymmetric. We
can also omit the hyperfine part (see section 2.3) for brevity without loss of universality, since the
interaction only acts on the spatial part of the wave function. Therefore, we only have to transform the
matrix elements


�

n1l1, n2l2
�

LML

�

�V
�

�

�

n′1l ′1, n′2l ′2
�

L′M ′L
�

. (3.14)

First we consider the bra state. Inserting the HOBs, we obtain:


�

n1l1, n2l2
�

LML

�

� =
∑

ncm lcm,nl

¬




n1l1, n2l2
�

�ncmlcm, nl; L
�

¶


�

ncmlcm, nl
�

LML

�

� (3.15)

Now we decouple the center-of-mass momentum from the relative momentum


�

ncmlcm, nl
�

LML

�

� =
∑

mlcm ml




lcmmcmlml

�

�LML
�


ncmlcmmcm, nlml

�

� , (3.16)

using the Clebsch-Gordan coefficients



lcmmcmlml

�

�LML
�

.
The ket state of the matrix element (3.14) can be transformed in an analogous way; we first decouple

the center-of-mass momentum from the relative momentum of the matrix elements (3.14) and obtain


�

ncmlcm, nl
�

LML

�

�V
�

�

�

n′cml ′cm, n′l ′
�

L′M ′L
�

= (3.17)
∑

mlcm ml

∑

m′lcm
m′l




lcmmlcm
lml

�

�LML
�


l ′cmm′cml ′m′l
�

�L′M ′L
�


ncmlcmmlcm
, nlml

�

�V
�

�n′cml ′cmm′lcm
, n′l ′m′l

�

.
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As already mentioned, the interaction between the particles does not act on the center-of-mass part;
therefore, only matrix elements with equal ncm, lcm and mlcm

are nonzero. Also, using the rotational
symmetry of the interaction we get:



ncmlcmmlcm
, nlml

�

�Vnn′
�

�n′cml ′cmm′lcm
, n′l ′m′l

�

= δncm,n′cm
δl,l′cm

δmlcm ,m′lcm
δl,l′δml ,m

′
l




nlml

�

�V
�

�n′l ′m′l
�

;

(3.18)
only the matrix elements satisfying this relation are nonzero. Therefore we can eliminate the sum over
n′cm, l ′cm, m′lcm

as well as l ′, m′l in eq. (3.17) and, because we consider only s-waves, we can also eliminate
the sum over l and ml .

Using the orthogonality relation
∑

mlcm ml




lcmmlcm
lml

�

�LML
�


lcmmlcm
lml

�

�L′M ′L
�

= δLL′δML M ′L
(3.19)

of the Clebsch-Gordan coefficients, we therefore obtain

�

n1l1, n2l2
�

LML

�

�V
�

�

�

n′1l ′1, n′2l ′2
�

LML
�

= (3.20)
∑

ncm lcm,nl

∑

n′

¬




n1l1, n2l2
�

�ncmlcm, nl; L
�

¶¬




ncmlcm, n′l
�

�n′1l ′1, n′2l ′2; L
�

¶




nlml

�

�V
�

�n′lml
�

.

As already mentioned we only consider the s-wave (i. e. l = l ′ = 0, ml = m′l = 0, see section 2.1) and
hence we only need to transform matrix elements with

Vn,n′ =



nlml

�

�V
�

�n′lml
�

=



n00
�

�V
�

�n′00
�

(3.21)

Using eq. (3.20), we can transform the matrix elements of the three different interactions, which have
been calculated in relative coordinates, into the L-coupled matrix elements that we need for our many-
body calculations (see chapter 4).

3.2.4 Implementation, Computational Strategy

We use the m-scheme as the basis for the many-body calculations because the calculation of many-body
matrix elements and antisymmetrization are trivial (see section 4.2). The simplicity of the m-scheme
is counterbalanced by the large dimension of the Hamilton matrix. For the many-body calculation in
the m-scheme, the two-body L-coupled matrix elements are decoupled during the calculation. Using
the coupled scheme for the storage of the Hamilton matrix reduces the amount of memory required
compared to storing m-scheme two-body matrix elements by up to three orders of magnitude, since
we can use rotational invariance (L = L′, see also section 3.2.3) in the L-coupled scheme. In the m-
scheme many matrix elements are redundant: a single coupled matrix element is combined with different
Clebsch-Gordan coefficients, yielding different m-scheme matrix elements. The m-scheme stores them
independently, but the physics is in the coupled matrix elements only; the rest is angular momentum
algebra. Some properties of the Hamiltonian can also be accommodated in the m-scheme: The Hamilton
operator does not change the parity of the many-body state, so that we can restrict the calculation to
the positive- or negative-parity part of the Hilbert space. Furthermore, we can take into account that the
hyperfine states of the interacting fermions do not change (see chapter 2.3) as a consequence the sum
over all m fi is conserved and that only particles with different m fi interact.

We use a cache-optimized storage scheme for the L-coupled matrix elements to facilitate a fast on-the-
fly decoupling, in which the matrix elements’ values are stored in an one-dimensional array. The position
of each L-coupled matrix element in that array is uniquely defined by all its quantum numbers. For this
reason we introduce an index a =

�

na, la
	

that collects the harmonic-oscillator radial quantum number
and orbital angular momentum of the single-particle. We do not use the hyperfine state for the index,
since we take into account that only those matrix elements are nonzero for which the hyperfine state of
the two particles are different.
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• Matrix elements are ordered by the indices a, b, a′, b′ of the single-particle orbitals in that order of
evaluation, that is, elements with a smaller value of a are located at a lower index than those with
a larger value of a, and the order of elements with identical a is determined by their value of b,
then a′, then b′.

• Matrix elements with identical indices a, b, a′, b′ are ordered by the coupled quantum number
L = L′.

We do not exploit antisymmetry constraints for matrix elements with identical single-particle orbitals in
order to keep a fixed stride. To evaluate a specific m-scheme matrix element, we compute the position
in the array defined by the orbital quantum numbers stored in a, b, a′, b′ go there and then iterate over
the contiguous segment of the array containing the matrix elements for different values of L and the
hyperfine state. This way the decoupling operation is very simple and highly cache-efficient because
matrix elements over which we loop are located close to each other in memory. A similar approach, the
so-called J T -coupled scheme, has been adopted in nuclear physics [73].

3.3 Two-Component Two-Particle Fermi System in a Trap

As already mentioned the gas is very dilute and we only need to consider a two-particle interaction;
hence we need to calculate only two-particle matrix elements with the Hamiltonian of a two-particle
system

H2 =
2
∑

i=1

~p2
i

2m
+

2
∑

i=1

mω2

2
~r2

i + V12. (3.22)

In field-free space or in the presence of a homogeneous field, the motion of particles is independent of
the center-of-mass position [54, ch. 1]. We consider particles in a trap, but as long as we use either the
Jacobi basis or the m-scheme with Nmax truncation, the center-of-mass system factorises exactly from the
relative system (see [77] and section 4.2). Therefore, we can separate the Hamiltonian into a center-
of-mass part Hcm and a relative part Hrel. The solution of the eigenvalue problem of the center-of-mass
Hamiltonian,

Hcm =
~p2

cm

2M
+

Mω2~r2
cm

2
, (3.23)

for a two-particle system, where ~pcm and~rcm corresponds to the center-of-mass momenta and coordinate
and M = 2m, is given by

Ecm =
�

2ncm+ lcm+ 3/2
�

ħhω, (3.24)

Therefore, we only have to solve the Schrödinger equation for the relative motion:

Hrel

�

�ψ
�

= E
�

�ψ
�

(3.25)

with the relative Hamiltonian

Hrel =
~p2

r

2µ
+
µω2~r2

2
+ V12, (3.26)

the relative momentum ~pr = 1/
p

2
�

~p1−~p2
�

and coordinate ~r = 1/
p

2
�

~r2−~r1
�

and reduced mass µ = m/2.
V12 represents the two-body interparticle interaction.

Now we switch to coordinate representation. The relative two-body wavefunction ψ(~r) can be ex-
pressed as a superposition of HO wave functions φnlml

(~r):

ψnlml
(~r) =

∞
∑

n,l=0

l
∑

ml=−l

cnlml
φnlml

(~r), (3.27)
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where the cnlml
are the unknown expansion coefficients, which we determine in the following. The HO

wave function φnlml
(~r) is the solution of the three-dimensional non-interacting Schrödinger equation:

H0φnlml
(~r) = Enlφnlml

(~r) (3.28)

with energy eigenvalues Enl = (2n+ l + 3/2)ħhω of the non-interacting Hamiltonian in coordinate repre-
sentation

H0 =−
ħh2

2µ
~∇2

r +
µω2~r2

2
. (3.29)

Due to the rotational symmetry, the three-dimensional Schrödinger equation (3.28) can be separated
into a radial part Rnl(r) depending only on the radial distance and the spherical harmonics Ylml

(Θ,ϕ).
Accordingly, the HO wave function is given as




~r
�

�nlml
�

= φnlml
(~r) = Rnl(r)Ylml

(Θ,ϕ). (3.30)

The radial part Rnl(r) can be written as [91]

Rnl(r) =

 

2

a3
HO,µΓ(l + 3/2)

!1/2
�

L(l+1/2)
n (0)

�−1/2

�

r

aHO,µ

�l

e−
r2/2a2

HO,µ



L(l+1/2)
n (

r2

a2
HO,µ

)



 , (3.31)

where the L(α)n (x) are the generalized Laguerre polynomials and aHO,µ =
p

ħh/µω is the relative coordinate
harmonic oscillator length with reduced mass µ.

In the present thesis, only the s-wave contributions to the two-body potential are taken into account.
Therefore, the states with angular momentum l 6= 0 are not influenced by the interaction and the eigen-
functions for l > 0 correspond to the HO wave functions φnlml

(~r) with the eigenvalues Enl . For calcu-
lation of the matrix elements of the interparticle interaction, we only need to consider the terms with
l = 0 and, consequently, ml = 0, and the wave function for l = 0 can be written as

ψ(r) =
∑

n

cnφn(r), (3.32)

where φn(r)≡ φn00(~r) = Rn0(r)Y00(Θ,ϕ), and

φn(r) = π
−3/4a−3/2

HO,µ

�

L(1/2)n (0)
�−1/2

e−
r2/2a2

HO,µ L(1/2)n (
r2

a2
HO,µ

). (3.33)

Furthermore, by setting r = 0 in eq. (3.33), we obtain at the origin [91]:

φn(0) = π
−3/4a−3/2

HO,µ

�

L(1/2)n (0)
�1/2

. (3.34)

We use from now on the notation φn(r) = φn00(~r) =



~r
�

�n00
�

=



~r
�

�n
�

.
We use these wave functions (eq. (3.33) and eq. (3.34)) for the calculation of the matrix elements of

the interaction.
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Figure 3.1.: Energy spectrum of two fermions in a trap for the l = 0 state calculated using a regularized
contact interaction in three dimensions as a function of the s-wave scattering length a0 in
units of aHO. Solid lines represent the energy as a function of a0. The dashed lines represent
the solution for the unitary limit where the s-wave scattering length goes to infinity.

3.4 Spectrum of a Two-Particle System in a Trap

We consider now a two-particle two-component fermion system in a trap. An analytical solution for a
two-particle system with a zero-range interaction in a HO trap is given by Busch et al. [17]. This solution
also gives the exact energy of the two-particle system in a trap in the unitary limit. Alhassid et al. [1]
and Stetcu et al. [91] used this two-particle energy for the calculation of the matrix elements of the
interaction. For the calculation of the energy of a two-particle systems, a δ-function can be used as an
parametrisation for a zero-range potential [17].

Using the regularized δ-function as potential, Busch et al.[17] obtained the following equation for the
ground-state energy of a two-particle system in a trap:

Γ
�

− E
2ħhω +

3
4

�

Γ
�

− E
2ħhω +

1
4

� =
aHOp
2a0

(3.35)

where aHO =
p

ħh/mω =
p

2aHO,µ is the HO length and a0 is the scattering length. Γ represents the
Gamma function. For a detailed derivation, see [17]. This transcendental equation links the energy to
the scattering length.

Figure 3.1 shows the spectrum of the two-particle system according to eq. (3.35). The left-hand side
of eq. (3.35) has poles at

Ei (0) =
�

2i+
3

2

�

ħhω (3.36)

and zeros at

Ei (∞) =
�

2i+
1

2

�

ħhω. (3.37)
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The right hand side vanishes if a0 →∞ and diverges for a0 → 0. Thus the zeros and poles of the left-
hand side are the energies for a0 →∞ and a0 → 0, respectively. The former are shown in fig. 3.1. We
use eq. (3.34) in order to determine the interaction parameters for the EFT and ABF interactions in the
unitary limit. In the following we call the energy calculated using eq. (3.34) Eex

i , the exact energy of
the i-th state of the two-particle system. Both interactions are used for calculations of the ground-state
(i = 0) and excited-state energies of fermionic systems.

3.5 Contact Interaction and Cutoff Regularisation

The short-range interaction between two particles in a two-component Fermi gas is often approximated
by a contact interaction [1, 17, 33] modeled as a δ potential. This interaction, however, is singular and
must be regularized [33, 91] to be used in a many-body method.

The δ potential can be regularized by limiting the relative HO energy and introducing a relative cutoff
as a maximum number of erel,max, which can be translated into a momentum scale [77]

Λ2;UV =

r

mn

�

erel,max+
3

2

�

ħhω=
ħh

aHO,µ

p

2erel,max+ 3. (3.38)

With erel,max, the number of quanta of the highest energy of the two-body relative coordinate wave func-
tion, we can introduce a natural cutoff in the HO basis. Since only particles with l = 0 are affected by the
interaction, erel,max = 2nmax holds (see section 2.1 for more details). Therefore, the wavefunctions (3.32)
can be written as

ψn(r) =
nmax
∑

n

cnφn(r), (3.39)

where nmax is the maximum radial quantum number. We omit in eq. (3.39) the labels l and ml , since
we have only the s-wave interaction with l = 0 and ml = 0. Only the lowest erel,max+ 1 shells of the HO
basis with l = 0 are being included in the calculation of the matrix elements, all other interaction matrix
elements with erel > erel,max are set to zero.

To show the need for the renormalization of the δ potential V (~r) = V0δ
(3)(~r), we start with the

Schrödinger equation (3.25) for the wave function of the two-particle systemψ(~r) and the relative coor-
dinate Hamiltonian (3.26). We write from here on δ(3)(~r) = δ(~r) for the δ-function in three dimensions
and δ(r) in one dimension. After projecting onto the state φn′(r) eq. (3.34), we arrive at

(E − En′)cn′ = V0

∞
∑

n=0

cn

∫

d3rφ∗n′(r)δ(~r)φn(r) = V0φn′(0)
∞
∑

n=0

cnφn(0). (3.40)

We use here and in the following that the eigenvalue functions of the HO are real and, therefore, φ∗
n′
(r) =

φn′(r). After rearranging eq. (3.40), we get for the expansion coefficients:

cn′ =
φn′(0)A
E − En′

(3.41)

A= V0

∑

n cnφn(0) is a constant for all n′, depending only on the energy and V0 because it basically is the
solution of the Schrödinger equation. Inserting this into eq. (3.40), we arrive at:

1

V0
=
∞
∑

n=0

φ2
n(0)

E − En
= π−3/4a−3

HO,µ

∞
∑

n=0

L(1/2)n (0)
E − En

(3.42)

We used here eq. (3.34) for φ2
n(0).
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The strength of the interaction can be renormalized so that the ground-state energy of the truncated
Hamiltonian equals the energy of the two-body system in the unitary limit Eex

0 =
1
2

given by eq. (3.37)
and therefore

1

V0
= π−3/4a−3

HO,µ(−2ħhω)−1
∞
∑

n=0

L(1/2)n (0)
n+ 1

(3.43)

We now truncate the sum at finite nmax to obtain a meaningful expression and then consider the behavior
for nmax → ∞. Using identities for sums involving the generalized Laguerre polynomials at the origin
(see eq. (B.21) also used in appendix B) we arrive for a given nmax at:

1

V (nmax)
0

=
2

π2a3
HO,µħhω

Γ
�

nmax+
3
2

�

Γ[nmax+ 1]
(3.44)

Using Stirling’s formula:
Γ[ j+ h]

jhΓ[ j]
= 1+

h(h− 1)
2 j

+O
�

j−2
�

(3.45)

we can see that for large nmax the expression (3.44) diverges with n1/2
max. Therefore, for nmax →∞, the

strength V0 of the δ potential goes to zero, showing the need for renormalisation.
Because of the renormalization, the calculated energy depends not only on the harmonic oscillator

frequency ω but also on nmax. In the limit where nmax goes to infinity, the results no longer depend on
nmax and converge to the exact values. For sufficiently large values of nmax, the truncation error of the
calculation becomes small. For A = 3 particles it was shown [1, 77, 89] that the ground-state energy
converges to the exact value calculated by Werner et al. [102] when nmax goes to infinity.

However, convergence of calculated results with a increasing nmax is slow [1, 89]. To improve the
convergence, higher orders (next-to-leading order (NLO) and next-to-next-to leading order (N2LO)) of
the interaction were included perturbatively in the framework of the effective field theory [77, 91].
Furthermore, the ABF interaction was introduced by Alhassid, Bertsch, and Fang [1]. The latter is
no longer a contact interaction, but this interaction also is truncated by a regularization parameter in
relative frame.

3.6 Effective Field Theory Approach

As already mentioned in section 2.1, in the unitary limit the particle energy is close to the scattering
threshold of zero energy [15]. The behavior of the interaction for large distances r � Rint is known,
but the behavior at short distances is not known sufficiently well to calculate the low-energy observables
[15]. Effective field theory (EFT) is an approach to describe the low-energy behavior of a physical
system even in cases where the underlying fundamental theory is unknown or not explicitly solvable. It
is a general approach to fundamental theories which summarizes existing phenomenological knowledge
[8].

The relevant physics at the considered energy scale can be approximated by a set of appropriate pa-
rameters relevant for the energy scale of interest only. Using a single description of the physics in the
entire parameter space may not be appropriate: The low-energy dynamics are independent of the details
of the high-energy interaction, and consequently the latter is irrelevant for describing the former; it is
not necessary to know every high-energy detail in order to obtain a useful description of the physical
phenomena of interest. This is called scale separation and greatly reduces the number of parameters
involved, as the effects coming from the other scales can be parametrized into the theory with param-
eters calculated from an underlying theory or fitted to experiment [32, 64]. This approximation can
be improved through corrections, which take the influence of the neglected parameters into account as
small perturbations [64].
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EFTs yields good approximations in cases where calculations using the fundamental theory would be
too time-consuming or if the underlying theory is not even known. EFTs can be used to describe the
low energy physics using an effective Lagrangian which contains only a few relevant degrees of freedom
and ignores additional degrees of freedom which are only important at higher energies. EFTs have been
used for calculations on weakly-interacting Bose [2, 15] and Fermi gases [77, 91]. EFTs are also used,
for instance, in quantum electrodynamics (QED) and quantum chromodynamics (QCD) and also were
applied in nuclear structure physics [57], first by Weinberg [101]. Further applications of EFTs exist in
elementary particle physics (Standard Model calculations) as well as in condensed matter physics (for
example, Landau theory of Fermi liquids, phonons, and spin waves, see [15] and the references therein).
We use an EFT to construct an interaction for the calculation of the ground-state and excited-state energy
of a two-component Fermi system in a trap at unitarity.

When calculating binding energies between nucleons, isospin has to be considered, unlike in ultra-cold
unitary gases. Other than that, an EFT for describing atomic systems [15] is formally indistinguishable
from pionless EFT describing nucleon systems [8], even though the underlying theories are very different
[91]. For trapped Fermi gases, the effective field theory approach to two-particle short-range interactions
was introduced by Stetcu et al. [91] for a two-particle system. They added higher-order terms (NLO and
N2LO) on top of the contact interaction, at LO, which improved convergence of the energy with the many-
body cutoff Nmax (see chapter 4) and the momentum cutoff Λ of the interaction (see section 3.5). The
higher orders (NLO, N2LO) of an EFT lead to corrections of the LO results and are treated in perturbation
theory. The corrections become smaller as Λ increases (see chapter 5 and [1, 77]).

The ground-state and excited-state energies for a three- and four-particle system were calculated by
Rotureau et al. [77] using EFT interaction introduced in [91] up to N2LO. For a three-particle system they
reached a better convergence with increasing Nmax to the exact value calculated by Werner et al. [102] by
adding NLO and N2LO terms. We use this approach for our benchmark calculations of up to 10 fermions
(see section 5). In the following, we describe the approach introduced by Stetcu et al. [91].

As already mentioned in section 2.1, the fermions have low energy, all interactions are short-ranged,
and can be approximated by a contact interaction [38, p. 5]. The idea behind an EFT for particles at
low energy is to replace the two-particle potential V (r) by an effective potential Veff(r, C0), which is
identical to V (r) at large distances for r > Rint, where Rint is the range of the interaction. In order to
describe the interaction at short distances, one introduces an additional tuning parameter C0, which is
chosen such that a given observable is reproduced. The contact interaction is ill-defined and, therefore,
has to be regularized by introducing an interaction cutoff in relative space (see section 3.5). This cutoff
introduces an error that can be corrected either by letting the cutoff go to infinity, or by taking higher
orders into account. For three particles, the ground-state energy of the systems goes to the exact value
[102] for very large cutoffs [77]. For large particle numbers, the calculations become very involved and
the corrections can be performed by introducing higher-order terms (NLO, N2LO; see also [77] for three
and four particles). Furthermore, the potential is only exact in the unitary limit for a0→∞; away from
unitarity, at finite scattering length, the effective range of the interaction has to be considered as well
[77]. However, in this thesis, we are only interested in the results at unitarity.

Observables calculated with the effective potential Veff(~r, C0) contain scale-dependent errors. In order
to reduce these errors and improve convergence, additional information can be introduced in the form
of an additional parameter C2. The effective potential Veff(r, C0, C2) now depends on two parameters, C0
and C2, both of which can be tuned to reproduce given observables. The use of further parameters Ci im-
proves the accuracy without any information about the short-distance potential. Therefore, the effective
short-range two-body potential depends on a set of short-distance tuning parameters C = (C0, C2, . . .),
which are called low energy constants (LEC). In our case, the observable is the ground-state energy of
the trapped two-body system in the unitary limit. To reproduce this expansion with an EFT, one considers
a general Lagrangian for a non-relativistic fermion field that is invariant under Galilean, parity and time
reversal transformations [15, 52].
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The short-range two-body interaction V can be expanded as a Taylor series in momentum space:

V
�

~p′,~p
�

= C0+ C2

�

~p′2+ ~p2
�

+ C4

�

~p′2+ ~p2
�2
+ · · · , (3.46)

where ~p and ~p′ are the initial and final relative momenta, respectively, and C0, C2 and C4 are parameters
[52, 63, 91]. Due to the Galilean invariance, only even powers of the momenta appear on the right-hand
side of eq. (3.46). Higher powers of the momenta are being neglected. This approach is valid for low
momenta only; in these cases, the details of the interaction cannot be resolved. Only s-wave scattering
is taken into account.

The Fourier transformation of the effective potential in momentum space, eq. (3.46), into coordinate
space is given in appendix B.1 and yields the two-body potential in coordinate space

V
�

~r,~r ′
�

= C0δ(~r
′)δ(~r)− C2{[~∇ ′2δ(~r ′)]δ(~r) +δ(~r ′)[~∇2δ(~r)]}

+ C4{[~∇ ′4δ(~r ′)]δ(~r) + [~∇ ′2δ(~r ′)][~∇2δ(~r)] +δ(~r ′)[~∇4δ(~r)]}+ . . . (3.47)

Therefore, the interaction can be approximated by δ-functions and their derivatives [52, 63].
Furthermore, the interparticle potential is local and finite and, therefore, only depends on the momen-

tum transfer ~p− ~p′ or also V
�

~r,~r ′
�

= V (~r)δ
�

~r −~r ′
�

. Using this we get the potential

V
�

~r,~r ′
�

= V (~r)δ
�

~r −~r ′
�

=
�

C0δ(~r) + C (1)2

¦�

~∇2δ(~r)
�

+ 2
�

~∇δ(~r)
�

~∇+δ(~r)~∇2
©

�

δ(~r −~r ′) (3.48)

The derivation is given in the appendix B.1. From now we use the coordinate representation for the EFT
section.

The leading order (LO), the NLO and N2LO support only the s-wave [91]. In this thesis, we use the
LO and NLO and hence only need to consider the contribution of s-waves to the two-body potential.
As previously explained (see section 3.1), we use a HO basis with relative wave functions ψnlml

(~r)
and energies Enl =

�

2n+ l + 3
2

�

ħhω. For the calculation of matrix elements we use again the interaction
cutoff (3.38) by taking into account only the shells (in relative coordinates) up to a given erel,max = 2nmax
and dropping all other shells from the calculation.

The parameters Ci will be derived in the following using the perturbation theory approach (see ap-
pendix A for details). The Hamiltonian in relative coordinates, Hrel, for two particles trapped in a
harmonic oscillator potential of frequency ω is given by eq. (3.26).

The relative Hamiltonian can be decomposed into an unperturbed component H(0), which can be
solved exactly, and the perturbation W . The Hamiltonian then takes the form

Hrel = H(0)+W. (3.49)

The leading-order (LO) part is the unperturbed part and the eigenvalue problem at LO is calculated
exactly. The LO or the unperturbed Hamiltonian reads:

H(0) =−
ħh2

2µ
∇2

r +
1

2
µω2r2+ C (0)0 δ (~r) (3.50)

The LO wave function is, therefore, the solution of the Schrödingier equation:

H(0)ψ(0) (~r) = E(0)ψ(0) (~r) (3.51)

The higher-order terms — containing derivatives of the contact interaction — are treated using per-
turbation theory. The perturbation W contains the corrections

W= V(1)+ V(2)+ · · · (3.52)
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where V(1) are the NLO correction, the V(2) the N2LO and · · · denotes higher orders. We only use the NLO
correction to the potential. The corresponding relative wave function can be expressed via a perturbation
series:




~r
�

�ψ
�

=ψ (~r) =ψ(0) (~r) +ψ(1) (~r) +ψ(2) (~r) + · · · (3.53)

This is also true for the energy

E = E(0)+ E(1)+ E(2)+ · · · , (3.54)

where the superscript (n) denotes the order of the different terms in perturbation theory. The first-order
corrections for the wave function ψ(1) (~r) and to the energy E(1) can be calculated using first-order
perturbation theory. For the corrections for ψ(2) (~r) and E(2), we also need second-order corrections, and
so on [77, 91]. In the following, the superscripts (n) are also added to the parameters C in eq. (3.48),
which are split among different orders, for example C0 = C (0)0 +C (1)0 +C (2)0 + · · · and C2 = C (1)2 +C (2)2 + · · ·
etc. C (1)0 is the correction to the C (0)0 at NLO. We explain this in more detail in section 3.6.2.

For the calculation we need to determine the matrix elements of the interaction potential V (~r ′,~r) =
V (r)δ

�

~r −~r ′
�

, eq. (3.48):

Vn,n′ =



n
�

�~r ′
�


~r ′
�

�V
�

�~r
�


~r
�

�n′
�

=

∫∫

d3r ′d3rφn(r
′)V (~r ′,~r)φn′(r)

=

∫

d3rφn(r)V (r)φn′(r). (3.55)

with l = ml = 0 since we have only s-wave scattering.
We derive each term separately (LO and NLO). The ground-state and excited-state energies are being

obtained by diagonalizing the Hamiltonian (see chapter 4). Therefore we calculate the matrix element
of the relative Hamiltonian by using an interaction cutoff nmax (see section 3.5). We transform the
Hamiltonian from relative and center-of-mass coordinates into the laboratory frame using the Talmi-
Moshinsky transformation (see section 3.2.3). The relative matrix elements are being calculated for the
interaction as follows:

V (0)
n,n′
=



n
�

�~r ′
�


~r ′
�

�V (0)
�

�~r
�


~r
�

�n′
�

=

∫

d3rφn(r)C
(0)
0 δ(~r)φn′(r) = C (0)0 φn(0)φn′(0) (3.56)

We show the derivation of the LO constant C (0)0 in the next section.
The interaction cutoff in relative space nmax leads to a dependence of the calculated many-particle

energy on the cutoff (see section 3.5). In the limit nmax → ∞, the error in the calculation vanishes as
shown in [77] for a three-particle system for large value of nmax. For larger systems, the calculation
becomes very involved. The truncation leads to energy-dependent errors, since a part of the model
space (with erel = 2n+ l > erel,max) is being neglected. This error we try to correct using higher-order
Hamiltonians (NLO, N2LO, . . . ) [91].

The NLO corrections are considered as first-order perturbations of the LO wave function



~r
�

�ψ(0)
�

=
ψ(0) (~r) [91]. They introduce additional parameters, which we denote as C (1)0 and C (1)2 . The NLO
correction to the potential reads:

V (1) = C (1)0 δ(~r)− C (1)2

¦

[∇2δ(~r)] + 2[~∇δ(~r)]~∇+ 2δ(~r)∇2
©

, (3.57)

where C (1)0 is the correction to the C (0)0 at NLO.
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The matrix elements of the NLO of the two-particle interaction for two-component Fermi gases can be
written as:

V (1)
n,n′
=



n
�

�~r ′
�


~r ′
�

�V (1)
�

�~r
�


~r
�

�n′
�

=

∫

d3rφn(r)V
(1)(~r)φn′(r)

=

∫

d3rφn(r)
�

C (1)0 δ(~r)− C (1)2

¦

[∇2δ(~r)] + 2[~∇δ(~r)]~∇+ 2δ(~r)∇2
©

�

φn′(r) (3.58)

Now we can use the integration by parts (see appendix B.1 eq. (B.16)) and get for the matrix elements
at NLO:

V (1)
n,n′
= C (1)0

∫

d3rφn(r)δ(~r)φn′(r)

− C (1)2

∫

d3rδ(~r)
¦

~∇2 �φn(r)φn′(r)
�

− 2~∇
�

φn(r)~∇φn′(r)
�

+ 2φn(r)~∇2φn′(r)
©

= C (1)0 φn(0)φn′(0)

− C (1)2

∫

d3rδ(~r)
¦�

~∇2φn(r)
�

φn′(r) +φn(r)
�

~∇2φn′(r)
�©

= C (1)0 φn(0)φn′(0)− C (1)2

n

�

~∇2φn(r)
�

r=0
φn′(0) +φn(0)

�

~∇2φn′(r)
�

r=0

o

. (3.59)

The detailed derivation of V (1)
n,n′

is similar to the derivation of the NLO contribution to the energy (see
appendix B.3 for more details). For the calculation of the matrix elements we have to determine the
coupling constants. Reference [91] shows this for LO, NLO and NNLO. We show the calculation of the
coupling constants in the LO, C (0)0 , and the NLO corrections C (1)0 and C (1)2 , in the next sections.

3.6.1 The Leading-Order Constant

In this section we derive the C (0)0 constant for the LO for a two-component Fermi gas. We start with the
Schrödinger equation (3.51) and insert the wave function ψ(~r) in relative coordinates, eq. (3.33) into
it. Since the interaction is a pure contact interaction it acts only on the s-wave (the matrix elements for
l = 0). The Schrödinger equation (3.51) is solved by projection onto the HO basis state




n
�

� :




n
�

�

�

H(0)− E(0)
� �

�ψ(0)
�

=

∫

d3r



n
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�~r
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En′ + C (0)0 δ (~r)− E(0)
�

cn′
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�n′
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=
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En′ − E(0)
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c(0)
n′



n
�

�n′
�

+C (0)0 φn(0)ψ
(0)(0)

=−
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∑

n′=0
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E(0)− En′
�

c(0)
n′
δn,n′ +κ

(0)φ(0)n (0)

=−
�

E(0)− En

�

c(0)n +κ
(0)φ(0)n (0)

= 0. (3.60)

In the third step, we set κ(0) = C (0)0 ψ
(0)(0). κ(0) is a combination of unknown coefficients. This leads to

the expansion coefficient in LO:

c(0)n = κ
(0) φn(0)

E(0)− En
(3.61)
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with En = ħhω(2n+ 3/2). Inserting the expansion coefficient from eq. (3.61) into eq. (3.39) yields the LO
eigenfunction of the relative Hamiltonian, eq. (3.26):

ψ(0)(r) =
nmax
∑

n=0

c(0)n φn(r)

=
nmax
∑

n=0

κ(0)
φn(0)

E(0)− En
φn(r)

=
κ(0)

2π3/2a3
HO,µħhω

e−
r2/2a2

HO,µ

nmax
∑

n=0

L(1/2)n ( r2

a2
HO,µ
)

E(0)

(2ħhω) − (n+ 3/4)
. (3.62)

This equation must hold for any r, even r = 0; this is the so-called consistency condition. In eq. (3.62),
we set r = 0 and simultaneously insert the expression for κ(0), and obtain

ψ
(0)
0 (r = 0) =

C (0)0 ψ
(0)(0)

2π3/2a3
HO,µħhω

nmax
∑

n=0

L(1/2)n (0)
E(0)

(2ħhω) − (n+ 3/4)
. (3.63)

Solving this equation yields the LO coefficient C (0)0 [91], where identities for sums involving the general-
ized Laguerre polynomials at the origin can be used. We show a detailed deduction of the transformation
steps in appendix B.2. For LO coefficient C (0)0 can be written as

1

C (0)0

=−
2

π2a3
HO,µħhω


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�
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4
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1
4
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


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(3.64)

with

R

�

m,
E(0)

2

�

=
1− 2E(0)

8(m+ 1)
�

m+ 7
4
− E(0)

2

� · (3.65)
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2
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4
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2
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4
−

E(0)

2
; 1

�

,

where 3F2 is the generalized hypergeometric function.
Equation (3.64) implies that the coupling constant C (0)0 depends on ω as well as on nmax. The LO

coupling constant C (0)0 can be calculated by fixing it to reproduce, for example, one of the energies of
the spectrum from the two-particle system, in our case it is fixed to reproduce the ground-state energy
of the two-body system system calculated using the equation (3.35) [91]

E(0)0 = Eex
0 . (3.66)

In the unitary limit we choose the coupling constant such that the overall calculation reproduces the
exact relative two-body energy calculated by Busch in the unitary limit (see chapter 3.4) in the chosen
model space [91]

E(0)0 = Eex
0 (∞) =

ħhω
2

(3.67)
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(see equations (3.35) and (3.37)). We can further simplify the relation for the coefficient C (0)0 . Therefore,
C (0)0

�

nmax,ω
�

is defined by

C (0)0 (nmax,ω) =−
π2a3

HO,µħhω

2

Γ
�

nmax+ 1
�

Γ
�

nmax+
3
2

� , (3.68)

taking into account that

Γ

�

1

4
−

Eex
0

2ħhω

�

= Γ
�

1

4
−

1

4
− n
�

= Γ(−n)→∞ for n= 0,1, 2 . . . (3.69)

Equation (3.69) can be used as long as the range of the interaction Rint is small compared to the
scattering length a0. Whereas the ground-state energy for a trapped two-body system in the unitary limit
is fixed to E0(ω) = Eex

0 , the excited states in LO for a two particle system have to be calculated using
eq. (3.68) like in [77]. Inserting eq. (3.69) into eq. (3.56) yields the matrix elements of the two-particle
interaction in the unitary limit of two-component Fermi gas at the LO:

Vn,n′ =−
π2a3

HO,µħhω

2

Γ
�

nmax+ 1
�

Γ
�

nmax+
3
2

�φn (0)φn′ (0) (3.70)

We calculate these matrix elements up to a cutoff nmax = erel,max/2 and transform them into the coupled
scheme (see section 3.2). With these matrix elements we calculate the ground-state and excited-state
energies using the importance-truncated NCSM (see section 4.4.1 for more details).

The ground-state energy in LO for a two particle system E(0)0 is fixed; the energies of the excited
states in LO in the spectrum E(0)i≥1 depend on ω as well as on the two-body cutoff nmax and must satisfy
equation (3.64). For nmax→∞, we expect the energies of the excited states to converge to finite values
Ei≥1 (∞,ω) (see section 3.5). The calculated energy contains errors because of the cutoff. To reduce
these errors, we use the NLO and need to determine again the next coupling constants C (1)2 and C (1)0 .
The calculation of the observables at LO is performed exactly, that is, the observables are obtained by
diagonalisation of the Hamiltonian using the IT-NCSM. By contrast, the NLO and higher-order corrections
are treated in many-body perturbation theory.

3.6.2 The Next-to-Leading Order Constants

We determine in this section the coupling constants C (1)0 and C (1)2 of the NLO, which can be chosen
such that a second energy level is fixed, in the same way as C (0)0 . We fixed the ground-state energy
in LO to calculate C (0)0 . Since the NLO term also corrects the ground state energy, the leading-order
coupling constant must be corrected as well. Hence not one, but two new variables are being introduced
by taking the NLO corrections into account. In order to separate the corrections, the corrected leading-
order coupling constant can be separated into the unchanged parameter C (0)0 and its NLO correction C (1)0 .
The first (LO) part C (0)0 remains unchanged, while the NLO part C (1)0 is considered as the perturbation.
We denote the new parameters as C (1)0 and C (1)2 . For higher orders (N2LO etc.), additional correction
terms must be added.

Additionally to fixing the C (0)0 so that the ground-state energy of the two-body spectrum Eex
0 in LO is

reproduced we fix at NLO the two NLO coupling constants so that the calculation reproduce also the
first-excited state energy Eex

1 of the spectrum of the two-body system. Fixing two energy levels in the
two-body spectrum yields two equations, which can be solved for the unknown coupling constants C (1)0

and C (1)2 in each model space:

E(1)i (nmax,ω) = Eex
i (ω)− E(0)i (nmax,ω), i = 0, 1. (3.71)

34 3. Interactions



where Eex
0 and Eex

1 are the exact ground and first excited state energies of the two-body system calculated
using the eq. (3.35). E(0)0 and E(0)1 are the ground and first excited state energies of the two-body system
calculated using the C (0)0 constant at LO, and E(1)0 and E(1)1 their corrections at NLO calculated using the
NLO constants.

In the present thesis, the energy E(0)0 is always set to the exact ground-state energy Eex
0 (ω) calculated

using eq. (3.35), and therefore the correction term E(1)0 vanishes. Away from the unitary limit one has
also to account for the effective range of the interaction and, therefore, the correction to the ground
state energy is in general nonzero [91]. The interaction cutoff leads to errors that will be corrected in
NLO. Therefore, the correction to the first excited state energy of the two-particle system E(1)1 is non zero
[91].

The first-order energy correction can be calculated by using first-order perturbation theory. For this
reason we insert the NLO potential equation (3.57) into the first-order correction eq. (A.9) and project
it onto the state

�

�ψ(0)
�

[91]. We show the detailed derivation of the first-order energy correction in
appendix B.3:
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
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(3.72)

with κ(0) = C (0)0 ψ
(0)(0).

For the calculation of both parameters we need also to determine the parameter κ(0). κ(0) can be
derived by using the orthogonality of the wave function ψ(0), and is given by:

h

κ(0)
�

E(0)i

�i−2
=

nmax
∑

n

φ2
n(0)

(E(0)i − En)2
, (3.73)

(see appendix B.4). We use the notation κ(0)
�

E(0)i

�

since the parameter κ(0) depends on the energy.

We can get the NLO coefficients C (1)0 and C (1)2 by inserting the first-order energy correction into
eq. (3.71) [91]. The equations for the NLO coefficients read (see appendix B.4)
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(3.74)

and
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. (3.75)

Taking into account that E(1)0 = 0, one obtains the relation for the coupling constant C (1)2 and C (1)0 in
the unitary limit

4µC (1)2
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�2 =
E(1)1 /

h

κ(0)
�
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�i2

E(0)1 − E(0)0

. (3.76)

and

C (1)0 ħh
2

4µC (1)2

=
4C (0)0

3π2a3
HO,µ

Γ
�

nmax+
5
2

�

Γ
�

nmax+ 1
� − E(0)0 (3.77)

With these two equations we obtain the constants C (1)0 and C (1)2 in order to solve the NLO correction.
The calculated energies E depend on nmax because of the truncation (see section 3.5). nmax is an

arbitrarily chosen parameter and therefore this dependence should be as weak as possible. It is not
possible to ensure that the dependence on nmax is weak in general. By taking the limit as nmax goes to
infinity, one recovers results corresponding to the original potential [63].
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3.7 The Alhassid-Bertsch-Fang Interaction

Alhassid et al.[1] introduced an effective interaction, the ABF interaction for trapped fermions in the
unitary limit and compared it to a renormalized contact interaction. The ABF interaction was generalized
by Gilbreth and Alhassid [33] for arbitrary scattering lengths. The ABF interaction is separable and no
longer a contact interaction. For three-particle Fermi systems in a trap at unitarity, the ABF interaction
shows faster convergence (with increasing maximum number of shells erel,max = 2nmax) towards the exact
energy calculated by Werner et al. [102] than a regularized contact interaction [1]. The latter can be
considered as leading-order EFT, while the former is not a contact interaction and has some connection
with Suzuki’s unitary regularization [1].

We use the ABF interaction for our benchmark calculation of the ground-state and excited-state en-
ergies for systems comprising A ≥ 4 particles. Results of calculations of the energy of three- and four-
particle systems are given by Alhassid et al. [1]. Alhassid et al. constructed an effective interaction, in
order to improve a renormalized contact interaction with a regularization parameter q = nmax with the
only requirement on the model space Hamiltonian that it converges for nmax → ∞ to the unitary limit
[1]. It is important to keep the separable form of the interaction, since this form permits an algebraic
diagonalization of the Hamiltonian in two-body space [1].

The ABF interaction also affects only the s-wave [1]. A general separable s-wave interaction has the
form




nlml

�

�V (q)eff

�

�n′lml
�

=−ħhω f ∗(q)n f (q)
n′
δl,0δm,0 (3.78)

for n, n′ ≤ q [33]. The matrix element of the relative Hamiltonian with the ABF interaction reads

Hn,n′ =



n00
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�n′00
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HO
n −ħhω f ∗(q)n f (q)

n′
, (3.79)

since the particles interact only in the s-wave with l = l ′ = 0 and ml = m′l = 0. The coefficient f (q)n
has been determined by Gilbreth and Alhassid [33]. Their derivation is the following: For Eex

0 < Eex
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in which case the i-th eigenvector b(i) has components
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(3.81)

with
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A solution for those equations which satisfies eq. (3.80) exists if and only if Eex
0 < EHO

0 < Eex
1 < · · ·< EHO

q .
A detailed proof is given in the paper by Gilbreth and Alhassid [33].

For the l = 0 partial wave the eigenvalue problem of relative Hamiltonian is given by the solution of
the transcendental equation (3.35) (see section 3.4 and [17]). In the unitary limit, the exact energy for
the trapped two-body system Eex

i is given by eq. (3.37). Inserting this into eq. (3.80) leads to

�

f (q)n

�2
=

∏

k (2(n− k) + 1)
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k 6=n 2 (n− k)
. (3.83)
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This can be rewritten as
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��
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Alhassid et al. used this interaction to calculate three- and four-particle two-component fermion systems
in a trap in the unitary limit [1]. In order to obtain the exact many-body energy, Bertsch et al. first
calculated the energy in the laboratory frame for a fixed cutoff q and then estimated the energy for
q→∞. For a three-particle system, they showed that the ABF interaction leads to a better convergence
to the exact energy [102] than a conventional contact interaction.

We calculate the relative matrix elements for a given q = nmax and then transform them into the
laboratory frame using the Talmi-Moshinsky transformation (see section 3.2.3). In chapter 5 we compare
the resulting ground-state and excited-state energy of two-component fermion systems at unitarity (A≥
4) with the results obtained with the interaction derived using the EFT approach by Stetcu et al. [91]
introduced in section 3.6. The benchmark calculations with both interactions are compared with results
from Monte Carlo calculations obtained by other groups.

3.8 Gaussian-shaped Potential

In addition to an EFT and ABF interactions, we also study a purely attractive potential of a simple form,
a Gaussian-shaped potential, in the present thesis. A purely attracting Gaussian two-body potential has
the form

V (~r) =−V0 exp

�

−
~r2

2r2
0

�

, (3.85)

where V0 > 0 is the depth and r0 the width of the Gaussian. r0 is fixed and is chosen much smaller than
the harmonic oscillator length aHO, since we consider dilute systems at low energy (see section 2.1). V0
is tuned to produce the desired two-body s-wave scattering length a0; in our case, we tune V0 such that
a0 becomes very large. Calculations for different small values of r0 have been performed by Blume et al.
[12] and von Stecher et al. [88] and extrapolated for r0→ 0 in order to estimate the dependence of the
results on r0.

We can determine V0 from eq. (2.9); ignoring the HO potential and considering only l = 0, eq. (2.9)
becomes

�

−
ħh2

2µ

d2

dr2 + V (r)

�

un0(r)
r
= E

un0(r)
r

. (3.86)

Thereby, we use the E = 0 solution, to extract the scattering length. As described in section 2.1, the
scattering length is the point of the r-axis intersected by the wave function (as shown in fig. 2.2). We
determine V0 such that the wave function un0(r) intersects the r-axis at the largest possible value of r
or not at all, with E = 0. With this value of V0, we then calculate the matrix element in the relative
basis, transform them into single-particle coordinates using the Talmi-Moshinsky transformation (see
section 3.2.3), and calculate the energies using the NCSM or IT-NCSM (see chapter 4).

3.9 Summary

We use the interactions introduced in this chapter for the calculation of the matrix elements in the relative
frame for a ultra-cold two-component fermion system at unitarity. The contact interaction (usually, a δ
function) is ill-defined and has to be regularized. This can be done by using an interaction cutoff (see
section 3.5) in the relative frame of the interaction. We use the HO basis, which implies a natural
cutoff by using only shells with erel ≤ erel,max = 2nmax. The cutoff introduces errors which can be
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computationally eliminated by extrapolating the results for nmax→∞. However, the regularized contact
interactions show slow convergence with the regularization parameter. To improve convergence, the ABF
interaction (see section 3.7) as well as higher orders (NLO and N2LO) in the framework of an EFT (see
section 3.6) were introduced. The advantage of these approaches compared to the contact interaction is
that the convergence of the energy with regularization parameter nmax as well as with many-body cutoff
is improved even for smaller values of Nmax [1], that is, identical results can be obtained by evaluating
smaller model spaces or more precise results can be obtained with a given computational effort. We
also use a purely attractive potential of a simple form, a Gaussian-shaped potential (see section 3.8), for
our calculation, used to model the interaction for a many-body calculation using correlated Gaussians
and a Fixed-Node Diffusion Monte Carlo method [11, 12, 88]. We perform benchmark calculations and
compare our results to those published by other groups.
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4 Many-Body Methods
In this chapter we present the numerical methods used for the calculation of the energy spectra of
ultra-cold fermionic gases. Configuration Interaction methods in general and the No-Core Shell Model
(NCSM) as a special case of the CI are used in molecular [81], atomic [46] and nuclear physics [20, 61].
However, CI and NCSM calculations become computationally intractable with larger model spaces. The
dimension of the model space increases exponentially; for example, the dimension of the full NCSM
calculation in nuclear physics for 6Li increases from 1.5 · 106 at Nmax = 8 to 2.8 · 108 at Nmax = 14
([55, Table 3.1, p. 54]). We also show in the present thesis the exponential increase of the model space
dimension for the full NCSM calculation for an ultra-cold Fermi gas in section 5.6. The Importance-
Truncated No-Core Shell Model (IT-NCSM) identifies and discards the less important basis states for the
solution of the eigenvalue problem, reducing the dimension of the model space, which gives access to
larger values of the maximum oscillator excitation quantum number Nmax and larger particle numbers
[71].

First, we briefly discuss the Configuration Interaction approach and the NCSM, the most successful
CI-type method at present [71] in section 4.1. The many-body model space is spanned by many-body
basis states that are often Slater determinants constructed from single-particle states; we also use this ap-
proach for our calculations. In this chapter, we briefly introduce this approach, as well as the Jacobi basis
(the other possible way to form the many-body model space) and discuss advantages and disadvantages
of both in section 4.2. We use the Lanczos algorithm described in section 4.3 in order to solve the large-
scale eigenvalue problem of the Hamiltonian. Furthermore, we introduce the importance truncation in
the context of NCSM in section 4.4.1 as well as implementation of the IT-NCSM in section 4.4.2. We
discuss the theoretical uncertainties of the results of IT-NCSM calculations in section 4.4.3. We compare
the results for the ground-state energy for two-component fermion system at unitarity with A1 = A2 = 3
and A1 = A2 = 4 calculated using the IT-NCSM to those of the full NCSM. The results calculated us-
ing IT-NCSM show good agreement to those calculated using full NCSM, where the latter is feasible.
These calculations demonstrate that the IT-NCSM allows to extend the applicability of the NCSM while
preserving the desirable properties of the full NCSM calculation.

Besides the NCSM, the two methods most commonly found in the available literature on calculating
energies of Fermi systems are the Fixed-Node Diffusion Monte Carlo method (FN-DMC) [5, 12, 85, 88]
and the stochastic variational approach using Correlated Gaussian (CG) basis functions [12, 65, 84].
We introduce these methods (FN-DMC in section 4.5 and CG in section 4.6) and compare them to the
IT-NCSM.

4.1 CI and NCSM

The CI method (and, therefore, the NCSM) is a conceptually simple and very flexible ab initio method.
In the CI approach the model space is typically spanned by Slater determinants constructed from a set of
single-particle states. The eigenvalue problem

H
�

�ψ
�

= E
�

�ψ
�

(4.1)

of the many-body Hamiltonian is solved numerically. In order to make the numerical calculation feasible,
the many-body space has to be truncated in some way. One possibility is the truncation with respect to
the single-particle basis: one uses all possible Slater determinants constructed with all single-particle
states in the oscillator shells e = 0, . . . , emax in order to span the model space. Figure 4.1 (a) illustrates
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Figure 4.1.: Illustration of the emax (a) and the Nmax (b) truncation. The area in the square or triangle con-
tains all possible configuration allowed in the basis with the certain emax or Nmax, respectively.
The e1 or e2 represents the oscillator quantum number of the respectve particle.

e = 0

e = 1

e = 2

e = 3

ħhω n2ħhω

n1ħhω

Figure 4.2.: Truncation Scheme in NCSM: 4ħhω excitation of the configuration of A1 = A2 = 4 two-
component particles in HO potential.
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the emax-truncation for a two-particle system. The square contains all possible configurations of the basis
allowed for the maximal emax for the two interacting particles.

The NCSM is a special case of the CI method and is one of the standard ab initio methods in nuclear
theory. The model space is spanned by spherical harmonic-oscillator eigenstates that are formulated
either in the form of A-body Slater-determinants of single-particle HO states — the so-called m-scheme
— or in the form of relative HO states with respect to the A-body Jacobi coordinates (see section 4.2).
The model space is truncated in such a way that only eigenstates with a total excitation energy of the
many-body basis states up to Nmaxħhω are used (see figure 4.2). For example, for three two-component
fermions with A1 = 2 and A2 = 1 the total energy quantum number is e1 + e2 + e3 = 1. There are two
particles, one of each kind, in the s-shell, and one particle in the p-shell. For a two-particle system we
have only particles in the s-shell in the 0ħhω space, hence the total energy quantum number is e1+e2 = 0.
Next we take this unperturbed Slater determinant and add HO excitations, moving one of the particles
to the upper shells. For the calculation of the HO excitation energy we use the difference between the
final and the initial energy quantum numbers of the particle, since the shells differ by ħhω. For example,
for a four-particle system, the basis Slater determinant with the lowest possible HO-energy contains two
particles with ei = 1, hence for the p-shell emax = Nmax+1. Figure 4.1 (b) illustrates the Nmax-truncation
in a two-particle system; here all possible states allowed for a certain Nmax are in the triangle. The
truncation with respect to the unperturbed excitation energy Nmax is computationally more efficient than
the truncation with respect to the single-particle basis [73].

The NCSM is employed successfully in nuclear physics, and calculations with two- and three-body
interactions are performed for light nuclei. Important quantities such as the energy, form factor, and
density, of the ground state and low-lying excited states as well as electromagnetic observables such as
multipole moment and transition strengths can be determined using the NCSM. For ultra cold Fermi
gases, the CI method was used by Alhassid et al. [1] and the NCSM in particular by Rotureau et al. [77]
for the calculations for up to five-particle systems. CI or NCSM calculations for larger trapped fermionic
systems at unitarity were not considered yet since the dimension of the model space grows factorially
with the particle number A and Nmax or emax [71, p. 7].

We additionally use the importance truncation (see section 4.4), which has been successfully applied
in nuclear physics, for the calculation of the energy spectra of trapped ultra-cold fermionic gases at
unitarity for 4 to 20 particles and compare the results with published results [12] calculated using the
FN-DMC method and the stochastic variational approach using CG basis functions.

4.2 Many-Body Basis States

There are two ways to choose a basis for the NCSM calculations: An antisymmetrized basis formulated in
terms of Jacobi coordinates, the Jacobi basis and an antisymmetrized basis in single-particle coordinates,
the so-called m-scheme.
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4.2.1 Jacobi Basis

In a Jacobi basis, the many-body basis states depend on the internal (Jacobi) coordinates. One possibility
to choose the set of Jacobi coordinates for an A-body system is:

~ξ0 =

r

1

A
�

~r1+~r2+ · · ·+~rA
�

, (4.2)

~ξ1 =
1

2

�

~r1−~r2
�

, (4.3)

~ξ2 =

r

2

3

�

1

2

�

~r1+~r2
�

−~r3

�

, (4.4)

~ξA−1 =

r

A− 1

A

�

1

A− 1

�

~r1+~r2+ · · ·+~rA−1
�

−~rA

�

, (4.5)

where ~ξ0 corresponds to the center-of-mass coordinate for A particles and ~ξ1 to ~ξA−1 to the relative
coordinates of A particles. These coordinates are used to construct the HO basis in Jacobi coordinates,
the Jacobi basis. The antisymmetrized two-body state in Jacobi coordinates was already described in
eq. (3.4) in section 3.2.1, which also explains the antisymmetrisation of the state. For three particles the
basis state can be written as

�

�Ncm(3)Lcm(3)
�

⊗A
�

�N1N2;
�

L1 L2
�

L12; f1m f1 , f2m f2 , f3m f3

�

. (4.6)

As already mentioned, the many-body states have to be antisymmetric since we consider fermionic sys-
tems. The operator A antisymmetrizes the three-particle relative wave function and does not act on
the center-of-mass state, since it is symmetric by construction. The subscript cm(A) corresponds to the
center-of-mass coordinate ~ξ0 and denotes the corresponding quantum numbers in the A-body HO basis
state. Ni and Li are the radial and orbital angular momentum quantum numbers, respectively, defined
with respect to the Jacobi coordinate ~ξi. The relative orbital angular momenta L1 and L2 couple to the
total orbital angular momentum L12. The total energy quantum number of the HO Jacobi basis state is
given by E3 = Ecm(3) + E12 with the relative energy quantum number E12 = 2N1 + L1 + 2N2 + L2 and
center-of-mass part Ecm(3) = 2Ncm(3) + Lcm(3). E3 can be used for the truncation of the three-body basis.
Jacobi bases have been used by Rotureau and Stetcu [77] for the calculation of the energy spectra of
three-particle, four-particle and five-particle systems at unitarity.

One advantage of an antisymmetrized basis depending on Jacobi coordinates is that larger Nmax can
be used. Since the center-of-mass degrees of freedom factorize exactly from the internal ones, one can
omit the center-of-mass degrees of freedom, reducing the dimension of the model space. The dimension
is also reduced since coupled bases are used in which L is a good quantum number. Furthermore, since
the interacting atoms do not change their hyperfine state (see section 2.3) also the sum over all m fi
is conserved. This is also the case in the m-scheme. A major disadvantage of the Jacobi basis is that
the antisymmetrization of the basis states becomes computationally involved with increasing particle
number.

4.2.2 m-Scheme

In the m-scheme, the basis states are (antisymmetrized) Slater determinants of harmonic oscillator
single-particle states

�

�ni limli ; fim fi

�

defined with respect to the absolute coordinates of the A parti-
cles; the antisymmetrized A-body state can be written as

�

�α1,α2 · · · ,αA
�

a =
p

A!A
�

�n1l1ml1; f1m f1

�

⊗
�

�n2l2ml2; f2m f2

�

· · ·
�

�nAlAmlA; fAm fA

�

. (4.7)
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The number of basis states is limited by the Nmaxħhω energy truncation.
In the m-scheme, the antisymmetrization of the basis states is trivial; the many-body space in that

scheme is easy to construct. Since the basis states are Slater determinants constructed from single-
particle HO wave functions in the laboratory frame, the wave function factorizes exactly in the relative
and the center-of-mass coordinates as long as one uses an energy truncation of the basis states, such that
all states up to a given Nmaxħhω are included [77]. For up to five particles, the antisymmetrized basis in
Jacobi coordinates is typically more efficient than the m-scheme [77]. Since we consider systems with
more than five particles, we use the m-scheme as the basis for the many-body calculation.

The calculated results for intrinsic states of any system are the same, independent of whether one uses
the m-scheme or the Jacobi basis, as long as one uses the same truncation [77].

The simplicity of the m-scheme is counterbalanced by the dimension of the matrix, since only
ML =

∑A
i=1 mli , the parity, and the sum over m fi defining the hyperfine states (see section 2.3) are

conserved. Another disadvantage of the m-scheme is that the total orbital angular momentum and
center-of-mass quantum numbers are not included (unlike in the Jacobi basis [77]), hence the corre-
sponding symmetries cannot be used to reduce the storage space.

4.2.3 Center-of-Mass Contamination

In NCSM calculations for untrapped few-nucleon system in nuclear physics, the Hamiltonian is trans-
lationally invariant. The eigenstates of the Hamiltonian factorize exactly into a center-of-mass and a
relative component:

�

�ψ
�

=
�

�ψrel
�

⊗
�

�ψcm
�

. (4.8)

This factorization of the many-body state guarantees the transitional invariance of the solution, and as
a result, all observables are free of spurious center-of-mass contamination. The center-of-mass problem
arises because the coordinates of the shell-model wave function are defined with respect to a fixed
reference point. In nuclear many-body calculations, one usually chooses a spherical single-particle basis
depending on A coordinates and momenta. Only A− 1 of them are linearly independent, since the
solution only depends on intrinsic coordinates. The Hamiltonian of the atomic nucleus is invariant
under translation and rotation, thus any intrinsic operator commutes with the center-of-mass coordinate
and momentum operator. A shell-model wave function is a linear combination of the function in relative
and center-of-mass coordinates and, since the solution only depends on relative coordinates, the same
wave function in relative coordinates can have different center-of-mass motion [20, 58, 100]. As long as
one uses all basis states up to a given energy Nmax, the factorization of the center-of-mass and intrinsic
coordinates stays exact.

In contrary to the nuclear case we consider a trapped Fermi gas. For the description of the trap, we
use a HO potential, which is a part of the physics of the system, and therefore the solution depends
explicitly on the trap. The Hamiltonian is not translationally invariant. Therefore, center-of-mass con-
tamination, which plays an important role in the calculations for nuclei, is not relevant in the case of
trapped fermions.

4.3 The Lanczos Method

In order to solve the eigenvalue problem, we have to construct and diagonalize the many-body matrix
representation of the Hamiltonian including the effective interaction (see chapter 3). The underlying
model space has a very large dimension. In dense diagonalization algorithms, such as the Wilkinson
algorithm, the required computational effort increases cubically (O (D3)) with the matrix dimension D
[20]. Hence these standard diagonalization methods are not suited for large-scale calculations. Iterative
methods, such as the Lanczos method, are of general use in many-body calculations for the diagonaliza-
tion, since only a few of the lowest eigenstates are needed and the Hamilton matrices are very sparse.
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The Lanczos method converges towards the extremal eigenvalues (the largest and the smallest one) first
and, therefore, allows calculating the ground state at comparatively low computational cost. The num-
ber of nonzero matrix elements in many-body calculations increases linearly (and not quadratically) with
the matrix dimension [20].

The Hermitian Lanczos algorithm is an orthogonal projection method on a Krylov subspace [79] for
Hermitian matrices. The algorithm applied to a Hermitian matrix H iteratively constructs an orthogonal
basis in which the resulting matrix Tm is tridiagonal [78, 79]

Tm =















α1 β2
β2 α2 β3

· · ·
βm−1 αm−1 βm

βm αm















, (4.9)

where α j := T j, j, β j := T j−1, j, and m is the dimension of the orthogonal basis [79]. We introduce the
Hermitian Lanczos algorithm in the following.

The Lanczos algorithm starts with an initial, normalized, arbitrarily chosen starting vector
�

�v1
�

, which
is called the pivot state. One sets β1 ≡ 0 and

�

�v0
�

≡ 0 and iterates for j = 1, 2, . . . m. The next vector
�

�v2
�

is calculated by applying the matrix H to the starting vector
�

�v1
�

:

H
�

�v1
�

= α1

�

�v1
�

+
�

�w1
�

(4.10)

where α1 =



v1

�

�H
�

�v1
�

and
�

�w1
�

a vector orthogonal to
�

�v1
�

. One gets the next vector
�

�v2
�

by
normalizing

�

�w1
�

:

�

�v2
�

=

�

�w1
�

β2
(4.11)

with

β2 =



v1

�

�H
�

�v2
�

=



w1

�

�w1
�1/2 . (4.12)

Now one iterates from j = 2 to m by using

H
�

�v j
�

= β j

�

�v j−1
�

+α j

�

�v j
�

+
�

�w j
�

(4.13)

where

α j =



v j

�

�H
�

�v j
�

and β j+1 =



v j

�

�H
�

�v j+1
�

=



v j+1

�

�H
�

�v j
�

=



w j

�

�w j
�1/2 (4.14)

By normalizing
�

�w j
�

one gets the vector
�

�v j+1
�

=
�

�w j

�

/β j+1. The matrix Tm being tridiagonal has the
consequence that only the two preceding basis vectors need to be saved during the computation, if we do
not use any form of reorthogonalization [79]. Therefore, the Lanczos method is very memory efficient
and fast. After performing k < m steps of the Lanczos process the matrix Tk, k× k sub matrix of Tm, can
be diagonalized using standard diagonalization methods. The eigenvalues of Tk provide already after
a few iteration a good approximation to the extreme eigenvalues of H. In principle the matrix can be
diagonalized at each iteration and the process is stopped if a given criterion for the convergence of the
eigenvalues is satisfied, that is, if an additional iteration step does not affect the target eigenvalue. The
required computation time is proportional to the number of matrix elements and increases linearly with
the matrix dimension [20, p. 16].

In exact arithmetic, the above simple algorithm guarantees that the vectors
�

�v i
�

, i = 1,2, . . . , are
orthogonal. In practice the exact othogonality of these vectors is only given at the beginning of the
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process and vectors lose orthogonality due to numerical errors and the vectors
�

�v j
�

have to be reorthog-
onalized to all previous vectors. The relative magnitude of those numerical errors depends a lot on the
Hamiltonian.

In large eigenvalue problems, one cannot know in advance how many steps are required to achieve
convergence. In order to recover the eigenvectors, all Lanczos vectors

�

�v i
�

have to be stored or re-
computed [56], leading to extensive memory requirements. The reorthogonalization procedure also
requires more computation time as the number of vectors increases. As a consequence, both the compu-
tation time and the required storage space increase with the number of Lanczos steps m [78, p. 167].

Implicit restarting is an efficient way to overcome the often intractable storage and computational
requirements in the original Lanczos method by extracting interesting information from the Krylov sub-
space and compressing it into a k-dimensional subspace. To this end, the implicitly shifted QR mechanism
is used [79, 78].

We use the implicitly restarted Arnoldi algorithm of the ARPACK library [56]. Arnoldi’s method is
an orthogonal projection method for general non-Hermitian matrices onto Krylov subspaces Km and
was first introduced in 1951 as a means of reducing a dense matrix into Hessenberg form with unitary
transformations [78]. The resulting matrix

Mm =

















∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

















,

is an upper Hessenberg matrix, with zero matrix elements below its sub diagonal. In the case that
Arnoldi’s method is applied to a Hermitian matrix, such as the Hamiltonian H, the resulting matrix is
real, tridiagonal and symmetric. The symmetric Lanczos algorithm can be viewed as a simplification of
Arnoldi’s method for Hermitian matrices [78].

As implemented in the ARPACK library [56], the implicitly restarted Arnoldi method proceeds as
follows: First it executes m steps of the Arnoldi (or Lanczos) algorithm, and computes m eigenvalues of
H. The algorithm sorts these eigenvalues according to the users selection criterion into a wanted and
unwanted set, then performs m− k implicitly shifted QR steps on Mm. In each step of the shifted QR
algorithm, the equation (Mm − θ j I) = QR is solved, where Q is a unitary matrix, R upper tridiagonal
matrix and θ j the selected shifts, which are the unwanted eigenvalues. Because

QH̃mQH =Q(RQ+ θ j I)Q
M
m =QR+ θ j I = Mm, (4.15)

the resulting matrix H̃m is similar to the original matrix Mm, and, therefore, has the same eigenvalues.
As already mentioned the Hessenberg matrix Mm reduces in our case to a tridiagonal and symmetric
matrix Tm since the Hamiltonian is Hermitian. We are looking for the smallest eigenvalues, which are,
therefore, ‘wanted’ in our case. The θi are selected from the ‘unwanted’ eigenvalues [79], that is, we use
the m− k largest eigenvalue estimates as shifts. The irrelevant information is thereby removed from the
starting vector and the Arnoldi factorization, and the relevant information is compressed into p = m− k
basis states. The Arnoldi algorithm is then restarted whereby the wanted components are enhanced by
the procedure while the unwanted ones are suppressed. The procedure is repeated until the eigenvalues
converge [56, 79].

4.4 The Importance-Truncated No-Core Shell Model (IT-NCSM)

We introduce in this section the general concepts of the importance-truncation scheme, where we follow
the detailed review of reference [71].
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4.4.1 Importance Truncation Scheme

In CI methods, global truncation schemes are used to construct the many-body model space (see sec-
tion 4.1). For instance, the NCSM uses the Nmax-truncated model space. As the particle number A and
the truncation parameters Nmax or emax grow, the dimension of the model space grows as well and calcu-
lations become more time-consuming. On the other hand, the contributions of some many-body states to
the eigenstates of the system are very small. Since the specific properties of the Hamiltonian or physical
properties of the state one is interested in are not considered, the model space contains many states that
are of no consequence for the later calculations, but which increase the problem dimension. We, there-
fore, introduce an a priori importance measure derived from multiconfigurational perturbation theory
(MCPT) in order to identify and remove theses states from the computation, so that the problem dimen-
sion is limited to a tractable value. To this end, information obtained from the Hamiltonian is used and
an importance threshold κmin is introduced. Note that in the limit κmin → 0 the results of the IT-NCSM
calculation are the same as for the full NCSM calculation. A variant of the importance truncation was
first used in the area of quantum chemistry [71].

4.4.1.1 The Importance Measure

In order to introduce the a priori measure for the importance of an individual basis state we consider
the full model spaceMfull in a NCSM calculation for a given value of Nmax spanned by a set of the Slater
determinants

�

�φν
�

. The full NCSM calculation yields eigenstates
�

�ψref
�

(i. e. ground state and few
low-lying excited states) of the Hamiltonian we are interested in. The eigenstates can be expanded in
terms of the many-body basis states

�

�φν
�

with amplitudes Cν :

�

�ψfull
�

=
∑

ν∈Mfull

C (full)
ν

�

�φν
�

. (4.16)

The contribution of many of the basis state is insignificant, since the corresponding amplitudes Cν have
very small values. Therefore, the dimension of the basis can be reduced significantly by discarding the
states with sufficiently small amplitude. We use the initial approximation of the target state, the so-called
reference state,

�

�ψref
�

=
∑

ν∈Mref

C (ref)
ν

�

�φν
�

. (4.17)

to estimate these amplitudes. The reference state is typically determined from a previous NCSM calcula-
tion in smaller Nmax.

The next step is to calculate the first order correction
�

�ψ(1)
�

to the target state
�

�ψref
�

resulting from
states outside of the reference space. For this purpose, multiconfigurational perturbation theory is used,
which is widely applied in quantum chemistry [69, 94], in order to estimate the leading correction [71].

The full Hamiltonian H can be divided into the unperturbed part H0 and the perturbation W, where
H0 is chosen such that

H0

�

�ψref
�

= εref

�

�ψref
�

(4.18)

with the eigenstates
�

�ψref
�

and the eigenvalue εref, where the eigenvalue εref is the expectation value of
the full Hamiltonian H [71]:

εref =



ψref

�

�H
�

�ψref
�

. (4.19)

The unperturbed Hamiltonian can be defined as [69, 71, 94]

H0 = εref

�

�ψref
�


ψref

�

� +
∑

ν /∈Mref

εν
�

�φν
�


φν
�

� . (4.20)
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The states
�

�φν
�

, ν ∈Mref, orthogonal to
�

�ψref
�

can be omitted, since they will not contribute later on
[71].

There are different possibilities to choose the unperturbed energies εν for basis states
�

�φν
�

/∈ Mref
[71, 94] and their choice affects the convergence as well as some other properties [71]. We use the
Møller-Plesset form [71]

εν = εref+∆εν , (4.21)

where∆εν is the excitation energy of the basis state
�

�φν
�

and can be computed using the single-particle
energies of the underlying basis. Since we use a harmonic-oscillator basis, those single-particle energies
are just the HO energies.

Based on the unperturbed Hamiltonian H0, which has been fixed previously, one defines the perturba-
tion W:

W= H−H0 (4.22)

Using the lowest-order terms of the Rayleigh-Schrödinger perturbation series and taking advantage of
the property that all matrix elements of H0 between

�

�ψref
�

and the basis states
�

�φν
�

/∈Mref outside the
reference space vanish by construction, we obtain the zeroth-, first- and second-order contributions to
the energy [71, 69, 94] (see also appendix A for more details):

E(0) =



ψref

�

�H0

�

�ψref
�

= εref, (4.23)

E(1) =



ψref

�

�W
�

�ψref
�

= 0, (4.24)

E(2) =−
∑

ν 6∈Mref

�

�




φν
�

�W
�

�ψref
�

�

�

2

εν − εref
=−

∑

ν 6∈Mref

�

�




φν
�

�H
�

�ψref
�

�

�

2

εν − εref
(4.25)

The first-order correction to the unperturbed state
�

�ψ(0)
�

=
�

�ψref
�

is given by [71, 69, 94] (see also
appendix A for more details):

�

�ψ(1)
�

=−
∑

ν /∈Mref




φν
�

�W
�

�ψref
�

εν − εref

�

�φν
�

=−
∑

ν /∈Mref




φν
�

�H
�

�ψref
�

εν − εref

�

�φν
�

. (4.26)

The multi-configurational perturbation theory provides an efficient way to estimate the importance of
the basis states outside of the reference spaceMref. Equation (4.26) provides a dimensionless measure
for the relevance of the basis states

�

�φν
�

/∈Mref. The amplitude of the basis state can be chosen as an a
priori importance measure:

κν =−



φν
�

�H
�

�ψref
�

εν − εref
=−

∑

µ∈Mref

C (ref)
µ




φν
�

�H
�

�φµ
�

εν − εref
(4.27)

States whose importance measure |κν | is smaller than a threshold κmin are not taken into account for
further calculations.

An alternative way to derive the importance measure is to use the second-order energy correction (see
eq. (4.23)) in order to approximate the basis states’ relevance for the computation of the energy. The
energy-based importance measure can be defined as:

ξν =
|



φν
�

�H
�

�ψref
�

|2

εν − εref
(4.28)

We use for our calculations the dimensionless state-based importance measure, since both measures
provide very similar results and the state-based importance measure is easier to handle [71].

The importance-truncated model space, in which the eigenvalue problem is being solved, is smaller
than the full spaceMfull and the calculation is simplified. The size of the model space can be controlled
using the importance threshold. For a two-body Hamiltonian, the importance measure κν vanishes if
there is no state in the reference space that differs from the basis state

�

�φν
�

by two or less single-
particle states.
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4.4.1.2 Characteristics of the Importance-Truncated CI

The most important property of the approach described so far is that it is a strictly variational approach
[71], that is, the calculated eigenvalue for a given κmin always provides an upper bound for the exact
ground-state energy. We use this property for the extrapolation of κmin→ 0. According to the Hylleraas-
Undheim theorem [42], the nth energy eigenvalues En of the Hamiltonian in a given space are lower
bounds on the eigenvalues of the projection of that Hamiltonian on any subspace. Consequently, the
eigenvalues E(full)

n in the full space are lower bounds on the eigenvalues En(κmin) in a truncated space
M (κmin), and these eigenvalues in turn are lower bounds on the eigenvalues En(κ′min) for κmin < κ

′
min:

E(full)
n ≤ En(κmin)≤ En(κ

′
min) for κmin < κ

′
min, (4.29)

that is, the calculated eigenvalues decrease monotonically as κmin decreases and are an upper bound
for the exact eigenvalues. Other observables, for example, transition matrix elements, form factors, and
densities do not necessarily decrease monotonically. Furthermore, all observables approach the values
obtained through full NCSM calculation in the limit κmin→ 0, hence the a posteriori extrapolation of the
observables is possible [71, 73].

4.4.1.3 A posteriori Energy Corrections

In addition to the definition of an importance measure, we can use perturbation theory for a posteriori
corrections to the calculated energies En(κmin). To estimate the contribution of the discarded states with
|κν |< κmin, which are not included in the importance-truncated spaceM (κmin), we can use the second-
order perturbative contribution to the energy (4.23) and sum the energy corrections of each discarded
state:

∆excl(κmin) =−
∑

ν /∈M (κmin)

�

�




φν
�

�H
�

�ψref
�

�

�

2

εν − εref
(4.30)

During the many-body calculations, the second-order contribution of each discarded state is calculated
at no additional cost. The energy contribution ∆excl(κmin) can then be added to the energy obtained
through IT-NCSM at the end of the calculation. However, this contribution is not defined for anything
but the energy, since other quantities do not show the monotonic decrease with decreasing κmin [73].

4.4.2 Iterative Construction of the IT-NCSM Model Space and Implementation

The implementation of the IT-NCSM for ultra-cold Fermi gases is formally the same as in nuclear physics.
The computationally most demanding part is the construction of the importance-truncated space. To this
end, we use the iteration method described by Roth [71]. A somewhat different implementation was
described by Kruse [55].

For the IT-NCSM, we use a sequential scheme like for the full NCSM, since it is most efficient [73]. We
are interested in the convergence behavior with increasing Nmax in order to perform the extrapolation
to the infinite model space. In every iteration step, we use the many-body state obtained in the Nmax
model space to construct a reference state for the calculation of the Nmax+2 space. The next larger space
is constructed by creating all 1p1h and 2p2h excitations. Furthermore, we check for all created states
whether that state is already contained in the space in order to avoid duplicates. For Nmax = 2 and 4,
we perform the complete NCSM calculations, that is, we include all states (κmin = 0). For all subsequent
calculations, that is, for Nmax = 6,8, 10, . . ., we use the IT-NCSM. We only calculate a few eigenstates
with the lowest energies.
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In order to extrapolate the results to κmin→ 0, we calculate the eigenvalues for a set of values of κmin.
We first construct the importance-truncated model space with the smallest value of κmin for which we
want to calculate the eigenvalues, compute the Hamilton matrix and solve the eigenvalue problem. For
the construction of the space corresponding to the second smallest κ′min we remove all the states

�

�φν
�

for which |κν | < κ′min as well as the corresponding matrix elements from the Hamilton matrix. We solve
the eigenvalue problem again in the importance-truncated model space spanned by the remaining basis
states

�

�φν
�

that fulfill the condition |κν | ≥ κ′min. We repeat this procedure for all values of κmin. In this
way, the most computationally expensive parts of the calculation (the construction of the space and the
computation of the Hamilton matrix) only need to be performed once.

We introduce an additional reference threshold to the importance measure, in order to accelerate the
calculation and drop basis state from the reference state whose amplitude is less than Cmin; that is, we
do not use all basis states

�

�φν
�

∈M (1)(κmin) to construct the reference state
�

�ψ
(1)
ref

�

for the subsequent
iteration, but only those whose amplitude |Cν | exceeds the threshold Cmin (|Cν | ≥ Cmin). In the limit
(κmin, Cmin) → 0 the results of the IT-NCSM calculation approaches the exact results of the full NCSM
calculation.

The diagonalization is, of course, performed for each value of κmin individually. We use Lanzcos-
or Arnoldi-type algorithms to perform the diagonalization (see section 4.3). The many-body matrix
elements of the Hamiltonian are pre-computed and stored in memory or on disk (see section 3.2.4).
The construction of the importance-truncated space and computation of the Hamiltonian matrix can
be almost perfectly parallelized. Only little information needs to be exchanged between processing
instances, therefore, an almost linear speed-up can be achieved. We use a hybrid OpenMP plus MPI
parallelization strategy.

4.4.3 Importance Truncation Uncertainties

In the IT-NCSM calculation, we discard the physically unimportant states controlled by the importance
threshold κmin. Furthermore we use only states with amplitude |Cν | ≥ Cmin for the construction of the
reference state (see sections 4.4.1 and 4.4.2). κmin and Cmin are the only source of errors in comparison
to the full NCSM, since the discarded states might contribute to the many-body observables. Here we
discuss possibilities to eliminate these errors and to obtain the energy in the limit (κmin, Cmin) → 0,
which corresponds to the energy obtained through the full NCSM calculation. For that purpose we use
two methods: the extrapolation of the observables as κmin approaches zero and the estimation of the
contribution of the discarded states with |κν |< κmin during the many-body calculation. We also calculate
the energy for different Cmin in order to estimate the influence of this threshold.

In order to estimate the uncertainties, which are introduced by considering only the physically impor-
tant states

�

�φν
�

with |κν | ≥ κmin, we compute the observables through a sequence of IT-NCSM calcu-
lations using different values for the threshold κmin as described in section 4.4.2, and we extrapolate
the results for a vanishing threshold κmin → 0. We use as extrapolation function a pth-order polyno-
mial (usually p is an integer between 3 and 5 inclusively), since the energy eigenvalues are smooth and
monotonically decreasing with κmin. In the following figures we chose Cmin = 0.0002,0.0003, 0.0004
and 0.0005 in those cases in which we used different Cmin and Cmin = 0.0002 in those cases in which we
used only one Cmin, and we used a sequence of κmin from 3 · 10−5 to 1 · 10−4 as importance thresholds.
We used nmax = 4 as a two-body cutoff (see section 3.5) for all calculations in this section.

Figure 4.3 shows an example for such a calculation. The ground-state energy of eight fermions (A1 =
A2 = 4) in the unitary limit for different Cmin and κmin is calculated for Nmax = 8 and Nmax = 12. We used
the LO of the EFT interaction (see chapter 3.6) for the calculation with nmax = 4 as a two-body cutoff (see
section 3.5). Until Nmax = 4, we used the full NCSM calculation and from then on, sequential IT-NCSM
with Nmax increasing in steps of two (Nmax = 6,8, . . .). The figure also shows the energy calculated with
the full NCSM for Nmax = 8 as a reference. We use for the extrapolation a third-order polynomial.
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Figure 4.3.: The energy of the ground state with Lπ = 0+ of a two-component fermion system with
A1 = A2 = 4 in the unitary limit for Nmax = 8 (a) and Nmax = 12 (b) for different Cmin from
0.0002 to 0.0005 (u,f, M,p) and a sequence of κmin from 3·10−5 to 1·10−4 as importance
thresholds. The calculation was done using the LO of the EFT interaction. We used third-order
polynomials as extrapolation functions. The horizontal line in panel (a) shows the results of
the full NCSM calculation.

The calculated observables show no or very little dependence on the reference threshold Cmin for both
values of Nmax. The relative difference between the results for different Cmin is of the order 10−5, and
hence very small. We use for each particle number a reference threshold Cmin that is small enough so it
does not affect the results. The ground-state energy obtained with the importance-truncated NCSM for
Nmax = 8 is close to the exact value obtained with the full NCSM calculation.

We also estimate the uncertainty of the energy extrapolation to κmin → 0. To this end, we construct
a sequence of fits (like in [71, 73]): As already mentioned we used a pth-order polynomial fit for the
extrapolation to κmin → 0 to estimate the extrapolated value of the observable. For the quantification
of the extrapolation uncertainty we use (p − 1)th- and (p + 1)th-order polynomials for all data points.
Additionally, we fit pth-order polynomials to the data points where the lowest and the two lowest κmin
are discarded. The results obtained from these fits provide an error band for the extrapolated observable.
We can apply this error estimation to all observables for different values of Cmin and different sequences
of κmin.

Figure 4.4 shows the estimation of the extrapolation uncertainty. Here we also used the EFT interaction
at LO for Nmax = 8 and 12. The calculation of the ground-state energy for both Nmax = 8 and 12 were
done with the reference threshold Cmin = 2 · 10−4. The estimation of the uncertainties of the calculation
were done with the method explained above. We used a polynomial of 3rd order for the extrapolation
function and polynomials of 2nd and 4th order as well as two 3th order polynomials obtained by omitting
the data points for the smallest and the two smallest values κmin, respectively. The ground-state energy
obtained through the importance-truncated NCSM for Nmax = 8 reproduces the exact value obtained
with the full NCSM calculation within the estimated extrapolation uncertainty. For the calculation with
Nmax = 12, where the full NCSM calculation is more computationally expensive, the uncertainties are
larger than for Nmax = 8 but still negligibly small — the relative uncertainty is only about 10−4. The
same behavior is observed in nuclear physics with light nuclei for the IT-NCSM calculations [73].

We also performed the same estimation for the energies of the ground state and the first excited state
of a six-fermion system with A1 = A2 = 3 in the unitary limit with Lπ = 0+ (see fig. 4.5). Again, we
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Figure 4.4.: The energy of the ground state with Lπ = 0+ of a two-component fermion system with
A1 = A2 = 4 in the unitary limit for Nmax = 8 (a) and Nmax = 12 (b) for Cmin = 0.0002 and
a sequence of κmin from 3 · 10−5 to 1 · 10−4 as importance thresholds. The calculation was
done using the LO of the EFT interaction. We used third-order polynomials as extrapolation
functions and the extrapolation procedure described in the text for the uncertainty bands.
The horizontal line in panel (a) shows the results of the full NCSM calculation.

0 1 2 3 4 5 6 7 8 9 10
κmin [10−5]

8.572

8.573

8.574

.

E
/ħh
ω

(a)

0 1 2 3 4 5 6 7 8 9 10
κmin [10−5]

10.438

10.440

10.442

10.444

10.446

10.448

.

E
/ħh
ω

(b)

Figure 4.5.: The energy of the ground state (a) and first excited state (b) with Lπ = 0+ of a two-
component fermion system with A1 = A2 = 3 in the unitary limit for Nmax = 12 for
Cmin = 0.0002 and a sequence of κmin from 3 · 10−5 to 1 · 10−4 as importance thresholds.
The calculation was done using the LO of the EFT interaction. We used third-order polynomi-
als as extrapolation functions and the extrapolation procedure described in the text for the
uncertainty bands. The horizontal line shows the results of the full NCSM calculation.
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Figure 4.6.: Illustration of the constrained simultaneous extrapolation of the energy of the ground state
(a) and the first excited state (b) with Lπ = 0+ of a two-component fermion system with
A1 = A2 = 4 in the unitary limit for Nmax = 12 for Cmin = 0.0002 and a sequence of κmin
from 3 · 10−5 to 1 · 10−4 as importance thresholds. The calculation was done using the LO
of the EFT interaction. We used third-order polynomials as the extrapolation functions and
the extrapolation procedure described in the text for the uncertainty bands. We used λ =
0, 0.5,1, 1.5,2 (a) and λ= 0,0.55, 1.1,1.65, 2.2 (b).(u,f,q,p, M)

used the full NCSM calculation up to Nmax = 4 and used IT-NCSM from there on. Figure 4.5 (a) shows
the calculated ground-state energy and fig. 4.5 (b) the excited-state energy for Nmax = 12. Extrapolation
and error estimation have been performed in the same way as for a two-component fermion system with
A1 = A2 = 4 described previously. Furthermore, the result of a full NCSM calculation for Nmax = 12 is
also shown in fig. 4.5 as a reference. The value is well within the error bars of the importance-truncated
calculation.

For the estimation of the energy and the uncertainties of the energy we can combine the extrapo-
lation of the importance threshold κmin with the a posteriori correction to the IT-NCSM energies (see
section 4.4.1.3). In order to estimate the contribution of the discarded states, we introduce an auxiliary
control parameter λ such that

Eλn (κmin) = Eeval
n (κmin) +λ∆

excl
n (κmin), (4.31)

where λ∆excl
n (κmin) is the energy correction (4.30) to the energy eigenvalues Eeval

n (κmin) obtained in
the importance-truncated space [71, 73]. Here we use the fact that, in the limit κmin → 0, the energy
correction vanishes and hence Eλn (κmin) is independent of λ in the limit κmin → 0 . One calculates
Eλn (κmin) for different values of λ and different values of κmin and then performs the extrapolation as
described previously for κmin (using polynomials of different orders and omitting the data points for
small κmin as described previously). Furthermore, we ignore both the smallest and the largest value of
λ in the extrapolation. This approach makes the extrapolation more robust, since the energies Eλn (κmin)
calculated using different values of λ typically approach the energy E0

n(κmin = 0) calculated using the
full NCSM from both sides [71].

Figure 4.6 shows the perturbatively corrected energy of the ground (a) and first excited state (b) of a
two-component fermion system with A1 = A2 = 4 in the unitary limit for an importance-truncated NCSM
calculation with Nmax = 12 and Cmin = 2 · 10−4. The parameter λ has been chosen such that the fitted
curves Eλ(κmin) are nearly symmetric. Like in nuclear physics [73], we observe that the errors become
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smaller by additionally using information obtained for the second-order energy corrections due to the
excluded states. Figure 4.6 (b) shows the same extrapolation for the energy of the first excited state.
Again, we observe a reduction of the errors. In most cases, we employ the simpler extrapolation using
κmin alone; we only introduce the additional parameter λ in particularly difficult cases, that is, in those
cases where the IT-NCSM calculation with a lower value of κmin would be too computationally expensive
and the errors of the simpler extrapolation would be too large.

4.5 The Fixed Node Diffusion Monte Carlo Method (FN-DMC)

We describe in this section the Diffusion Monte Carlo (DMC) method which uses the concept of imaginary
time propagation, then we briefly consider the general aspects of the FN-DMC. The method is based on
the similarity between the time-independent Schrödinger equation and a diffusion equation [3]. The
solution for the time-dependent Schrödinger equation

iħh
∂

∂ t
Ψ(~R, t) = HΨ(~R, t), (4.32)

where ~R= {~r1, . . . ,~rA} includes the coordinates of all particles, is given by the superposition of stationary
states φn(~R) multiplied by a phase factor

Ψ(~R, t) =
∞
∑

n=0

cnφn(~R)exp
�

−
i

ħh
En t
�

. (4.33)

The eigenvalues En and the eigenfunctions φn(~R), n = 0, 1, . . . , which are assumed to be real and or-
thogonal, of the Hamiltonian

H =−
A
∑

i=1

ħh2

2mi

~∇2
i + V (~R) (4.34)

can be obtained from the time-independent Schrödinger equation. When time t is replaced by imaginary
time τ = i t (also known as Wick rotation), the solution is given by a sum of transients of the form
exp(−Enτ/ħh) where the longest-lasting transient is given by the ground-state energy E0 [53, 84, 95]. In
order to keep the long-time limit finite, it is useful to introduce a shift of the energy scale, which can be
performed by replacing V (~R)→ V (~R)− ET and En → En − ET [53], where ET is a constant shift in the
energy [3, 48, 53, 68]. Equation (4.32) then takes the form

ħh
∂

∂ τ
Ψ(~R,τ) =

 

A
∑

i=1

ħh2

2m
~∇2−

�

V (~R)− ET

�

!

Ψ(~R,τ) (4.35)

with the solution

Ψ(~R,τ) =
∞
∑

n=0

cnφn(~R)exp
�

−
i

ħh
�

En− ET
�

τ

�

(4.36)

The offset in the energy affects the wave function. If ET equals the ground state energy, ET = E0, the
wave function converges up to a constant factor c0 to the ground state wave function if the evolution
in the imaginary time is performed long enough. One then gets the ground-state energy and wave
function of the quantum system [48, 53]. If ET > E0, all amplitudes will go to infinity and the wave
function diverges exponentially fast. If ET < E0, the wave function vanishes exponentially fast. The c0
term dominates in all three cases, given that Ψ(~R,τ) is not orthogonal to the ground state. In order to
determine the ground state energy and the wave function, we therefore have to adjust ET so that the
norm of the state tends to a constant [53, 36].
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Equation (4.35) is similar to a diffusion equation with an added first-order reaction term, where
Ψ(~R,τ) represents the density of diffusing particles (or “walkers”). The first term in eq. (4.35) is a
common diffusion term and can be simulated by a random walk of particles through configuration space.
The second therm is used in order to readjust ET and renormalize [62, p. 250] the wave function. One
possibility to do this is to let the second term describe the branching process (the birth and death process
in the “walker” population). The second term serves to increase the number of particles in regions with
lower V (~R) and decrease the number in regions with higher V (~R), making the distribution correspond
to the ground-state wave function [3, 48, 68]. The changes in the number of walkers as result of death
and birth processes are used in order to readjust the energy ET [53].

The branching term V (~R) − ET may diverge, which leads to a very large fluctuation in the particle
density [68, 84]. These fluctuations can be reduced by the technique of importance sampling. Here,
an initial guess φT (~R) (the trial wave function or guiding function) is used to bias the “walkers” to
reproduce the distribution f (~R,τ) = Ψ(~R,τ)φT (~R). The imaginary time evolution of f (~R,τ) describes
an equation similar to eq. (4.35). The better the guess, the smaller are the fluctuations.

This technique can also be used to overcome the sign problem. The interpretation of the wave function
Ψ(~R,τ) as probability density implies that it must either be positive everywhere or negative everywhere,
since the phase of the wave function is arbitrary. That would restrict the imaginary time propagation
to Bose systems in their ground state, since its wave function has no nodes. The wave function of
a Fermi system has nodes (it changes sign). The problem can be solved by treating the positive and
negative regions separately and not allowing diffusion between them. This method is called fixed-node
approximation [68]. Using the FN-DMC, however, one can force the wave function to have the same
structure as a guiding wave function φT (~R) and get an upper bound to the exact ground state within
statistical uncertainties [84]. Stecher [84] used the variational Monte Carlo method in order to optimize
the wave function φT (~R), which is important in FN-DMC since the choice of φT (~R) significantly affects
the result (as explained previously).

Table 4.1.: Energy of the ground state E00 of 3 to 30 two-component fermionic system at unitary calcu-
lated using the FN-DMC method (values taken from [12])

N E00 N E00/(ħhω) N E00/(ħhω)

11 20.11(7) 21 45.47(15)
12 21.28(5) 22 46.89(9)

3 4.281(4) 13 24.79(9) 23 51.01(18)
4 5.051(9) 14 25.92(5) 24 52.62(20)
5 7.61(1) 15 29.59(10) 25 56.85(22)
6 8.64(3) 16 30.88(6) 26 58.55(18)
7 11.36(2) 17 34.64(12) 27 63.24(22)
8 12.58(2) 18 35.96(7) 28 64.39(31)
9 15.69(1) 19 39.83(15) 29 69.13(31)

10 16.80(4) 20 41.30(8) 30 70.93(30)

In [12], the FN-DMC method was used for the calculation of up to 30 fermions in the unitary limit.
Table 4.1 (taken from [12]) shows the ground-state energy from A = 3 to A = 30 two-component
fermionic systems at unitarity, calculated using the FN-DMC method.

4.6 Correlated Gaussian Basis (CG)

Now we briefly describe an alternative method also used for calculation of ultra-cold fermion gases that
does not rely on Monte Carlo techniques, the correlated Gaussian (CG) basis state expansion. The com-
bination of a Gaussian basis and the stochastically variational method was extensively used in nuclear
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physics by Suzuki and Varga [95, 98]. For the calculation of the energy of fermionic systems at unitarity
it was used in Refs. [12, 65, 84]. A detailed description can be found in [84, 95, 98, 99].

In the direct approaches such as CI (NCSM) used in this thesis, the energy and the eigenstates of the
Hamiltonian, spanned within a model space by a set of many-body states, are calculated by diagonal-
ization. The range of application of these methods is limited. With growing dimension of the model
space and with increasing particle number the calculations become intractable. Basis optimization is one
possibility to avoid this problem. One uses only basis states essential to the calculation of the energy and
wave function to a certain accuracy. Since some states are essential to the ground state and others to
the excited state, this selection is state-dependent. In the Stochastic Variational Method (SVM), the basis
functions are selected by a trial-and-error procedure [95, 98]. The accuracy of the variational approach
depends essentially on the choice of the basis functions. A correlated Gaussian basis function of the form

Φ(~ξ1, ~ξ2 . . . , ~ξA) = exp
�

−
1

2
~ξT M~ξ

�

≡ exp



−
1

2
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~ξi
~ξ j



 (4.37)

= exp
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αi j
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�2





seems to be the best choice for variational approaches [95, 98]. Here M is an (A− 1)× (A− 1) positive
definite symmetric matrix and Mi j or αi j are nonlinear parameters of the basis, ~ri −~r j are interparticle
distance vectors and ~ξ= (~ξ1, . . . , ~ξA−1) is a vector with Jacobi coordinates ~ξi (see section 4.2.1). Both in
the CI methods and in the CG method we transform the single-particle coordinates to center-of-mass and
intrinsic coordinates. This allows the complete separation of the center-of-mass motion from the intrinsic
motion (see also the discussion to the center-of-mass contamination in section 4.2.2). Therefore, the
wave function is translationally invariant and is written in terms of the independent Jacobi coordinates
(~ξ1, . . . , ~ξA−1) (see section 4.2.1) [98]. Additional degrees of freedom such as spin etc. have to be
multiplied by suitable trial functions in these additional spaces.

The wave function of the A-particle system can be expanded as

Ψ(~ξ1, ~ξ2 . . . , ~ξA) =
K
∑

i

ciφi(~ξ1, ~ξ2 . . . , ~ξA) (4.38)

with a selected set of basis functions φi(~ξ1, ~ξ2 . . . , ~ξA); i = 1, . . . , K , of the form (4.37), that adequately
spans the state space and a set of linear variational parameters ~cT =

�

c1, . . . , cK
�

[98].
Now the time-independent Schrödinger equation can be solved in this basis and the eigenvalue prob-

lem is reduced to

H ~c = EN ~c (4.39)

in a subspace VK , where H and N are matrices of the Hamiltonian and of the overlap with matrix
elements

Hi j =



φi

�

�H
�

�φ j
�

and Ni j =



φi

�

�φ j
�

(i, j = 1, . . . , K) (4.40)

Using, for example, the trial-and-error procedure of SVM, one can now optimize the basis by the
following stepwise procedure: One generates a basis function by choosing the nonlinear parameters
randomly and solves the eigenvalue problem. The basis functions with parameters that produce the
lowest energy are used in the next calculations, all other can be discarded. This procedure is used until
convergence [95, 98].

The CG method provides an accurate description of the ground and excited states up to A= 6 [12, 84].
Table 4.2 shows the energy of the ground state and some excited state of two-component fermions in the
unitary limit by using the CG method.
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Table 4.2.: The ground-state and excited-state energy of the two-component fermionic system at unitar-
ity calculated using the SVM with CG set as a basis function (table taken from [12])

N Lrel
E00/(ħhω) E01/(ħhω) E02/(ħhω) E10/(ħhω) E20/(ħhω)

3 0 4.682 6.685 8.688 7.637 9.628
3 1 4.275 6.276 8.279 6.868 8.229
4 0 5.028 7.032 9.039 7.464 8.051
5 0 8.03 10.04 12.06 8.83 10.38
5 1 7.53 9.13
6 0 8.48 10.50 12.52 10.44 11.00

4.7 Conclusions

In this chapter, we have presented the IT-NCSM, which allows us to extend NCSM calculations to larger
model spaces by introducing an importance threshold κmin derived using multi-configurational pertur-
bation theory (see section 4.4.1). The basis states with |κν | < κmin are neglected, leading to a smaller
model space dimension and thus lower computational effort. Furthermore, we introduce a reference
threshold Cmin and consider for the construction of the next higher model space Nmax+ 2 only those ba-
sis states of the reference space, which satisfy the condition |Cν | ≥ Cmin (see section 4.4.2). The results
are extrapolated to vanishing thresholds (κmin, Cmin) → 0. The uncertainties of these extrapolation is
the only source of uncertainties in comparison to the results of the full NCSM calculation. In order to
obtain an approximation to the NCSM results as well as the uncertainties we use a posteriori threshold
extrapolation, which can be improved by using the contributions of excluded configurations.

We also introduced in this chapter two additional methods used for the calculation of two-component
fermionic systems at unitarity: the FN-DMC and CG method. Whereas the FN-DMC method has been
successfully applied to systems comprising up to 30 particles, but only yields the ground-state energy,
the CG method can also be used to calculate excited-state energies, but only for smaller systems (A≤ 6).
We use the results calculated using FN-DMC and CG method for comparison in the chapter 5. The full
NCSM (without importance truncation) can only be used for small systems (A≤ 4, A≤ 5 only for small
values of Nmax).
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5 Benchmark Calculations
We present in this chapter the results of our calculations using the IT-NCSM for the ABF and EFT in-
teractions and the NCSM for the Gaussian-shaped potential. More precisely, we compute the energies
of two-component fermionic systems (A ≤ 20) in the unitary limit in a harmonic oscillator (HO) trap.
In order to describe the interaction between the fermions we use three different interactions: the EFT
interaction (see section 3.6), the ABF interaction (see section 3.7) and the Gaussian-shaped potential
(see section 3.8). The matrix elements of the interactions were transformed from relative coordinates
into the single-particle basis using the Talmi-Moshinsky transformation explained in section 3.2.3. We
computed the energies by solving the eigenvalue problem using the Hamiltonian (3.2) with the NCSM
and the IT-NCSM (see chapter 4).

Alhassid, Bertsch et al. [1] as well as Rotureau et al. [77] calculated few-body systems with A =
3 and 4 fermions in a HO trap in the unitary limit. Rotureau et al. used the NCSM while Alhassid,
Bertsch et al. used the CI method (see section 4.1). NCSM calculations for three- and four-fermion
systems can be done in large many-body spaces. In larger systems, however, the model space (and,
consequently, the required memory and computation time) quickly grows too large. This scaling is
mitigated by importance-truncating the many-body space, permitting the computation of larger systems
and higher Nmax values. For A= 3 particles, using the importance-truncated NCSM does not provide any
advantage, since the energies of such small systems can be calculated quickly even for higher values of
Nmax.

We consider fermionic systems with particle number A= A1+A2, with A1 being the number of particles
of the first component (of the one hyperfine state

�

� f1m f1

�

) and A2 of the second component (of the other
hyperfine state

�

� f2m f2

�

) (see chapter 2.3 for more details). We consider only systems with A1 = A2 or
A1 = A2 + 1 and refer to them in terms of the total particle number A = A1 + A2. We performed a
full calculation for the Nmax = 2 and Nmax = 4 spaces and used the results from the latter to build the
importance-truncated space for Nmax = 6; the results obtained in that space were then used to build
the Nmax = 8 space etc. (see section 4.4.2). We calculated the energies of the ground state and the
first excited state at unitarity for A = 4 through A = 10 and for A = 20 particles using the ABF and the
EFT interaction. For our calculations using the Gaussian-shaped potential we used only the NCSM and
performed only calculations for A= 3 particles. Besides the energy, we also evaluated the orbital angular
momentum of each state in order to select the states with the desired value of Lπ.

In the IT-NCSM we discard the physically unimportant states by using the thresholds κmin, Cmin (see
section 4.4.3). For the extrapolations to κmin → 0 as well as quantification of the uncertainties we
used the methods introduced in section 4.4.3. For the NLO correction of the EFT interaction, we use a
perturbation theory approach. We start with the discussion of the errors of the calculation in section 5.1
and explain the extrapolation method and why we discard the errors of the NLO calculations in the
subsequent sections. We analyze the convergence behavior for 3+ 2 and 2+ 2 systems with increasing
relative cutoff for the EFT interaction and increasing regularization parameter for the ABF interaction. In
section 5.2 we consider the consequences for the convergence behavior of the results for Nmax < 2nmax.
We discuss in the next section 5.3 the convergence behavior with Nmax in general for different values of
the relative cutoff of the EFT interaction or the regularization parameter of the ABF interaction.

Besides the truncation parameters nmax for the ABF and EFT interaction and Nmax for the many-body
basis, our calculation depends also on the HO frequency. We discuss the dependency of the results on
Nmax and the HO frequency in section 5.4. With increasing Nmax, the required computational effort
also increases; extrapolations allow us to estimate the results for infinitely large many-body spaces. In
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section 5.5 we discuss the convergence with nmax for the ABF and EFT interaction and in the following
section 5.5 the optimal choice for the relative cutoff.

We study in section 5.6 the energy spectra for small values of A (4 and 5) using the ABF interaction
(see section 3.7) and the EFT interaction (see section 3.6). We performed full NCSM and IT-NCSM
calculations and compare the energies, spectra and dimensions of the full and truncated model spaces.
Furthermore, we present the convergence behavior of the energies of the ground state and the first
excited state for A≤ 20 particles. For values of A larger than 4 or 5, full NCSM calculations are no longer
feasible, and we compare our results for the EFT and ABF interaction to the results obtained with the
fixed node diffusion Monte-Carlo method (FN-DMC) (see section 4.5) or the Correlated Gaussian basis
state expansion (CG) (see section 4.6) published by other groups [12] as a benchmark. The Monte-
Carlo calculations provide results only for the ground-state energy. For A ≤ 6 fermions there are also
results for the ground state and excited states of the fermionic systems at unitarity using CG method (see
section 4.6). Both methods used as interaction a Gaussian-shaped potential. Sections 5.3, 5.5 and 5.7
contain the results of our calculations using the ABF interaction [1] and the EFT interaction [77] for 8
and 20 particles, respectively. Finally, we compare the calculated energies for different particle numbers
A with the results of Monte-Carlo calculations [12] in section 5.8. The results of our calculations using a
Gaussian-shaped potential are discussed in section 5.9.

5.1 Importance Truncation Uncertainties at NLO

As previously explained, we perform the many-body calculation using the IT-NCSM only for the LO,
but calculate the NLO corrections using a perturbation theory approach, treating the corrections as first-
order perturbations. In the following, we discuss the errors caused by the importance truncation in those
higher-order perturbations. For the calculation of higher orders, we use the energy eigenstates which we
obtained in the IT-NCSM calculation at LO. These eigenstates are truncated by an importance measure
κmin. In order to estimate the NLO energies as κmin → 0, we can calculate the NLO correction for all
values of κmin, add the correction to the corresponding LO energies and perform the extrapolation like
for the LO (see section 4.4.3). Since the calculations for each value of κmin are very time-consuming, we
can alternatively calculate only the correction for the smallest value of κmin and add this correction to
the LO energy extrapolated to κmin→ 0.

Figure 5.1(a) shows the ground-state energy calculated using the LO and the NLO of the EFT interac-
tion for Nmax = 10 for 4+ 4 particles. The energy calculated using the full NCSM is shown in this figure
as a red solid line. This figure compares the two different methods described above: In figure 5.1(a) we
calculated the NLO correction to the ground-state energy for a sequence of κmin from 1 ·10−5 to 1 ·10−4

and added these corrections to the corresponding LO values. We then extrapolated the resulting NLO
energy like in the case of the LO (see section 4.4.3 for more details). We used a third-order polynomial
for the extrapolation. The calculated energy is plotted in figure 5.1(a) as a dashed line. We additionally
extrapolated the LO ground-state energy using a third-order polynomial and then added the NLO correc-
tion obtained for the smallest value of κmin (10−5) to all LO results (u). Calculating the NLO correction
for each value of κmin does not lead to a significant improvement of the results; the difference is less
than 0.001%. Note also that the deviation to the exact value calculated using the full NCSM is less than
0.001% for both methods. As a consequence, in the remainder of this thesis we take the NLO corrections
to be independent of κmin and compute it only for the smallest κmin value and add it to the extrapolated
LO value. This is more computationally efficient than calculating the corrections for each value of κmin
used for the LO calculation.

Due to the importance truncation, we neglect all states
�

�φν
�

below the importance threshold |κν | <
κmin in the LO calculation. The importance threshold, however, is determined based on the LO matrix
elements, and no additional information obtained from the NLO calculation is taken into account. The
importance threshold is not reevaluated based on the NLO results, that is, no states are being discarded
and no new states are being included. For different particle numbers, we calculated the LO energies and
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Figure 5.1.: The energy of the ground state (a) as well as the NLO corrections E(1) to the energy of the
ground state (b) with Lπ = 0+ of a two-component 4 + 4 fermion system in the unitary
limit for Nmax = 10. The calculation of the ground-state energy (a) was done using the EFT
interaction with corrections up to the NLO. We used nmax = 4 as a two-body cutoff. For (a)
we used Cmin = 0.0001 and a sequence of κmin from 1 · 10−5 to 1 · 10−4 computing the NLO
corrections for each value of κmin (f) or only for the smallest value 1 ·10−5 (u). For the NLO
correction (b) we used κmin = 3 · 10−5 (u), and a sequence of Cmin from 1 · 10−4 to 5 · 10−4.
The energy obtained by a full NCSM calculation is shown as a solid horizontal line.

the NLO corrections using both the IT-NCSM and the full NCSM and compared the results. Although
we do not consider the NLO corrections in the IT-NCSM, the difference between the two sets of results
is significantly less than 1% in all cases, even for larger spaces. For instance, for eight fermions for
Nmax = 8, we obtain E(1) = 13.221145ħhω using the full NCSM and E(1) = 13.23395ħhω using the
IT-NCSM; the difference is only about 0.097%.

We also analyzed the influence of the reference threshold Cmin. For this purpose, we calculated the
NLO corrections for different values of Cmin (1 · 10−4 to 5 · 10−4) for κmin = 3 · 10−5 (u), and plotted
the NLO corrections as a function of Cmin. We did not use the smallest value κmin = 1 · 10−5 since for
this value we got almost identical results in the error bars for any value of Cmin. Figure 5.1(b) shows
the NLO corrections to the ground-state energy for the 4+ 4 system at unitarity for Nmax = 10. We also
calculated the NLO correction using the full NCSM; this value is shown in the figure as a solid line. The
calculated energies for different values of κmin show a dependency on Cmin, but even for the largest Cmin
the difference to the value calculated with the full NCSM is much smaller than 0.01%. As expected for
Cmin,κmin→ 0 the calculated value approaches the value calculated used the full NCSM. Therefore, like
for the LO calculation we can consider the reference threshold Cmin small enough not to influence the
results.

5.2 Relative Cutoff and the Truncation Parameter Nmax

The two-body interaction is calculated in relative coordinates with the maximum relative orbital quantum
number nmax (see section 3.5 and eq. (3.38)). The ABF interaction uses also a regularization parameter
nmax. The interaction matrix elements with erel > 2nmax are set to zero (see section 3.5), and are not
included in the many-body calculation. Hence, each calculation is dependent on the relative cutoff (in
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Figure 5.2.: The ground-state energy of a 2+ 1 (a) and 3+ 2 (b) system in the unitary limit with Lπ = 1−

with increasing Nmax. The calculation was done using the EFT interaction. We used nmax = 4
(a) and nmax = 7 (b) as a two-body cutoff. For IT-NCSM calculations we used Cmin = 0.0001
(a), and 0.0002 (b) and a sequence of κmin from 1 ·10−5 to 1 ·10−4 (a) and 3 ·10−5 to 1 ·10−4

(b). We calculated both the LO (u) and NLO (f) parts of the EFT interaction.

case of the EFT interaction) or the regularization parameter (in case of the ABF interaction) and the
truncation parameter Nmax of the many-body system.

We consider the convergence with Nmax for constant nmax. Figure 5.2 shows the energy of the ground
state for 2+1 (a) and 3+2 (b) particles with increasing many-body cutoff Nmax at a constant interaction
cutoff nmax = 4 (a) and nmax = 5 (b). One can see a strong dependence of the calculated energy on Nmax
for Nmax < 2nmax in figure 5.2, especially for the three-particle system. For Nmax ≥ 2nmax, the changes in
energy from one value of Nmax to the next are drastically reduced and the result converges.

As already mentioned, for the Fermi gas at unitarity we consider only s-wave scattering and only
two-body interaction. We also use the regularisation parameter nmax for the calculation of the matrix
elements of the interaction in relative coordinates. Therefore, the maximum energy quantum number
in relative basis emax,rel = 2nmax is always even. We transform the matrix elements of the interaction
into single-particle coordinates with maximum energy quantum number emax in the single-particle basis.
For emax = emax,rel all matrix elements from the relative basis should be included in the single-particle
basis. We construct for our IT-NCSM calculations the A-body model space using Nmax-truncation (see
section 4.1). The maximum number of HO quanta in the eigenstates of the Hamiltonian H used to
construct the many-body basis for A particles is eA,max = eA,min+Nmax, where eA,min is the energy quantum
number of the lowest Pauli-allowed many-body basis state (with Nmax = 0, for example, e3,min = 1 and
e5,min = 3) and Nmax is the maximum excitation energy above Nmax = 0. Since the parity of the state is
conserved, we can choose Nmax from the set of positive even numbers.

We decouple the interaction cutoff in relative coordinates from those of the many-body system [1, 90].
In an NCSM calculation one chooses Nmax of the many-body system such that the many-body space
contains the whole relative space with the relative cutoff emax,rel. Therefore, for the Nmax truncation, the
maximum energy quantum number of the many-body state should be at least equal or larger than the
energy quantum number of the relative system. Hence, for the extrapolation to the limit Nmax→∞, we
use only data points with eA,max ≥ 2nmax.

For the emax truncation, all single particle states with single-particle energy ei ≤ emax are used for the
construction of the many-body state, and hence eA;max = Aemax. The difference to the emax truncation is
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Figure 5.3.: The energy of the ground state with Lπ = 1− of an 3+2 fermion system calculated using the
LO and NLO of the EFT interaction and the ABF interaction as a function of Nmax for nmax = 5
(a) and nmax = 6 (b). The blue solid circles (u) correspond to the LO , the red solid diamonds
(f) to the NLO EFT, the green triangles (q) to the ABF interaction. The violet dashed line is
the value of CG method [12].

discussed in section 4.1 and illustrated in figure 4.1, which shows that the many-body space contains the
whole relative space at least for emax ≥ emax,rel/2= nmax.

5.3 Convergence with Nmax for different nmax

In this section we analyze the convergence with increasing Nmax for five- (3+2) and eight-particle (4+4)
systems at unitarity. For this purpose we calculate the ground-state energy for this system for different
cutoff values for the EFT interaction as well as for different regularization parameters nmax for the ABF
interaction using the IT-NCSM.

For a five-particle system we use nmax = 5 and 6 and a sequence of importance thresholds κmin from
3·10−5 to 1·10−4, and extrapolate the results of the eigenvalue problem to the limit κmin→ 0 as proposed
by Roth [71] (see chapter 4.4.3). Figure 5.3 shows the ground-state energy as a function of Nmax for
nmax = 5 and nmax = 6 for EFT and ABF interaction. The ABF interaction converges slower than the EFT
interaction as Nmax increases. Comparing both figures, one can see that with increasing nmax one needs
higher Nmax to achieve convergence. The calculated values are in the vicinity of the value from [12]
calculated using CG (the dashed line in the figure). Blume et al. used a variational approach (FN-DMC
/ CG) for the calculation, which provides an upper bound for the energies / energy spectra. We use for
our calculation ab initio methods (NCSM or IT-NCSM). Therefore, we expect our results be more exact
than the ones calculated using variational methods.

Next, we consider a system consisting of 4 + 4 fermions in the unitary limit in a HO trap. For this
particle number, we calculate the energy for the cutoff or regularization parameter nmax = 2, 3,4, 5,6, 7.
We used a sequence of importance thresholds from κmin = 5·10−5 to κmin = 1.5·10−4. Figures 5.4 (a),
(c), and (e) and 5.5 (a), (c), and (e) show the ground-state energies as a function of Nmax for the relative
cutoffs nmax = 2, 3,4,5, 6,7 for a system consisting of 4+ 4 two-component fermions. The ground state
of the 4+ 4-fermions system has L = 0 and positive parity.

For the EFT interaction we considered both the LO and NLO terms. Furthermore, figures 5.4 and 5.5
also shows results for the ABF interaction. The energies are only plotted starting from Nmax = 2nmax
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Figure 5.4.: The energy of the ground state and the dimension of the many-body space with Lπ = 0+

of an 4 + 4-fermion system calculated using the LO and NLO EFT interaction and the ABF
interaction as a function of Nmax for different two-body cutoffs nmax = 2,3 and 4. The blue
solid circles (u) correspond to the LO and the red solid diamonds (f) to the NLO EFT, the
green triangles (q) to the ABF interaction.
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Figure 5.5.: The energy of the ground state and the dimension of the many-body space with Lπ = 0+

of an 4 + 4-fermion system calculated using the LO and NLO EFT interaction and the ABF
interaction as a function of Nmax for different two-body cutoffs nmax = 5, 6 and 7. The blue
solid circles (u) correspond to the LO and the red solid diamonds (f) to the NLO EFT, the
green triangles (q) to the ABF interaction.
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(see section 5.2 for a justification). The errors introduced by the importance truncation (due to the
extrapolation to κmin→ 0) are shown as error bars, which can only be seen well for the ABF interaction
for nmax = 4 because the errors are too small otherwise. For the results in figures 5.4 and 5.5 we
only use simple extrapolation methods (see section 4.4.3) without taking into account the second-order
contributions of the discarded states.

For nmax = 2, the energy is converged for Nmax ≥ 14; for nmax = 3, this is the case for Nmax ≥ 16, for
nmax = 3 for Nmax ≥ 18 and for nmax = 5 for Nmax ≥ 20, but only for EFT. Since we did not perform
calculations with Nmax > 22, the energy is not converged for nmax = 6 and nmax = 7. The error grows
larger as nmax increases: While convergence is achieved at Nmax = 18 for nmax = 4, calculations at higher
Nmax are required to achieve the convergence at nmax = 7, see figures 5.4 and 5.5. For the EFT we are
in the vicinity of the convergence for nmax = 7; for the ABF interaction we would need a larger value
of Nmax. The same is true for the ABF interaction for nmax = 6. Therefore, we only extrapolated the
energies calculated using the ABF interaction up to nmax = 5 to the limit Nmax→∞.

Another observation is that the converged results for the NLO EFT and the ABF interaction are not
identical (see nmax = 2 or 4). Furthermore, for nmax = 5 the result obtained using the ABF interaction is
smaller than the one obtained using the NLO of the EFT interaction. This is due to the fact that we only
used the NLO, but no higher-order corrections to the EFT. Using higher order would improve the result.
Also using larger values of nmax would improve the result both for the EFT and the ABF interaction.
Using either interaction should yield the same result as nmax→∞.

In general the EFT converges faster than the energy calculated with the ABF interaction. Once conver-
gence has been achieved, the importance truncation cannot find any important new state (which would
change the energy — but then it would not be converged in the first place), so the model-space dimen-
sion saturates (see figures 5.4 and 5.5). To understand this we have to consider the calculation of the
matrix elements in relative coordinates for EFT and ABF interaction chapter 3. First we set the matrix
elements with n > nmax to zero. We have to transform these matrix elements in relative coordinates
into single-particle coordinates. With increasing principal quantum number of the single-particle basis,
the contribution of these nonzero matrix elements decreases. For both interactions, the matrix elements
are only nonzero for l = m = 0 (in relative coordinates). With increasing nmax, the ratio of nonzero to
zero matrix elements in relative coordinates for l > 0 decreases. Also the contribution of these nonzero
matrix elements decreases in single particle coordinates.

Figures 5.4 (b), (d), and (f) and 5.5 (b), (d), and (f) show the dimension of the many-body space
depending on Nmax for the relative cutoffs nmax = 2,3, 4,5, 6,7 for a system consisting of 4 + 4 two-
component fermions. The dimension is shown logarithmically. The dimension of the many-body space
grows with increasing nmax, but for equal κmin and Cmin, the dimension of the many-body space is
larger for the ABF interaction. The ABF interaction also requires a longer computation time on an
identical computer configuration. Furthermore, the ABF interaction reaches the point from which on
the dimension stays nearly constant at a larger value of nmax than the EFT interaction. This is why
calculations using the ABF interaction take longer on the same computer than calculations using the
EFT. On the other hand, one needs to take into account higher orders of the EFT interaction in order
to achieve the same degree of accuracy as the ABF interaction. Furthermore the NLO corrections to
the energy calculated using the EFT interaction introduce additional errors (see chapter 5.1). However,
these are negligible in comparison to those introduced by the extrapolation to Nmax→∞.

5.4 The Ultraviolet and Infrared Cutoffs and Extrapolation

We consider systems placed in a trap and use the Harmonic Oscillator (HO) basis as a trapping potential.
As a consequence, the solution depends explicitly on the trap frequency. In nuclear physics, where the
systems are self bound, the HO basis is widely used for ab initio methods. Using the HO basis has several
advantages; for instance, it simplifies the implementation of the symmetries of the many-body system.
The limitation of the available computational resources requires truncation of the HO basis before the
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observables are fully converged, and the results depend on the basis parameters Nmax and ħhω and need
to be extrapolated to infinite basis size [30]. The NCSM using a HO basis is a variational method using
two truncation parameters, Nmax and ħhω. We want our computed observables to be independent of these
two parameters, which is computationally difficult to achieve. Extrapolation from smaller model spaces
will extend the reach of any computational method. The parameters Nmax and ħhω define the UV and IR
momentum scales, respectively, and EFT-based extrapolation methods have been devised for removing
them. In recent works [30, 59], a sophisticated and theoretically motivated extrapolation method for
the extrapolation to the infrared limit was proposed in a framework inspired by effective field theory
for untrapped nucleons [30]. In this section we introduce the UV and IR scale. Since the calculated
energies of our systems explicitly depend on the trap frequency, we only have one parameter, Nmax, for
our calculations; hence we only introduce the extrapolation method for infinite basis size.

In the HO basis we can identify a maximum momentum cutoff as an ultraviolet momentum scale

ΛUV ≡
p

2(emax+ 3/2)
ħh

aHO
(5.1)

associated with the energy of the highest HO level, with the maximum single-particle energy quantum
number emax and the oscillator length aHO [30].

Furthermore several infrared (IR) scales have been introduced [23, 30]. One of the definitions for the
IR scale results from the fact that the minimum allowed momentum difference between single-particle
orbitals is

λ=
p

mnħhω=
ħh

aHO
. (5.2)

In the second definition the radius of the system has to be smaller than the radial extent of the highest
HO level [30, 31]

L0 =
p

2(emax+ 3/2)aHO. (5.3)

This corresponds to the definition of the IR scale as the infrared momentum [23]

ΛIR =

È

mnħhω
(emax+ 3/2)

=
ħh

p

emax+ 3/2aHO

=
λ

p

emax+ 3/2
. (5.4)

This can be derived from a consideration of the spatial extent of the single-particle one-dimensional HO
functions [55]. For the nuclei a very accurate approximation for the radial extent of the highest HO level
L was found by [31].

In the case of self-bound nuclei, the dependence of the HO frequency is given through the use of a finite
oscillator basis in the NCSM. Examples and the behavior of the calculated energy and other observables
of a nuclear system at different HO frequencies and Nmax and, therefore, different values of the IR and
UV cutoffs are given, for instance, in the works of Roth and Calci [73], Coon and Avetian [23] or Kruse
[55]. In the case of untrapped nuclei in nuclear physics, one increases Nmax until convergence at an
optimal value of the HO frequency ω, which provides the minimum energy in the largest model space.

Ultra-cold fermions in the unitary limit are not self-bound systems; they are placed in a trap, which
influences the long-range behavior of the wave functions and thus the energy of the state [90]. The
dependence on the trap frequency is physically motivated and hence explicit, contrary to self-bound nu-
clear systems, where the dependence comes from using the HO basis in an NCSM calculation. Therefore,
we cannot use the IR cutoff in the calculations for trapped ultra-cold gases. As already mentioned, the
definition of the IR scale, eq. (5.4), is not applicable for ultra-cold systems. Therefore, the IR scale and
the theoretically founded formula cannot be directly applied to Fermi gases.
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For the extrapolation to Nmax→∞, the empirical formula

E(Nmax,ħhω) = E∞+ A0e
−2
�

ΛUV
A1

�2

(5.5)

can be used where E∞, A0 and A1 are fit parameters. The ultraviolet momentum scale is given by
eq. (5.1), where the single-particle energy quantum number in the basis emax corresponds for example
emax = Nmax + 1 for p-schell nuclei and for up to 4 + 4 fermions at unitarity. This empirical formula
works quite well [30, p. 5] and is used in nuclear physics many body calculation with the NCSM for the
extrapolation to the limit Nmax→∞ [23, 55, 73].

In the many-body calculations for ultra-cold Fermi gases at unitarity, also an another empirical method
was used. In reference [1, 33] the authors estimated the energy for a certain regularisation parameter
of the interaction nmax for infinite basis size using quadratic polynomial by extrapolating logaritmically
the energy difference

∆Eemax
≡ Eemax−1− Eemax

, (5.6)

where emax is the maximum energy quantum number of the emax-truncation used in [1, 33]. Alhassid et
al. found [1] that the convergence of the energy difference for emax truncation should be faster than
exponential. They used extrapolation function of the form

∆E = 10A+Bemax+Ce2
max (5.7)

for the extrapolation in emax. These differences were then summed up in order to calculate the energy
for emax→∞:

Eemax→∞ = Eemax
+∆Eemax+1+∆Eemax+2+ . . .

≈ Eemax
+ 10 f (emax+1)+ 10 f (emax+2)+ . . . (5.8)

where f is the interpolating function f (nmax) = A+ Bnmax+ Cn2
max (with C < 0).

The extrapolation to the limit emax → ∞ allows estimating the energy (or other observables) for
systems for which it is not possible to achieve convergence due to the size of the model space and the
required computational effort. We replaced emax by Nmax since we used NCSM and, therefore, the Nmax-
tunctation. We used this kind of extrapolation for both the EFT and ABF interactions in those cases,
where our calculations did not converge but the size of the model space did not permit calculations for
larger Nmax.

For the extrapolation as Nmax→∞, we used the four or five largest values of Nmax, since they are the
closest to convergence. We do not assign different weights to the different data points. Furthermore we
only used those Nmax with Nmax ≥ emax,rel = 2nmax, where emax is the number of quanta of the highest
energy and nmax is the maximum radial quantum number in relative coordinates (the relative cutoff,
see chapter 5.2). This is difficult for large values of nmax and large particle numbers A, since the model
space and the required computational effort grow with both, Nmax and A and the calculations become
inrtactable for large model spaces. In order to estimate the extrapolation error, we use the same value of
Nmax as for the extrapolation itself, and omit the points corresponding to the largest value of Nmax. When
doing so, one must make sure that enough points remain in order to perform the extrapolation since the
difference∆E(N) = E(N)− E(N−1) of the energy is being extrapolated and, therefore, one point less is
available. This is particularly important for the extrapolation method used by Alhassid et al. (eq. (5.8)).

We now compare the two extrapolation methods introduced in this section (the empirical formula (5.5)
and the extrapolation formula (5.8) used by Alhassid) for an eight-particle (4 + 4) system. For this
purpose we used the NLO of the EFT interaction and the ABF interaction. Figure 5.6 shows the result
of extrapolations to Nmax → ∞ for the ground-state energy using different relative cutoffs of the EFT
interaction and different regularization parameter of the ABF interaction. Figure 5.6 (a) shows the
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Figure 5.6.: The extrapolated energy of the ground state of a eight-particle fermionic system with Lπ =
0+ in the unitary limit as a function of nmax. The calculation was done using (a) the EFT
(with NLO corrections) and (b) the ABF interaction. For IT-NCSM calculations we use κmin =
0.0005. The results for the empirical formula or UV cutoff (eq. (5.5)) are shown as (u) and
the extrapolation used by Alhassid (eq. (5.8)) as (f).

energies calculated using the NLO correction of the EFT and figure 5.6 (b) shows the energies calculated
using the ABF interaction. The dashed line in 5.6 (a) shows the ground-state energy of 8 particles at
unitarity calculated using the FN-DMC. We performed for each value of nmax a sequence of IT-NCSM
calculations.

For each calculation with a given value of nmax and Nmax, we used the threshold extrapolation method
described in section 4.4.3 with the a posteriori correction to the energies in order to extrapolate the
energy to vanishing importance threshold κmin → 0. Furthermore, we extrapolated the energy for each
value of nmax to Nmax→∞ as described previously using the two extrapolation methods described above.

For the EFT interaction, we used values of nmax = 2 to 7 and for the ABF interaction, we used values of
nmax = 2 to 5. The calculated energies are shown in figures 5.4 and 5.5 as a function of Nmax. Even for the
largest relative cutoff nmax = 7 we calculated only results for Nmax ≤ 22. The values obtained for the ABF
interaction for nmax = 6 and nmax = 7 converged too slowly to perform the extrapolation to Nmax →∞.
For nmax = 2, the results converge for both interactions and for the EFT interaction nmax = 3 also yields
converging results. For large values of Nmax, the differences between the energies calculated for one value
of Nmax and the next are smaller than the errors of the IT truncation (see section 4.4.3), which itself are
very small in magnitude. The extrapolated ground-state energy converges faster for smaller values nmax
than for larger values, but the extrapolation errors are also larger in magnitude in the former case. The
errors of the extrapolation to κmin → 0 are smaller than those of the extrapolation to Nmax →∞; only
the latter are shown in figure 5.6 and grow larger as nmax increases. For the estimation of the errors of
the extrapolation to Nmax → ∞ we discard the last largest value of Nmax and fit the function again to
the data points. With increasing nmax the higher-order contributions of the interaction get smaller and,
therefore, the calculated energy is closer to the exact energy (see section 3.5). The anomalous behavior
shown in figure 5.6 (b) for the ABF interaction is because we performed calculations using nmax = 3 only
up to Nmax = 18 due to restrictions on the available computing resources, but performed calculations
using nmax = 4 up to Nmax = 22. The second value is obviously closer to the limit of an infinitely large
space.

The extrapolated values do not yet converge using Alhassid’s extrapolation method, neither for the
EFT nor for the ABF interaction. As can be seen in figure 5.6, Alhassid’s method yields almost identical
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results for small values of nmax for which there are more values for Nmax for which calculations are
feasible and meaningful (we use only values with Nmax > 2nmax and Nmax is limited from above by the
available computing power; the more values we have, the closer they are to the exact result and the
better the extrapolation becomes). For larger values of nmax we have too few data points and the error
bars grow large and the energies extrapolated using this method are likely too high. However, Alhassid
et al. used the CI method to calculate the energy and used the maximum single-particle energy emax as a
cutoff (see chapter 4.1), which may lead to a different convergence behavior with increasing emax and,
consequently, increasing basis dimension. Using Alhassid’s extrapolation method, both the extrapolated
values and the extrapolation errors actually increase for large values of nmax. The same is true for
the ABF interaction using the Alhassid’s extrapolation method. As seen in figure 5.6 (a) for the EFT
interaction, the extrapolation using the empirical exponential function exhibits convergent behavior as
nmax increases. We extrapolate the results to nmax→∞ for EFT interaction using the empirical formula
in the next section. Since the errors are still too large, performing calculations for larger values of nmax
is notfeasible due to the computational effort that would be required.

The ground-state energy calculated using the FN-DMC method for an eight-particle system (4+ 4) is
(12.58± 0.03)ħhω (see [12] or section 4.5). The value calculated using the EFT interaction for nmax = 7
and extrapolated using the empirical formula ((12.48± 0.04)ħhω) differs by less than 1%. When using
Alhassid’s extrapolation, we obtain the same value ((12.58± 0.06)ħhω) as calculated by the FN-DMC,
which is likely too high. Since we did not achieve convergence using Alhassid’s extrapolation at nmax = 7,
the next value at nmax = 8 is higher than calculated using the FN-DMC method. These extrapolated
values only contain the NLO corrections and neither take higher-order corrections nor the behavior as
nmax →∞ into account; this may cause additional errors, see section 3.6. Considering this, our results
agree well with those published by other groups. In order to achieve a more accurate result, we would
need to consider the N2LO terms or move to higher values of Nmax and nmax. For the ABF interaction,
the differences are larger since we have not been able to perform calculations with high values of Nmax
due to limited computing resources; the difference for nmax = 5 is about 2.2% when extrapolating using
Alhassid’s function ((12.30±0.03)ħhω) and about 2.6% when extrapolating using the empirical function
((12.24± 0.03)ħhω). To the best of our knowledge, no results for the energy of the first excited state for
N > 6 particles have been published yet with which we could compare our results.

In the remainder of this chapter, we use the exponential function (5.5) for the extrapolation for ultra-
cold Fermi gases. The extrapolation function according to Alhassid, Bertsch et al. is just as empirical and
not physically motivated. The exponential function is the better choice, as it asymptotically approaches
the reference value as nmax → ∞. Since we are close to convergence (by virtue of the IT-NCSM), this
extrapolation method is sufficient (see section 5.4).

5.5 Convergence with nmax

In order to eliminate the dependency of the calculated observables on the relative cutoff nmax and the
truncation parameter Nmax, we consider first the convergence with Nmax for constant nmax and extrap-
olate to Nmax → ∞. The calculated observables depend now only on the interaction cutoff nmax. To
eliminate this dependency, we have to consider convergence of the observable with increasing nmax. We
calculate the ground-state and first-excited state energies for five (3+ 2) and eight (4+ 4) fermions at
unitarity for different values of nmax and increasing values of Nmax using the IT-NCSM and the EFT and
ABF interactions. We extrapolated the results to Nmax→∞ for 2≤ nmax ≤ 7 for the EFT interaction and
for 2≤ nmax ≤ 6 for the ABF interaction. Figure 5.7 (a) shows the extrapolated ground-state energies of
the five-particle system at unitarity for different values of nmax with error bars from the Nmax extrapola-
tion. The LO value for the ground-state energy increases strictly monotonically and approaches a certain
value but is not fully converged. The energy of the NLO seems to converge faster and is nearly converged
at nmax = 7.
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Figure 5.7.: The extrapolated energy of the ground state (a) and first excited state (b) of an 3+2 fermion
system with Lπ = 1−, calculated using the LO and NLO of the EFT interaction and the ABF
interaction as a function of nmax. The blue solid circles (u) correspond to the LO and the red
solid diamonds (f) to the NLO EFT, the green triangles (q) to the ABF interaction.

As already mentioned we would need to perform calculations for the ABF interaction using higher
values of Nmax than for the EFT interaction to achieve a better extrapolation for any given nmax, which
would require even more computation time on the same computer equipment. Therefore, we can only
calculate the energy for the ABF interaction up to nmax = 6; the extrapolation uncertainties are too large
for nmax = 7. The extrapolation errors for nmax = 6 are larger for the ABF interaction than for the EFT
interaction (both LO and NLO).

Figure 5.7 (b) shows the extrapolated first excited-state energy. The first excited-state energies for both
interactions show slower convergence than for the ground state. We need at least a value of nmax which
is higher by 1 than for the ground-state calculations in order to obtain the same degree of convergence.
That can be explained by the choice of the LO parameter C (0)0 (see section 3.6.1): We fix the constant C (0)0
so that the ground-state energy of a two-particle system at unitarity is reproduced exactly. The energy
of the first-excited state is then only an approximation and is corrected at the NLO. The choice of the
constants also affects the energy spectrum of systems with more than two particles.

The energies calculated using the EFT interaction show a “kink” at nmax = 3. The ground-state energies
show a similar kink at nmax = 2 which is not visible in figure 5.7 since the value for nmax = 1 is not shown.
At such low values of nmax, important matrix elements are removed from the calculation which leads to
this behavior.

We can use the extrapolation method introduced in [1, 33] to extrapolate the energy to nmax → ∞
(see section 5.4 for more details). This method yields the extrapolated value for the ground-state energy
calculated using the EFT interaction up to NLO as E(nmax→∞) = (7.49±0.01)ħhω, hence the deviation
to the value calculated using CG method (7.53ħhω, see section 4.6) is only 0.5%, but also the deviation of
the value at nmax = 4 is very low (only 0.5%). We can also extrapolate the value for the first excited-state
energy for a five-particle system at unitarity with Lπ = 1−, again using the NLO of the EFT interaction.
The value is E(nmax→∞) = (8.97± 0.01)ħhω, hence the deviation to the value calculated using the CG
approach (9.13ħhω) is 1.7% and for nmax = 4 about 2%. For the first excited state, the difference between
the result for nmax = 4 and the extrapolated result as nmax→∞ is about 0.5%. This means that nmax = 4
is a relatively good (and not too computationally expensive) choice for the two-body cutoff, at least for
the p-shell. We will discuss the selection of nmax further in section 5.5.

Figure 5.8 shows the energy of the ground state and the first excited state of an eight-particle system at
unitarity for different relative cutoffs nmax calculated with the EFT and ABF interactions. We calculated
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Figure 5.8.: The ground-state energy with Lπ = 0+ (a) and the first-excited state energy (b) of the 4+ 4
fermion system at unitarity calculated using the EFT interaction (up to NLO corrections) as
well as the ABF interaction as a function of the two-body cutoff nmax. The notation is the
same as in figure 5.4: the blue circles (u) correspond to the LO results, the red solid diamonds
(f) to the NLO and the green triangles (q) to the ABF interaction.

the energy as follows: We performed IT-NCSM calculations for each value of nmax, for a sequence of
increasing values for Nmax, with a sequence of values for κmin between 5 ·10−5 and 15 ·10−5 and Cmin =
5 · 10−4. In order to calculate the energies, we extrapolated the results to κmin→ 0 and combined them
with the information obtained from the second-order corrections of the energy (see chapter 4.4.3). We
can now extrapolate the energies to an infinite basis size, that is, Nmax→∞, for each value of nmax (see
chapter 5.4 for more details).

While for the EFT interaction and nmax = 2 the energy is converged for Nmax ≥ 14, we have not nearly
reached convergence for the ABF interaction and nmax = 7 (see figures 5.4 5.5). In general, for larger
values of nmax, convergence is reached at larger values of Nmax (see section 5.3). For instance, for the
EFT interaction the energy converges for nmax = 2 and nmax = 3; therefore, the error bars shown in
figure 5.8 show the errors caused by the importance truncation (κmin and Cmin). We used the empirical
formula, which is also used in nuclear physics, for the extrapolation to Nmax→∞ (see chapter 5.4).

One can see that the ground-state energy asymptotically approaches some value as nmax increases, but
do not yet converge to that value within the range of nmax used in our calculations. The convergence
of the first-excited state is even slower (like for the five-particle system). We can explain the slower
converge behavior (or better, the absence of the convergence) for the first-excited state (like for the five-
particle system above) with the choice of the LO and NLO constants. Note that, as nmax increases, the
errors grow larger (the farther from convergence the calculated energy, the larger the errors obviously
are). The “kink” in the plotted energy in figure 5.8 for the ABF interaction for nmax = 3 is due to the fact
that, in order to extrapolate to Nmax→∞, we performed calculations up to Nmax = 18 for nmax = 3, but
up to Nmax = 22 for nmax = 4. Therefore, the value for nmax = 4 is closer to the exact value. The errors
are too large to discuss the convergence behavior as nmax→∞.

Figure 5.9 shows the difference in the energy ∆E(nmax) = E(nmax−1) − E(nmax) with increasing nmax for
the EFT interaction for the ground state and first-excited state. Here we used the NLO correction of the
EFT and the simple extrapolation scheme (5.5) to extrapolate the energy to Nmax →∞. Our results are
not sufficiently converged to yield precise values, but we can extrapolate the energy values for the NLO
of the EFT interaction. For nmax →∞, we use an extrapolation function similar to the one used for the
Alhassid method with log10(∆E) = A+ Bnmax + Cn2

max. For the extrapolation we do not consider the
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Figure 5.9.: The differences in the extrapolated energy of the ground state (u) and first exited state (f)
of a eight-particle fermionic system with Lπ = 0+ in the unitary limit as a function of nmax.
The calculations were performed using the NLO corrections to the EFT interaction.

errors of the Nmax extrapolation. We estimate the error like for the Nmax extrapolation by omitting the
last point with largest nmax. The extrapolated value is (12.504 ± 0.014)ħhω, in good agreement with
the value of FN-DMC method (12.58 ± 0.03)ħhω (see [12] or section 4.5). Since the ABF interaction
converges slower than the EFT, still fewer data points are available to perform the extrapolation than in
the case of the EFT. Consequently, we do not observe convergence for the ABF interaction.

In the available literature, an extrapolation to nmax→∞ has only been performed by Alhassid, Bertsch
and Fang [1] and by Gilbreth and Alhassid [33], and only for three or four particles in the unitary limit.
They fitted a function of the form ∝ n−αmax to log(∆E) with α between 0.5 and 1.5. Figure 5.10 was
taken from [1]. Figure 5.10 (a) shows the ground-state energy of a three-particle fermionic system at
unitarity as a function of the relative cutoff q = nmax. Figure 5.10 (b) shows the error in the energy
as a function of q in a logarithmic scale. Here, the renormalized contact interaction (open circles) and
the ABF interaction (solid circles) were used. The energies are monotonically increasing and the ABF
interaction shows fast convergence to the exact value.

As already mentioned we can remove the dependence of the calculated observables on nmax and hence
the resulting errors by extrapolating to nmax→∞. We have seen in this chapter that this works very well
for small particle numbers. The ground-state energy for five particles in figure 5.7 shows convergence
for both the EFT and ABF interactions. As expected the NLO corrections of the EFT interaction show
better convergence than the LO of the EFT interaction alone. This behavior was already observed by
other groups (such as Rotureau et al. [77]) for three particles. With increasing particle number, the
error of the calculation increases, since we cannot calculate larger Nmax because the dimension of the
many-body space increases as well. Consequently, we have fewer values of Nmax available which we
can use for the extrapolation Nmax →∞ (see also section 5.3). These errors make the extrapolation to
nmax→∞ difficult, so we can see a good convergence behavior for five particles (figure 5.7) but not for
eight (figure 5.8). These difficulties put the extrapolation of nmax→∞ beyond our present capabilities.
We hence have to choose a fixed nmax that is as large as possible but still computationally feasible. We
discuss this in the next section.
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Figure 5.10.: Ground state energy of a three-particle fermionic system at unitarity with Lπ = 1− as a
function of the relative cutoff q = nmax (a). The dotted line is the exact energy, solid circles
correspond to the ABF interaction and open circles to the renormalized contact interaction.
Figure (b) shows the errors to the exact energy |δE(q)|= |E(q)− E(∞)|. The figure was taken
from [1].

In this section we discuss the choice of the relative cutoff nmax. To this end, we use the results of
the calculation for 8 particles at unitarity (see section 5.3 and 5.5). For the energy of the first excited
state using the ABF interaction, the relative cutoff nmax = 4 is the last one with small error bars of the
extrapolation to Nmax → ∞ (see figure 5.8). If we consider the ground-state energy using the ABF in-
teraction, the relative cutoff nmax = 5 is the highest we can choose because the next one (nmax = 6)
does not converge up to Nmax = 22, the largest value of Nmax used in the present thesis. The energy
calculated using the EFT interaction converges for all calculated nmax (see figure 5.8), but nmax = 5 is
the last one with small error bars. With increasing nmax we need higher values of Nmax to get near con-
vergence, so for the ground-state energy calculated using the EFT interaction we are near convergence
at Nmax ≈ 12 for nmax = 2 and for nmax = 4 it is Nmax ≈ 16 (see figure 5.8). Furthermore, for the
extrapolation to Nmax → ∞ we can only use Nmax ≥ 2nmax. Since we do not consider the convergence
behavior for nmax → ∞, we have to choose one nmax to do the calculation for all considered particle
numbers. The difference between the ground-state energies calculated using the NLO corrections of the
EFT interaction for nmax = 4 and 5 is only 0.6 percent. The deviation of the ground-state energy for
nmax = 4 calculated using the NLO corrections to the results calculated using the FN-DMC method is 2
percent. The additional computational effort required for nmax = 5 compared to nmax = 4 is not justified
by a minor improvement of the results. Therefore, we use a relative cutoff of nmax = 4 for the calculation
presented in the remainder of this thesis.

5.6 Comparison between the IT-NCSM and the Full NCSM

In this section we compare the results of the importance-truncated calculation with the calculation in
the full-space NCSM for four- and five-fermion two-component systems as a benchmark in order to
demonstrate the robustness of the importance truncation scheme. For four-fermion systems, full NCSM
calculations are possible up to very large Nmax spaces, so that convergence can be achieved. We per-
formed calculations for four- and five-fermion systems using both the ABF and the EFT interaction. For
both the full NCSM and the IT-NCSM, we use only the leading order (LO, see section 3.6.1) and the
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Figure 5.11.: The energy of the ground state with Lπ = 0+ of a A = 4 Fermi system in the unitary limit
with increasing Nmax (a) and the dimension of the model space (b). The calculation was
done using the EFT interaction. We use nmax = 4 as a two-body cutoff. The result of the
IT-NCSM LO calculations are blue solid circles (u), NLO red solid diamonds (f). The full
NCSM results are shown as crosses at LO (+) and NLO (+).

next-to-leading order (NLO, see section 3.6.2) for calculating the matrix elements of the EFT interaction.
The NLO terms are treated as first-order perturbations of the LO terms.

We use a cutoff of nmax = 4 for the two-body system for both, the full and importance-truncated
calculations of four- and five-fermion systems for the EFT interaction and a regularization parameter
nmax = 4 of the relative Hamiltonian for the ABF interaction. For four-particle fermionic systems, we
use the reference threshold Cmin = 1 ·10−4 (see section 4.4) for each iteration step. For calculation of
subsequent Nmax, we used a sequence of importance thresholds from κmin = 10−5 to κmin = 10−4 and
extrapolated the results of the eigenvalue problem to the limit κmin → 0 (see section 4.4). Calculations
for five-particle systems were performed with a sequence of importance thresholds from κmin = 3·10−5

to κmin = 1·10−4 and we used the reference threshold Cmin = 2·10−4.
The extrapolation of the ground-state energy to κmin → 0 is performed as explained in section 4.4.3

using the simpler estimation method, where we fit a pth-order polynomial throughout the calculated
energy for all κmin. We use here p = 3. For both particle numbers we use the empirical formula (5.5) for
the extrapolation to Nmax →∞. We used only datapoints with Nmax ≥ 2nmax for the extrapolation (see
section 5.2).

Figure 5.11(a) shows the convergence of the ground-state energy for A = 4 fermions with respect to
Nmax for the EFT interaction up to NLO. With increasing Nmax the energy decreases and converges for
large Nmax. We increase Nmax until convergence is achieved. In the case of four fermions with nmax = 4
that is the case for Nmax ≈ 16. The results of an importance-truncated NCSM calculations show perfect
agreement with full NCSM calculations for each Nmax.

Figure 5.11(b) compares the dimensions of the full and the importance-truncated model spaces treated
in the calculation for a four-particle Fermi system with EFT interaction. While the dimension of the model
space grows exponentially for the full NCSM, the dimension of the importance truncated space saturates
at approximately Nmax = 16 or 18. The saturation is not surprising because it is a sign of convergence.
Once the state is converged there is nothing to add to the model space to improve the description of the
state. The dimension of the model space for the full-NCSM calculations is one order of magnitude larger
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Figure 5.12.: Ground-state energy with Lπ = 0+ for A= 4 fermion system calculated using the ABF inter-
action (a) and the model space dimension with increasing Nmax (b). The results of the full
NCSM are shown as crosses (+) and the results of the importance-truncated calculation as
solid circles (u). The dashed line is the approximated ground-state energy for nmax → ∞
[1].

than that of the IT-NCSM at the largest value of Nmax. The very good agreement of the energies calculated
by the IT-NCSM with those calculated using other methods and the slowing growth of the dimension of
the model space with increasing Nmax shows the efficiency of the IT-NCSM. The converged result for the
LO EFT interaction is E = (5.148± 0.001)ħhω, and for the NLO, E = (5.052± 0.001)ħhω, each with an
error of ±0.001ħhω caused by the importance truncation. This is in excellent agreement with previous
results, where the ground-state energy was found to be E(nmax = 5) = 5.02ħhω [77], (5.045± 0.003)ħhω
[1], (5.051± 0.009)ħhω (FN-DMC) and 5.028ħhω (CG) [12].

Next, we consider the ABF interaction. For a four-fermion system, we perform full and importance-
truncated NCSM calculations. In figure 5.12(a), the energy of the ground state for a four-particle system
is shown. The converged result for nmax = 4 is E = (5.045± 0.001)ħhω. The results calculated with the
importance-truncated NCSM using the ABF interaction agree extremely well with full NCSM calculations
for each Nmax. The result given by Alhassid et al. [1] for the energy of a four-particle fermionic system
for infinite nmax, E = (5.045±0.003)ħhω (dashed line in figure 5.12), also agrees very well with ours, as
well as with the results of other groups (see above). The dimension of the importance-truncated space
using the ABF interaction, shown in figure 5.12(b), is slightly larger than using the EFT interaction (see
figure 5.11b). However, in both cases the dimension of the importance-truncated space is smaller by one
order of magnitude than the full-NCSM space. This proves that the IT-NCSM is efficient.

The results for the ground-state energy of A= 5 fermions in the unitary limit for the EFT interaction
with increasing Nmax are shown in figure 5.13(a). Again, we considered only the LO and NLO terms of
the EFT interaction. We performed the calculation both in the importance-truncated space and in the
full-NCSM space. The Nmax = 16 space is intractable (in particular in terms of memory) using the full
NCSM, but calculating the Nmax = 22 space using the IT-NCSM is feasible. Looking at the dimensions of
the two model spaces, shown in figure 5.13(b), we can see that the dimension of the truncated Nmax = 22
space is of the order of 106, whereas the dimension of the highest calculated NCSM space (Nmax = 18)
is of the order of 107 and the dimension of the NCSM space increases exponentially with increasing
Nmax. Therefore, the dimension of the full NCSM space for Nmax = 22 should be two or three orders of
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Figure 5.13.: Ground state energy with Lπ = 1+ of the A= 5 fermion system calculated using the LO and
NLO EFT interaction (a) and the model-space dimension (b). Notation as in figure 5.11. The
dashed line in (a) is the ground-state energy calculated using the CG approach [12].

magnitude larger than the dimension of the truncated Nmax = 22 space. The extrapolation of the energy
for Nmax→∞ for IT-NCSM calculation is more precise, since we can take results for higher values of Nmax
into account. Again, the IT-NCSM proves to be more effective. For nmax = 4 we get for the LO of the EFT
interaction E(Nmax→∞) = (7.4391±0.0007)ħhω with an error of±0.0007ħhω coming from the IT. Using
the NLO correction, we obtain E(Nmax →∞) = (7.487± 0.001)ħhω at NLO (see figure 5.13(a)), which
agrees well with the results obtained by Blume et al., E = 7.61(1)ħhω, calculated using the FN-DMC
method, see section 4.5, or 7.53ħhω using CG [12], see section 4.6. The difference in NLO between the
full and the truncated calculation for Nmax = 16 is 0.0002ħhω, which is still smaller than the difference at
LO. For the NLO EFT we only calculate the NLO correction for the smallest value of κmin used for the LO
calculation (see also section 5.1). As already discussed in section 5.1 and as can be seen here, we can
neglect the error by calculating the NLO correction only for the smallest value of κmin.

Figure 5.14(a) shows the ground-state energy for a five-fermion system calculated using the ABF
interaction. Again the full NCSM and the IT-NCSM results show good agreement. The extrapolated
ground-state energy of an IT-NCSM calculation is (7.462± 0.014)ħhω. We use here again the empirical
formula (5.5) for the extrapolation. The uncertainty from the IT-NCSM extrapolation is of the order of
10−4 and, therefore, lower than the Nmax →∞ extrapolation. The dashed line shows the ground-state
energy of the CG approach, E = 7.53ħhω, the deviation is less than 1 percent.

Figure 5.14(b) shows the growth of the dimension with increasing Nmax for a full NCSM calculation
and an IT-NCSM calculation using the ABF interaction. The growth of the dimension of the NCSM space
is nearly exponential while the growth of the truncated space slows down, so that the dimension of the
full-NCSM space for Nmax = 18 is one order of magnitude larger than that of the truncated space for
Nmax = 20. On the same computer, a full NCSM calculation at Nmax = 14 takes longer than an IT-NCSM
calculation for the largest space (Nmax = 20 and using the ABF interaction).

As for the four-particle system, the dimension of the importance-truncated space using the EFT interac-
tion at LO grows slower than with the ABF interaction, and hence the importance-truncated calculation
using the ABF interaction takes longer than the importance-truncated calculation using the LO of the
EFT interaction. We emphasize here again that we need higher order for the LO calculation, for example
the NLO, to get the same results as using the ABF interaction.
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Figure 5.14.: Ground-state energy with Lπ = 1− for A = 5 fermion system calculated using the ABF in-
teraction (a) and the model space dimension with increasing Nmax (b). Notation as in fig-
ure 5.11. The dashed line in (a) is the ground-state energy calculated using the CG approach
[12]

5.7 10+ 10 Particles

We now consider a system of 10+ 10 fermions at unitarity. Figure 5.15 shows the ground-state energy
Lπ = 0+ as a function of the truncation parameter Nmax of the many-body space. The calculation was
done using only the EFT interaction, where we used nmax = 2 (a) and nmax = 4 (b) as the cutoff of the
two-body space. We used the LO and NLO terms of the EFT interaction for both the calculation with
nmax = 2 and nmax = 4. For the calculation with 10+ 10, we set Cmin = 5·10−4 and reduced κmin from
5·10−5 to 1.5·10−4 successively, then extrapolated the result to κmin → 0 as described in section 4.4.3.
As one can see in figure 5.15, the energy approaches asymptotically some value as Nmax increases, but
whereas we are in the vicinity of the convergence for nmax = 2, for nmax = 4 we are not. Looking at
figure 5.4 (e) for eight fermions (4+ 4) with nmax = 4 (see section 5.3) we cannot expect convergence
for Nmax < 18 for nmax = 4 for 20 fermions; it is likely that even higher values of Nmax will be required
because the energy of the two-body interaction can be distributed to more particles. Therefore we would
need calculations for higher values of Nmax in order to perform the extrapolation. However, this has
not been possible in the context of the present thesis with the given computing resources. As already
mentioned, in order to obtain meaningful results by extrapolation, only results for Nmax ≥ 2nmax should
be taken into account (see section 5.2).

The energy calculated by Blume et al. [12] for the ground state is E = 41.30(8)ħhω. If we extrapolate
the energy for the ground state for nmax = 2, we get a ground state energy of E = 38.92± 0.03, where
we used the empirical formula (see chapter 5.4). This corresponds to a difference of about 5.8% to the
value calculated by Blume. To obtain a more precise result we have to perform calculations with higher
two-body cutoffs nmax. Our result is below the value from [12] already at Nmax = 12 for the LO part of
the EFT and nmax = 4. The NLO corrects the result to a higher value ((43.38±0.02)ħhω for nmax = 4 and
Nmax = 12, see figure 5.15(b)). The NLO corrects the energy also to higher values — see, for example,
3+ 2 and 4+ 4 particles (figures 5.3, 5.4 and 5.5). Using higher values of nmax can also lead to higher
energy values (see figures 5.7 and 5.8). This was also observed in [77] and in [1] for three particles (see
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Figure 5.15.: Energy of the ground state with Lπ = 0+ of 10+ 10 fermions calculated using the LO (u)
and NLO (f) EFT interaction as a function of Nmax. A two-body cutoff nmax = 2 (a) and
nmax = 4 (b) was used.

2 4 6 8 10 12 14
Nmax

40

41

42

43

44

45

46

47

.

E
/ħh
ω

(a)

2 4 6 8 10 12
Nmax

44

46

48

50

52

.

E
/ħh
ω

(b)

Figure 5.16.: Energy of the first excited state with Lπ = 0+ of 10+ 10 fermions calculated using the LO
(u) and NLO (f) EFT interaction as a function of Nmax. A two-body cutoff nmax = 2 (a)
and nmax = 4 (b) was used.
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Figure 5.17.: Excitation energy of the first excited state with Lπ = 0+ of 10+10 fermions calculated using
the LO of the EFT as a function of Nmax. A two-body cutoff nmax = 2 (a) and nmax = 4 (b)
was used.

figure 5.10) and the effect is visible for 10+10 fermions in figure 5.15 as well. We expect our results for
higher nmax and higher orders to be between our calculated value for nmax = 2 and the value from [12].

As already mentioned we can get results for excited states at little additional cost, since the Lanczos
algorithm takes more iterations to converge the additional states. Figure 5.16 shows the energy of the
first excited state with Lπ = 0+ for a system with A = 20 fermions at unitarity for a two-body cutoff
nmax = 2 (a) and nmax = 4 (b). As for the ground state we can perform calculations for nmax = 2 using
higher values of Nmax than for nmax = 4, hence the energy for nmax = 2 is closer to convergence than that
for nmax = 4. We can extrapolate the energy of the first excited state for nmax = 2 by using the empirical
formula again, and we get E(nmax = 2) = (40.83± 0.09)ħhω. This we consider as a lower bound for the
energy of the first excited state, and again we have to go to higher two-body cutoffs nmax to obtain a
more precise result.

We also plotted the excitation energy of the first 0+ state (figure 5.17). One can see in the figure that
the difference of the absolute energy of both states converges quickly with increasing Nmax. For nmax = 2,
the excitation energy converges already for Nmax = 10, and for nmax = 4, it is almost converged for
Nmax = 12. Therefore, like in nuclear physics [73], the threshold dependence of the absolute energy of
both states is similar.

5.8 Benchmark Calculation for All Calculated Particle Numbers

Table 5.1 lists the ground-state energies and table 5.2 the first excited-state energies of two-component
systems consisting of different numbers of fermions in units of ħhω. Using the EFT interaction, we per-
formed calculations for A = 4 through A = 10 as well as for A = 20 (see section 5.7). Using the
ABF interaction [1], we only performed calculations for A = 4 through A = 10. We performed all
calculations with a two-body cutoff nmax = 4 (see section 5.5). For A = 5 through A = 8, we set
Cmin = 2·10−4 and choose 3·10−5 ≤ κmin ≤ 10−4; for A= 9 and A= 10, we set Cmin = 5·10−4 and choose
5·10−5 ≤ κmin ≤ 1.5·10−4.

Comparing our results with those obtained by Blume et al. [12], we see that the difference between
their results and ours are small. The results of our calculations using the IT-NCSM agree well with those
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Table 5.1.: Ground-state energy for ultra-cold two-component Fermi systems in a trap at unitarity in units
of ħhω with nmax = 4, extrapolated using the empirical formula (5.5).

this work Blume et al. [12]
EFT

A ABF LO NLO CG FN-DMC
3 4.273(1) 4.206(1) 4.269(1) 4.276 4.281(4)
4 5.05(1) 5.15(1) 5.06(1) 5.028 5.051(9)
5 7.46(1) 7.44(1) 7.49(1) 7.53 7.61(1)
6 8.44(4) 8.49(1) 8.46(1) 8.48 8.64(3)
7 11.08(1) 10.85(1) 11.09(1) 11.36(2)
8 12.20(3) 12.02(1) 12.32(1) 12.58(3)
9 15.27(5) 15.34(1) 15.51(1) 15.69(1)

10 16.6(2) 16.41(1) 16.71(1) 16.80(4)

Table 5.2.: First-excited-state energy for a ultra-cold two-component Fermi system in a trap at unitarity in
units of ħhω with nmax = 4, extrapolated using the empirical formula (5.5).

this work Blume et al. [12]
EFT

A ABF LO NLO CG
3 6.272(1) 6.190(1) 6.187(1) 6.276
4 7.05(1) 7.22(1) 7.08(1) 7.032
5 8.94(1) 9.05(1) 8.95(1) 8.83
6 10.26(4) 10.28(1) 10.24(1) 10.50
7 12.16(9) 12.26(2) 12.20(4)
8 13.61(3) 13.34(1) 13.52(2)
9 15.9(3) 15.80(1) 16.33(2)

10 18.1(1) 17.25(1) 17.90(2)

obtained from full-NCSM calculations (for small values of A) as well as from Monte-Carlo calculations.
For instance, the differences between the ground-state energies calculated by us and those calculated
using the CG method are less than 1% both for the ABF interaction and for the NLO of the EFT. This is
a very good agreement considering that we used nmax = 4 and included only the NLO corrections to the
EFT, but no higher orders, meaning our results are afflicted with errors. For the first excited state, the
differences are larger but still below 2.5%. Compared to the results for the ground-state energy obtained
using the FN-DMC method, the differences are also larger but at most 2.4% for the NLO of the EFT and
4+ 4; for 5+ 4 and 5+ 5, the differences are smaller than that. For the ground-state energy calculated
using the ABF interaction, the differences in the energy compared to the results obtained by the FN-DMC
method grow larger as the particle number increases; this can be caused by the slower convergence
compared to the EFT interaction.

As already mentioned, the CG and FN-DMC methods are variational approaches and provide an upper
bound for the energy, so it is reassuring that our energies are below the energies calculated using CG
and FN-DMC methods. Furthermore, they use a Gaussian-shaped potential as interaction, instead of the
EFT or ABF interactions used in this thesis. Trapped systems display universal properties as long as the
HO length is large compared to the effective range of the interaction, hence the second constraint for
the trapped systems at unitarity is aHO� r0 [77, 91]. The EFT interaction uses the δ-function and their
derivatives, and therefore it is zero everywhere but for r = 0. The ABF interaction is constructed like the
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Figure 5.18.: Dependence of the ground-state (a) and excited-state (b) energy E on the range of the
interaction r0 of a four-body system at unitarity with A1 = 3 and A2 = 1. The energy was
determined using the stochastic variational approach with CG basis set expansion. Figure
taken from [65].

EFT interaction and is also only nonzero for r = 0. For calculations using Gaussian potentials, [65] used
r0 ≤ 0.01aHO and extrapolated for the limit r0 → 0 (see, for example, figure 5.18). Therefore, the ABF
and EFT interaction are more suitable for the unitary limit.

The CG method yields results for both the ground-state energy and the first excited-state energy, but
only up to A = 6. The FN-DMC method, on the other hand, yields only the ground-state energy but at
least up to A = 30 [12]. IT-NCSM calculations yield the energies of the first low-lying excited states at
no additional cost. Using the IT-NCSM, the energies of systems with larger particle numbers A can be
calculated for larger values of Nmax. The range of values of Nmax and A for which results can be obtained
is primarily limited by the available computing power and not by the available memory [71].

We do not consider the convergence of the energy with nmax in this section (see section 5.5 for a
discussion of that). The given errors contain only the errors from the importance truncation and the
Nmax extrapolation. Furthermore, we used only the LO and NLO orders of the EFT interaction. We can
improve our results by considering the N2LO of the EFT interaction and convergence with nmax.

5.9 Results for a Gaussian-shaped Potential

Up to this point, we used for our NCSM calculation the ABF and EFT interactions, which were also used
by other groups using ab initio methods like CI or NCSM [1, 77]. As already mentioned, a Gaussian-
shaped potential was used for calculation of energy spectra of fermionic systems at unitarity in the
FN-DMC or CG methods. We also performed NCSM calculations at unitarity using a Gaussian-shaped
potential of the form (3.85) in order to test the applicability of these potential for NCSM calculations,
and present the results in this section. We did not conduct IT-NCSM calculations as we only used the
Gaussian potential to calculate the energies of A = 3 two-component fermions. We determined V0 for
a0→∞ and different values of the range r0 of the interaction in order to calculate the matrix elements
in the relative coordinate frame. The range r0 is chosen much smaller than the HO length aHO. In
determining V0, we pretend the particles are in free space and not trapped in the HO potential.

We do not introduce any cutoff, in contrast to the other interactions studied in this work. Like for the
other interactions, the matrix elements are calculated in the relative frame and are transformed into the
laboratory frame using the Talmi-Moshinsky transformation explained in section 3.2.3.

For two-component fermion systems at unitarity, the Gaussian-shaped potential was used in [12, 65,
85, 88]. For the calculation, either one small value (e. g. r0 = 0.01aHO) was used or a number of values
for the range r0 of the interaction were considered with r0 � aHO (for example, 0.0025aHO ≤ r0 ≤
0.08aHO [65]) and the finite-range energies were extrapolated to r0→ 0. Figure 5.18 (taken from [65])
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Figure 5.19.: Energy of the ground state with Lπ = 1− of A = 3 fermions calculated using the Gaussian-
shaped potential as a function of Nmax for different r0 (in units of aHO).

5.9. Results for a Gaussian-shaped Potential 81



8 10 12 14 16 18
Nmax

10−6

10−5

10−4

10−3

.

∆
E
/ħh
ω

(a)

8 10 12 14 16 18 20
Nmax

10−6

10−5

10−4

10−3

.

∆
E
/ħh
ω

(b)

Figure 5.20.: Energy difference of the ground state with Lπ = 1− of A= 3 fermions calculated using the
EFT interaction (a) and according to Bertsch et al. (b) as a function of Nmax. We use here the
two-body cutoff nmax = 4. Logarithmic scale. The symbols of (a) corresponds the LO (u)
and the NLO (f) of the EFT interaction.

illustrates the energy dependence on r0 and shows the ground-state energy and the energy of an excited
state for different r0 for a four-particle two-component Fermi system at unitarity. The calculation was
done using the stochastic variational approach. The energies show a weak linear dependence with r0 for
sufficiently small r0/aHO. The results from other groups also show a linear dependence of the energy on
r0 [88].

We calculated the energy of a three-particle two-component fermionic system at unitarity with a range
of the interaction of r0 = 0.01, 0.02, 0.04, . . . , 0.2aHO. We used the full NCSM method for those calcu-
lations. Figure 5.19 shows the calculated ground-state energies for A= 3 for increasing values of Nmax.
The energies calculated using the stochastic variational approach, CG or FN-DMC converge to the exact
value as r0→ 0; however, our results do not converge at all.

The exact ground-state energy for a three-particle fermionic system at unitarity is 4.2727243ħhω [102]
and the energy without the interaction is 5.5ħhω. In our calculations for small values of r0, the energy is
close to the noninteracting energy. The energy calculated for r0 = 0.01aHO and Nmax = 22 is 5.489ħhω
(see figure 5.19). As r0 grows, the calculated energy decreases. However, even for r0 = 0.2aHO and
Nmax = 22, the calculated energy is far above the exact energy.

The reason for the weak or non-existing convergence behavior is that the range of the potential is too
small in comparison to the HO trap. In the unitary limit, we have r0 � aHO. Other groups using the
FN-DMC method or the CG approach chose e. g. r0 = 0.01aHO, the largest value found in the available
literature is r0 = 0.08aHO (see above). For larger r0, the condition r0 � aHO is not fulfilled. In order to
resolve the potential the eigenfunction of the HO potential should have at least the single-particle energy

ei =
aHO

2r0
. (5.9)

Therefore, the eigenfunctions used for the calculation of our matrix elements cannot resolve the poten-
tial for ei < 50 if we choose r0 = 0.01aHO as is often the case in the FN-DMC or CG method. For three
fermions, we have emax = Nmax+1. For the calculation with r0 = 0.08aHO at Nmax = 6, the eigenfunction
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Figure 5.21.: Energy of the ground state with Lπ = 1− of A = 3 fermions calculated using the Gaussian-
shaped potential as a function of the HO energy ħhω for r0 = 0.1aHO for different Nmax. We
used Nmax from 10 to 22. The different symbols correspond to Nmax = 10 (u), 12 (f), 14
(q), 16 (p), 18 (9), 20 (E), 22 (6).
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with ei = 6 first appears which can “see” the potential. Since the influence of the eigenfunctions for
larger values of ei increases slowly, the calculated energy for Nmax = 22 is still in the vicinity of the non-
interacting energy and no convergence appears. Using even smaller values of r0 (in the aforementioned
approaches, values down to r0 = 0.001aHO have been used) makes little sense since the difference to the
noninteracting energy would then be even smaller. At larger r0 (for instance, r0 = 0.2aHO), the calcu-
lated energy for Nmax = 22 is closer to the exact energy but far away from convergence, and r0 = 0.2aHO
does not really satisfy the condition r0� aHO anymore. Higher values of Nmax would be needed in order
to obtain converged results.

Furthermore, we analyzed the dependency of the calculated energies on the HO frequency ω when
using the Gaussian interaction. The other two interactions used in the present thesis are independent of
the HO frequency; the energy is always the same multiple of ħhω for any value of ω. Figure 5.21 shows
the energy calculated using the Gaussian interaction for a fixed value of r0 = 0.1aHO as a function of
ω for Nmax = 10,12, 14,16, 18,20. There is little to no dependency of the energy on the HO frequency.
Here we won’t discuss the errors introduced when determining V0 numerically; the weak dependence of
the energy on the HO frequency which can be seen in figure 5.21 could also be caused by those errors.

In summary, we can say that the Gaussian potential is not suited for the NCSM or the IT-NCSM because
of the weak convergence in comparison to the other two interactions used in the present thesis. The ABF
and EFT interaction used in the present thesis are renormalised, and hence deliver convergent results at
low Nmaxħhω. As a consequence of the renormalisation, calculations using either of the two interactions
depend on the two-body cutoff, which is problematic because the convergence behavior with respect to
that cutoff has not been systematically investigated yet and there is no consensus on which functions
are physically justifiable for predicting the behavior as nmax →∞. Using a Gaussian potential, which is
not renormalised, does not require those extrapolations. However, for small values of r0, the calculated
energies are almost equal to the noninteracting energy and are far away from the exact value. Even for
larger values of r0, the calculated energies decrease, but even for the largest calculated Nmax and r0,
the calculated energy is closer to the noninteracting energy than to the exact value, and the condition
r0 � aHO is no longer fulfilled eventually. Convergence was not observed for any value of r0, since in
order to resolve the potential eigenvalues with higher single-particle energy are required. In order to
improve the convergence behavior, much higher values of Nmax and, consequently, larger model spaces
would be needed, which would require a larger computational effort, also some sort of renormalisation
for the Gauss potential would solve the convergence problem too. For this reason, we chose to not
consider the Gaussian interaction in the remainder of this thesis.

In nuclear physics, unitary transformations, for example, the Similarity Renormalizaiton Group (SRG),
are used to enhance the convergence behavior of many-body calculations [73]. The SRG transformation
aims to decouple the low-momentum or low-energy states from high-lying stats leading to a universal
Hamiltonian independent of the model-space and number of particles. The unitary transformation in-
duces many-body contribution to the operators that go beyond the rank of the initial operator. Therefore,
using the SRG we would have to handle three-body interactions. Because of the efforts required to de-
velop the three-body interaction we did not use the SRG transformation for our calculations at unitarity.
However, an SRG-type regularisation of the Gaussian interactions might have resolved the convergence
issues we observed in the NCSM.

5.10 Conclusions

In this chapter, we discussed the results of our IT-NCSM calculations using both the EFT interaction and
the ABF interaction and also the results of our NCSM calculation using the Gaussian-shaped potential.
In section 5.1 we discussed the uncertainties of the NLO corrections to the EFT interaction, which we
treat using perturbation theory. We have shown that we do not need to perform the calculations for all
values of κmin; it is sufficient to add the NLO correction for the smallest value of κmin to the LO result
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calculated using the IT-NCSM. Another important result is that for the NLO calculations (as for the LO) it
is possible to choose a value for the Cmin threshold which is small enough not to influence the energies.

The uncertainties of the NCSM and also of the IT-NCSM can be quantified, which in turn allows us
to quantify the uncertainties of the interaction itself. For both the EFT and the ABF interaction we
introduce a relative cutoff (see section 3.5), hence the calculated energy depends on this arbitrarily
chosen parameter. Furthermore the results depend also on the many-body truncation parameter Nmax.

The dependency on the trapping frequency ωHO is explicit since it is physically motivated: The ultra-
cold fermions are not a self-bound system but are trapped. The energy and other observables explicitly
depend on the HO energy. Consequently, we cannot use theoretically motivated extrapolation functions
for the IR cutoff, which have recently been introduced in nuclear physics (see section 5.4). The conver-
gence behaviors of both the EFT and the ABF interaction are, by construction, independent of the HO
frequency. For the Gaussian-shaped potential, our results (see section 5.9) suggest that the convergence
of the calculated energy is too slow to allow for meaningful calculations.

Neither the NCSM nor the IT-NCSM can be used for calculations in an infinite HO model space; we
truncate the HO space using an additional truncation parameter Nmax. The extrapolation to Nmax →∞
is a source of uncertainties. This extrapolation allows us to estimate the results for the energy and other
observables for large model spaces, which we cannot calculate directly because of limits in the available
computational resources. We discuss the dependency on the Nmax for different values of nmax. An im-
portant result is that there is no benefit in performing calculations Nmax < 2nmax for the extrapolation
because the convergence behavior changes drastically beyond this point. With increasing nmax, higher
values of Nmax are required to achieve convergence in IT-NCSM calculations. We discuss different possi-
bilities to extrapolate the energy as Nmax →∞, and compare the results for the extrapolation using the
empirical formula (5.5) and the formula introduced by Alhassid (5.8). Since neither of these formulae
are physically motivated and the latter provides better results, we use the empirical formula for our
calculations. Because the IT-NCSM method allows calculations for larger values of Nmax, simplifying the
extrapolation to Nmax →∞, this simple extrapolation method is sufficient. It yields very robust results
which agree well with those obtained by others using the CG and FN-DMC methods.

Furthermore, we analyzed the convergence behavior for nmax→∞ for five- and eight-fermion systems
at unitarity. Using the EFT interaction, we observed that the calculated energies asymptotically approach
some value as nmax increases (convergent behavior). For five particles we see the convergence behavior;
as expected both the NLO of the EFT interaction and the ABF interaction show improved convergence
compared to the LO. For eight particles, our calculations did not extend to sufficiently large values
of nmax to observe convergence. The convergence behavior is less pronounced for the ABF interaction.
Since the errors introduced by the extrapolation to Nmax→∞ increase as nmax increases, we chose not to
extrapolate the energies to nmax→∞ for our other calculations. We chose nmax = 4, which is the highest
value for which we can converge our calculations with respect to Nmax →∞ for both interactions. The
dependence on nmax can be reduced, for instance, by taking higher orders (such as N2LO) into account
for the EFT.

Comparing the ABF interaction to the EFT interaction including the NLO corrections, we can see that
the EFT shows a better convergence behavior; using the ABF interaction, the dimension of the importance
truncated model space is larger and the results converge for larger values of Nmax than they do using
the EFT interaction. The calculations using the ABF interaction, therefore, require more time. The EFT
interaction yields results that agree better with those published by other groups. The EFT interaction
can, therefore, be considered superior; one downside is that we not only have to perform IT-NCSM
calculations, but also calculate the NLO corrections using perturbation theory.

Our calculations with a Gaussian-shaped potential for three fermions did not converge to the results
obtained with other interactions. The calculated values are nearer to the noninteracting energy than to
the exact energy and do not show any convergence even for larger values of Nmax or r0. The reason
is that in the unitary limit the condition r0 � aHO must hold, therefore only eigenfunctions of the HO
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with high energy quantum number can resolve the Gaussian-shaped potential with such a small effective
range and we need higher values of Nmax in order to observe convergence.

We compared the results of calculations with the full NCSM (for four and five particles) and the IT-
NCSM calculations. In summary, the results of full-NCSM calculations agree very well with those of
the importance-truncated NCSM. The latter allows ab initio calculations for larger particle numbers and
larger values of Nmax and is, therefore, superior. Furthermore, we have done benchmark calculation
for a system comprising A = 20 fermions at unitarity for nmax = 2 and 4. Even the A = 20 system
converges but for a cutoff nmax = 2 in relative space. For up to 10 fermions at unitarity, we performed
benchmark calculations using the IT-NCSM with nmax = 4. We compared our results to those obtained
by other groups using the CG basis set expansion method and the FN-DMC method and found good
agreement. In summary, the IT-NCSM yields robust results and allows ab initio calculations for larger
particle numbers and larger values of Nmax.
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6 Conclusions and Outlook
Ultra-cold atomic Fermi gases have generated much interest in the past decade. Ab initio calculations
for small ultra-cold systems have been performed using, for example, configuration interaction [1, 77]
and correlated Gaussian methods [84]. These ab initio approaches are limited to small particle numbers,
since the model space dimension increases rapidly as the particle number increases and more orbitals
are included. Our goal was to extend the calculation of the energy spectra for ultra-cold atomic Fermi
gases in the unitary limit to larger particle numbers and hence larger model spaces by applying the
importance-truncation scheme to the NCSM. By introducing an a priori importance measure derived
from multi-configurational perturbation theory we can estimate the relevance of individual basis states
and hence reduce the basis dimension dramatically. The contribution of the neglected configurations
can be estimated by using threshold-extrapolation techniques and perturbative estimates of the energy
contribution of the neglected configurations. By using the IT-NCSM we solved the eigenvalue problem
in this dramatically reduced model space and calculated the energy spectra for ultra-cold Fermi gases at
unitarity of up to 20 particles.

We use a HO basis which depends on the HO frequency ω and the maximum basis excitation energy
above the lowest allowed configuration Nmax and hence the infrared and ultraviolet cutoffs. We intro-
duced several extrapolation techniques in order to analyze these cutoffs. These extrapolation techniques
allow us to estimate the corresponding energy (or other observables) for an infinite basis size. Unlike
nuclei the ultra-cold quantum gases in a trap are not self-bound systems and hence the dependence on
ω is explicit. Therefore, the only truncation affecting the calculated energy and other observables is the
model space parameter Nmax. We extrapolate the energy for Nmax → ∞ by using a simple exponential
function.

Since we are in the unitary limit we can use a simple contact interaction to describe the interparticle
interaction. However this interaction converges very slowly. In order to improve the convergence, two
different approaches were introduced: the EFT approach, where the interaction is approximated by a
δ-function and its derivatives, and the ABF interaction. The EFT interaction is a contact interaction and
hence singular and has to be regularized. For this reason, a momentum cutoff in relative coordinates,
which depends on nmax, is introduced. The ABF interaction is not a contact interaction and has some
connection with Suzuki’s unitarity regularization. For the ABF interaction, a model space is constructed
with the requirement that the model-space Hamiltonian converges for 2nmax → ∞, where nmax is the
regularization parameter. We considered the behavior for both interactions with increasing nmax, but
(other than [1, 33]) we do not extrapolate to infinite nmax, since the errors become too large.

We performed IT-NCSM calculations using both interactions. These calculations show good agreement
between the IT-NCSM energy spectra and the energy spectra calculated using the full NCSM for those
particle numbers and Nmax for which we were able to perform the full NCSM calculation. Furthermore,
we have shown that the importance-truncation allows the calculation of the energy spectra for higher
particle numbers and Nmax. We compare our results with results obtained using the CG method for the
ground state and first excited state. Since the results for CG are only available for up to six particles, we
also compared our results for the ground-state energy with results obtained using the FN-DMC method.
The results for the first excited state are not available yet using other methods than the IT-NCSM. The IT-
NCSM calculation is only limited by the time required to construct the importance-truncated many-body
space, while the full NCSM that is limited by the available storage space. The IT-NCSM calculation can
be parallelized very easily, achieving almost linear speed-up.
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We also used a Gaussian-shaped potential like in the CG and FN-DMC method. Our results show very
slow convergence with increasing Nmax; the HO basis is probably not the best choice for the Gaussian-
shaped potential (see section 5.9).

The interactions used here are not restricted to the unitary limit. They can and have been used to
describe few-body physics for finite scattering lengths [33, 77, 84]. At low momenta or if the range of the
interaction is sufficiently short, then the dominant scattering processes occurs in the s-wave channel and
the interaction can be characterized only by the s-wave scattering length. This is the case, for instance,
in the BEC regime with finite positive scattering length a0, where the Fermi gases form tightly bound
dimers, and in the BCS regime with finite negative a0, where they form Cooper pairs with superfluid
behavior. The unitary limit is between both regimes in the BCS–BEC crossover with infinite scattering
length. The crossover describes the transition between the two different statistical regimes, since the
bosons and fermions are described by completely different statistical behavior. Each of these regimes is
accessible experimentally as well as the BCS–BEC crossover.

The IT-NCSM can also be applied to multi-component Fermi gases. In comparison to two-component
Fermi gases those systems are not necessarily stable against collapse [10]. Also dipolar systems can be
investigated using the IT-NCSM. Such systems consisting of magnetic and electric dipoles can be trapped
and cooled experimentally. In dipolar gases we have the short-range van-der-Waals interaction and long-
range dipole-dipole interaction [6]. Furthermore Bose-Fermi mixtures and ultra-cold Fermi gases with
different masses can also be investigated.

These ab initio IT-NCSM calculations for Bose-Fermi mixtures or dipolar systems are now enabled
through the present work. For our calculation of energy-spectra in ultra-cold limit we had to per-
form calculations of the matrix elements of the different interactions and implement the importance-
truncation scheme. Codes for these calculations previously existed only for nuclei; we have extended
their applicability to two-component fermions, which have different quantum numbers and different
interactions.
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A The Perturbation Theory Approach
In this appendix we briefly describe the many-body perturbation theory used to calculate the correction
to the leading order of the EFT interaction. Furthermore we perform the calculation of corrections to the
energy and the basis state using multiconfigurational perturbation theory.

A.1 Many-Body Perturbation Theory

Problems which cannot be solved exactly are addressed by approximative methods, such as perturbation
theory, a detailed description of which can be found in any textbook on quantum mechanics (for instance,
[80, 82]). We want to solve the following eigenvalue problem:

H
�

�ψ
�

=
�

H(0)+W
� �

�ψ
�

= E
�

�ψ
�

, (A.1)

where the Hamilton operator H is being decomposed into an unperturbed component H(0) and pertur-
bation W . The eigenvalue problem of the unperturbed Hamiltonian

H(0)
�

�ψ(0)n

�

= E(0)n

�

�ψ(0)n

�

(A.2)

with eigenvalues E(0)n and eigenvectors
�

�ψ(0)n

�

can be solved exactly and is known. In order to solve the
problem, we introduce a formal parameter λ multiplying the perturbation component of the Hamilton
operator:

H = H(0)+λW. (A.3)

The eigenstates and eigenenergies can be written as a power series:

�

�ψn
�

=
�

�ψ(0)n

�

+λ
�

�ψ(1)n

�

+λ2
�

�ψ(2)n

�

+ · · · (A.4)

En = E(0)n +λE(1)n +λ
2E(2)n + · · · . (A.5)

The unperturbed states are orthonormalized, that is,



ψ
(0)
n′

�

�ψ(0)n

�

= δn′n; the unperturbed states and
their corrections are orthogonal to each other, that is,




ψ(0)n

�

�ψ(k)n

�

= δ0,k. By inserting equations (A.4)
and (A.5) into the Schrödinger equation, we obtain the following equations for the individual orders of
λ:

λ0 : H(0)
�

�ψ(0)n

�

= E(0)n

�

�ψ(0)n

�

(A.6)

λ1 : H(0)
�

�ψ(1)n

�

+W
�

�ψ(0)n

�

= E(0)n

�

�ψ(1)n

�

+E(1)n

�

�ψ(0)n

�

(A.7)

λ2 : H(0)
�

�ψ(2)n

�

+W
�

�ψ(1)n

�

= E(0)n

�

�ψ(2)n

�

+E(1)n

�

�ψ(1)n

�

+E(2)n

�

�ψ(0)n

�

(A.8)

The correction to the zeroth order energy E(0) can be calculated by projecting equations (A.7) and (A.8)
onto the




ψ(0)n

�

� and using the orthogonality relation



ψ
(0)
n′

�

�ψ(0)n

�

= δn′n. We perform schematically the
calculations for the first- and second-order correction to the energy and for the first correction of the
wave function

�

�ψ(0)n

�

for the EFT interaction.
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A.2 Perturbation Approach for Correction of an EFT

For the EFT interaction used in the present thesis, we also separate the perturbation into different orders,
that is, W = V(1) + V(2) + · · · . The eigenstates and eigenenergies for the EFT interaction can be written
as a power series, see eq. (A.4). We therefore obtain for the first- and second-order corrections:

λ1 : H(0)
�

�ψ(1)n

�

+V(1)
�

�ψ(0)n

�

= E(0)
�

�ψ(1)n

�

+E(1)
�

�ψ(0)n

�

(A.9)

λ2 : H(0)
�

�ψ(2)n

�

+V(1)
�

�ψ(1)n

�

+V(2)
�

�ψ(0)n

�

= E(0)
�

�ψ(2)n

�

+E(1)
�

�ψ(1)n

�

+E(2)
�

�ψ(0)n

�

(A.10)

By projecting eq. (A.9) onto the unperturbed state



ψ(0)n

�

�




ψ(0)n

�

�

�

H(0)− E(0)
� �

�ψ(1)n

�

=



ψ(0)n

�

�

�

E(1)− V (1)
� �

�ψ(0)n

�

, (A.11)

we obtain the first-order energy correction:

E(1) =



ψ(0)
�

�V (1)
�

�ψ(0)
�

, (A.12)

where we used that
�

�ψ(0)
�

and
�

�ψ(1)
�

are orthonormal, so that



ψ(0)
�

�ψ(1)
�

= 0. The derivation for the
first-order correction to the wavefunction can be found in [91].

In order to calculate the second-order energy correction, we multiply eq. (A.10) by the unperturbed
state




ψ(0)
�

� :

E(2)n =



ψ(0)n

�

�V(1)
�

�ψ(1)n

�

+



ψ(0)n

�

�V(2)
�

�ψ(0)n

�

. (A.13)

The second-order correction for EFT has not been used in the present thesis.

A.3 MCPT: Zeroth order and perturbation corrections

We calculate the zeroth-, first- and the second-order contributions to the energy in the frame of Pertur-
bation Theory (see section 4.4.1). We start with the zeroth-order contribution to the energy:

H0

�

�ψref
�

= ε(0)
�

�ψref
�

(A.14)

with the unperturbed Hamiltonian H0 defined in eq. (4.20). Multiplication of eq. (A.14) with



ψref

�

�

yields:

ε(0) =



ψref

�

�H0

�

�ψref
�

= εref. (A.15)

For the first order correction we have to multiply

H0

�

�ψ(1)
�

+W
�

�ψref
�

= εref

�

�ψ(1)
�

+E1
�

�ψref
�

(A.16)

with the reference state
�

�ψref
�

and obtain




ψref

�

�H0

�

�ψ(1)
�

+



ψref

�

�W
�

�ψref
�

= εref



ψref

�

�ψ(1)
�

+E1 
ψref

�

�ψref
�

. (A.17)

We can set
�

�ψ(1)n

�

=
∑

µ/∈Mref
c(1)µ
�

�φµ
�

and calculate first




ψref

�

�ψ(1)
�

=
∑

µ/∈Mref

c(1)µ



ψref

�

�φµ
�

=
∑

ν∈Mref

c(0)ν
∑

µ/∈Mref

c(1)µ



φν
�

�φµ
�

= 0. (A.18)
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In the last step, we used that the states φµ outsideM do not contribute to the reference state and hence
φµ and




Ψref

�

� are orthogonal.
For the matrix elements of H0 between the basis states φν /∈Mref and ψref we obtain



ψref

�

�H0

�

�ψ(1)
�

=



ψref

�

�εref

�

�ψref
�

∑

ν /∈Mref

cν



ψref

�

�φν
�

+
∑

ν /∈Mref

εν



ψref

�

�φν
�


φν
�

�ψ(1)
�

= 0. (A.19)

Therefore,

ε(1) =



ψref

�

�W
�

�ψref
�

=



ψref

�

�H
�

�ψref
�

−



ψref

�

�H0

�

�ψref
�

= 0 (A.20)

is the first-order contribution to the energy.
We get the first order correction to the many-body state by multiplying eq. (A.16) with the state




φµ
�

� /∈Mref:



φµ
�

�H0

�

�ψ(1)
�

+



φµ
�

�W
�

�ψref
�

=



φµ
�

�εref

�

�ψ(1)
�

+



φµ
�

�ε(1)
�

�ψref
�

(A.21)

It holds that



φµ
�

�ψ(1)
�

=
∑

ν /∈Mref

cν



φµ
�

�φν
�

= cν . (A.22)

For the matrix elements of H0 between the basis states φν and ψ(1), we obtain:




φµ
�

�H0

�

�ψ(1)
�

=



φµ
�

�






εref

�

�ψref
�


ψref

�

� +
∑

ν /∈Mref

εν
�

�φν
�


φν
�

�







�

�ψ(1)
�

=
∑

ν /∈Mref

εν



φµ
�

�φν
�

∑

ν /∈Mref

cν ′



φν
�

�φν ′
�

= εµcµ (A.23)

We used here again that the reference state is orthogonal to the state outside of the reference spaceMref.
Hence we get

cµ
�

εµ− εref

�

=−



φµ
�

�W
�

�ψref
�

(A.24)

and consequently
�

�ψ(1)n

�

=
∑

µ/∈Mref

cµ
�

�φµ
�

=−
∑

µ/∈Mref




φµ
�

�W
�

�ψref
�

εµ− εref

�

�φµ
�

(A.25)

as the first-order correction to the reference state.
For the second-order contribution to the energy, we get the equation

H0

�

�φ(2)
�

+W
�

�φ(1)
�

= ε(0)
�

�φ(2)
�

+ε(1)
�

�φ(1)
�

+ε(2)
�

�φ(0)
�

, (A.26)

with the second-order correction to the eigenstate of the Hamiltonian being

ψ(2)n =
∑

µ/∈Mref

cµ
�

�φµ
�

. (A.27)

Projecting eq. (A.26) onto the state



ψref

�

� yields:

ε(2) =



ψref

�

�W
�

�φ(1)
�

=−
∑

µ/∈Mref

�

�




φµ
�

�W
�

�ψref
�

�

�

2

εµ− εref
=−

∑

µ/∈Mref

�

�




φµ
�

�H
�

�ψref
�

�

�

2

εµ− εref
(A.28)

We used here again that the states
�

�φν
�

outside of the reference space and the reference state
�

�ψref
�

are orthogonal and as well as for the first order the matrix elements of H0 between the basis states
�

�φν
�

and
�

�ψ(2)
�

vanishes.
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B EFT
In section 3.6 we introduced the interaction constructed using the effective field theory approach [91] we
used for our IT-NCSM calculations. In this appendix we show in detail the derivation of some equations
we need for the derivation of the matrix elements of the interaction.

B.1 EFT: Fourier Transformation

In the EFT approach, the interparticle short-range two-body interaction, eq. (3.46), can be expanded as
a Taylor series in momentum space (see chapter 3.6). In this section, we perform the Fourier transfor-
mation of this potential, eq. (3.46), in momentum space into the coordinate space, eq. (3.47). We also
show here the transformation of the potential in coordinate space from the eq. (3.47) to the eq. (3.48)
by using the locality of the potential.

The potential in coordinate space is given by

V
�

~r ′,~r
�

=



~r ′
�

�V
�

�~r
�

=

∫∫

d3p ′d3p



~r ′
�

�~p′
�


~p′
�

�V
�

�~p
�


~p
�

�~r
�

(B.1)

where we work in relative coordinates. We insert the momentum function in coordinate space [72, 82]:

φ~p(~x) =



~x
�

�~p
�

=
1

(2πħh)3/2
exp
�

i

ħh
~p · ~x

�

(B.2)

and get

V
�

~r ′,~r
�

=
1

(2πħh)3

∫∫

d3p′d3p exp
�

i

ħh
~p′ · ~x ′

�

�

C0+ C2

�

~p′2+ ~p2
�

+C4

�

~p′2+ ~p2
�2
+ . . .

�

exp
�

i

ħh
~p · ~x

�

. (B.3)

We evaluate each order separately (LO and NLO). We start with the LO term:

V (0)(~r ′,~r) =

∫∫

d3p′d3p
1

�

2πħh3/2
�2 exp

�

−
i

ħh
~p′ ·~r ′

�

C0 exp
�

i

ħh
~p ·~r

�

=
C0

�

2πħh3/2
�2

∫

d3p′ exp
�

−
i

ħh
~p′ ·~r ′

�
∫

d3p exp
�

i

ħh
~p ·~r

�

= C0δ
3(~r ′)δ3(~r) (B.4)

where we used in last step
∫

d3p exp
�

i

ħh
(~x ′− ~x) · ~p

�

= (2πħh)3δ3(~x ′− ~x). (B.5)

In spherical coordinates, the δ-function takes the form

δ
�

~x − ~x ′
�

=
1

r2sinθ
δ
�

r − r ′
�

δ
�

θ − θ ′
�

δ
�

φ −φ ′
�

=
1

r2δ
�

r − r ′
�

δ
�

cos(θ)− cos(θ ′)
�

δ
�

φ −φ ′
�

(B.6)
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Inserting the δ-function, we get for each integral of the LO part:

∫

d3r δ(~r)φ(~r) =

∫ ∞

0

∫ 2π

0

∫ π

0

1

r2 sinθ
δ(r)δ(θ)δ(ϕ)φ(r,θ ,ϕ)2πr2 sin(θ)dθdϕdr

= 2π

∫ ∞

0

∫ 2π

0

∫ π

0

δ(r)δ(cos(θ))δ(ϕ)φ(r,θ ,ϕ)dcos(θ)dϕdr

=

∫ ∞

0

δ3(r)φ(r)dr

= φ(0) (B.7)

In the last step we used the rotational symmetry of the potential and integrated the δ-function. Hence
we get for the LO part of the EFT potential:

V (0)
n,n′
= C0φ

∗(0)φ(0) (B.8)

We continue with the NLO term:

V (1)(~r ′,~r) =

∫∫

d3p′d3pφ∗~p(~r
′)C2

�

~p′2+ ~p2
�

φ~p(~r) (B.9)

= C2

∫∫

d3p′d3p
1

�

2πħh3/2
�2 exp

�

−
i

ħh
~p′ ·~r ′

�

�

~p′2+ ~p2
�

exp
�

i

ħh
~p ·~r

�

Using

−iħh∇



~x
�

�~p
�

= ~p



~x
�

�~p
�

(B.10)

yields the NLO part of the interparticle two-body potential in the coordinate space

V (1)(~r ′,~r) =
C2

�

2πħh3/2
�2

�

i

ħh

�2

·
∫∫

d3p′d3p
��

∇2
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�

i

ħh
~p′ ·~r ′

��
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�

i

ħh
~p ·~r

�

+ exp
�

i

ħh
~p′ ·~r ′

��

∇2
~r exp

�

i

ħh
~p ·~r

���

=−C2
1

ħh2

¦�

∇2δ(~r ′)
�

δ(~r) +δ(~r ′)
�

∇2δ(~r)
�©

. (B.11)

Higher orders can be transformed in the same way and we get eq. (3.48).
The interaction potential of the system is local and depend only on the momentum transfer ~̃p = ~p−~p′.

Therefore we get for the LO term:

V (0)(~r ′,~r) =

∫∫

d3 p̃d3p
1

�

2πħh3/2
�2 exp

�

−
i

ħh
(~p− ~̃p) ·~r ′

�

C0 exp
�

i

ħh
~p ·~r

�

= C0

∫∫

d3 p̃d3p
1

�

2πħh3/2
�2 exp

�

i

ħh
~̃p ·~r ′

�

exp
�

i

ħh
~p · (~r −~r ′)

�

= C0δ(~r
′)δ(~r −~r ′) (B.12)

Furthermore, using the locality of the potential V (0)(~r ′,~r) = V (0)(~r)δ(~r −~r ′) we can write

V (0)(~r) = C0δ(~r) (B.13)
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Now we rewrite the NLO term of the potential

V (1)(~r ′,~r) =



~r ′
�

�V (1)
�

�~r
�

=

∫∫

d3p ′d3p



~r ′
�

�~p′
�


~p′
�

�V (1)
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�~p
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�

�~p′
�

C2
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~p′2+ ~p2
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~p
�

�~r
�

(B.14)

We use again that the local potential is only depends on the momentum transfer ~̃p = ~p′− ~p

V (1)(~r ′,~r) =
C2
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2πħh3/2
�2
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(B.15)

In the last step we used the definition (B.10). Now we can use integration by parts

∫

d3r [∇nδ(~r)]ψ(~r) = (−1)n
∫

d3r δ(~r)[∇nψ(~r)] (B.16)

since the boundary term vanishes, hence symbolically

[∇nδ(~r)]ψ(~r) = (−1)nδ(~r)
�

∇nψ(~r)
�

. (B.17)

Therefore, for the NLO correction to the local potential and its rotational symmetry (see LO part) we get

V (1)(~r ′,~r) = V (1)(~r)δ
�

~r −~r ′
�

= C2δ
�

~r −~r ′
�

¦�

∇2δ(~r ′)
�

+ 2
�

∇δ(~r ′)
�

∇+δ(~r ′)∇2
©

(B.18)

B.2 Calculation of the Leading Order Constant

For our calculation of the energy in LO we need to determine the coupling constant at LO C (0)0 , which
we do in section 3.6.1. In this section we show some intermediate steps of the calculation. We start with
eq. (3.63) and set, in the following, ε= E(0)/(ħhω). Therefore, the denominator can be rewritten as

1
ε/2− (n+ 3/4)

=
n+ 1/2

(n+ 1/2)(ε/2− 3/4− n)

=−
n+ 1/2+ 1/4− ε/2− 1/4+ ε/2

(n+ 1/2)(−ε/2+ 3/4+ n)

=−
1

n+ 1/2
+

1/4− ε/2

(n+ 1/2)(a+ n)
, (B.19)
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where a has been set to 3/4−ε/2 in the last step. Therefore, the following equation holds for the coefficient
C0:

1

C (0)0

=
1

2π3/2a3
HO,µħhω



−
nmax
∑

n=0

L(1/2)n (0)
n+ 1/2

+
1− 2ε

4

nmax
∑

n=0

L(1/2)n (0)
(n+ 1/2)(a+ n)



 (B.20)

Using the following identities for sums involving the generalized Laguerre polynomials at the origin:

m
∑

n=0

L(1/2)n (0)
n+ 1/2

=
4
p
π

Γ(m+ 3/2)
Γ(m+ 1)

(B.21)

and

m
∑

n=0

L(1/2)n (0)

(n+ 1/2) (n+ a)2
= 2
p
π

�

Γ(a)
Γ(a+ 1/2)

−
Γ(nmax+ 3/2)
Γ(nmax+ 2)

· 3F2(1, nmax+ 3/2, a+ nmax+ 1; nmax+ 2, a+ nmax+ 2;1)
π(a+ nmax+ 1)

�

, (B.22)

where 3F2 is the generalized hypergeometric function, eq. (B.20) becomes

1

C (0)0

=−
µ

2ħh3π3/2aHO,µ

�

4
p
π

Γ(nmax+ 3/2)
Γ(nmax+ 1)

−
1− 2ε

4
2
p
π

�

Γ(a)
Γ(a+ 1/2)

−
Γ(nmax+ 3/2)
Γ(nmax+ 2)

3F2(1, nmax+ 3/2, a+ nmax+ 1; nmax+ 2, a+ nmax+ 2;1)
π(a+ nmax+ 1)

��

. (B.23)

By definition, Γ(n+ 1) = nΓ(n), so that

1

C (0)0

=−
2

π2a3
HO,µħhω

�

Γ(nmax+ 3/2)
Γ(nmax+ 1)

−
1− 2ε

8
π

·
�

Γ(a)
(a− 1/2)Γ(a− 1/2)

−
Γ(nmax+ 3/2)

(nmax+ 1)Γ(nmax+ 1)
3F2(. . .)

π(a+ nmax+ 1)

��

. (B.24)

Inserting a = 3/4− ε/2 yields, after several transformation steps,

1

C (0)0

=−
2

π2a3
HO,µħhω

�

Γ(nmax+ 3/2)
Γ(nmax+ 1)

�

1+ R
�

nmax, ε/2
��

−
π

2

Γ(3/4− ε/2)
Γ (1/4− ε/2)

�

(B.25)

with

R (m, ε/2) =
1− 2ε

8(m+ 1) (m+ 7/4− ε/2) 3F2 (1, m+ 3/2, m+ 7/4− ε/2; m+ 2, m+ 11/4− ε/2; 1) , (B.26)

where 3F2 is the generalized hypergeometric function. We use this equation to calculate the LO coeffi-
cient C (0)0 .
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B.3 NLO Contribution to the Energy

In oder to calculate the NLO coupling constants we need to derive the first-order energy correction E(1).
In this section, we derive first the first-order correction (NLO) to the energy E(1), eq. (3.72), by using
first-order perturbation theory. We start with the first-order correction equation (A.9)

�

H(0)− E(0)
�

ψ(1)n (~r) =
�

E(1)− V (1)
�

ψ(0)n (~r) (B.27)

in the appendix A.2. Projecting the first-order correction to the Schrödinger equation (A.9) on a state



ψ(0)
�

� yields the NLO correction to the energy, eq. (B.33) (see appendix A.2 for more details): Inserting
the NLO correction to the potential equation (3.57), we get:




ψ(0)
�

�V (1)
�

�ψ(0)
�

=

∫

d3rψ(0)∗(~r)V (~r)ψ(0)(~r)

=

∫

d3rψ(0)∗(~r)C (1)0 δ(~r)ψ
(0)(~r)

− C (1)2

∫

d3rψ(0)∗(~r)
¦

[∇2δ(~r)] + 2[~∇δ(~r)]~∇+ 2δ(~r)∇2
©

ψ(0)(~r). (B.28)

We calculate each term of eq. (B.28) separately and start with the term containing C (1)0 :

∫

d3rψ(0)∗(~r)C (1)0 δ(~r)ψ
(0)(~r) = C (1)0

∫

drψ(0)∗(r)δ(r)ψ(0)(r) = C (1)0 ψ
(0)∗(0)ψ(0)(0), (B.29)

again using the translational symmetry of the potential. We continue with the C (1)2 part of eq. (B.28)
and also evaluate each part separately by using the translational symmetry of the potential and the
integration by parts eq. (B.16) For the first term of the C (1)2 part of eq. (B.28), we get:

∫

d3rψ(0)∗(~r)[∇2δ(~r)]ψ(0)(~r)

=

∫

drδ(r)∇2
�

ψ(0)∗(r)ψ(0)(r)
�

=

∫

drδ(r)
�

[∇2ψ(0)∗(r)]ψ(0)(r) + 2[∇ψ(0)∗(r)][∇ψ(0)(r)] +ψ(0)∗[∇2ψ(0)(r)]
�

= [∇2ψ(0)∗(r)]r=0ψ
(0)(0) + 2[∇ψ(0)(r)]r=0[∇ψ(0)(r)]r=0+ψ

(0)∗(0)[∇2ψ(0)(r)]r=0. (B.30)

For the second term of the C (1)2 part of eq. (B.28) we get:

2

∫

d3rψ(0)∗(~r)[~∇δ(~r)]~∇ψ(0)(~r)

=−2

∫

drδ(r)∇
�

ψ(0)∗(r)∇ψ(0)(r)
�

=−2

∫

drδ(r)
�

[∇ψ(0)∗(r)][∇ψ(0)(r)] +ψ(0)∗(r)[∇2ψ(0)(r)]
�

=−2[∇ψ(0)∗(r)]r=0[∇ψ(0)(r)]r=0− 2ψ(0)∗(0)[∇2ψ(0)(r)]r=0, (B.31)
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and for the last term of eq. (B.28), we get:

2

∫

d3rψ(0)∗(~r)δ(~r)
�

∇2ψ(0)(~r)
�

= 2ψ(0)∗(0)[∇2ψ(0)(r)]r=0 (B.32)

All parts with C (n)0 and C (n)2 can be evaluated in a similar way, where n is the order. We summarize all
terms with the coefficient C (1)0 and the three with the coefficient C (1)2 of eq. (B.28) and get as the NLO
correction to the energy:

E(1) =



ψ(0)
�

�V (1)
�

�ψ(0)
�

(B.33)

= C (1)0 ψ
(0)2(0)− C (1)2

n

�

∇2ψ(0)(r)
�

r=0
ψ(0)(0) +ψ(0)(0)

�

∇2ψ(0)(r)
�

r=0

o

If we apply the non-interacting Hamiltonian defined in eq. (3.26) to the wave function ψ(~r) we get

1

2

�

−
ħh2

µ
~∇2

r +µω
2~r2

�

ψ(~r) = H0

erel→∞
∑

n,l=0

l
∑

m=−l

cnlmφnlm =
erel→∞
∑

n,l=0

l
∑

m=−l

cnlmEnlφnlm (B.34)

where we used equations (3.27) and (3.28). We are in the unitary limit with l = 0, hence for r → 0 we
arrive at

ħh2
�

∇2ψ(0)(r)
�

r=0
=−2µ

∑

n

c(0)n Enφn(0) = 2µ

�

E(0)ψ(0)(0) + κ(0)
∑

n

ψ2
n(0)

�

. (B.35)

In the last step we use eq. (3.61) and ψn(~r) =
∑

n cnφn(~r). Inserting this into eq. (B.33), we get for the
first-order correction to the energy:

E(1) = C (1)0

�

ψ(0)(0)
�2
−

4µC (1)2

ħh2 ψ(0)(0)

�

−E(0)ψ(0)(0) + κ(0)
∑

n

φ2
n(0)

�

=

�

κ(0)
�2

�

C (0)0

�2

(

C (1)0 +
4µC (1)2

ħh2



E(0)−
C (0)0

π3/2a3
HO,µ

∑

n

L(1/2)n (0)





)

. (B.36)

Furthermore, we can use the identity [91]

m
∑

n=0

L(1/2)n (0) =
4

3
p
π

Γ(m+ 5/2)
Γ(m+ 1)

(B.37)

and get

E(1) =

�

κ(0)
�2

�

C (0)0

�2

(

C (1)0 +
4µC (1)2

ħh2



E(0)−
4C (0)0

3π2a3
HO,µ

Γ
�

nmax+ 5/2
�

Γ
�

nmax+ 1
�





)

(B.38)

as the first-order correction to the energy.
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B.4 Calculation of the Next-to-Leading Order Constant

We calculate in this appendix the NLO coefficients C (1)0 and C (1)2 by inserting the first-order energy cor-
rection into eq. (3.71) [91]. Previously we show the derivation of the parameter κ(0) we need for the
calculation of both parameters. Using the orthogonality of the wave function ψ(0) we get:




ψ(0)
�

�ψ(0)
�

=
nmax
∑

n

n′max
∑

n′
cncn′




n
�

�n′
�

=
nmax
∑

n

n′max
∑

n′

�

κ(0)
�2 φn(0)

E(0)i − En

φn′(0)

E(0)i − En′
δn,n′ = 1, (B.39)

where we used for the wave function eq. (3.32) since the interaction acts only on the s-wave and the

eq. (3.61) for the coefficients cn and cn′ . Therefore, we can write for the parameter κ(0)
�

E(0)i

�

h

κ(0)
�

E(0)i

�i−2
=

nmax
∑

n

φ2
n(0)

(E(0)i − En)2
, (B.40)

where we use the notation κ(0)
�

E(0)i

�

since the parameter κ(0) depends on the Energy.
Now we use the eq. (3.72) in order to determine the both NLO constants. First we determine the

coefficient C (1)2 :

E(1)1 /
h

κ(0)
�

E(0)1

�i2− E(1)0 /
h

κ(0)
�

E(0)0

�i2 =
4µC (1)2

ħh2C (0)20

�

E(0)1 − E(0)0

�

(B.41)

Rearranging the formula yields [91]

4µC (1)2

ħh2C (0)20

=
E(1)1 /

h

κ(0)
�

E(0)1

�i2− E(1)0 /
h

κ(0)
�

E(0)0

�i2

E(0)1 − E(0)0

. (B.42)

Second, we determine the coefficient C (1)0 in a similar way:

E(0)0 E(1)1 /
h

κ(0)
�

E(0)1

�i2− E(0)1 E(1)0 /
h

κ(0)
�

E(0)0

�i2 (B.43)

=
C (1)0
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where we set in the last step the for the coefficient C (1)2 eq. (3.76). Rearranging the formula to solve for
C(1)0 /4µC(1)2 yields

C (1)0 ħh
2

4µC (1)2

=
4C (0)0

3π2a3
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B.4. Calculation of the Next-to-Leading Order Constant 99





Bibliography
[1] Y. Alhassid, G. F. Bertsch, and L. Fang, “New Effective Interaction for the Trapped Fermi Gas”, in

Physical Review Letters, vol. 100, pp. 230401/1–4, 2008

[2] J. O. Andersen, “Theory of the Weakly Interacting Bose Gas”, in Review of Modern Physics, vol. 76,
pp. 599–639, 2004

[3] J. B. Anderson, “Fixed-node quantum Monte Carlo”, in International Reviews in Physical Chemistry,
vol. 14, no. 1, pp. 85–112, 1995

[4] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of
Bose-Einstein Condensation in a Dilute Atomic Vapor”, in Science, vol. 269, pp. 198–201, 1995

[5] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, “Equation of State of a Fermi Gas in
the BEC-BCS Crossover: A Quantum Monte Carlo Study”, in Physical Review Letters, vol. 93, no. 20,
pp. 200404/1–4, 2004

[6] M. A. Baranov, “Theoretical Progress in Many-Body Physics with Ultracold Dipolar Gases”, in Physics
Reports 464, pp. 71–111, 2008

[7] J. Bardeeen, L. N. Cooper, and J. R. Schrieffer, “Theory of Superconductivity”, in Physical Review,
vol. 108, no. 5, pp. 1175–1204, 1957

[8] P. F. Bedaque and U. van Kolck, “Effective Field Theory for Few-Nucleon Systems”, in Annual Review
of Nuclear and Particle Science 52, pp. 339–396, 2002

[9] I. Bloch, “Ultracold quantum gases in optical lattices”, in nature physics, vol. 1, pp. 23–30, 2005

[10] D. Blume, “Few-body physics with ultracold atomic and molecular systems in traps”, in Reports on
Progress in Physics 75, pp. 046401/1–37, 2012

[11] D. Blume and K. M. Daily, “Trapped two-component Fermi gases with up to six particles: Energetics,
structural properties, and molecular condensate fraction”, in Comptes Rendus Physique 12, pp. 86-
109, 2011

[12] D. Blume, J. von Stecher, and C. H. Greene, “Universal Properties of a Trapped Two-Component
Fermi Gas at Unitarity”, in Physical Review Letters, vol. 99, pp. 233201/1–4, 2007

[13] S. N. Bose, “Plancks Gesetz und Lichtquantenhypothese” (“Plancks Law and Light Quantum Hy-
pothesis”), in Zeitschrift für Physik 26, p. 178, 1924

[14] T. Bourdel, J. Cubizolles, L. Khaykovich, K. M. F. Magalhaes, S. J. J. M. F. Kokkelmans, G. V. Shlyap-
nikov, and C. Salomon, “Measurement of the Interaction Energy near a Feshbach Resonance in a 6Li
Fermi Gas”, in Physical Review Letters, vol. 91, no. 2, pp. 020402/1–4, 2003

[15] E. Braaten and H.-W. Hammer, “Universality in few-body systems with large scattering length”, in
Physics Reports 428, pp. 259–390, 2006

[16] A. Bulgac, “Local-density-functional theory for superfluid fermonic systems: The unitary gas”, in
Physical Review A, vol. 76, pp. 040502/1–4, 2007

101
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