
Natural orbitals for ab initio no-core shell model calculations

Alexander Tichai,1, 2, ∗ Julius Müller,1, † Klaus Vobig,1, ‡ and Robert Roth1, §

1Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstr. 2, 64289 Darmstadt, Germany
2ESNT, IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

(Dated: December 11, 2018)

We explore the impact of optimizations of the single-particle basis on the convergence behavior and robust-
ness of ab initio no-core shell model calculations of nuclei. Our focus is on novel basis sets defined by the
natural orbitals of a correlated one-body density matrix that is obtained in second-order many-body perturba-
tion theory. Using a perturbatively improved density matrix as starting point informs the single-particle basis
about the dominant correlation effects on the global structure of the many-body state, while keeping the com-
putational cost for the basis optimization at a minimum. Already the comparison of the radial single-particle
wavefunctions reveals the superiority of the natural-orbital basis compared to a Hartree-Fock or harmonic oscil-
lator basis, and it highlights pathologies of the Hartree-Fock basis. We compare the model-space convergence
of energies, root-mean-square radii, and selected electromagnetic observables for all three basis sets for selected
p-shell nuclei using chiral interactions with explicit three-nucleon terms. In all cases the natural-orbital basis
provides the fastest and most robust convergence, making it the most efficient basis for no-core shell model
calculations. As an application we present no-core shell model calculations for the ground-state energies of all
oxygen isotopes and assess the accuracy of the normal-ordered two-body approximation of the three-nucleon
interaction in the natural-orbital basis.

I. INTRODUCTION

The ab initio solution of the quantum many-body problem
using realistic nuclear interactions poses a long-standing chal-
lenge in modern nuclear structure theory. Configuration inter-
action (CI) approaches provide a simple tool to access a va-
riety of nuclear observables via the solution of a large-scale
matrix eigenvalue problem for the Hamiltonian represented
in a many-body basis. Of particular importance are the no-
core CI approaches, with the ab initio no-core shell-model
(NCSM) as a prime representative, which treat all nucleons
as active degrees of freedom [1, 2]. In its original formu-
lation, the NCSM uses the harmonic oscillator (HO) single-
particle basis in conjunction with a truncation of the many-
body Slater-determinant basis in terms of the total number of
HO excitation quanta, Nmax. Due to its conceptual simplicity,
the NCSM can be straightforwardly applied to the calcula-
tion of a full suite of observables for ground and low-lying
excited states of all light nuclei. However, it is well-known
that the HO single-particle wavefunctions do not posses the
correct asymptotic behavior and that convergence of energies
and other observables with increasing Nmax can be slow and
strongly dependent on the oscillator frequency ℏΩ. Conver-
gence is particularly difficult for observables sensitive to the
long-range behavior of the many-body wavefunction, such as
the root-mean-square radius and the electric quadrupole mo-
ment or transition strength.

The question arises, to what extend this convergence can
be accelerated by an optimization of the single-particle ba-
sis and how such an optimization can be performed. An ob-
vious choice for a basis optimization method is the Hartree-
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Fock (HF) approximation, i.e., a variational calculation for
the ground state of a given nucleus using a single Slater de-
terminant as a trial state, whose single-particle states serve as
variational degrees of freedom [3, 4]. These HF-optimized
single-particle basis sets are widely used in methods targeting
medium-mass nuclei, such as in-medium similarity renormal-
ization group [5, 6], coupled-cluster [7, 8], or self-consistent
Green’s function methods [9, 10]. An obvious downside of
this optimization strategy is that the single-particle basis tar-
gets the completely uncorrelated mean-field approximation
for the nucleus of choice. Depending on the interaction, the
HF ground-state might be not even bound, so the HF single-
particle basis accounts for a completely different, potentially
unphysical situation. Even if soft interactions are being used,
the HF ground state lacks correlation effects and the binding
energy is underestimated significantly. Therefore, the HF-
optimized single-particle basis might not be the best starting
point for the description of the fully correlated nucleus.

A more general strategy for constructing an optimized
single-particle basis are the so-called natural orbitals, i.e., the
eigenvectors of the one-body density matrix. This one-body
density matrix is obtained from a separate many-body cal-
culation, which might include correlations at different levels
of approximation. It is known from applications in quantum
chemistry and atomic physics that natural orbitals provide an
excellent single-particle basis to speed up the convergence of
the CI expansion [11].

If using a HF calculation to construct the one-body density
matrix of the ground state of the target nucleus, thus ignor-
ing correlations, then the natural orbitals are identical to the
HF single-particle basis. The other extreme would be a fully
correlated NCSM calculation in a large model space to con-
struct the one-body density matrix, yielding a natural orbital
basis adapted to the global properties of the fully correlated
many-body state. This strategy was pioneered for light nu-
clear systems in the NCSM context in Ref. [12]. An obvious
drawback is the extra computational effort for the NCSM cal-
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culation underlying the natural orbitals.
Prior investigations in quantum chemistry have shown that

approximate natural orbitals perform equally well in CI ap-
plications, but require much lower computational effort for
their construction [13, 14]. Therefore, we develop a simpli-
fied strategy to determine an optimized natural-orbital basis
for NCSM-type calculations. We use a second-order corrected
one-body density matrix that is conveniently derived using
Hartree-Fock many-body perturbation theory (MBPT) [4, 15–
17]. Subsequently, we compare HO, HF and natural orbital
radial wavefunctions and explore the impact of the different
bases on the model-space convergence of nuclear observables
in large-scale NCSM calculations.

II. NATURAL ORBITALS FROM MBPT

We aim at the construction of the one-body density matrix

ρpq = ⟨Ψ| c†pcq |Ψ⟩ , (1)

for a nuclear many-body state |Ψ⟩, the so-called reference
state, that includes correlations at least in an approximate way.
Here and in the following c†p, cp denote single-particle cre-
ation and annihilation operators, respectively, for an auxiliary
single-particle basis. The index p refers to the set of quan-
tum numbers (np, lp, jp,mp, tp), where np is the radial quan-
tum number, lp the orbital angular momentum, jp the total
angular momentum with projection mp, and tp the isospin pro-
jection.

Instead of performing large-scale NCSM or CI calculations
to obtain |Ψ⟩, we use a computationally more efficient alter-
native based on MBPT. We approximate the eigenstate up to
second order in the MBPT expansion

|Ψ⟩ ≈ |Ψ(0)⟩ + |Ψ(1)⟩ + |Ψ(2)⟩ , (2)

where |Ψ(n)⟩ denotes the n-th order state correction on top of
the unperturbed state |Ψ(0)⟩. Building on our previous work
on HF-MBPT, its order-by-order convergence, and the quality
of low-order approximations, we use an angular-momentum
restricted HF ground state as unperturbed state |Ψ(0)⟩ = |ΦHF⟩
and formulate the Møller-Plesset partitioning of the intrinsic
nuclear Hamiltonian H accordingly. For more details we refer
the reader to Ref. [17].

Following Refs. [4, 18], we can write the one-body density
matrix up to second order in the interaction as

ρ ≈ ρ(00) + ρ(02) + ρ(20) + ρ(11) , (3)

where ρ(00) denotes the zeroth-order HF density matrix and

ρ(02)
pq = ⟨Ψ(0)| c†pcq |Ψ(2)⟩ = ρ(20)

qp , (4)

ρ(11)
pq = ⟨Ψ(1)| c†pcq |Ψ(1)⟩ . (5)

These nontrivial corrections to the density matrix can be con-
veniently written as

ρ(02) = D(A) + D(B), (6)

ρ(11) = D(C) + D(D), (7)

where the individual terms are given by

D(A)
i′a′ =

1
2

∑
abi

Hi′i,abHab,a′i

(ϵi′ − ϵa′ )(ϵi′ + ϵi − ϵa − ϵb)
, (8)

D(B)
i′a′ = −

1
2

∑
ai j

Hi′a,i jHi j,a′a

(ϵi′ − ϵa′ )(ϵi + ϵ j − ϵa′ − ϵa)
, (9)

D(C)
i′ j′ = −

1
2

∑
abi

Hi′i,abHab, j′i

(ϵi′ + ϵi − ϵa − ϵb)(ϵ j′ + ϵi − ϵa − ϵb)
,

(10)

D(D)
a′b′ =

1
2

∑
ai j

Ha′a,i jHi j,b′a

(ϵi + ϵ j − ϵa′ − ϵa)(ϵi + ϵ j − ϵb′ − ϵa)
.

(11)

These expressions make use of the particle-hole formalism:
Single-particle states occupied in the unperturbed HF state are
denoted by indices i, j, ... (holes), unoccupied states by indices
a, b, ... (particles). Furthermore, Hpq,rs denote antisymmetric
two-body matrix elements of the intrinsic Hamiltonian and ϵp
the HF single-particle energies.

For reasons of computational efficiency, we choose the sim-
plest possible implementation of MBPT assuming a two-body
Hamiltonian and a single-determinant reference state. For
the inclusion of three-body interactions we apply the normal-
ordered two-body approximation with respect to the single-
determinantal HF reference state [19, 20]. Note that the HF
calculation itself uses the HO as computational basis and all
initial matrix elements are specified in HO representation and
subsequently transformed to the HF basis. For open- j-shell
systems we use a symmetry-constrained HF determinant con-
structed in an equal-filling approximation, thus, yielding a HF
solution with fractional occupation numbers in the degener-
ate shell. This also facilitates the derivation of an angular-
momentum coupled form of the above equations, which is
used in all following calculations.

We note that there is no contribution ⟨Ψ(0)| c†pcq |Ψ(1)⟩ since
Brillouin’s theorem prevents single-excitations in the first-
order state correction from direct mixing with the HF ground
state. Furthermore, the trace of the correlated second-order
density matrix is the same as the trace of the HF density, since∑

i

D(C)
ii +

∑
a

D(D)
aa = 0 . (12)

Due to the symmetries of the Hamiltonian, the resulting
correlated density matrix is block-diagonal in l, j, t and m
and it is independent of m due to our symmetry constraint.
Therefore, we obtain a set of spherical natural orbitals by di-
agonalizing the one-body density matrix in each (l jt) block.
The new natural orbital single-particle states (NAT) are then
given by superposition of the HF or HO basis states according
to

|nl jmt⟩NAT =
∑

n′
c(l jt)

nn′ |n
′l jmt⟩HF (13)

=
∑

n′
c̃(l jt)

nn′ |n
′l jmt⟩HO , (14)
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FIG. 1. (color online) Plot of the squared radial wavefunctions |u(r)|2
(in units of fm−1) of the HO basis (left-hand column), the HF basis
(center column), and NAT basis (right-hand column) for 16O. The
different rows display different single-particle orbits: the occupied
0p3/2 orbit (top row) and the unoccupied and HF-unbound 1s1/2 and
1p1/2 orbit (middle and bottom row). The different lines correspond
to different values for the oscillator frequency ℏΩ = 16 MeV (blue),
20 MeV (green), and 24 MeV (red). We use the NN+3N interaction
with Λ3N = 400 MeV/c and α = 0.08 fm4.

where c(l jt)
nn′ are the expansion coefficients with respect to the

HF basis obtained from the diagonalization of the one-body
density matrix, and c̃(l jt)

nn′ are the expansion coefficients with
respect to the HO basis that encapsulate the basis transforma-
tion between HO and HF in addition. Since we use a truncated
HO set as computational basis for the construction of the HF
and NAT basis sets, these basis sets also contain the oscillator
frequency ℏΩ as a parameter.

The expansion (14) is used to transform the matrix ele-
ments of all relevant operators, e.g., nucleon-nucleon (NN)
and three-nucleon (3N) interactions and a collection of elec-
tromagnetic operators, from the initial HO representation to
the NAT basis. Those matrix elements are stored to disk
for the subsequent many-body calculation. In the following
we focus on applications in the NCSM, however, the same
NAT matrix elements can be used, e.g., in in-medium sim-
ilarity renormalization group or coupled-cluster calculations
for medium-mass nuclei. Note that the computationally most
demanding step in the whole procedure is actually the trans-
formation of the various matrix elements to the NAT basis,
particularly if explicit three-nucleon forces are included—as
we do in the following.

III. BENCHMARK CALCULATIONS

We explore the convergence properties of the NAT basis in
comparison to conventional HF and HO basis sets for differ-
ent observables in the framework of the NCSM. For all basis
sets, we adopt the conventional Nmax truncation, defined with

respect to the radial and orbital angular momentum quantum
numbers. For the HF and NAT basis this does not necessarily
correspond to a truncation in the unperturbed excitation en-
ergy of the basis states anymore, but is still provides a very ef-
ficient truncation of the many-body basis that guarantees good
angular momenta. With the HF and NAT bases we also sac-
rifice the exact factorisation of intrinsic and center-of-mass
components of the eigenstates, which is formally guaranteed
for the HO basis with an Nmax truncation.

For the following calculations we use nuclear Hamiltoni-
ans with NN and 3N interactions derived from chiral effec-
tive field theory. To facilitate the comparison with previ-
ous calculations and other many-body approaches, we use the
classic NN interaction at next-to-next-to-next-to leading or-
der by Entem and Machleidt [21] in combination with a lo-
cal 3N force at next-to-next-to leading order with cutoffs of
Λ3N = 400 or 500 MeV/c depending on the system under
consideration [19, 22]. The Hamiltonian is transformed at
the three-body level with the similarity renormalization group
(SRG) approach [23–28], i.e., induced many-body forces be-
yond three-body level are discarded. We use a flow parame-
ter α = 0.08 fm4 as in previous studies [19, 26, 29, 30]. The
single-particle basis for the HF and NAT calculations contains
all single-particle states up to emax = (2n+ l)max = 12. For the
matrix elements of the 3N interaction we use an additional
truncation e1 + e2 + e3 ≤ E3max = 14, which was shown to be
sufficient for nuclei up into the sd-shell [30]. For the oxygen
isotopes beyond Nmax = 4 we employ an importance trunca-
tion of the NCSM model space, as discussed in [26, 31, 32].

A. Single-Particle Wavefunctions

We start with a comparison of the structure of the radial
wavefunctions in the HO, HF, and NAT single-particle bases
in Fig. 1. We focus on the description of the closed-shell nu-
cleus 16O and distinguish hole and particle states, i.e., occu-
pied and unoccupied single-particle states in the HF determi-
nant, respectively. The first row of Fig. 1 depicts the 0p3/2
radial wavefunctions, corresponding to occupied states, for
three different frequencies of the underlying HO basis. Triv-
ially, all the HO wavefunctions show a simple radial scaling
with the oscillator lengths proportional to (ℏΩ)−1/2. The HF
and NAT wavefunctions, however, are independent of the os-
cillator frequency and almost identical. The lower two rows
of Fig. 1 show the 1s1/2 and 1p1/2 wavefunctions as represen-
tatives of unoccupied and HF-unbound single-particle states.
While the NAT wavefunctions are again completely frequency
independent and similar in shape to the HO wavefunctions,
the HF wavefunctions exhibits severe pathologies—they show
unphysical distortions and a very pronounced frequency de-
pendence, particularly in the long-range part.

The deficiencies of the HF wavefunctions for unoccupied
states are not surprising, given that the self-consistent solution
of the HF equations only provides a variational optimization
of the occupied states, while unoccupied single-particle states
are only fixed via orthogonality and normalization. This is
different for the NAT basis, since all single-particle states—
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FIG. 2. (color online) Ground-state energies for 4He obtained in the
NCSM with the HO, HF, and NAT basis sets (panels from left to
right) as function of the oscillator frequency ℏΩ for Nmax = 4 (l),
6 (♦), 8 (s), 10 (■), and 12 (:). All calculations employ the chiral
NN+3N interaction (Λ3N = 400 MeV/c) after an SRG evolution with
α = 0.08 fm4.
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FIG. 3. (color online) Ground-state energies for 16O obtained in the
NCSM with the HO, HF, and NAT basis sets with Nmax = 2 (l), 4
(♦), 6 (s), 8 (■), and 10 (:). The open symbols indicated results
obtained with the NO2B approximation. All other paramters as in
Fig. 2.

also the ones not occupied in HF—contribute to the corre-
lated ground state and, thus, carry relevant physical informa-
tion on the global structure of the ground state. As long as the
Hamiltonian mixes the high-lying single-particle states into
the ground state, the one-body density matrix and the natural
orbitals provide an efficient tool for optimizing their wave-
functions.

B. Ground-State Energies

Based on the differences of the wavefunctions among the
HO, HF and NAT basis sets, we should expect quite differ-
ent convergence patterns in actual NCSM calculations. We
start with the discussion of the ground-state energy as func-
tion of the oscillator frequency ℏΩ for increasing the model-
space truncation parameter Nmax. The ground-state energies

obtained for the three basis sets with the aforementioned chiral
NN+3N interactions for 4He and 16O are summarized in Figs.
2 and 3, respectively. The left-hand panels depict the results
with the HO basis, which exhibit a well-known systematics:
At small Nmax the energies show a pronounced minimum as
function of frequency, often used to define an optimal HO fre-
quency, with a monotonic rise of the energy towards smaller
and larger frequencies. With increasing Nmax the frequency-
dependence gradually flattens and the minimum broadens.
Once convergence is reached, the energies become indepen-
dent of frequency and successive Nmax calculations fall on top
of each other. For 4He we reach this convergence already at
Nmax = 10, while for 16O still larger Nmax would be needed.

For the HF basis, shown in the middle panel, the pattern
is vastly different. Obviously, we cannot extract meaningful
converged results from the HF-basis calculation. There is a
strong frequency dependence over the full Nmax-range con-
sidered here, favouring large frequencies. Furthermore, there
is no indication of convergence even for model-space sizes
where the HO calculation is converged already. This catas-
trophic behaviour results from a combination of two effects:
the pathologies of the HF single-particle basis, as discussed
above, and the Nmax model space truncation. In a full CI cal-
culation, which solely uses a truncation of the single-particle
basis, the HF-basis would not pose a problem, because the
full CI model space covers all possible unitary transforma-
tions of the single-particle states. Thus, the deficiencies of the
HF-basis can be remedied by the full CI solution. This is not
possible in a NCSM calculation, since we use a truncation in
a many-body energy parameter and unitary transformations of
the single-particle basis would lead beyond the Nmax-truncated
space. Methods like coupled-cluster theory or the in-medium
similarity renormalizaion group, which employ a truncation
of the single-particle basis (i.e. an emax truncation) plus some
cluster truncation, can work with the HF basis, because they
have the freedom to improve the single-particle basis (singles
amplitudes in coupled cluster). However, this is only true
as long as the HF calculation and the subsequent full CI or
coupled-cluster calculations use the same single-particle trun-
cation.

For the NAT basis, the situation improves drastically. Al-
ready for small Nmax there is almost no frequency dependence,
which is expected based on the robustness of single-particle
wavefunctions. With increasing Nmax we observe rapid and
very smooth convergence—the convergence rate for all fre-
quencies is as good as or even better than for the HO basis at
its optimal frequency. These two aspects, frequency indepen-
dence and optimal convergence, make the NAT basis a per-
fect tool for efficient NCSM calculations. We only have to
consider a single Nmax-sequence for one standard frequency,
instead of multiple sequences to determine the optimal fre-
quency.

As mentioned earlier, the NAT basis does not guarantee a
formal separation of intrinsic and center-of-mass motion and
we have to expect center-of-mass contaminations. We monitor
the expectation value of the HO center-of-mass Hamiltonian
in all calculations. In all cases presented here, this expecta-
tion values is on the order of 100 keV and it systematically
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FIG. 4. (color online) Point-proton radii for the ground state of 4He
obtained in the NCSM with the HO, HF, and NAT basis sets (pan-
els from left to right) as function of the oscillator frequency ℏΩ for
Nmax = 4 (l), 6 (♦), 8 (s), 10 (■), and 12 (:). All calculations em-
ploy the chiral NN+3N interaction (Λ3N = 400 MeV/c) after an SRG
evolution with α = 0.08 fm4.

decreases with Nmax. Therefore, we consider the effects of
center-of-mass contaminations negligible.

So far, we have discussed calculations including explicit
3N interactions in the Hamiltonian. We can simplify these
calculations significantly using the normal-ordered two-body
approximation (NO2B) for the 3N interaction, see Ref. [19]
for details. The normal-ordering of the 3N interaction with
respect to a single-determinant reference state can be conve-
niently combined with the transformation of the interaction
matrix elements into the NAT basis. This reduces the com-
putational cost for the basis transformation process and the
subsequent NCSM calculation significantly. Results for the
16O ground-state energy obtained with the NAT basis and the
NO2B approximation for the 3N terms are indicated by the
open symbols in the right-hand panel of Fig. 3. We observe,
in agreement with our earlier work [19, 20], that the NO2B
approximation produces an overbinding of about 1 MeV or
1% compared to the calculations with explicit 3N interactions
in large Nmax, which is an acceptable uncertainty for many
applications beyond the lightest nuclei.

C. Charge Radii

From the convergence point of view, root-mean-square radii
are notoriously difficult observables. They are sensitive to the
long-range behavior of the basis functions and should benefit
from basis optimizations beyond the HO. Moreover, they are
not protected by the variational principle and can exhibit a
complicated, non-monotonous convergence pattern.

In analogy to the discussion of ground-state energies,
Figs. 4 and 5 show the point-proton radii for the ground states
of 4He and 16O, respectively, as function of ℏΩ for a se-
quence of Nmax truncation parameters. For the HO basis, in
the left-hand panels of both figures, we observe a character-
istic pattern: At small ℏΩ—corresponding to large oscilla-
tor lengths—the radius decreases with increasing Nmax while
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FIG. 5. (color online) Point-proton radii for the ground state of 16O
obtained in the NCSM with the HO, HF, and NAT basis sets with
Nmax = 2 (l), 4 (♦), 6 (s), 8 (■), and 10 (:). All other paramters as
in Fig. 4.

at large ℏΩ—corresponding to small oscillator lengths—the
radius increases with Nmax. This leads to a flattening of
the frequency-dependence, although full convergence is not
reached in the present examples. To extract an estimate for
the converged radius, many NCSM applications use the fre-
quency where all Nmax curves seem to intersect, i.e., an opti-
mal frequency where the Nmax dependence is minimized [33].

For the NAT basis, depicted in the right-hand panels of
Figs. 4 and 5, we again find a significant change in the conver-
gence pattern: the frequency dependence is practically elim-
inated and we observe a very regular and monotonic con-
vergence from below for all frequencies. Interestingly, the
HF basis leads to a similar convergence pattern despite the
pathological convergence behavior of the energy. The over-
all change in the point-proton radius from the smallest to the
largest model space is quite small, so that a robust and ac-
curate extraction of radii is feasible. As for the energies, the
main advantage of the NAT basis over the HO is the elimina-
tion of the oscillator frequency as a relevant parameter in the
calculation.

D. Electromagnetic Observables

As a final check, we discuss excited states and electromag-
netic observables, which are a prime target for applications of
the NCSM. We consider 12C with the same chiral NN+3N in-
teraction that was used for a detailed benchmark of the NCSM
with and without importance truncation for a large range of
spectroscopic observables [32]. Figure 6 summarizes the re-
sults obtained with the HO and NAT basis for a suite of ob-
servables, including the ground-state energy, the excitation
energy of the first 2+ and 1+ states, the quadrupole momen-
tum of the first 2+ state, the B(E2) transition strength from the
2+ to the ground state, and the B(M1) transition strength from
the 1+ to the ground state. All calculations were performed
for three different oscillator frequencies and are presented as
function of Nmax.
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FIG. 6. (color online) Summary of the spectroscopy of 12C obtained
in NCSM calculation with the HO basis (open symbols) and NAT
basis (solid symbols) as function of Nmax for ℏΩ = 16,MeV (blue),
20 MeV (red), and 24 MeV (green). The left-hand panels show the
ground-state energy and the excitation energies for the first 2+ and 1+

states. The right-hand panels show the quadrupole moments of the
first 2+ state, the B(E2) transition strength from the 2+ to the ground
state, and the B(M1) strength from the 1+ to the ground state. All cal-
culations employ the chiral NN+3N interaction (Λ3N = 500 MeV/c)
after an SRG evolution with α = 0.08 fm4.

As in the previous cases, the NAT basis shows practically
no frequency dependence for all observables and all model-
space sizes. Thus, the main advantage of the NAT basis holds
for excited states and spectroscopic observables as well—in
practical calculations we only have to consider a single ℏΩ
parameter. Similar to the radii, the Nmax dependence is very
weak and generally monotonic. The largest model spaces used
here, show clear indications of convergence for all the observ-
ables. With the HO basis, there is a nontrivial dependence on
the oscillator frequency in all cases. By tuning the oscillator
frequency one can typically find a HO basis with a conver-
gence behavior similar to the NAT basis. For all observables,
the NAT results are fully consistent with the trends emerging
from the HO calculations.
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FIG. 7. (color online) Ground-state energies of all oxygen iso-
topes from 14O to 26O using the chiral NN+3N interaction (Λ3N =

400 MeV/c) after an SRG evolution with α = 0.08 fm4. Shown are
NCSM calculations using the NAT basis (ℏΩ = 20 MeV) with the
explicit 3N interaction (■) and with the NO2B approximation (♦).
For comparison we also plot the HO basis calculations of Ref. [29]
with optimized oscillator frequency (l). The inset shows the Nmax

dependence and extrapolation for selected isotopes with the explicit
3N interaction (see text).

IV. OXYGEN ISOTOPIC CHAIN

We conclude our numerical investigations, with an applica-
tion of the NAT basis in large-scale NCSM calculations of the
ground-state energies throughout the oxygen isotopic chain,
including all even and odd isotopes. We have presented a first
set of NCSM calculations for the even oxygen isotopes in Ref.
[29] using the same chiral NN+3N interaction. Those calcu-
lations were performed in the HO basis up to Nmax = 12 using
a careful optimization of ℏΩ to obtain optimal convergence
for each isotope. With the NAT basis, we use a standard fre-
quency ℏΩ = 20 MeV and model spaces only up to Nmax = 10.

In Fig. 7 we summarize the ground-state energies for all iso-
topes from 14O to 26O using explicit 3N interactions as well
as the NO2B approximation. For comparison, our old results
from Ref. [29] are also included in the plot. The inset in
Fig. 7 shows the Nmax dependence of selected isotopes to il-
lustrate the excellent convergence. Technically, we still use
an exponential extrapolation in Nmax to extract the converged
ground-state energy shown in the main plot, however, the dif-
ference between the Nmax = 10 results and the extrapolated
value, serving as a conservative proxy for the extrapolation
error, is smaller than the symbol size. The NO2B approxi-
mation leads to a systematic lowering of the ground-state en-
ergy by 1%, irrespective of the closed- or open-shell nature of
the nucleus. The NAT calculations confirm and improve our
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original HO-basis NCSM results—at a much reduced compu-
tational cost since we only consider one frequency and model
spaces up to Nmax = 10.

V. SUMMARY AND OUTLOOK

We have introduced natural orbitals extracted from a cor-
related one-body density matrix obtained in second-order
MBPT as a very convenient and efficient single-particle ba-
sis for NCSM calculations. Our approach provides NAT basis
sets optimized for the nucleus and Hamiltonian of interest at
very low computational cost. NCSM calculations using this
NAT basis show superior model-space convergence and inde-
pendence of the frequency of the underlying oscillator basis
for all relevant observables. Thus, in contrast to traditional
NCSM calculations in the HO basis, we only have to con-
sider one frequency and we can typically stop at smaller Nmax.
We demonstrated these benefits for the oxygen isotopic chain
from 14O to 26O. In addition, we highlighted some patholo-
gies of the HF basis, which inhibit meaningful calculations in
combination with Nmax-truncated model spaces.

The application of MBPT-based natural orbitals is not re-
stricted to the NCSM domain. The NAT basis and the trans-
formed matrix elements can be constructed also for medium-
mass and heavy nuclei. Therefore, medium-mass methods
that presently use the HF basis can readily employ the NAT
basis as well. This is particularly relevant for hybrid ap-
proaches, like the in-medium NCSM [34] and the perturba-
tively improved NCSM [35], which rely on the Nmax trunca-
tion in parts of the calculation.
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