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Abstract

The progress of ab initio nuclear structure in the past two decades revealed the need to in-
corporate continuum degrees of freedom. They are indispensable in the treatment of nuclear
structure and for connecting theory to experiments performed at the extremes of low-energy
many-body scattering. Many-body continuum calculation are a challenging task. It makes
sense to build on the proven ab initio bound-state methods, if possible. In this work, we
present combinations of the ab initio nuclear structure method of the No-Core Shell Model
(NCSM) with two approaches that give access to observables in the nuclear continuum. These
methods are the Harmonic Oscillator Representation of Scattering Equations (HORSE) and the
Analytic Continuation in the Coupling Constant (ACCC). The focus is on the determination of
resonance parameters, which is motivated by the possible existence of a resonating four-neutron
Jπ = 0+ state, the tetraneutron, proposed by a recently conducted experiment. We employ
various state-of-the-art Chiral Effective Field Theory (χEFT) interactions.
We first introduce the HORSE method and its simplification, the Single-State HORSE, which
belong to the so-called J-matrix methods. The J-matrix approach uses the tridiagonality of
the kinetic energy in a specific basis representation to connect an interior, interacting region,
to an exterior, free region. With the Single-State HORSE method, we calculate tetraneutron
phase shifts derived in a hyperspherical framework. We use various Similarity Renormalization
Group evolved χEFT interactions and two phenomenological potentials, studying their effects
on phase shifts. The calculations are performed in large NCSM model spaces. The phase
shifts are in line with the existence of a resonance, showing characteristic features of such
states. We further show a way of obtaining a hyperspherical basis within the framework of the
Jacobi-NCSM. This paves the way for future studies involving full HORSE Green’s function.
The second method used to investigate resonances, with an application to the dineutron and
tetraneutron, is the ACCC. The method provides access to resonances on the complex k-plane
by using the analytic properties of the Jost function as a function of a coupling constant. It
relies solely on bound-state calculations by artificially binding the system to obtain energies at
different coupling strengths, which are fitted by Padé approximants and extrapolated to the
initial interaction strength. We show two different binding procedures, an additional four-body
potential constructed on matrix element level from the smallest NCSM model spaces, dubbed
eigenvector binding. This is motivated by the desire to avoid bound substructures. The second
procedure is a straightforward multiplication of the interaction matrix elements by a factor.
The dineutron results show that the binding methods do not falsely produce resonances. The
tetraneutron results support a resonance in the case of eigenvector binding, but not so for the
direct matrix element modification.
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Zusammenfassung

Der Fortschritt der ab-initio Kernstrukturtheorie innerhalb der letzten zwei Jahrzehnte hat
gezeigt, dass Kontinuumsfreiheitsgrade berücksichtigt werden müssen. Diese sind unverzichtbar
bei der Beschreibung der Kernstruktur und der Verbindung von Theorie und Experiment.
Die Berechnung von Observablen des Vielkörperkontinuums ist eine anspruchsvolle Aufgabe.
Es ist daher wünschenwert, auf die bewährten ab-initio Methoden für gebundene Zustände
zurückzugreifen, wenn dies möglich ist.
Thema dieser Arbeit ist die Kombination des “No-Core Shell Model” (NCSM), einer ab-initio
Kernstrukturmethode, mit zwei Ansätzen, die Zugang zu Observablen des nuklearen Kontinu-
ums ermöglichen. Diese Methoden sind die “Harmonic Oscillator Representation of Scattering
Equations” (HORSE) und die “Analytic Continuation in the Coupling Constant” (ACCC). Der
Schwerpunkt liegt auf der Bestimmung von Resonanzparametern, motiviert durch ein kürzlich
durchgeführtes Experiment, welches die mögliche Existenz eines Jπ = 0+ Resonanzzustandes
vierer Neutronen, des so genannten Tetraneutrons, postuliert. Wir setzen verschiedene moderne
Wechselwirkungen der “Chiral Effective Field Theory” (χEFT) ein.
Wir stellen zunächst die HORSE-Methode und ihre Vereinfachung, die “Single-State HORSE”-
Methode vor, die zu den sogenannten J-matrix-Methoden gehören.
Der J-matrix-Ansatz nutzt die Tridiagonalität der kinetischen Energie in einer speziellen Ba-
sisdarstellung aus, um eine Verbindung zwischen einer wechselwirkenden inneren Region und
einer äußeren, freien Region herzustellen. Mit der Single-State HORSE-Methode berechnen
wir Tetraneutron-Phasenverschiebungen. Wir verwenden dazu verschiedene in der “Similarity
Renormalization Group” (SRG) evolvierte χEFT-Wechselwirkungen und zwei durch das in-
verse Streuproblem erzeugte Potentiale und untersuchen deren Auswirkungen auf die Phasen-
verschiebungen. Die Berechnungen werden in großen NCSM-Modellräumen durchgeführt. Die
bestimmten Phasenverschiebungen zeigen charakteristische Merkmale einer Resonanz. Wir
zeigen ferner einen Weg auf, wie man eine hypersphärische Basis im Rahmen des Jacobi-NCSM
konstruiert. Dies ebnet den Weg für zukünftige Studien, die die volle Green’s-Funktion der
HORSE-Methode einbeziehen.
Die zweite Methode zur Untersuchung von Resonanzen ist die ACCC, welche wir auf das Dineu-
tron und Tetraneutron anwenden. Die Methode macht Resonanzen auf der komplexen k-Ebene
durch Verwendung der analytischen Eigenschaften der Jost-Funktion als Funktion einer Kop-
plungskonstante zugänglich. Die Methode basiert ausschließlich auf Berechnungen gebundener
Zustände, indem das System künstlich gebunden wird, um Energien bei verschiedenen Kop-
plungsstärken zu erhalten, die an Padé-Approximanten angepasst und dann zurück auf die
ursprüngliche Bindungsstärke extrapoliert werden. Wir zeigen zwei unterschiedliche Ansätze
zur Erzeugung der Bindung. Zunächst ein zusätzliches Vier-Körper-Potential, das auf Matrix-
elementebene aus den kleinsten Modellräumen konstruiert wird, welche wir Eigenvektorbindung
nennen. Dies ist durch den Wunsch motiviert, gebundene Substrukturen zu vermeiden. Die
zweite Methode ist eine einfache Multiplikation der Wechselwirkungsmatrixelemente mit einem
Faktor. Die Dineutron-Ergebnisse zeigen, dass die Bindungsmethoden nicht fälschlicherweise
Resonanzen erzeugen. Die Tetraneutron-Ergebnisse unterstützen eine Resonanz im Falle der
Eigenvektorbindung, jedoch nicht für die direkte Matrixelementmodifikation.
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1. Introduction

The picture of atomic nuclei, as we understand it today, was formed by the discovery of their
existence by Rutherford in 1911 [Rut11] and his discovery of the proton in 1919 [Rut19]. The
missing constituent in nuclei, the neutron, was confirmed to exist in 1932 by Chadwick [Cha32].
It was realized that a strong interaction of limited range must hold the nucleus together, in order
to overcome the repulsion of the protons, due to the Coulomb force. The carrier of this force was
proposed to be a meson, predicted by Yukawa in 1935 [Yuk35], and experimentally discovered in
1947 by Lattes, Muirhead, Occhialini, and Powell [LMOP47]. This meson is nowadays called the
pion. This initiated the development of interaction models of increasing complexity to better
understand nuclei. However, the growing evidence that nucleons are not elementary particles,
but rather consist of quarks and gluons, marks the advent of quantum-chromodynamics (QCD),
and ideally should be used for the description of nuclei. The efforts to apply QCD directly to
atomic nuclei were, and are, met with substantial difficulties. The non-perturbative nature of
QCD, due to the so-called confinement, prohibits a straightforward extension to the low-energy
regime, which is relevant for the description of nuclei and corresponds to protons, neutron, and
pions. For a true understanding of the nuclear interaction, a connection to QCD is required.
One such connection was made by constructing an effective field theory, based on the work
of Weinberg [Wei90], resulting in the development of Chiral Effective Field Theory (χEFT)
interactions [EHM09].

Simultaneously to the progress on the nature of the interaction, different models to explain nu-
clear structure were developed, most notably the nuclear shell model by Göppert-Mayer [May49]
and Haxel, Jensen, and Suess in 1949 [HJS49], which successfully explained the so-called magic
numbers. The nuclear shell model has since been further improved and is still used today.
The methods developed in the field of shell model approaches have been utilized to construct
the No-Core Shell Model [ZBJ+93], which allows to solve the many-body Schrödinger equation
exactly or with systematic improvability, and allows the use of realistic nuclear potentials.

The combination of this systematic improvability, together with the link to QCD, defines the
realm of ab initio nuclear structure. Beside the NCSM, notable many-body methods are based
on Monte Carlo calculations, like the Green’s Function Monte Carlo method [Car88]. The reach
in mass was extended via controlled approximations, resulting in methods like the Importance-
Truncated NCSM [RN07], the Coupled Cluster technique [HPD+07], and the In-Medium Sim-
ilarity Renormalization Group [TBS11].

We have reached the era of high-precision nuclear structure, having linked the inter-nucleon
interaction to QCD, while the advances in solving the quantum many-body problem from first
principles accelerated dramatically with the increase in available computational power. The
reach of ab initio nuclear structure calculations has been extended up to 100Sn [MSS+18] and
even 132Sn [BLCR14], while routinely being performed for p-shell and sd-shell nuclei. The point
has been reached where the many-body method is no longer the dominant source of uncertain-
ties, and systemic differences of the calculations to the experimental data can be traced back
to the interaction, which can then be further improved, and fed back again into the many-body
machinery. This feedback loop is, however, not yet possible for bound states close to the contin-
uum threshold, or even above it. Basis expansion methods like the NCSM do not incorporate
the correct single-particle asymptotics for these shallow bound or unbound cases, nor do they
account for the coupling to the continuum. Even though the progress in predicting ground state

13



1. Introduction

properties has been tremendous, the inclusion of continuum degrees of freedom to treat shallow
bound states, the calculation of reactions, resonances, and radio-active decay is a challenging
endeavour. Maybe even more so, if the proven methods of ab initio nuclear structure are to be
used. Significant progress has been made in enabling the continued use of some these methods
while working close to or in the continuum. Directly based on the NCSM are approaches such
as the NCSM with Resonating Group Method (NCSM/RGM) [QN08], NCSM with Continuum
(NCSMC)[BNQ13b], and the No-Core Gamow Shell Model (NCGSM) [PRM+13]. Methods re-
lated to the expansion of scattering equations in a bound-state basis are the so-called J-matrix
approaches. Formulated in a HO basis, they become the Harmonic Oscillator Representation of
Scattering Equations (HORSE) [SMVM12], which can be combined in a straightforward man-
ner with the NCSM. These already computationally expensive methods become even more so
through the inclusion of the continuum, reducing the range of their applicability. The otherwise
successful methods in extending the reach to medium and heavy-mass nuclei are only taking the
first steps in the direction of treating the continuum. In the meantime, other alternatives are
probed as an intermediate step towards unified approaches, which are computationally feasible
and controllable in their approximations [JLA+19]. One such example is the extrapolation of
S-matrix poles from bound-state calculations to the continuum through Analytic Continuation
in the Coupling Constant (ACCC), put forward by Kukulin and Krasnopol’sky in 1977 [KK77],
which is used in this work.

As a testing ground for our understanding of the nuclear interaction, neutron-rich system
across the nuclear chart are of interest. Both the accurate theoretical description as well as the
experimental accessibility of the neutron drip line pose a formidable challenge. The increase of
number of particles not subject to the Coulomb force allows for a focused view on the nuclear
interaction. Pushing it to the extreme, no system is more neutron rich than pure neutron
systems. One system that is a contender to actually exist is the four-neutron system, the
tetraneutron.
First experiments to search for the tetraneutron were performed by Schiffer and Vandenbosch
in 1963 [SV63], but its existences as a bound system was ruled unlikely. In 2002, an experiment
by Marqués et al. [MLO+02] reported on having measured a signal compatible with a bound
tetraneutron, but did not consider the possibility of a resonance. Reconsideration of a resonance
signal for the same experiment lead to a possible resonance below 2 MeV [MOF+05]. The
theoretical studies by Bertulani and Zelevinsky [BZ03] and Pieper [Pie03] following this event
could not substantiate the existence of a bound state, and also a resonance was disfavoured by
Lazauskas [LC05]. Solely the work of Meng [MLP14] supported a bound tetraneutron.
A recent experiment performed at the RIKEN facility by Kisamori et al. [KSM+16] sparked
renewed interest in a possible tetraneutron resonance in the Jπ = 0+ channel. The missing-
mass analysis suggested a candidate resonant state with an energy position at
0.83 ± 0.65(stat)±1.25(syst) MeV and giving an upper limit for the width of 2.6 MeV, with a
significance level of 4.9σ. The experimental double charge exchange reaction of 4He(8He 8Be)4n
is sketched in figure 1.1. The numerous theoretical studies that followed disagree whether a
resonance exists, let alone what its parameters are. While some come to the conclusion that
it exists, with varying results regarding position and width [SPM+16, FRMP17, GHK+17,
LMH+19], others find no evidence to support a resonance [HLCK16, LCH17, CLHK17, Del18,
DL19b, HGKV20]. The origin of the disagreements is an interesting question, that will hopefully
be answered in the near future.
Besides a better understanding of the nuclear force, the existence of a resonance would have
implications for nucleosynthesis in supernova matter [PY19]. Further experiments have been
performed and are still ongoing in their analysis.
This work aims to contribute to the ongoing discussion whether a tetraneutron exists, and
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if so, what its resonance parameters are. To that end, we combine the relative coordinate
implementation of the NCSM, the Jacobi-NCSM, with the Single-State HORSE method and
the ACCC and apply them to the tetraneutron.

Figure 1.1.: The double charge exchange reaction of 4He(8He,8Be)4n with an energy of
186 MeV/u, performed at the RIKEN facility by Kisamori et al. [KSM+16], which
led to numerous theoretical investigations into the matter. A radioactive 8He iso-
tope impinges on a liquid 4He target, forming 8Be and four neutrons, possibly
resonant, as reaction products.

This thesis is structured as follows: We introduce the basic concept of χEFT and of the
Similarity Renormalization Group, which is needed to improve numerical convergence, and the
interactions used in this work in chapter 2. It follows a treatment of the concepts of scattering, in
detail for the two-body case in chapter 3, which introduces all concepts needed to understand the
presented results. Next, in chapter 4 few- and many-body scattering is discussed, however, only
in so far as to understand the limitations of the two-body scattering formalism. We introduce
the NCSM and the Jacobi-NCSM to solve the nuclear many-body problem in chapter 5. The
first method employed to study continuum observables, the HORSE method, which belongs
to the class of J-matrix methods, is discussed chapter 6. A variation of it, called Single-State
HORSE, is introduced, and in the following chapter 7 applied to the tetraneutron. There, we
investigate different state-of-the-art χEFT interactions and their effect on phase shifts in the
so-called democratic decay approximation. The last part is comprised of an introduction to the
ACCC in chapter 8. It uses bound-state calculations by artificially binding the system to obtain
energies at different coupling strengths, which are fitted to Padé approximants, allowing the
analytic continuation to the complex plane and extracting resonance parameters. The method
is applied to the dineutron, a non-resonant system, and to the tetraneutron, in an exhaustive
parameter study in chapter 9. Finally, we give a summary and outlook in chapter 10.
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2. Chiral Effective Field Theory and Similarity
Renormalization Group

The goal of ab initio theories is to base the description of a physical system on fundamental
principles and use methods which are systematically improvable. Through this approach, the
obtained results have quantifiable uncertainties. All necessary truncations due to, e.g., com-
putational limitations, have a quantifiable impact. However, to actually be able to determine
these uncertainties is a difficult task.

This is fundamentally different from a phenomenological approach. Here, fundamental connec-
tions to other areas of physics are traded off for high precision in reproducing experimental
data and computational feasibility. In the field of nuclear structure, the phenomenological
interactions of note are the Argonne v14 and v18 [WSS95] or the CD-Bonn [Mac01].

Within the context of ab initio nuclear structure, we want to connect the inter-nucleon inter-
action to the underlying theory of the strong interaction, which is quantum-chromodynamics
(QCD). The direct calculation of nuclear properties from QCD is hindered by its non-perturbative
nature. For a true understanding of the nuclear interaction, a connection to QCD is required.
To obtain such a connection between the constituents of nuclei and their force carriers, nucleons
and pions, respectively, with quarks and gluons, an alternative theory is required.

2.1. Chiral Effective Field Theory

One successful approach to connect QCD and the description of nuclei is the construction of
an effective field theory based upon the general symmetries of QCD, introduced by Weinberg
[Wei79, Wei90, Wei91]. The idea is that the most general Lagrangian, with the relevant degrees
of freedom at the nuclear scale, nucleons and pions, is written down, respecting all relevant
QCD symmetries. Of note is especially the chiral symmetry. At low energies, the QCD ground
state is governed by confinement and the spontaneous breakdown of the aforementioned chiral
symmetry, giving rise to the emergence of hadrons. As the latter is a continuous symmetry, the
Goldstone theorem [GSW62] states that, in this case, massless bosons, the so-called Goldstone
bosons, must exist. These are the pions, kaons, and eta-mesons in case of QCD. In addition to
the spontaneous breakdown of the chiral symmetry, the current masses of the quarks generated
by electroweak interactions lead to an explicit breaking of the chiral symmetry. The lightest
three quarks are the up-quark, with mu ≈ 2.2 MeV, the down-quark, with md ≈ 4.7 MeV,
and the strange-quark, with ms ≈ 95 MeV [THH+18]. Apparently, the masses of the up- and
down-quarks are very small relative to the hadronic mass scale, which is of the order of 1 GeV.
Still, the presence of these current masses and the associated breaking of the flavour symmetry
is of great phenomenological relevance, as it renders the Goldstone bosons massive, with the
pions being the lightest states in the QCD mass spectrum. Indeed, these states are significantly
lighter than all the other mesonic and baryonic states, in particular, they are much lighter than
the nucleons [THH+18].

The Chiral Effective Field Theory (χEFT) exploits the fact that there exists a separation of
scales between the masses of the lightest mesons. The mass difference gives rise to a system-
atic expansion in a small parameter Q/Λ, such that the interaction terms obtained from the
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2. Chiral Effective Field Theory and Similarity Renormalization Group

Lagrangian read [LTGL19]

V =
∑
ν

V ν (Cνi )

(
Q

Λ

)ν
, (2.1)

where V ν(Cνi ) is the interaction term at given order ν, the Cνi are the so-called low en-
ergy constants (LEC), and Q is some low momentum compared to the break-down scale
Λ ' 500 MeV < mρ. The order ν determines the power counting scheme and reads [Epe10]

ν = 2(N + L− 2) +
∑
i

∆i, (2.2)

where N is the number of nucleons, corresponding to lines in a diagrammatic approach, L are
the number of loops in these diagrams, and ∆i = di + ni

2 − 2, with di being the number of
derivatives and ni the number of nucleon lines at vertex i. This expansion allows the systematic
improvability of the derived nuclear interaction, letting higher-body forces appear at higher
orders [Epe10]

V2N = V
(0)

2N + V
(2)

2N +V
(3)

2N + V
(4)

2N + ...

V3N = V
(3)

3N + V
(4)

3N + ...

V4N = V
(4)

4N + ...

...

(2.3)

It can be seen in the two-body forces, V2N , that after the leading order (LO), directly the next-
to-next-to-leading order (N2LO) follows. The next-to-leading order is not parity conserving,
hence it does not appear. Within this work, we denote the chiral orders with the notation
NνLO.

The LECs are undetermined and need to be fitted to experimental data. Strictly speaking, this
is not in the essence of ab initio as introduced in the beginning. However, nuclear interactions
based on χEFT represent the closest method to this ideal currently available, apart from direct
nuclear QCD calculations. They are not arbitrary in their construction, meaning that even
though there still is need for experimental input, the parameters that need to be fitted are
not the result of a model, but instead are directly connected to physical observables. The
χEFT expansion is systematically improvable by going to higher orders. The propagation of
uncertainties from χEFT to nuclear observables is a current and ongoing research topic.

2.2. Similarity Renormalization Group

Nuclear interactions incorporate strong short-range correlations, caused by inter-nucleonic re-
pulsion at short distances, resulting in significant coupling of different momenta. This ef-
fect is present in both phenomenological and chiral interactions and makes numerical calcu-
lations difficult to converge. Various methods have been developed to remedy this problem,
e.g., the Ôkubo-Lee-Suzuki transformation [Ôku54, LS80], the Unitary Correlation Opera-
tor Method [FNRS98], the Vlowk [BKS03], or the Similarity Renormalization Group (SRG)
[GW93, Weg94, BFP07]. We use the SRG to soften the interaction, which is achieved via a
pre-diagonalization, decoupling low and high momenta.

The SRG uses a unitary transformation of the Hamiltonian, depending on the continuous
variable α

H(α) = U †(α)H(0)U(α), (2.4)
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2.3. Chiral Effective Field Theory Interactions Used in This Work

where U(α) is a unitary operator, U †(α)U(α) = U(α)U †(α) = 1, thus leaving the eigenvalues
of the initial Hamiltonian H(0) unchanged. Taking the derivative of the Hamiltonian with
respect to the flow parameter α, gives the SRG flow equation

dH(α)

dα
=

dU †(α)

d(α)
H(0)U(α) + U †(α)H(0)

dU(α)

d(α)

= [η(α), H(α)] . (2.5)

Here, the anti-hermitian generator is introduced

η(α) =
dU †(α)

d(α)
U(α) = −U †dU(α)

d(α)
, (2.6)

which can be chosen freely, as long as the anti-hermiticity is respected. The established choices
for the generator, when written in a commutator relation

η(α) = [X,H(α)] , (2.7)

are the diagonal matrix elements of H(α), X = Hd(α) by Wegner [Weg94], or block-diagonal
matrix elements by White [Whi02]. Alternatively, choosing the intrinsic kinetic energyX = m2

N Tint

is also possible [BFP07].

Performing the SRG induces contributions of higher, irreducible, particle rank in an operator
of fixed rank [RNF10]

H(α) = H [1](α) +H [2](α) +H [3](α) + ..., (2.8)

which is the price to pay to obtain a softer potential, as the computation of higher-body
operators is increasingly difficult. In practice, the higher-order contributions are cut off, usually
taking up to three-body operators into account.

2.3. Chiral Effective Field Theory Interactions Used in This Work

Within this work, we use various χEFT interactions, which we introduce in this section. For a
better overview, they are listed in table 2.1. They are applied in the studies found in chapters 7
and 9.
Important work in the field of χEFT has been accomplished by Entem and Machleidt [EM03],
whose chiral NN interaction defines the standard within the field. We refer to it by N3LOEM.
The NN interaction by Ekström et al. [EJW+15] is additionally to the NN-scattering data and
few-nucleon binding energies and radii, also adapted to carbon and oxygen isotopes. It is build
to be consistent with the empirical saturation point of symmetric nuclear matter. We refer to
it as N2LOSAT.
The most recent two-nucleon interaction in use by was developed by Entem, Machleidt, and
Nosyk. This interaction is constructed up to N4LO, with consistent power counting and cut-off
treatment at all orders. The globally available NN-scattering data is reproduced to a high
precision with a χ2/datum of 1.15. We denote the interaction by NνLOEMN.
The first three-nucleon force use in this work is by Navrátil [Nav07]. It is a local interaction,
available at N2LO with different cut-off parameters Λ. We use it in combination with the NN-
interaction by Entem and Machleidt N3LOEM. However, the chiral orders are not consistent.
It is referred to by us as N2LOΛ,L.
The second three-nucleon force we employ is that by Hüther, Vobig, Hebeler et al. [HVH+19].
It based on the NN-interaction NνLOEMN, and treats all two- and three-body contributions
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2. Chiral Effective Field Theory and Similarity Renormalization Group

consistently up to N3LO. It uses a non-local regulator. It represents one of the most recent
developments in the field of χEFT. We refer to it as N3LO500,NL.
We use two additional phenomenological interaction, which do not belong to the chiral fam-
ily. The so-called JISP16 interaction by Shirokov, Vary, Mazur, and Weber [SVMW07], is
constructed from No-Core Shell Model (NCSM) calculations, from which an inverse scattering
potential (ISP) is obtained. The inverse scattering is based on the J-matrix method, discussed
in chapter 6.
Similarly, the DAEJEON16 interaction by Shirokov, Shin, Kim et al. [SSK+16] builds upon the
same ISP approach. As initial interaction in the NCSM calculation serves the so-called Idaho
N3LO interaction by Entem and Machleidt [EM02], which has further been SRG evolved.

Name Type Year Reference SRG α [fm4]

N3LOEM χEFT NN 2003 [EM03] bare, 0.04, 0.08
N2LOSAT χEFT NN 2015 [EJW+15] 0.04, 0.08
NxLOEMN χEFT NN 2017 [EMN17] 0.04, 0.08
N3LOEM + N2LOΛ,L χEFT NN + 3N 2007 [Nav07] 0.04, 0.08, 0.12
N3LOEMN + N3LO500,NL χEFT NN + 3N 2019 [EMN17, HVH+19] 0.08
JISP16 ISP NN 2007 [SVMW07] -
DAEJEON16 ISP NN 2016 [SSK+16] -

Table 2.1.: Interactions used in this work. Interaction constructed from inverse scattering po-
tentials are denoted ISP.
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3. Scattering Theory – Two-Body Scattering

3.1. Introduction

The theory of scattering encompasses a vast range of applications and specialized tools and
methods to deal with a multitude of phenomena, with different notation, developed in different
areas of physics over the years. Many relevant mathematical findings on differential equations
and functional analysis stem from the late 19th and early 20th century. Owing to the nature
of the scattering problem, combined with the pioneering work of mathematicians and their
very own notation and nomenclature, the treatment of scattering is sometimes cumbersome
and difficult to read. The efforts in the second half of the 20th century to arrive at a common
language resulted in a number of text books, e.g., references [New82, Joa76, SN17], which,
together with references [Fri13, Moo08], build the basis for this chapter.
The term “scattering” implies quite a few different topics. Classical collisions, the treatment of
electro-magnetic waves, just as well as reaction theory in atomic, nuclear or high-energy physics.
The large number of different topics and details inherent in a general treatment of scattering
physics will naturally not be part of this chapter. The intent is to provide the framework
necessary to understanding the results presented in this work. In the context of this work, the
field of ab initio nuclear structure, the term scattering physics is often understood more in the
sense of being juxtaposed to bound-state physics, with its finite number of square-integrable
energy states. For the latter, powerful methods have been developed, but which are not well
or not at all suited to deal with continuum states, in their original formulation. Current efforts
[QN08, BNQ13a, SMVM12, SMMV16, PRM+13], see also [JLA+19] and references therein,
attempt to bring the bound-state tools of ab initio nuclear structure into a shape, where the
continuum effects that naturally are also a part of nuclear structure physics, can be handled as
well.

We introduce the basics of quantum scattering theory in this chapter. Concentrating first on
the two-body problem, we discuss the coordinate-independent formulation, in which most of
the relevant quantities can be derived or motivated. Employing a concrete basis representation,
we highlight the analytical properties of the wave-function solutions.

3.2. Coordinate-Independent Scattering Theory

In quantum mechanics, we search for solutions to the Schrödinger equation under different
boundary conditions. It is further distinguished between the case of a time-dependent or a
time-independent problem. Coming from the picture of two particles approaching each other,
interacting with each other, and then drifting apart, the time dependent description is a natural
choice. In this case, one would aim at solving the time-dependent Schrödinger equation (with
~ = 1)

i
d

dt
|ψ, t〉 = H |ψ, t〉

i
d

dt
|ψ, t〉 = (H0 + V ) |ψ, t〉 , (3.1)
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3. Scattering Theory – Two-Body Scattering

where the state |ψ, t〉 of a system at the time t, described by the Hamiltonian H, is the sought
solution. The Hamiltonian is comprised of some unperturbed Hamiltonian H0, which can be
understood as the kinetic energy, or alternatively, as a Hamiltonian with known solution, with
a perturbation potential V . In the following, we treat H0 as the kinetic energy. As solution,
one obtains then the state |ψ, t〉 and with it the energy E or observable of interest at a certain
point in time.
In the following, the state

|ψ, t, ν〉 → |ψ, t〉 , (3.2)

should be understood to carry all relevant quantum numbers of the system in the collective
index ν, which we have dropped for brevity.
The time-dependent description has some advantageous features regarding the formal treatment
of scattering theory. For actual calculations or incorporating scattering theory with the proven
methods of bound-state many-body physics, it is convenient to deal with the time-independent
problem:

H |ψ〉 = E |ψ〉
(H0 + V ) |ψ〉 = E |ψ〉 . (3.3)

Time-dependent Scattering

The formalism of scattering is best introduced in an explicitly time-dependent framework.
In the later parts of this work, we will only work with the time-independent (stationary)
formulation. It is nonetheless helpful to start with a few general aspects, which originated from
the time-dependent problem. This is, for example, incoming and outgoing waves, a concept
that only makes sense in a stationary context when keeping the time-dependence in mind,
as one goes from time to energy as a variable via Fourier transform. This also explains the
sign convention for incoming waves having the form e−ikr, whereas outgoing waves are written
as eikr, because their time dependence was per historic convention written with a negative
exponent as e−iωt. Another example for terms, which appear in the stationary formulation, but
which were introduced in the time-dependent context, is the use of the complex valued iε in
equation (3.12) and equation (3.13). In the time-dependent formulation, it ensures convergence
of the integral, but in the stationary formulation, it ensures causality.
We treat the formal solution of the time-dependent Schrödinger equation (3.1) on operator level
with the help of the Green’s functions G±(t) the differential equations(

i
d

dt
−H0

)
G±0 (t) = δ(t)(

i
d

dt
−H

)
G±(t) = δ(t), (3.4)

where δ(t) is the δ-distribution. The Green’s functions fulfil the initial conditions

G+
0 (t) = G+(t) = 0 for t < 0

G−0 (t) = G−(t) = 0 for t > 0. (3.5)

The subscript in H0 and G0 corresponds to the “free” Schrödinger equation. The two solutions
of equations (3.4) and (3.5) can be written as

G+(t) =

{
−i e−iHt for t > 0

0 else

G−(t) =

{
i e−iHt for t < 0

0 else,
(3.6)
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3.2. Coordinate-Independent Scattering Theory

and analogously for G±0 . The plus and minus sign indicate to what part of the scattering event
the respective Green’s functions belong: The minus sign to the evolution before and the plus
to the evolution after the event. This precludes the effect G± has when applied to a state |ψ〉.
Looking at G+

0 , we obtain ∣∣ψ0, t
′〉 = iG+

0 (t′ − t) |ψ0, t〉 , (3.7)

satisfying equation (3.4) for t′ > t, which can be verified by inserting the analogue of equa-
tion (3.6) for G+

0 into equation (3.7). This means that the free state |ψ0, t〉 is propagated to
a later time t′. Accordingly, G±0 and G± are also called propagators. This allows us now to
define the incoming and outgoing states∣∣ψin, t

′〉 = lim
t→−∞

iG+
0 (t′ − t) |ψ, t〉 (3.8)

and ∣∣ψout, t
′〉 = lim

t→∞
iG−0 (t′ − t) |ψ, t〉 . (3.9)

The definitions can be understood follows: In the distant past, the known state is |ψ, t〉, whose
time propagation is determined by the Green’s function of the non-interacting system. This is
the incoming state, with the analogue for the outgoing wave when ending with a known state
|ψ, t〉 in the distant future. A useful representation of the states is the integral form, which we
obtain with the help of the Green’s function. To that end, we apply the time derivative to G+,
which yields

i∂tG
+(t′ − t) |ψ, t〉 = −i

(
∂tG

+(t′ − t)
)
|ψ, t〉+G+(t′ − t) ∂t |ψ, t〉

= δ(t′ − t) |ψ, t〉+G+(t′ − t)V |ψ, t〉 . (3.10)

Renaming t′ → t and vice versa, integrating over t′ gives

|ψ, t〉 = |ψin, t〉+

∫ ∞
−∞

dt′G+
0 (t− t′)V

∣∣ψ, t′〉 . (3.11)

The switch from formulating the scattering problem as a differential to an integral equation is a
common technique. As integral equation, the boundary conditions imposed on the differential
are incorporated by the Green’s function and the integration limits, and solving techniques for
integrals can be used. The integrals occurring in the scattering formalism further belong to the
class of Fredholm and Volterra type integrals [AW13, LP12], which has important implications
for three-body scattering, discussed in chapter 4, and is also used in the proof of analytic
relations important for the method employed in chapter 8.

Time-independent Scattering

The time-independent scattering formulation is obtained by taking the Fourier transform of
the time-dependent Green’s functions. As a consequence from going to the time-independent
Schrödinger equation, we switch over from solving for the state of the system at a given time to
obtaining the state of the system at a specific energy, or in the case of bound-state physics, what
energies are allowed by the system. The integrals of the Fourier transform are only defined in
time intervals of [0,±∞], the integrals are ill-defined, and a convergence factor e∓εt is inserted

G±0 (E) =

∫ ∞
−∞

dt eiEt∓εtG±0 (t)

G±(E) =

∫ ∞
−∞

dt eiEt∓εtG±(t). (3.12)
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3. Scattering Theory – Two-Body Scattering

The factor ε is a small, positive number, which can be treated to approach the limit ε → 0.
Using the representation of equation (3.6) and inserting this into equation (3.12), one obtains

G±0 (E) = (E −H0 ± iε)−1,

G±(E) = (E −H ± iε)−1. (3.13)

This can be understood as rotating the time-independent Green’s functions into the complex
plane. When taking the limit of ε→ 0, writing the Green’s function in the form

G(E) = (E −H)−1 (3.14)

means that one approaches the real energy axis either from above or from below for G+ and
G−, respectively. This addition of iε ensures causality in the time-independent context. Any
occurrence of G(E) as in equation (3.14) can be read with having an implicit iε. We obtain
the time-independent states just as with the Green’s function, by Fourier analysis of the time-
dependent states from equation (3.11)∫ ∞

−∞
dt eiEt |ψ, t〉 =

∫ ∞
−∞

dt eiEt |ψin, t〉+

∫ ∞
−∞

∫ ∞
−∞

dt dt′ eiEtG+
0 (t− t′)V

∣∣ψ, t′〉 . (3.15)

For the time-independent states, we use the shorter notation |ψ〉 ≡ |ψ,E〉, equation (3.15)
becomes

|ψ〉 = |ψin〉+G+
0 V |ψ〉 . (3.16)

Equation (3.16) is the so-called Lippmann-Schwinger equation [LS50]. The similar expression
for the Green’s function,

G = G0 +G0V G, (3.17)

is also referred to as Lippmann-Schwinger equation. We can replace the label |ψin〉 with |ψ0〉 to
specify the incoming wave to be that of the free problem, meaning that |ψ0〉 fulfils the relation(

H0 − E
)
|ψ0〉 = 0. (3.18)

With the choice of |ψin〉 → |ψ0〉 we make the choice to restrict ourselves to G+
0 . One could also

use |ψout〉 → |ψ0〉 together with G−0 . In most cases, it is easier to assume a known incoming
state than the other way around, hence the choice for G+

0 . These results give the common
interpretation of having the full state as a superposition of an incoming free state and an
outgoing scattered state, corresponding to the experimental reality of an incident beam with
known properties, which scatters on a target and is measured in a detector far away relative to
the target size. We write

|ψ〉 = |ψ0〉+ |ψs〉 , (3.19)

with the scattered state |ψs〉. Furthermore, the Lippmann-Schwinger equation (3.16) is the
integral equation of the Schrödinger equation, albeit here in abstract notation. The rewriting
as an integral opens up the pathway to different solving methods, e.g. by iteration due to its
nature of being of the Volterra type [LP12, AW13], which can be written as

|ψ〉 = (1 +G0V +G0V G0V + ...) |ψ0〉 , (3.20)

or alternatively for the scattering state

|ψs〉 = G0(V + V G0V + V G0V G0V + ...) |ψ0〉
=: G0T |ψ0〉 . (3.21)
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3.3. Elastic and Single-Channel Scattering

We introduce the operator T as an abbreviation for the iterative terms. In a basis representa-
tion, it is referred to as T -matrix, and when expressed in momentum space, it is related to the
scattering amplitude, see equation (3.35).
Under the assumption that the free states form a complete set, we can directly expand the free
Green’s function in terms of the free states

G0(E) =

∫ ∞
0

dE′
∑

ν |ψ0, E
′, ν〉 〈ψ0, E

′, ν|
E − E′

. (3.22)

Here, we have reintroduced the previously dropped collective index for all relevant quantum
numbers. The same can be done for the full Green’s functions if we assume a completeness
relation of the form

1 =
∑
n

|ψn〉 〈ψn|+
∫

dE′
∑
ν

∣∣ψ,E′, ν〉 〈ψ,E′, ν∣∣ , (3.23)

where |ψn〉 are the bound states, if present. We obtain

G±(E) =
∑
n

|ψn〉 〈ψn|
E − En

+

∫ ∞
0

dE′
∑

ν |ψ+, E′, ν〉 〈ψ+, E′, ν|
E − E′

. (3.24)

These are the spectral decompositions of the Green’s functions, whose construction is the goal
of many solving methods.
From the interpretation of the scattering event as incoming particle with state |ψin〉 = |ψ0〉, we
can introduce the scattering operator which relates the incoming and outgoing state directly

|ψout〉 = S |ψin〉 . (3.25)

This is the scattering operator S; it is time independent and when the in and out states form
complete sets, it is unitary

S†S = SS† = 1. (3.26)

3.3. Elastic and Single-Channel Scattering

We go over from the scattering formalism in abstract notation to the representation in three-
dimensional coordinates. The choices are either a momentum or a position representation. To
this end, we will have to consider two aspects. Firstly, which kind of spatial coordinates to
choose in order to exploit the existing or assumed symmetries of the problem. Secondly, and far
more consequential for many-body scattering, is to be aware of the limitation of the following
formalism to one- and two-body scattering only.
Regarding the first point we assume spherical symmetry of the potential. The natural coordi-
nates to choose are spherical coordinates (r, θ, φ) and, due to symmetry, we can eliminate the
two angular variables, being left only with the radial coordinate. Another simplifying benefit is
the conservation of angular momentum; the angular momentum operator commutes with the
Hamiltonian [L,H] = 0, and we thus have a complete set of basis functions which we use in
the partial wave expansion, see section 3.3.2.
The second point is more fundamental. Any system with two or more interacting constituents
can exhibit bound states, which should not change depending on where the system is placed
in space. The system has to be translationally invariant and simultaneously ensure that a
scattering state in a specific configuration is truly unique with respect to the existing bound
states. In the two-body case and any many-body system, which can be treated effectively as
a two-body problem, this issue can be solved by going to the centre-of-mass system (CoM)
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3. Scattering Theory – Two-Body Scattering

and using the relative distance as variable. This allows us to split the Hamiltonian into a
CoM and a relative part, which enables us to solely look at the relative part and ignore the
CoM contribution. This continues to work well even for systems with internal degrees of
freedom, which can be excited to higher energy states, as long as there are effectively only two
active scattering partners. This is inelastic two-body scattering. For three or more particles
which form more than two subsystems, the theory described in the following sections is not
unambiguously applicable. This is discussed in chapter 4.
We will restrict ourselves in this section to spinless particles. The general aspect of particles
with spin will be discussed in section 3.6, together with general internal degrees of freedom and
inelastic scattering.

3.3.1. Coordinate Representation and Centre-of-Mass Coordinates

To combine the abstract treatment of the scattering problem in section 3.2 with the basis
representation from the previous section, we bring the time-independent Lippmann-Schwinger
equation (3.16) into the position basis |~r 〉. Under the assumption of a local interaction potential,
i.e. 〈~r ′|V |~r ′′〉 = V (~r ′′)δ(~r ′ − ~r ′′), we get

〈~r |ψ〉 =

∫
d3r′

〈
~r
∣∣~r ′〉 〈~r ′∣∣ψin

〉
+

∫ ∫
d3r′ d3r′′ 〈~r |G+

0

∣∣~r ′〉〈~r ′∣∣V ∣∣~r ′′〉 〈~r ′′∣∣ψ〉
ψ~k(~r ) = ψ

in,~k
(~r ) +

∫
d3r′G+

0 (~r, ~r ′)V (~r ′)ψ~k(~r
′). (3.27)

Here, ~k is the momentum wave vector, with ~k 2 = 2µE
~2 , with µ being the reduced mass. The wave

functions ψ~k(~r ) are given at a fixed energy, traveling in the direction ~k, as in equation (3.31).
In this specific representation it is apparent why the Lippmann-Schwinger equation is already
referred to as an integral equation in section 3.2. Using equation (3.22) together with equa-
tion (3.27) as starting points, writing ~ again, as well as changing from energy to a short hand
wave vector notation ∣∣ψ0, E

′, ν
〉
→ |~k〉 , (3.28)

the Green’s function in coordinate representation can be written as

G±0 (~r, ~r ′) =
2µ

~2

∫ ∞
0

d3k′
〈~r |~k ′〉 〈~k ′|~r ′〉
k2 − k′ 2 ± iε

=
2µ

(2π)3~2

∫ ∞
0

d3k′
ei
~k ′(~r−~r ′)

(k + k′ ± iε)(k − k′ ∓ iε)

=
2µ

(2π)2~2

∫ ∞
−∞

dk′ k′ 2
ei
~k ′|~r−~r ′|

(k + k′ ± iε)(k − k′ ∓ iε)ik′|~r − ~r ′|
. (3.29)

Evaluating with the residue theorem, the free Green’s functions are found to be

G±0 (~r, ~r ′) = − µ

2π~2

e±ik|~r−~r
′|

|~r − ~r ′|
, (3.30)

and the incoming solution is, in the case of G+
0 (~r, ~r ′), the free solution, which corresponds to

plane waves. To indicate this, the subscript zero in |ψ0〉 is used for the wave function as well

ψ
in,~k

(~r) = ψ
0,~k

(~r) =
1

(2π)
3
2

ei
~k~r. (3.31)

To progress further in obtaining some form of a practical solution, we have to consider the
boundary conditions under which the initial differential equation, that is, the Schrödinger
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3.3. Elastic and Single-Channel Scattering

equation, is to be solved. The boundary conditions needed are those at large distances. We
refer to them equivalently as asymptotic boundary conditions, and to the wave function that
fulfils them as asymptotic solution. We did not specify these so far explicitly, but with equa-
tion (3.30) they are contained implicitly in the integral equation (3.27). We discuss them and
their analytic properties in section 3.4. It is convenient to look at the long-range behaviour to
give an experimental interpretation of the scattering event. When conducting such a scattering
experiment, one sends in a well defined state, the incident beam, which interacts with the target
on very short length scales r′ and is then detected in a far away detector at distance r. This
setting gives rise the approximations of the form∣∣~r − ~r ′∣∣ ≈ |~r| = r

r � r′ and kr � (kr′)2. (3.32)

For potentials which fall-off faster than r−1, the limit for large r is unproblematic, since they
drop fast enough and any solution must, therefore, be asymptotically free, i.e. V (R) = 0 for
some R� r′. Special care is required for potentials decreasing similar to r−1, like the Coulomb
potential, which behave distinctively different from the free solution for large r. We want
to assume in this section only potentials which are well behaved in this sense. Inserting the
approximations of equation (3.32) into the equations (3.27) and (3.30), we get

ψ~k(~r )
r�r′
= ψ

in,~k
(~r) +

µ

2π~2

eikr

r

∫
d3r′ V (~r ′)ψ~k(~r

′) (3.33)

' ei
~k~r + f(~k ′,~k)

eikr

r
, (3.34)

with ~k ′ = k ~rr . This result shows that potential scattering at large enough distances reduces
to being a superposition of the known incoming plane wave and an outgoing spherical wave,
multiplied with the scattering amplitude f(~k ′,~k). Comparing equation (3.33) with the abstract
notation in equations (3.20) and (3.21), we find that the scattering amplitude is the momentum-
space representation of the amplitude operator T

f(~k′,~k) = −(2π)2µ

~2

〈
~k′
∣∣∣ T ∣∣∣~k〉 . (3.35)

In spherical coordinates, the scattering amplitude is a function of the two angles θ and φ and
of k

f(~k ′,~k)→ fk(θ, φ). (3.36)

The Schrödinger equation (3.3) for two particles A and B with a central interaction potential
has the form

H =
~p 2
A

2mA
+

~p 2
B

2mB
+ V (~rA − ~rB), (3.37)

with the momenta ~pA,B, masses mA,B and position vectors ~rA,B. By introducing two new

variables, ~R for the CoM and ~r for the relative distance between A and B

~R =
~rAmA + ~rBmB

mA +mB

~r = ~rA − ~rB (3.38)

and ~P for the total momentum, as well as ~p for the relative momentum

~P = ~pA + ~pB

~p =
~pAmA + ~pBmB

mA +mB
(3.39)
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and the total and reduced mass

M = mA +mB

µ =
mAmB

mA +mB
, (3.40)

respectively, we can write the Hamiltonian consisting of a CoM and a relative part

H =
~P

2

2M
+
~p 2

2µ
+ V (~r)

= HCoM +Hrel. (3.41)

Due to this separation, the total energy is comprised of the CoM and relative part as well

Etot = ECoM + Erel. (3.42)

Transitioning to coordinate representation, the Schrödinger equation takes the form(
− ~2

2µ
∆ + V (~r )

)
ψE(~r ) = E ψE(~r ). (3.43)

3.3.2. Radial Schrödinger Equation and Partial Wave Expansion

Motivated by the assumption of a spherically symmetric potential, we choose a spherical coor-
dinate representation for the Schrödinger equation, resulting in a Laplacian

∆(r, θ, φ) =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
. (3.44)

The angular part of the Laplacian ∆(θ, φ) is actually the coordinate representation of the square
of the angular momentum operator

~̂L
2

→ ~L2 = −~2 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
, (3.45)

the Laplacian can be written as

∆(r, θ, φ) =
1

r2

∂

∂r

(
r2 ∂

∂r

)
− ~2~L2

r2
. (3.46)

The angular momentum has the spherical harmonics Y m
l (θ, φ) as eigenfunctions, meaning they

fulfil the eigenvalue relation

∆(θ, φ)Y m
` (θ, φ) = `(`+ 1)Y m

` (θ, φ). (3.47)

The spherical harmonics carry the angular momentum quantum number ` and the projection
m. This separation into radial and angular components in the Laplacian allows us to make an
ansatz of the same kind in the wave function, by decomposing it into a product of the radial
wave function Rk,l(r) and the angular wave function Y m

l (θ, φ)

ψ~k(~r ) =

∞∑
`=0

∑̀
m=−`

Rk,`(r)Y
m
` (θ, φ). (3.48)
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Plugging equation (3.48) into equation (3.43), rewriting with k2 = 2µE
~2 , together with equa-

tion (3.47) results in a purely radially dependent differential equation for each `, the radial
Schrödinger equation:(

− 1

r2

d

dr

(
r2 d

dr

)
+
`(`+ 1)

r2
+

2µ

~2
V (r)− k2

)
Rk,`(r) = 0. (3.49)

With wave number k =
√

2µE
~2 , and reduced mass µ . This can be rewritten and shortened by

using

Rk,`(r) =
uk,`(r)

r
, (3.50)

meaning that the full wave function reads

ψ~k(~r) =
∞∑
`=0

∑̀
m=−`

uk,`(r)

r
Y m
` (θ, φ). (3.51)

We can then partially evaluate the differential, resulting in(
− d2

dr2
+
`(`+ 1)

r2
+

2µ

~2
V (r)− k2

)
uk,`(r) = 0. (3.52)

Both forms are of course equivalent. The latter is used for a more compact notation.
An important aspect is the long-range behaviour of the radial solution, especially for potentials
of the type ∫ ∞

0
dr r V (r) <∞. (3.53)

In this case, the asymptotic long-range behaviour is that of the free solution, the Schrödinger
equation becomes the Bessel differential equation, which has the so-called spherical Bessel
functions of the first and second kind, jl(kr) and nl(kr), respectively, as solutions. The general
radial solution can then be written as a linear combination of the the spherical Bessel functions

uk,`(r) = kr (A`(k)j`(kr) +B`(k)n`(kr)) , (3.54)

with some k-dependent coefficients A` and B`. For uk,`(r) to be a meaningful physical solution,
it has to fulfil the corresponding boundary conditions of the differential equation. These are
defined at the origin and at infinite distance. The first demands that

lim
r→0

uk,`(r) = 0, (3.55)

meaning that the wave function has to be a regular function, see section 3.4. The second will
be shown in following, resulting in equation (3.66).
With this, we can now expand the scattering amplitude (3.36) and the incoming plane wave
in angular momentum eigenstates, the spherical harmonics. This is so-called partial wave
expansion, or partial wave decomposition. By defining the incident direction to be the z-
direction, such that ~k = k~ez, the φ-dependency is lost, and the incoming part can be rewritten
as:

ei
~k~r =

∞∑
`=0

(2`+ 1)i`j`(kr)P`(cos θ), (3.56)

and the scattering amplitude of the outgoing wave as

fk(θ, φ) =

∞∑
`=0

(2`+ 1)f`(k)P`(cos θ). (3.57)
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3. Scattering Theory – Two-Body Scattering

The term P`(cos θ) denotes the `-th Legendre polynomial, which depends on the product of the
unit vectors ~ek · ~er = cos(θ), for ~ek = ~ez

P`(cos θ) =
4π

2`+ 1

∑̀
m=−`

Y ∗`,m(~k)Y`,m(~r) (3.58a)

~ek=~ez
=

4π

2`+ 1
Y`,0(θ). (3.58b)

With the asymptotic form of the spherical Bessel function for kr � 1, the expanded plane wave
reads

ei
~k~r kr�1−−−→

∞∑
`=0

(2`+ 1)i`(kr)−1 sin

(
kr − π`

2

)
P`(cos θ). (3.59)

The full form of the wave function, with the identities sin(x) = eix−e−ix

2i and i` = ei
π
2
`, reads

ψ~k(~r)
r→∞−−−→

∞∑
`=0

(2`+ 1)P`(cos θ)

[
eikr

2ikr
− e−ikr

2ikr
(−1)` + f`(k)

eikr

r

]

=
∞∑
`=0

(2`+ 1)
P`(cos θ)

2ik

[
− (−1)`

e−ikr

r
+
(
1 + 2ikf`(k)

)eikr

r

]

=
∞∑
`=0

(2`+ 1)
P`(cos θ)

2ik

[
(−1)`+1 e−ikr

r
+ S`(k)

eikr

r

]
. (3.60)

In the last line, we perform an important rearrangement with the partial-wave scattering am-
plitude into S`(k) =

(
1 + 2ikf`(k)

)
. This is the partial-wave scattering matrix element. As a

matrix, it is diagonal in all ` values when no angular momentum coupling is allowed by the
potential.

Considering only the radial part u` in this expansion with equation (3.51) and equation (3.58),
it is noteworthy how the reformulation introduces the interpretation of the radial wave function
for fixed ` as spherically incoming and outgoing waves

uk,`(r) ∼ (−1)`+1e−ikr + S`(k)eikr. (3.61)

For elastic scattering, probability must be conserved, which means that

|S`(k)|2 = 1. (3.62)

This restricts S`(k) to change only the phase of the outgoing wave and can, therefore, be defined
to have the following form:

S`(k) = 1 + 2ikf`(k) = e2iδ` . (3.63)

Solving for the partial scattering amplitude f` and reinserting into the asymptotic form (3.60)
leads to

ψ~k(~r)
r→∞−−−→

∞∑
`=0

(2`+ 1)P`(cos θ)i`eiδ`(k) sin
(
kr − π`

2 + δ`(k)
)

kr
, (3.64)

and consequently for the radial solution we see that it behaves at large r similar to a sine
function

uk,`(r) ∼ sin

(
kr − π`

2
+ δ`(k)

)
. (3.65)
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3.3. Elastic and Single-Channel Scattering

From equation (3.54) the radial solution must thus be of the form

uk,`(r)
r→∞−−−→

(
A2
` +B2

`

) 1
2 i`eiδ`(k) sin

(
kr − π`

2
+ δ`(k)

)
. (3.66)

This has a similar form to equation (3.59), except for the phase factor eiδ`(k) and the phase
shift in the sine argument. This is an important observation, as it means that potential scat-
tering leads solely to a phase difference when compared to the free solution. Comparing equa-
tions (3.54) and (3.64) together with the long-range form of the spherical Bessel functions, we
get

ψ~k(~r)
r→∞−−−→

∞∑
`=0

(2`+ 1)P`(cos θ)i`eiδ`(k) (cos (δ`(k)) j`(kr) + sin (δ`(k)) n`(kr)) , (3.67)

giving an expression of u`(r) with partial wave phase shift in sine and cosine as coefficients

uk,`(r)
r→∞−−−→ (cos (δ`(k)) j`(kr) + sin (δ`(k)) n`(kr)) . (3.68)

A visual representation of the interpretation of the effect of the phase shift relation can be seen
in figure 3.1.

Figure 3.1.: Scattered wave function (blue) compared to the unperturbed wave (black). The
scattering potential is overlaid in grey. The free solutions are Coulomb functions,
as the potential is a phenomenological parametrization for a 12C + p scattering
process. The wave function is obtained within an R-matrix framework.

3.3.3. Coulomb Scattering

A special case of potentials are those which do not drop faster that 1/r – something we nor-
mally assume to be the case to ensure converging integrals. For nuclear systems, the Coulomb
interaction plays an important role. We consider the Coulomb equation as a special case of the
radial Schrödinger equation:(

d2

dr2
− `(`+ 1)

r2
− 2Z1Z2 e

2µ

~2r
+ k2

)
uk,`(r) = 0(

d2

dr2
− `(`+ 1)

r2
− 2kη

r
+ k2

)
uk,`(r) = 0, (3.69)
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3. Scattering Theory – Two-Body Scattering

where e is the elementary charge and Z1,2 the charge number. We use the so-called Sommerfeld
η parameter to rewrite the Coulomb potential

η =
Z1Z2 e

2µ

~2k
=

sgn(Z1Z2)

aBk
. (3.70)

This parameter is dimensionless and conveniently expresses the strength of the interaction,
where aB = ~2

µ|Z1Z2|e2 is the generalized Bohr radius. The Coulomb equation has the solution

F`(η, kr), which is regular at the origin, and the solution G`(η, kr), which is irregular. The
infinite range of the Coulomb potential affects the long-range properties of these functions,
which read

F`(η, kr)
kr�1−−−→ sin

(
kr − 1

2
`π − η log(2kr) + σ`

)
(3.71)

G`(η, kr)
kr�1−−−→ cos

(
kr − 1

2
`π − η log(2kr) + σ`

)
. (3.72)

See also appendix B for details about the Coulomb functions. The σ` is the Coulomb phase
shift

σ` = arg
[
Γ(`+ 1 + iη)

]
. (3.73)

With the solutions F`(η, kr) and G`(η, kr), the radial solution can be again given similiar to
equation (3.68)

uk,`(r)
r→∞−−−→ cos

(
δ`(k)

)
F`(η, kr) + sin

(
δ`(k)

)
G`(η, kr). (3.74)

The Coulomb functions are themselves special cases of the confluent hypergeometric functions,
in turn a special case of the general hypergeometric functions. Therefore, they can be expressed
by various equalities and calculation prescriptions [DLM14].

3.4. Analyticity and Symmetries of the Solution of the Radial
Schrödinger Equation

In this section we want to highlight the regular and irregular solutions of the second-order
differential equation that is the radial Schrödinger equation and their relation to the so-called
Jost function. The analytic properties of these functions determine the analytic properties
of the scattering matrix and show the connection between poles of the scattering matrix and
resonances and bound states of the Hamiltonian. These are the key ideas for the analytic
continuation in the coupling constant into the complex plane, which is discussed in chapter 8.
The discussion is based on [New82, Joa76].

3.4.1. The Regular and Irregular Solutions

The radial Schrödinger equation equation (3.52) will be slightly modified by introducing a
strength parameter, or coupling constant, in front of the interaction potential, denoted with λ.
The Schrödinger equation then reads(

− d2

dr2
+
`(`+ 1)

r2
+ λ

2µ

~2
V (r)

)
uk,`(r) = k2uk,`(r). (3.75)

This equation has a solution uk,`(r) = φ`(k, r) fulfilling the boundary condition at the origin,
such that under the restriction of

lim
r→0

r2 V (r) = 0 (3.76)
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3.4. Analyticity and Symmetries of the Solution of the Radial Schrödinger Equation

φ(k, 0) = 0 and
d

dr
φ(k, r)

∣∣∣
r=0

= const for ` = 0 (3.77a)

lim
r→0

r−`−1φ`(k, r) = 1 for ` 6= 0. (3.77b)

Any function satisfying the condition in equation (3.77) is called regular. No further boundary
conditions are applied to φ`(k, r), meaning that its long-range behaviour is not specified. The
spherical Bessel function j`(kr) is already introduced as the regular solution in the case of
V = 0. At large values of |k|, the regular solution takes the form

φ`(k, r) = (2`+ 1)!! k−`−1 sin

(
kr − 1

2
π`

)
+O

(
|k|−`−1e|Im(k)|r

)
. (3.78)

The integral equation of the regular solution is arrived at just as in the case of the full solution,
by means of the Green’s function, and reads

φ`(k, r) = φ
(0)
` (k, r) +

∫ r

0
dr ′g`(k; r, r′)V (r′)φ`(k, r

′). (3.79)

The function φ
(0)
` (k, r) is the free (or unperturbed) regular solution. It is related to the spherical

Bessel function and the Bessel function of the first kind by

φ
(0)
` (k, r) = (2`+ 1)!! k−`−1krj`(kr) (3.80)

= Γ

(
`+

3

2

)√
r

(
k

2

)−`−1/2

J`+1/2(kr). (3.81)

The Green’s function g` must correspond to the appropriate boundary conditions in equa-
tion (3.77), which means that

g`(k; r, r′) = 0 for r < r′. (3.82)

This is the reason why the integration domain goes from 0 to r. The equations (3.79) and (3.81),
are used again in section 8.1. The regular solution satisfies certain symmetry properties, which
are used to show the symmetries of the scattering matrix. For real parameters k and λ, we
have

φ`(−k, r) = φ`(k, r), (3.83)

which follows from the independence of the boundary condition (3.77) of k, and thus φ`(k, r)
itself must also be real. For complex valued parameters we have

φ∗` (λ
∗, k∗, r) = φ`(λ, k, r). (3.84)

In the same vein, if one only takes boundary conditions for r going to infinity, one obtains the
two linearly independent irregular solutions f`±(k, r). They are defined by

lim
r→∞

e∓ikrf`±(k, r) = 1. (3.85)

Only at the point of zero energy, k = 0, are they linear dependent. We follow with the definition
in equation (3.85) the convention of [New82], meaning that f`+(k, r) belongs to the upper half
of the k-plane and f`−(k, r) (in some works written as f`(−k, r)) to the lower. The original
definition is the other way round, and is followed, e.g., by [Joa76]. These functions have the
symmetries

f`−(k, r) = f`+(keiπ, r), for k > 0 (3.86)

33



3. Scattering Theory – Two-Body Scattering

which means f+ can be analytically continued to the lower half of the imaginary k-plane into
f−

f`−(k, r) = f∗`+(k, r) for k, λ ∈ R
f`−(k, r) = f∗`+(k∗, r) for k,∈ C and λ ∈ R

f`−(λ, k, r) = f∗`+(λ∗, k∗, r) for k, λ ∈ C. (3.87)

To prove these statements, one needs to show that the integral representation converges ab-
solutely for any λ and k. This is shown in chapter 8, as it is a crucial part for the method
discussed there.

3.4.2. The Jost Functions

From the fact that any linear combination of two linearly independent solutions to a linear
differential equation must again be a solution, we can write

φ`(k, r) = af`+(k, r) + bf`−(k, r). (3.88)

The parameters a and b can be determined with the help of the Wronskian W (f, g) = fg′−f ′g.
If the functions f(x) and g(x) are two different solutions of the same equation, the Wronskian
is constant and independent of x. In our case, we use this to define the family of Jost functions

W (f`+, φ`) = f`+ φ
′
` − f ′`+ φ`

(3.88)
= bW (f`+, f`−) (3.89)

and analogously
W (f`−, φ`) = aW (f`−, f`+). (3.90)

The value of W (f`+, f`−) can be determined with the help of the asymptotic behaviour of f`+
and f`− in equation (3.85)

W (f`+, f`−) = −2ik. (3.91)

We define the first type of Jost functions as the Wronskian of f`+ and f`− with the regular
solution φ`

F`±(k) = W (f`±, φ`). (3.92)

As already mentioned, the Jost functions are independent of r and only depend on the k. This
allows to rewrite the equation (3.88) as

φ`(k, r) =
1

2ik
(F`−f`+ − F`+f`−) , (3.93)

and by using equation (3.85), we see it has the long-range property of the form

φ`(k, r) '
1

2ik

(
F`− eikr − F`+ e−ikr

)
for r →∞ (3.94)

This enables us to connect the equation to the scattering matrix in section 3.5. From the
definition of the Jost functions (3.92) and the boundary conditions (3.77) follows

F`+(k) = (2`+ 1) lim
r→0

r`f`+(k, r). (3.95)

This, in turn, forces the same symmetries on F`+(k) as f`+(k, r) with respect to the energy.
The Jost functions are thus analytic in k and can be continued into each other

F`−(k) = F`+(keiπ). (3.96)
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Their complex conjugates are

F`−(k, r) = F∗`+(k, r) for k, λ ∈ R (3.97a)

F`−(k, r) = F∗`+(k∗, r) for k,∈ C and λ ∈ R (3.97b)

F`−(λ, k, r) = F∗`+(λ∗, k∗, r) for k, λ ∈ C. (3.97c)

Another aspect of the general angular momentum dependence is the difference in the high-
momentum limit for the ` = 0 case as opposed to the general case. For Im(k) ≥ 0, one has

lim
|k|→∞

F0(k) = 1 (3.98a)

lim
|k|→∞

k` F`+ = (2`+ 1)!! e−
1
2
iπ`. (3.98b)

In order to have a function that approaches unity in the large k limit, we introduce a redefined
Jost function

F`±(k) =
1

(2`+ 1)!!
k`e

1
2
iπ`F`±(k), (3.99)

which approaches unity for large k as well as being continuous at k = 0. Furthermore, F`±
satisfy equation (3.96).

Bound state

Virtual state

Resonance state

Im(k)

Re(k)

Figure 3.2.: The position of the zeros of the Jost function in the complex k-plane. Bound
and virtual states lie on the positive and negative imaginary axis, respectively.
Resonances lie symmetric to the left and right of the imaginary axis.

From equations (3.92) and (3.95), together with the analyticity statements in equation (3.97)
follow a few important observations. First, if f`± can be expanded in powers of λ, then so
can F`± and F`±. This is used in chapter 8 for the derivation of the method presented there.
Second, if F`+(k0) = 0, then the irregular solution f`+(k0, 0) must necessarily become regular.
The two functions f`±(k, r) are only defined by boundary condition for large r; while in the
general case they do not fulfil the boundary conditions for regular functions, equation (3.77),
this does not exclude them from ever doing so. Third, the long-range properties of f`+(k, r)
demand that the wave functions behaves like eikr. For Im(k) > 0, f`+(k, r) must fall off
exponentially. Consequently, any zero of the Jost function in the upper half of the complex
k-plane, is a square-integrable, regular solution of the radial Schrödinger equation and thus a
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3. Scattering Theory – Two-Body Scattering

bound state. Additionally, the energy E and thus k2 must be real in this case, which means
that Re(k0) = 0, the zeros lie on the positive imaginary axis. For k on the lower half of the
complex plane, no restrictions exist as to where the zeros of the Jost function have to lie.
The described properties are visualized in figure 3.2. There, the bound states are shown on the
positive imaginary axis. Going to negative Im(k), the zeros for ` = 0 can lie on the negative
imaginary axis, as well as any where else. For ` > 0, the zeros cannot lie on the negative axis.
Further, all zeros lie symmetrical to the left and right of the imaginary axis.

3.5. Resonances

A resonance in a quantum mechanical system is a quasi-bound state, which has long enough,
but a finite life time, such that an incoming particle is delayed for a certain time before leaving
the system again. This picture was first proposed by Gamow [Gam28], in order to describe
the newly discovered α-decay. This also corresponds to demanding a purely outgoing wave
as boundary condition for the Schrödinger equation, which was formulated in this way by
Siegert [Sie39]. A necessary condition for this kind of behaviour is the existence of a type of
barrier which is able to trap the incoming particle temporarily. A sketch of this is depicted in
figure 3.3. The default case for this to occur is the presence of a angular momentum barrier.
Any resonance at ` = 0 in the two-body elastic case has to be due to some other barrier effect
caused by the potential. This point of view is restricted to the discussion of single channel
scattering. A multi-channel system can exhibit different kinds of resonances, see section 3.6.
The proper definition of a resonance is given as a pole of the scattering matrix S for complex

Barrier
Quasi-bound state

r00

Veff

Figure 3.3.: Sketch of an effective potential with angular momentum barrier, V (r)+ `(`+1)
2r2

. For
` = 0, the potential has to provide some form of barrier.

wave numbers k, lying in the forth quadrant. When going over from the wave number to the
energy, we have

ER − iΓ/2 =
~2 (kRe − i kIm)2

2m
, (3.100)

as well as

ER =
~2
(
k2

Re − k2
Im

)
2m

and Γ =
2 ~2

m
kRe kIm. (3.101)

It is apparent, when k2
Re < k2

Im, the energy becomes negative. This case is usually not referred
to as a resonance. We want to specify the relation of the S-matrix with the Jost function.
The conventional definition of a resonance via poles of the scattering matrix S can be obtained
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3.5. Resonances

by rewriting the S-matrix with the help of the Jost functions. To this end, we compare the
physical radial solution uk,`(r) with the regular solution φ`(k, r). From equation (3.55) and
equation (3.65) regarding the physical solution, and from the equations (3.77) and (3.78) we
see that uk,`(r) and φ`(k, r) must be proportional

uk,`(r) = α`(k)φ`(k, r). (3.102)

Equation (3.61) can be compared to equation (3.94)

α−1
` (k)

(
−(−1)`e−ikr + S`(k) eikr

)
=

1

2ik

(
−F`+ e−ikr + F`− eikr

)
(3.103)

=
1

2ik
F`+

(
− e−ikr +

F`−
F`+

eikr
)
, (3.104)

and bring the factor (−1)` = eiπ` over, to be in accordance with equation (3.99), we get the
relation

S(k) =
eiπ` F−(k)

F+(k)

=
F−(k)

F+(k)
. (3.105)

This shows, that a pole of the scattering matrix corresponds to a zero of the Jost function
F+(k). Any analytic property of the scattering matrix and its poles is thus also a consequence
of the properties of the Jost functions. For example, a bound state, which is a zero of the Jost
function on the positive imaginary axis, is also a pole of the S-matrix. Furthermore, the Jost
function is analytic in the strength of the potential, in turn meaning the same for the scattering
matrix. This fact is used in the calculation of resonance via the analytic continuation in the
coupling constant in chapter 8.

Phase Shift Behaviour Near a Resonance

The presence of a resonance and consequently an S-matrix pole has a characteristic effect on
the phase shift behaviour. One can use this to check for further indications that the calculated
S-matrix pole is indeed a physical resonance. Often, the S-matrix is not easily accessible,
but the phase shift is. This might be the case when, e.g., the complex domain is not in the
numerical scope of the computation. To give some more meaning to the phase shift, we define
the infinite energy limit as

lim
E→∞

δ` = 0. (3.106)

This makes the phase shift unambiguous and gives rise to the possibility of being non-zero
at vanishing energy, which is used in Levinson’s theorem, equation (3.110). We arrive at an
interpretation for resonance phase shifts by looking at the case of a potential for which we
can assume that at some point R, the potential vanishes, i.e., V (R) = 0. For the sake of the
argument, a simple square well potential is sufficient. The wave function and its derivative have
to be continuous at the interface from potential to no potential

ψint(R) = ψext(R)

ψ′int(r)
∣∣∣
r=R

= ψ′ext(r)
∣∣∣
r=R

. (3.107)

The same is true for the (inverse) logarithmic derivative of the wave function

R(k) :=
ψint(R)

ψ′int(R)
=
ψext(R)

ψ′ext(R)
. (3.108)
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3. Scattering Theory – Two-Body Scattering

We introduc the label R for the inverse logarithmic derivative of the interior wave function
at the point r = R and dropped all further indices for brevity. By choosing the inverse we
have recovered the definition of the so-called R-matrix. Inserting the asymptotic radial wave
function, equation (3.68), into equation (3.108), and solving for the phase shift, we arrive at
the expression

tan (δ`) =
kR j′`(kR)− j`(kR)

kRn′`(kR)− n`(kR)
. (3.109)

To interpret the phase shift near a resonance, it is helpful to first introduce Levinson’s theorem
[Lev49], which gives a relation between the zero energy phase shift and the number of bound
states

δ`(0) = (n+
1

2
N)π, (3.110)

with n being the number of bound states and N = 1 for ` = 0 and N = 2 for all other `. The
theorem provides an interpretation of quasi-bound states at energies E 6= 0, and gives insight
into their appearance. This can be seen in figure 3.4; here, a bound state phase shift lies at
exactly π for E = 0 and then drops to zero with increasing energy. The other phase shift in the
figure is a quasi-bound state and emulates the bound state phase shift behaviour away from the
zero energy point. We thus speak of a resonance in the phase shift when it sharply increases,
goes through π/2 and then still increases, in the case of a perfectly isolated resonance up to π
(all modulo π). Conversely, a phase shift rising with increasing energy, but failing to rise above
a value of pi, is not a resonance phase shift.

If the phase shift rises slowly and barely passes the π/2, it could be due to background effects,
which are not properly accounted for. This reasoning leads to a parametrization of the form

δ` = δR` + δb.g., (3.111)

where the resonant part δR` follows the ideal phase shift behaviour as described above, and the
background term δb.g. absorbs all other contributions. This parametrization allows to write the
resonant contribution as [Fri13]

δR` = − arctan

(
Γ

2 (E − ER)

)
. (3.112)

The position ER of a resonance extracted from a phase shift is defined as the inflection point
of the resonant part of the realistic partial wave phase shift, and thus fulfils the conditions

δR` (ER) =
π

2
(3.113a)

d2δR`
dE2

∣∣∣
E=ER

= 0. (3.113b)

In practical applications the resonance position is often simply defined as the inflection point
of the full phase shift. Taking the derivate of equation (3.112) with respect to the energy gives

dδR`
dE

=
Γ

2 (E − ER)2 + Γ2/2
. (3.114)

This leads to the Breit-Wigner formula for the partial wave cross-section

σ` =
4π

k2
(2`+ 1) sin2 (δ`) =

4π

k2
(2`+ 1)

(Γ/2)2

(E − ER)2 + (Γ/2)2
. (3.115)
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The width is then obtained from equation (3.114) by evaluating at E = ER and rewriting it as

Γ = 2

(
dδ`
dE

∣∣∣
E=ER

)−1

. (3.116)

This procedure is only valid for phase shifts close to the idealized case. These have relatively
small widths, and are referred to as sharp resonances. If applied to broad resonances, the
equations (3.113) and (3.115) can only serve as an approximation. Precise values are obtained
by calculating the pole position of the S-matrix in the complex plane.

bound state
phase shift

Resonance

k

π
2

π

δ

Figure 3.4.: Sketch of phase shifts. The dashed phase shift is a zero energy bound-state phase
shift, according to Levinson’s theorem. In blue is a resonant phase shift corre-
sponding to a narrow resonance, a “quasi-bound state”.

3.6. Spin, Inelastic and Multi-Channel Scattering

The treatment of scattering events which leave one or both scatterers with a change in the
internal degrees of freedom, or excited internal states requires the formalism from the previous
sections to be expanded. No new quantities have to be introduced, it is sufficient to generalize
the relations introduced in the previous sections.

The terms inelastic and multi-channel scattering are closely related, but not synonymous.
Inelastic scattering refers to the excitation of internal degrees of freedom

A+B → A∗ +B∗.

Multi-channel scattering implies that states of different energies couple to each other, neces-
sitating the inclusion of energy thresholds. This gives rise to a different kind of resonance
phenomenon as is discussed in sections 3.5 and 3.6.3. The introduction of new internal degrees
of freedom leads to a set of coupled differential equations.

3.6.1. Spin Degrees of Freedom

The first additional degree of freedom we introduce is spin. We still remain in the elastic case,
meaning that no energy transfer to internal excitations takes place. It serves as template for
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3. Scattering Theory – Two-Body Scattering

the general multi-channel case. We follow reference [Fri13], for an introduction to this topic.
A detailed description can be found in references[New82, Fri13]. We assume two scattering
partners A and B, just as in section 3.3.1, now each carrying an generic internal angular mo-
mentum IA and IB, which can be either intrinsic spin, orbital or the total angular momentum,
with projections MA and MB. We introduce the uncoupled spin state, which reads

χMA,MB
= |IA,MA, IB,MB〉 . (3.117)

The total relative motion wave function is case composed of a spatial and a spin wave function
and reads

Ψ(~r,MA,MB) =

(2IA+1)(2IB+1)∑
ν

ψν(~r)χν , (3.118)

where the collective index ν, running over all (2IA + 1)(2IB + 1) possible spin states. The
ψν(~r) are the wave functions of each spin-channel. The total wave function must satisfy the
Schrödinger equation (

− ~2

2µ
∆ + V

)
Ψ(~r,MA,MB) = EΨ(~r,MA,MB). (3.119)

The boundary conditions (in z-direction) at large distances are in analogy to equation (3.33)
the incoming plane wave and outgoing spherical wave

ψ(~r,MA,MB)
r→∞−−−→ eikzχν +

(2IA+1)(2IB+1)∑
ν′

fν,ν′(θ, φ)
eikr

r
χν′ . (3.120)

The scattering amplitude fν,ν′(θ, φ) is not spin-sensitive and allows spin change. In the case
that the interaction between the scatterers is independent of the spin, the amplitude is diagonal
in spin-space fν,ν′(θ, φ) = δν,ν′f(θ, φ).
We perform the partial wave expansion, which now has to be considered for each spin-channel

ψ(~r, ν) =
∞∑
`=0

∑̀
m=−`

uν,`,m(r)

r
Y`,m(θ, φ). (3.121)

Unlike the case in equation (3.58), the spherical harmonics have to be kept in their entirety,
as we no longer have a vanishing component in the z-direction. We have not taken explicit
(anti-)symmetrization into account, and equation (3.121) can formally be written as

ψ(~r, ν) =
∞∑
`=0

∑̀
m=−`

Aν
uν,`,m(r)

r
Y`,m(θ, φ), (3.122)

where Aν is the relevant antisymmetrizer for fermionic systems. We arrive at the coupled radial
wave functions for all spin-channels by inserting the partial wave expansion, equation (3.121),
into the total wave function, equation (3.118), and this into equation (3.119), which results in
the radial spin-channel Schrödinger equation(

− ~2

2µ

d2

dr2
+
`(`+ 1)~2

2µr2

)
uν,`,m(r) +

∑
ν′,`′,m′

V ν′,`′,m′

ν,`,m (r, r′)uν′,`′,m′(r) = E uν,`,m(r). (3.123)

Here, uν,`,m(r) are the radial wave functions of a specific spin, and the potential being the
integral over the angles θ and φ as well as over all spin projections MA and MB, indicated by
the collective index ν

V ν′,`′,m′

ν,`,m = 〈χνY`,m(θ, φ)| V̂
∣∣χν′Y`′,m′(θ, φ)

〉
. (3.124)

The potential can be non-local, hence the V (r, r′) notation.
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3.6. Spin, Inelastic and Multi-Channel Scattering

3.6.2. Coupled-Channels

The inclusion of additional degrees of freedom can be accomplished by adapting the previous
treatment of spin. By considering an extension of the spin wave function to be a general wave
function of that particular set of degrees of freedom. We change the notation

χν → χj(ν),

where ν is representative for all relevant quantum numbers, while iterating over all possible
configurations with index j.

Ψ(~r, ν) =
∑
j

ψj(~r)χj(ν). (3.125)

The index ν includes all internal degrees of freedom, for both scattering partners. The functions
χj(ν) are the wave functions to that specific internal state. We want to assume that these states
fulfil an internal/intrinsic eigenvalue relation of the form

Hνχi(ν) = Eiχi(ν). (3.126)

The ψj(~r) are the channel wave functions to the channel defined by χj(ν). The Schrödinger
equation takes the form (

− ~2

2µ
∆ +Hν +W

)
Ψ(~r, ν) = EΨ(~r, ν). (3.127)

The two different energies E and Ei, lead to the concept of open and closed channels. A
channel is open when E > Ei and closed otherwise. This means that the wave function of a
closed channel is a bound state. Inserting equation (3.126) into the Schrödinger equation leads
to the coupled channel equations

− ~2

2µ
∆ψi(~r) +

∑
j

Wi,j(~r, ~r
′)ψj(~r) = (E − Ei)ψi(~r), (3.128)

with Wi,j(~r) being the matrix element of the interaction between all internal degrees of freedom

Wi,j(~r) = 〈χi(ν)|W |χj(ν)〉 , (3.129)

similar to the case of spin scattering. The derivation of the radial Schrödinger equation is
analogous to section 3.6.1. The difference is the dependence of the wave number k → ki on the
channel

k2
i =

2µ(E − Ei)
~2

, (3.130)

which can make the actual computation of multi-channel scattering with realistic interaction
computationally expensive. Formally, everything that follows can be written in quasi-identical
form to the spin-coupled case, if the meaning of the collective index ν is expanded to allow for
all different combinations of quantum numbers, also accommodating multi-channel energies.

3.6.3. Resonances in Multi-Channel Scattering

The fact that states of different energy and configuration are coupled leads to a new possibility
of how a resonance can occur. In the single-channel elastic scattering case we necessarily
require some form of barrier, which can trap a projectile temporarily, as depicted in figure 3.3.
Coupling between states allows a previously bound state to decay into the continuum, if it is
energetically allowed. For example, such a case would be a bound three-body system, where one
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3. Scattering Theory – Two-Body Scattering

particle obtains energy from a second particle, and as a result, has enough energy to leave the
system. The inverse of this scenario, would be a (temporary) capture reaction. This situation
is e.g. dubbed as bound-states in the continuum [New82]. Depending on the realization of such
systems, even stable bound-states can be formed. Resonances of this kind are referred to as
Feshbach resonances [Fes58, Fes62], see also reference [Fri13]. Formally, the Feshbach method
to treat scattering is equivalent to the J-matrix approach, discussed in chapter 6.
The calculation and interpretation of resonances as poles of the scattering matrix continues to
be valid.
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4. Scattering Theory – Many-Body Scattering

This chapter serves as an introduction to the limits of the two-body scattering formalism and
what general steps have to be taken in order to be able to solve the many-body scattering
problem exactly. Our aim is to provide the information needed to understanding why the
standard scattering formalism from the two-body sector falls short, without going into too
much detail, as these concepts do not enter this work directly. It is nevertheless important to
be aware of them when dealing with many-body scattering with the help of other methods and
what their restrictions are. The field which concerns itself with treating all possible channels
that a certain system can have, nucleonic or others, is referred to as few-body physics. The
methods developed within this field allow for treating bound as well as scattering states, with the
focus on calculating the matrix elements of the transition operator T , given in equation (3.21).
The ability to calculate these matrix elements gives access to scattering cross-sections and
allows for a close connection to scattering experiments.

Additionally, give an overview of continuum physics and scattering in ab initio nuclear structure,
the many-body regime, which puts the methods presented in chapters 6 and 8 into context. In
contrast to the few-body methods, the focus in the many-body application is the calculation
of wave functions, primarily in the bound state-regime, with increasing interest to connect
continuum and reactions with the long-standing and successful methods of ab initio nuclear
structure. The difference in target observables in bound-state and continuum calculations make
the unification of well established methods not straightforward. On overview of the current
efforts to treat continuum physics consistently, and to bring ab initio few- and many-body
methods together for a closer connection to experiment, is discussed in reference [JLA+19].

We would like to point out two things. Firstly, the motivation for the explicit A-body treatment
is to find exact analytical relations of the three or even general A-body problem, but the use of
approximative methods, i.e., selective treatment of one or few scattering channels, is still a viable
approach. Secondly, even though the two-body formalism in deriving scattering equations is
not directly applicable in the A ≥ 3 case, many of the interpretations or analytic continuations
of the derived operators still remain in effect. In our case especially of interest are resonances.
These still correspond to poles of the A-body S-matrix [New82]. The microscopic reason for
the occurrence of a resonance can be of more complex nature, and must not necessarily be due
to an angular-momentum barrier. In a similar fashion, this already occurs in multi-channel
scattering, with, e.g., Feshbach resonances. However, it should be kept in mind that still
only two scattering partners are active, with coupled-channels giving rise to other causes for
resonances. This formalism still breaks down when applied to three or more scatterers.

4.1. Limits of Two-Body Scattering and the Three-Body Problem

We highlight the limitations of two-body scattering following the references [New82, KKH89,
FM93]. When trying to solve the scattering problem, we want to find a solution to the
Lippmann-Schwinger equation, given in equation (3.16) as

|ψ〉 = |ψin〉+G+
0 V |ψ〉 , (4.1)
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4. Scattering Theory – Many-Body Scattering

or directly for the Green’s function in equation (3.17),

G = G0 +G0V G (4.2)

= G0 +G0V G0 +G0V G0V G0 + ... ,

where G0 is defined in equation (3.13) as

G0 ≡ G+
0 = (E −H0)−1 , (4.3)

with H0 being the kinetic energy. For the sake of simplicity, the potential V is a two-
body interaction only. As the Lippmann-Schwinger equation is the integral equation of the
Schrödinger equation, the term G0V is also referred to as the integration kernel. The failure
of the Lippmann-Schwinger equation for three bodies is connected to it not belonging to a
very specific class of kernels when introducing three interacting particles, which we show in
following.

For a scattering system, repositioning of the whole system should not change anything, which
is the requirement of translational invariance of the whole system, i.e., the Hamiltonian has to
commute with the total momentum P

[H,P ] = 0. (4.4)

The same has to be true for the kinetic energy operator and the interaction potential individ-
ually, and consequently also for G0V

[H0, P ] = [V, P ] = [G0V, P ] = 0. (4.5)

When considering the matrix element representation of the kernel in some basis containing the
total momentum

〈...P...|G0V
∣∣...P ′...〉 ∝ δ (P − P ′) , (4.6)

the total momentum is naturally conserved, ensured by the appearance of a δ-distribution.

The crucial point in being able to solve the Lippmann-Schwinger equation is that the kernelG0V
needs to be a compact operator [New82]. If that is the case, then the integral is of Fredholm-
type, enabling the use of respective solving techniques for this class of integrals. The spectrum
of a compact operator is unambiguously separated into a discrete (bound-state) and continuum
part. This guarantees that the solution |ψ〉 exists and is unique w.r.t to total momentum and
energy. Being of Fredholm-type also implies square integrability [New82, AW13]. However,
an operator containing a δ-distribution cannot be compact. Even though the reverse is not
necessarily true, we want to assume this to be the case in this context, i.e., if no δ-distributions
appear in the operator or within the first iterations of it in terms of an expansion, then it is
compact. For proof of these statements, see e.g. references [New82, Joa76, FM93, AW13].

The appearance of a total momentum δ-distribution is already the case in two-body scattering
in section 3.3. However, every operator is conserving the total momentum, and consequently
the δ-distribution is avoidable by considering the scattering event at a fixed total momentum.
Is the total momentum fixed at zero, we are in the centre-of-mass frame.

Going over to a three particle system with a two-body potential

V =
∑
i<j

Vij

= V12 + V13 + V23, (4.7)
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it is possible to fix the total momentum P again. However, the individual two-body potentials
are conserving the single-particle momentum of the uninvolved particle, the spectator, as well
as the relative Jacobi momentum πi of the accordingly defined two-body partition. The Jacobi
coordinates and momenta are introduced in equation (5.13) and equation (5.14), respectively.
In some momentum representation, the interaction between particle 1 and 2, with Jacobi mo-
mentum π1 in a configuration (1 + 2)ξ1,π1 + 3, must be of the form

〈k π1p3|V12

∣∣k′ π′1p′3〉 ∝ δ(π1 − π′1)δ(p3 − p′3), (4.8)

with p3 being the single-particle momentum of particle 3, and k a collective index for all other
momentum like variables. In the same Jacobi configuration, at least the unaffected particle
leads to another δ-distribution

〈k π1 pi|Vkj
∣∣k′ π′1 p′i〉 ∝ δ (pi − p′i) with i 6= k, j. (4.9)

In effect, the total potential V is a sum of parts with δ-distribution w.r.t. to different mo-
menta, and thus cannot simply be removed by fixing a global momentum. The potential is,
therefore, a sum of non-compact operators, and as such not compact. Consequently, the stan-
dard Lippmann-Schwinger equation is not unique in its solution.
It is owed to Faddeev, who showed first that there is a way to find a kernel of Fredholm-type
[Fad61], that today a variety of methods exist to construct a unique solution, e.g., references
[AGS67, Wei64, HKL74].
We give the main result of the Faddeev method as found in reference [KKH89]. From the
appearance of the δ’s in equation (4.9) due to the spectator, one might try to rearrange the
Lippmann-Schwinger equation in equation (4.2) in such a way that all particles are always
“connected” to each other. This is the Faddeev approach. We obtain such a rearrangement by
rewriting equation (4.2)

G = G0 +G(1) +G(2) +G(3), (4.10)

where the G(i) are defined as
G(i) = G0ViG, (4.11)

with the potential index in equation (4.7) renamed by V12 → V1, V13 → V2 and V23 → V3. The
individual particle partition Green’s functions, denoted with a subscript, are given by

Gi = (E −H0 − Vi)−1 (4.12)

= G0 +G0ViGi. (4.13)

Inserting equation (4.10) into equation (4.11) and using general indices, we have

G(i) = G0Vi

(
G0 +G(1) +G(2) +G(3)

)
= G0ViG0 +G0Vi

(
G(i) +G(j) +G(k)

)
. (4.14)

Bringing the G(i) part on the right hand side in equation (4.14) over to the left hand side, one
obtains the expression

(1−G0Vi)G
(i) = G0ViG0 +G0Vi

(
G(j) +G(k)

)
. (4.15)

Multiplying from the left with the inverse of the new term on the left hand side, we get

G(i) = (1−G0Vi)
−1G0ViG0 + (1−G0Vi)

−1G0Vi

(
G(j) +G(k)

)
(4.13)

= GiViG0 +GiVi

(
G(j) +G(k)

)
= Gi −G0 +GiVi

(
G(j) +G(k)

)
. (4.16)
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These are the Faddeev equations, which can be cast into matrix formG(1)

G(2)

G(3)

 =

G1 −G0

G2 −G0

G3 −G0

+

 0 G1V1 G1V1

G2V2 0 G2V2

G3V3 G3V3 0

G(1)

G(2)

G(3)

 . (4.17)

The matrix representation highlights the initial motivation of the Faddeev approach. The
missing diagonal entries show that due to this rearrangement, the isolated particle cases do not
occur after one iteration of the equations (4.16) and (4.17).
From this result, we are able to compute scattering observables. For example, the earlier
mentioned matrix elements of the T -matrix, giving access to the amplitudes between different
scattering channels and cross sections. The generalization to the A-body problem was presented
by Yakubovsky [Yak67]. For an extensive introduction, we refer to, e.g. [FM93].

4.2. Many-Body Methods in the Continuum

The methods related to finding exact formulas for the A-body problem, like, e.g., the Faddeev
method, described briefly in section 4.1, are limited in the degrees of freedom they can com-
putationally accommodate. Calculations are limited so far to A = 5 in the nucleonic sector
[Laz18a, Laz18b, LHC19]. The addition of another nucleon requires substantial development
efforts.
The aim of ab initio nuclear structure is the connection to fundamental nuclear forces rooted
in QCD, with systematic improvability. It is, therefore, desirable to use the existing meth-
ods developed in this field to treat continuum effects, which both improves the description of
shallow bound states, as well as allowing the computation of reaction phenomena and nuclear
resonances.
Some of the most promising advancements to include continuum phenomena in ab initio nuclear
structure are based on using the Resonating Group Method (RGM) [TLT78], the Berggren basis
[Ber68], or combinations of the two. From our point of view the focus lies on extensions of the
No-Core Shell Model (NCSM), introduced in chapter 5, which is a powerful tool in ab initio
nuclear structure for the calculation of bound states, and extensively used within this work, see
chapters 7 and 9.
The NCSM/RGM [QN08, QN09, NRQ11] uses the RGM to calculate relative motion wave
functions of sub-clusters. The eigenstates of the sub-clusters are calculated with the NCSM.
The number of included sub-clusters determines the possible scattering and reaction channels
that can be described. The RGM can be combined with other methods that calculate the
eigenstates of the sub-clusters, and in that way provides a unified approach to bound and con-
tinuum states. The NCSM with Continuum (NCSMC) [BNQ13a, BNQ13b] is an extension of
the NCSM/RGM and constructs an overcomplete basis from the NCSM and RGM states.

The combination of the Berggren basis with the NCSM results in the so-called No-Core Gamow
Shell Model (NCGSM) [PRM+13]. It explicitly includes scattering states into the many-body
basis.
Another method to connect bound state calculations with the continuum is the Harmonic
Oscillator Representation of Scattering Equations (HORSE), which is introduced in detail in
chapter 6 and applied to the tetraneutron in chapter 7.
Particularly well suited to obtain resonance parameters from bound state methods is the An-
alytic Continuation in the Coupling Constant (ACCC), which is also used to investigate the
tetraneutron. The method is described in chapter 8 and results are shown in chapter 9.
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The No-Core Shell Model (NCSM) [ZBJ+93, PNB09, BNV13] is a powerful many-body method
in the field of ab initio nuclear structure. It treats all nucleons as active degrees of freedom,
hence the “No-Core” in the name. This separates it from the Valence-Space Shell Model,
which keeps a static core and only a few valence nucleons contribute to the dynamics of the
system. The NCSM is conceptually simple. It relies on a basis expansion, and subsequent
diagonalization to obtain the eigenvalues and eigenvectors of the investigated system. In its
more common formulation, the NCSM uses single-particle Slater determinants (SD). This allows
a straightforward antisymmetrization. The simplicity comes, however, at a price. The centre-
of-mass contribution is carried along until the end, and the total angular momentum is no
good quantum number, leading to higher computational cost, as the matrix dimension scales
factorially with the particle number. The large dimensions make the full diagonalization of the
matrix unfeasible, requiring iterative approaches, like e.g., the Lanczos algorithm [Lan50].
The SD formulation is a representation of all possible configurations allowed within specified
truncations. As such, the nuclear Valence-Space Shell Model, the NCSM and variations of these
are part of the family of Configuration Interaction (CI) type many-body methods.
An alternative in the NCSM is the use of Jacobi coordinates, which significantly reduces model
space size by explicitly separating the centre-of-mass and only treating the intrinsic part, and
keeping the total angular momentum J well defined by employing a angular-momentum-coupled
basis. This is counterbalanced by the costly antisymmetrization and embedding of (NN- and
3N-) interaction matrix elements into an A-body space. The NCSM is variational, thus giving
an upper bound for the true eigenenergies.
The ab initio NCSM is constructed from the A-body Hamiltonian, which reads [PNB09]

H = Trel + V =
1

A

∑
i<j

(~pi − ~pj)2

2mN
+

A∑
i<j

V NN
ij +

A∑
i<j<k

V 3N
ijk , (5.1)

where, V NN
ij and V 3N

ijk denote the two and three nucleon potentials, and mN the average nucleon
mass. In theory, up to A-body interaction terms can be present. We aim to solve the stationary
Schrödinger equation

H |Ψν〉 = Eν |Ψν〉 , (5.2)

with eigenvectors |Ψν〉 and energies Eν . The index ν summarizes all relevant quantum numbers,
the total angular momentum J and its projection MJ , parity π, isospin T and projection MT ,
ν = (J,MJ , π, T,MT ). The state |Ψν〉 is expanded in a suitable orthonormal basis, which reads

|Ψν〉 =
∑
i

|Φi〉 〈Φi|Ψν〉

=
∑
i

cνi |Φi〉 . (5.3)

With this expansion, the Schrödinger equation takes the form∑
j

〈Φi|H |Φj〉 cνj = Eνc
ν
i , (5.4)
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with expansion coefficient cνi . We can write the Hamiltonian as matrix element

〈Φi|H |Φj〉 = Hij , (5.5)

which leads to the alternative formulation in explicit matrix form H11 H12 . . .
H21 H22 . . .

...
...

. . .


 cν1

cν2
...

 = Eν

 cν1
cν2
...

 . (5.6)

The basis expansion needs to be truncated in order to obtain a finite problem. A distinguishing
feature of the ab initio NCSM is its truncation scheme in combination with harmonic oscilla-
tor (HO) basis states. The basis is truncated by limiting the total allowed HO excitation energy,
denoted with Nmax, meaning that the NCSM model space is spanned by all configurations with
excitation energy smaller or equal to Nmax~Ω. This is shown schematically in figure 5.1 for two
configurations of 10B. The Nmax = 0 configuration for open-shell nuclei is not unique, unlike in
the closed-shell case. The No-Core character is indicated by showing a configuration including
excitations from all energy levels.

A very important property of the HO basis and theNmax-truncation is the translation invariance
of the total Hamiltonian, while simultaneously allowing the use of single-particle coordinates
[PNB09]. The total wave function can be separated into the centre-of-mass and the intrinsic
wave functions

|Ψν〉 =
∣∣ΨCoM

ν

〉
⊗
∣∣Ψint

ν

〉
. (5.7)

Any other truncation scheme or other basis functions with single-particle coordinates do not
allow this separation.

5.1. Single-Particle m-Scheme NCSM

We refer to the standard form of the NCSM as the m-scheme. In this scheme, the basis is
spanned by single-particle HO states

|a〉 = |na, (`a sa) jamja , tamta〉 , (5.8)

with radial quantum number n, angular momentum ` and spin s, which couple to total angular
momentum j with projection mj and the isospin t with projection mt. In the nucleonic case
in which we are interested, spin and isospin can only have the value s = t = 1

2 . The energy
quantum number is given by

ea = 2na + `a. (5.9)

An antisymmetric A-body state is realized by writing them as Slater determinants

|abc...x〉a =
√
A!A |a〉 ⊗ |b〉 ⊗ |c〉 ⊗ ...⊗ |x〉 , (5.10)

where A is the antisymmetrizer. The basis constructed from such states is diagonal in the total
sum of the projection quantum numbers

M =
∑
i

mji , MT =
∑
i

mti , (5.11)

and the parity π, where the name m-scheme originates from [PNB09].
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Figure 5.1.: Truncation scheme of the NCSM in the case of 10B. The left plot shows one
possible configuration of lowest energy. On the right, one possible configuration
with excitation energy of 6~Ω. Neutrons and protons depicted as red and blue
dots, respectively, unoccupied states depicted as open circles.

5.2. Jacobi-NCSM

A variant of the NCSM is the formulation with relative-coordinate HO functions, the Jacobi
coordinates to be precise [Jac42]. In the low-mass sector, the Jacobi-NCSM allows for larger
model spaces and full diagonalization. It is of relevance to us to obtain large model spaces
and construct effective four-body potentials directly from eigenvectors, which is discussed in
section 8.3.
For A particles of equal mass, the Jacobi coordinates can be constructed iteratively from the
single-particle coordinates, by first defining the centre-of-mass coordinate ~ξ0

~ξ0 =

√
1

A

A∑
i=1

~ri. (5.12)

The first two particles with single-particle coordinates ~r1 and ~r2 define the first Jacobi coordi-
nate ~ξ1. Between the centre-of-mass of ~r1 and ~r2 and the third particle is the the next Jacobi
coordinate defined, and so on up to A particles and A− 1 Jacobi coordinates. This reads

~ξ1 =

√
1

2
(~r1 − ~r2)

...

~ξk =

√
k

k + 1

((
1

k

k∑
i

~ri

)
− ~rk+1

)
. (5.13)

By identical construction, one gets the Jacobi momenta

~πk =

√
k

k + 1

((
1

k

k∑
i

~pi

)
− ~pk+1

)
. (5.14)

Note that Jacobi coordinates can be constructed in various ways, and the particles can have
different masses. The transformation from one set to another is achieved with Raynal-Revai
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5. No-Core Shell Model

coefficients [RR70], which are related to the Talmi-Moshinsky transformations of the HO
[Mos59, Smi61].
The advantage of Jacobi coordinates is the direct separation of the centre-of-mass from the
intrinsic part. The matrix elements obtained in this basis do not contain any centre-of-mass
contributions, which drastically reduces the number of matrix elements compared to the m-
scheme. At the same time, the total HO energy must remain the same, and the form of the
HO does not change between the single-particle and the relative Jacobi coordinates

HHO =

A∑
i=1

(
~p2
i

2m
+

1

2
mΩ2~r 2

i

)
=

A−1∑
i=0

(
~π2
i

2m
+

1

2
mΩ2~ξ 2

i

)
. (5.15)

Harmonic oscillator matrix elements are constructed again by iteratively adding a new parti-
cle to the previously constructed ones. The disadvantage in using Jacobi coordinates is the
involved antisymmetrization, which has to be redone every time a new particle is added. The
antisymmetrizer has to be diagonalized in the respective A-body basis. The eigenvectors with
eigenvalue 1 belong to the desired antisymmetric state. Any other eigenvectors are not of inter-
est and can be discarded. More explicitly, starting with a two-body system, the intrinsic HO
matrix elements read [NKB00, Bin10, Sch18]

|N1(L1S1)J1MJ1 , T1MT1〉 , (5.16)

where the HO quantum numbers N1 and L1 are defined w.r.t. to the Jacobi coordinates ~ξ1 and
~π1, and L1 couples with the total spin S1 of the two particles to the total angular momentum J1.
The antisymmetry is obtained through particle permutation, leaving only states with

(−1)L1+S1+T1 = −1, (5.17)

to be taken into consideration for the antisymmetric states. Adding a third particle, we obtain
the partially antisymmetric state (under exchange of the first two particles)

|N1N2, [(L1S1) J1, (L2S2) J2] J12MJ12 , (T1MT1)T12MT12〉 ≡ |E12 ν12J12MJ12T12MT12〉
≡ |E12 ν12J12T12〉 , (5.18)

where the momenta L2, S2 and J2 belong to the third particle, where L2 and S2 = 1
2 couple

to J2, which in turn couples with J1 to J12. In the short hand notation, with the collective
index ν12 = {N1, L1, S1, J1, T1, N2, L2, J2} and E12 = 2N1 + L1 + 2N2 + L2, the projection
quantum numbers were dropped.
To obtain a fully antisymmetric state w.r.t. particle exchange of all three particles, the anti-
symmetrizer is diagonalized in the non-antisymmetric basis〈

E′12 ν
′
12J
′
12T
′
12

∣∣A |E12 ν12J12T12〉 . (5.19)

The matrix is block diagonal in E12, J12 and T12. For the explicit form and derivation, see
references [Bin10, NKB00]. The fully antisymmetric state is given as an expansion in the
partially symmetric basis by

|E12 i12 J12T12〉a =
∑
ν12

cE12J12T12
i12,ν12

|E12 ν12J12T12〉 . (5.20)

The expansion coefficients cE12J12T12
i12,ν12

are the so-called coefficient of fractional parentage, as
they are already fractionally antisymmetric under 1 ↔ 2 exchange. The index i12 labels each
antisymmetric state. It does not correspond to physical quantum numbers and only counts

50



5.2. Jacobi-NCSM

eigenvectors with eigenvalue 1.

Repeating the procedure, we get an antisymmetric four-body state

|E123 i123 J123T123〉a =
∑
ν123

cE123J123T123
i123,ν123

|E123 ν123J123T123〉 . (5.21)

We refer again to reference [NKB00] for the generalized derivation of the A-body antisym-
metrizer matrix elements and references [Sch18, Sch13] for the explicit treatment of the four-
body case. In practice, the diagonalization of the antisymmetrizer becomes prohibitively ex-
pensive at A ∼ 6, which limits the Jacobi-NCSM to the lightest nuclei.

In this work, we employ the Jacobi-NCSM up to large Nmax model spaces to obtain the required
states for the analysis performed in chapters 7 and 9.
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6. J-Matrix and Harmonic Oscillator
Representation of Scattering Equations

The description of continuum states usually requires the capability to accurately treat the
long-range behaviour of the wave functions. To be able to compute any kind of interacting
system, the problem has to be discretized with the help of a basis. Hence, the solving method
of choice should naturally incorporate adequate basis functions which can provide the correct
asymptotic behaviour, if not completely, in a systematically improvable approximation. This
requirement seems to make the treatment of scattering states within Configuration Interac-
tion (CI) methods, discussed in chapter 5, which span the Hamilton matrix on a L2 basis set,
impossible. Contrary to this, the so-called stabilization method [HT70], exploited the quasi-
stationary character of resonance states to expand them in a L2 basis and obtain precise results.
This can be considered to be the precursor to the J-matrix method discussed in this chapter.

The J-matrix, short for Jacobi-matrix, was first introduced in atomic physics in 1973 [HY73,
YF75]. The name derives from the fact that a matrix J = T −E, where T is the kinetic energy,
becomes tridiagonal in a specific L2-basis representation [HY73]. This is the Jacobi-matrix of
linear algebra, not to be confused with the first-order partial derivative matrix.
The application of the J-matrix method to problems of nuclear physics was first reported in
the 1980’s [Fil81, SN82, JRZ85]. It was also combined with the Resonating Group Method,
which leads to algebraic expressions, hence it is referred to as Algebraic RGM [VNAB01]. The
J-matrix has also been used in the reverse scattering formalism to construct effective (two-body)
interactions [SVMW07]. A summary and reprint of the fundamental papers contributing to the
evolution of the J-matrix is given as a textbook [AYHA08]. A defining aspect of the J-matrix
is reminiscent of the R-matrix method, discussed in the following. It is important to note that
formally, the J-matrix is equivalent to the Feshbach method [Fes62], as has been shown in
reference [Yam82].

Following the collection of papers in reference [AYHA08], the underlying principle of the
J-matrix and its different special cases, arises from the general idea that the exact solution, in
abstract eigenvalue notation

(T + V − E) |ψ〉 = 0, (6.1)

can be brought into a matrix representation by choosing some basis functions. The expansion
in the most general bound state basis |φn〉 of the form

|ψ〉 =

∞∑
n=0

bn |φn〉 , (6.2)

where bn = 〈φn|ψ〉 are the expansion coefficients, leads to the matrix representation

∞∑
n=0

〈φm|T + V − E |φn〉 bn = 0. (6.3)

Equation (6.3) is in the general case not fulfilled by scattering states, due to the bound state
basis lacking the correct asymptotics. Evidently, this is not the case when considering only
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6. J-Matrix and Harmonic Oscillator Representation of Scattering Equations

bound states, as this is precisely the approach of CI methods, which arrive at their results by
truncating the infinite sum at some parameter. In the example of the No-Core Shell Model,
this would be Nmax.
Considering as bound state basis the special case of Laguerre or Hermite (HO) polynomials,
the expansion ∣∣ψ0

〉
=
∞∑
n=0

b0n |φn〉 , (6.4)

solves the free problem of the kinetic energy H0 = T

〈φm|T − E
∣∣ψ0
〉

= 0, (6.5)

with the special property that the solution takes the form of a tridiagonal matrix. To obtain a
solution when considering an interaction, the potential is only taken up to a finite range in the
N ×N matrix, where N is the truncation parameter. This is shown schematically in figure 6.1.

N ′

N

T

T + V 0

0

Figure 6.1.: Truncation scheme cartoon. The inner region consists of the truncated kinetic term
plus the potential term.

The eigenvalue problem with the truncated potential V N reads

〈φm|T + V N − E
∣∣ψ0
〉

= 0, (6.6)

and is exactly solvable, due its finite model space.
The sought solution to this equation must be of the usual form of a scattering solution, that is it
can be written in terms of incoming and outgoing waves, denoted with In and On respectively.
The solutions are related by the scattering matrix S, and are linear combinations of the regular
and irregular free solution, and the scattering matrix, see equation (3.61) and equation (3.67).
The general solution reads ∣∣ψ0

〉
∼ N(k) (In + S On)

= N(k) ((cn − isn) + S(cn + isn)) . (6.7)

Here, N(k) is some normalizing function. The sn and cn are the expansion coefficient of the
regular (sine like) and irregular (cosine like) in the tridiagonal L2-integrable basis, respectively.
Analogous to the discussion in section 3.5, we can obtain an expression for the Green’s function
and the scattering matrix, which takes the form

S(E) =
IN +GN N TN ,N+1 IN+1

ON +GN N TN ,N+1ON+1
. (6.8)
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6.1. Harmonic Oscillator Representation of Scattering Equations

The Green’s function matrix representation is given by Gn,n′ , In and On as above. Alternatively,
the kinetic part can be absorbed into the Green’s function

S(E) =
IN +GN N IN+1

ON +GN N ON+1
. (6.9)

This is solely a matter of convention for ease of readability and to remain consistent with the
usual definition. In the following section, we derive the relevant expression for the case of
harmonic oscillator functions.

6.1. Harmonic Oscillator Representation of Scattering Equations

The J-matrix formalism in the harmonic oscillator basis is called the Harmonic Oscillator Rep-
resentation of Scattering Equations, or HORSE, for short. The use of HO functions, together
with the J-matrix truncation scheme, makes this approach an ideal candidate for combining
it with NCSM-type methods.First applications of the HORSE method in nuclear physics were
published in the 1980’s, e.g., [Fil81, SN82, JRZ85], and have been further developed in, and
used in conjunction with, nuclear CI calculations [BMS+00, ZSS98, SMZ+04].

Following the above mentioned papers, we start with the full solution, equation (3.48), as
presented in in section 3.3

ψ~k(~r) =
∞∑
`=0

∑̀
m=−`

Rk,`(r)Y
m
` (θ, φ), (6.10)

where Rk,`(r) is the radial wave function, and Y m
` (θ, φ) are the spherical harmonics, depending

on the angles θ and φ, with k as the relative motion momentum, the angular momentum ` and
its projection quantum number m. The overline R solely serves to better differentiate it from
the radial HO function. We are interested in the radial part, fulfilling the radial Schrödinger
equation (3.49) (

− 1

r2

d

dr

(
r2 d

dr

)
+
`(`+ 1)

r2
+

2µ

~2
V (r)− k2

)
Rk,`(r) = 0. (6.11)

Expanding the relative motion radial wave function Rk,` in an infinite series of radial HO
functions Rn`, depending on the radial quantum number n and the relative angular momentum
`, we have

Rk,`(r) =

∞∑
n=0

an`(k)Rn`(r) (6.12)

=
∑

N=Nmin,Nmin+2,...∞
aN`(E)RN`(r). (6.13)

Here, N is the principle quantum number

N = 2n+Nmin. (6.14)

In the case of a single particle in an harmonic oscillator potential, we have

Nmin = `, (6.15)
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6. J-Matrix and Harmonic Oscillator Representation of Scattering Equations

otherwise Nmin corresponds to the minimal HO configuration. The new unknowns are the
expansion coefficient an`(k). The form of equation (6.13) is given to already make the connection
to the NCSM visible. The HO radial function has the explicit form

Rn`(r) = (−1)n

√
2 Γ
(
n+ 1

)
aHO Γ

(
n+ `+ 3/2

)( r

aHO

)`+1
exp

[
− r2

2a2
HO

]
L
`+ 1

2
n

( r2

a2
HO

)
, (6.16)

where Lαn(z) is the associated Laguerre polynomial, the HO length aHO =
√

~
µΩ , µ is the re-

duced mass. This direct relation of the angular momentum dictating the lowest possible energy
configuration no longer holds in the many-body case. There, we have to evaluate Nmin for each
investigated system. We, therefore, continue to use the formulation with the radial quantum
number only, as it is more accessible, leads to more compact notation, and the derived equa-
tions can easily be translated to the energy quantum number by proper substitution, taking
the correct Nmin into account.

The unknowns to be determined are the expansion coefficients an`(k) → an`(E) of equa-
tion (6.12), where we change to an energy notation. They can be obtained by scalar mul-
tiplication of the radial solution Rk,`(r) with the radial HO function∫ ∞

0
dr r2Rk,`(r)Rn`(r) =

∫ ∞
0

dr r2
∞∑
n′=0

an′`(E)Rn′`(r)Rn`(r)

=
∞∑
n′=0

an′`(E)δnn′ = an`(E). (6.17)

We arrive at the equations which will define our new problem to solve by inserting the expansion
of equation (6.12) into the full Schrödinger equation, which then reads∫

d3r
∞∑
n′=0

Rn`(r)Y
m∗
` (θ, φ)Han′`(E)Rn′`(r)Y

m
` (θ, φ) =E

∫
d3r

∞∑
n′=0

Rn`(r)Y
m∗
` (θ, φ)

× an′`(E)Rn′`(r)Y
m
` (θ, φ)

(6.18)

=E an`(E), (6.19)

where relation (6.17) is used in the last line. Here, we write in analogy to Hnn′ = 〈nlm|H |n′lm〉
the same for the potential Vnn′ .
The left hand side is the expansion of the Hamiltonian in the HO basis∫

d3r

∞∑
n′=0

Rn`(r)Y
m∗
` (θ, φ)Han′`(E)Rn′`(r)Y

m
` (θ, φ) = E an`(E)

∞∑
n′=0

Hnn′an′`(E) = E an`(E), (6.20)

and using
〈~r |n`m〉 = 〈rθφ|n`m〉 = Rn`(r)Y

m
` (θ, φ). (6.21)

To solve is then a system of infinitely many algebraic equations

∞∑
n′=0

(Hnn′ − δnn′E)an′`(E) = 0 (6.22)

∞∑
n′=0

(Tnn′ + Vnn′ − δnn′E) an′`(E) = 0. (6.23)
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6.1. Harmonic Oscillator Representation of Scattering Equations

The matrix elements of the kinetic energy operator in harmonic oscillator basis read

Tn,n =
~Ω

2

(
2n+ `+

3

2

)
(6.24a)

Tn,n+1 = −~Ω

2

√
(n+ 1)(n+ `+

3

2
) (6.24b)

Tn,n−1 = −~Ω

2

√
n(n+ `+

1

2
) (6.24c)

Tn,n′ = 0, for |n′ − n| > 1. (6.24d)

With these, the coupled equations of (6.22) become

an−1`(k)Tn,n−1 + an`(E)Tn,n + an+1`(k)Tn,n+1 +

∞∑
n′=0

(Vnn′ − δnn′E) an′`(E) = 0. (6.25)

The equations 6.24 are the eponymous relations of the J-matrix condition of the kinetic energy
being tridiagonal. The next step is to separate the function space into an inner and outer region
at which the potential is sufficiently small. The HO quantum number at which this happens is
denoted with N . In other words, we have

Hnn′ =

{
Tnn′ + Vnn′ for n, n′ ≤ N
Tnn′ for n or n′ > N .

(6.26)

The matrix around line and column (N ,N ) looks schematically like equation (6.27).



... ... VN−2N ... ... ... ... ...

... HN−1N−1 HN−1N 0 0 ... ... ...
VN N−2 HN N−1 HN N TN N+1 0 ... ... ...

.. 0 TN+1N TN+1N+1 TN+1N+2 0 ... ...

.. 0 0 TN+2N+1 TN+2N+2 TN+2N+3 0 ...

.. .. .. 0 .. ... ... ...

 (6.27)

The truncation at N and assuming the potential to vanish appears analogous to the same
procedure for potential of finite reach in position space. However, the potential does not vanish,
but compared to the kinetic term, which grows linearly in n, as can be seen in equation (6.24),
the potential decreases similar to 1/n [SMMV16].
After neglecting the potential for n > N , only the tridiagonal kinetic energy remains. This is
the analogue case to the vanishing potential in spatial coordinates, where only the long-range,
effectively free wave function remains. This fact can be written as a three term recurrence
relation for the asymptotic solution

Tn,n′−1a
asy
n′−1,`(k) +

(
Tn,n′ − E

)
aasy
n′1,`(k) + Tn,n′+1a

asy
n′+1,`(k) = 0 for n > N . (6.28)

This relation has two solutions, a regular one, snl, and an irregular solution, cnl, whose explicit
forms are known – see equations (6.39) and (6.41).

The continuity at truncation N requires a matching condition, we thus combine the inner and
outer region results by demanding that they are equal at n = N . We obtain

N∑
n′=0

(HNn′ − δNn′E)an′`(E) = −δnN TN ,N+1 a
asy
N+1,`(E). (6.29)
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With the steps above, the similarity to the R-matrix is apparent. At first glance, this seems
to be even identical to the R-matrix approach – a truncation due to the negligible potential
contributions, with N being the analogue to the channel radius, which separates the position
space in the radial coordinate into an outer and an inner region. While the HORSE method and
the R-matrix are conceptually strongly related, the space in which the separation is performed,
results in a more fundamental difference. The separation in the HORSE method is done in the
functional (basis) space and not in a coordinate. The position space in the R-matrix is itself
again expanded in a basis to obtain a mesh on which one can solve the radial Schrödinger equa-
tion. This difference in the underlying defining spaces makes it, therefore, possible to derive
the R-matrix equation in the HORSE formalism [BMS+00].

The matching of the inner and outer solutions allows us to express the unknown solution an`(E)
in terms of the known asymptotic solutions aasy

N+1,`(E). From the discussion in chapter 3, it
follows from the equations (3.16) and (3.20), that the relation of the inner and the asymptotic
solution is given by the Green’s function. From equation (3.22)

G0(E) =

∫ ∞
0

dE′
∑

ν |ψ0, E
′, ν〉 〈ψ0, E

′, ν|
E − E′

, (6.30)

which gives the Green’s function expanded in a complete basis, we already know the general
form.
First, the truncation of the potential at point N , while ignoring the asymptotic part, is the
usual matrix eigenvalue problem, already mentioned previously, and reads

H |ψν〉 = Eν |ψν〉 , (6.31)

which is similar to equation (6.4) expanded in the harmonic oscillator basis |n`m〉. For the
eigenvector |ψν〉 we have

N∑
n′=0

(Hnn′ − δnn′Eν)
〈
n′`m

∣∣ψν〉 = 0. (6.32)

We use this relation by multiplying equation (6.29) from the left with

N∑
n=0

〈ψν |n`m〉 , (6.33)

giving

N∑
n=0

N∑
n′=0

〈ψν |n`m〉 (Hnn′ − δnn′E)an′`(E) = −
N∑
n=0

〈ψν |n`m〉 δnN TN ,N+1 a
asy
N+1,`(E) (6.34a)

⇒
N∑
n′=0

〈
ψν
∣∣n′`m〉 (Eν − E) an′`(E) = 〈ψν |N `m〉 TN ,N+1 a

asy
N+1,`(E) (6.34b)

⇒
N∑
n′=0

〈
ψν
∣∣n′`m〉 an′`(E) =

〈ψν |N `m〉 TN ,N+1 a
asy
N+1,`(E)

(Eν − E)

⇒ an′`(E) =

N∑
n′=0

〈n′`m|ψν〉 〈ψν |N `m〉 TN ,N+1 a
asy
N+1,`(E)

(Eν − E)
.

(6.34c)
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Comparing the right hand side of equation (6.34c) with the known form of the expanded Green’s
function (6.30), we can write it as

Gnn′ = −
N∑
ν=0

〈nlm|ψν〉 〈ψν |n′lm〉
Eν − E

, (6.35)

leading to the connecting equation for the inner and asymptotic solution

an`(E) = GnN TNN+1 a
asy
N+1,`(E). (6.36)

Having an expression for the Green’s function allows us to write down the S-matrix, which
reads

S(E) =
IN `(E)−GNN (E)TNN+1 IN+1,`(E)

ON `(E)−GNN (E)TNN+1ON+1,`(E)
, (6.37)

and alternatively the phase shift

tan (δ`(E)) = −
sN `(E)−GNN (E)TNN+1 sN+1,`(E)

cN `(E)−GNN (E)TNN+1 cN+1,`(E)
.

Regular and Irregular Solutions

The regular and irregular (free) solutions have explicit forms, which are obtained from calculat-
ing the integrals of the usual regular and irregular solution. In the absence of Coulomb forces,
the free solutions are the Bessel functions. The regular solution reads

sn`(E) =

∫ ∞
0

dr r2j`(kr)Rn`(r)

= (−1)n
√

π

2k

√
2n!

a3
HOΓ(n+ `+ 3

2)
a−`HO

∫ ∞
0

dr r`+
1
2 exp

(
− r2

2a2
HO

)
L
`+ 1

2
n

(
r2

a2
HO

)
J`(kr).

(6.38)

The lower case j` is the spherical Bessel function of the first kind, the upper case J` is the

ordinary Bessel function of the first kind. With the abbreviation q =
√

2E
~Ω , we get for the

regular solution

sn`(q) =

√
2n!

λΓ
(
n+ `+ 3/2

)q`+1 exp
(−q2

2

)
L
`+ 1

2
n

(
q2
)
. (6.39)

For the irregular solution, we obtain

cn`(E) = (−1)

∫ ∞
0

dr r2

√
π

2rk
J−`− 1

2
(kr)Rn`(r), (6.40)

and again with the abbreviation q

cn`(q) =
Γ[`+ 1

2 ]

π

√
2n!

λΓ
(
n+ `+ 3/2

)q−` exp
(−q2

2

)
1F1

(
− n− `− 1/2;−`+

1

2
; q2
)

=
(−1)`

Γ(−`+ 1/2)

√
2n!

λΓ
(
n+ `+ 3/2

)q−` exp
(−q2

2

)
1F1

(
− n− `− 1/2;−`+

1

2
; q2
)
.

(6.41)

The function 1F1 is the confluent hypergeometric function [DLM14], see also appendix B. The
derivation for the case of Coulomb interaction can be found in [BMS+00].
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6.1.1. Connection to the No-Core Shell Model

The discussion of the No-Core Shell Model in chapter 5 introduced the truncation parameter
Nmax to obtain a finite matrix, which is diagonalized, giving the eigenvalues as (bound-state)
energies of the many-body problem. The connection of the HORSE method with the NCSM on
a conceptual level is given by the use of the same basis expansion and truncation of the model
space. In this sense, the HORSE method can be understood as the NCSM with continuum
boundary conditions in its model space. The truncation used so far is based on the radial
quantum number n, which solely needs to be translated into the main HO quantum number
N , and from there to the energy excitation quantum number Nmax

n =
N −Nmin

2
=

(Nmax +Nmin)−Nmin

2
=
Nmax

2
, (6.42)

and consequently

N + 1 =
Nmax + 2

2
, (6.43)

which can be substituted in the relevant equations to obtain the desired Nmax dependency. For
example, the phase shift reads with main quantum number

tan (δ`(E)) = −
sN`(E)−GNN (E)sN+2,`(E)

cN`(E)−GNN (E)cN+2,`(E)
. (6.44)

In order to be able to calculate the phase shift, one needs the complete Green’s function,
equation (6.35). This requires performing a sum over all eigenvectors and eigenenergies obtained
from the NCSM diagonalization. For the most common implementation of the NCSM in the
so-called m-scheme, this implies the computation of up to 1010 eigenenergies and corresponding
vectors. This is computationally unfeasible, due to the extreme memory demand. The sum in
equation (6.35) can itself not be truncated again, as even high lying eigenvalues can contribute
significantly, and therefore, have to be taken into account. The use of the relative coordinate
Jacobi-NCSM, on the other hand, makes it theoretically possible, as the matrix dimension
drastically reduces compared to the m-scheme. However, one is limited to the very lightest
nuclei with A ≤ 4.

6.2. Single-State Harmonic Oscillator Representation of Scattering
Equations

The aforementioned limitations make the use of the “full” HORSE together with the m-scheme
NCSM prohibitive. Fortunately, for the use of the HORSE method, the expansion in the
discrete basis leads to a very simple expression of the scattering matrix and hence the phase
shift [YA93], when inserting the precise eigenvalue Eν into relation (6.37). When this is done,
one obtains the Single-State HORSE. With the abbreviation

〈nlm|ψν〉 = γν , (6.45)
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when the energy takes on the exact eigenenergy Eµ, we get

lim
E→Eµ

S(E) = lim
E→Eµ

IN `(E)−GNN (E)TNN+1

ON `(E)−GNN (E)TNN+1
(6.46)

= lim
E→Eµ

IN `(E) +

(
N∑
ν 6=µ

γνγ∗ν
Eν−E +

γµγ∗µ
Eµ−E

)
TNN+1 IN+1,`(E)

ON `(E) +

(
N∑
ν 6=µ

γνγ∗ν
Eν−E +

γµγ∗µ
Eµ−E

)
TNN+1ON+1,`(E)

Eµ − E
Eµ − E

(6.47)

=
IN+1,`(Eµ)

ON+1,`(Eµ)
. (6.48)

The phase shift in the Single-State HORSE is obtained in the same way and reads

tan δ`(Eν) = −
sN+2,`

cN+2,`
(6.49)

= −
Γ(−`+ 1/2)

(√
2Eν
~Ω

)`+1
exp

[
−Eν
~Ω

]
L
`+ 1

2

(N−`)/2

(
2Eν
~Ω

)
(−1)`

(√
2Eν
~Ω

)−`
exp

[
−Eν
~Ω

]
1F1

(
− (N + `+ 1)/2;−`+ 1/2; 2Eν

~Ω

)
= −

Γ(−`+ 1/2)
(√

2Eν
~Ω

)2`+1
L
`+ 1

2

(N−`)/2

(
2Eν
~Ω

)
(−1)` 1F1

(
− (N + `+ 1)/2;−`+ 1/2; 2Eν

~Ω

) . (6.50)

This is an important finding, as it means that the phase shift at an energy corresponding to an
exact eigenvalue of the truncated matrix can be obtained from only the ratio of the asymptotic
solutions at this energy.
The practical application of this is that we perform NCSM calculations at a fixed Nmax and
vary the oscillator length or frequency over a wide range to obtain the sought energies, see
chapter 7.

6.3. True Many-Particle Scattering in the Oscillator Representation

The description of a many-particle scattering system requires some further modification to
the J-matrix HORSE formalism. The treatment of such system can be done with the help
of scattering amplitudes of each of the possible sub-clusters that can be formed by all the
constituents of the scattering partners. This is done in some form, e.g. in the Faddeev-
Yakubovsky method [Fad61, FM93] or in the Resonating Group Method [TLT78]. One of the
sub-clusters that can be formed is the true A-body to A-body scattering, without any bound
sub-systems

A → A,

e.g., we assume this to be true for the tetraneutron

n+ n+ n+ n → n+ n+ n+ n.

This scattering channel is referred to as true many-particle scattering, democratic scattering
or democratic decay [ZSS98, LS04]. It can serve as a good approximation for a more complex
system with bound sub-structures, where the excitation energies are large compared to the scat-
tering energies. This democratic decay approximation has been used, e.g. on 11Li = 9Li+n+n,
among others [LS04], and more specifically in the case of the tetraneutron [SPM+16, SMMV16].
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6. J-Matrix and Harmonic Oscillator Representation of Scattering Equations

The true many-particle scattering asymptotic wave function is a spherical wave in a 3A − 3
dimensional space, with A being the number of particles. It can, therefore, be described
with an appropriate set of coordinates in 3A − 3 dimensions with the help of the (A − 1)
Jacobi coordinates ~ξi, see section 5.2 about Jacobi coordinates. The form of the asymptotic
wave function can be obtained using hyperspherical harmonics, which are an extension of the
spherical harmonics to 3A − 3 dimensions. This gives a partial wave expansion in this multi-
dimensional space. We introduce the unifying hyperspherical radius ρ and the set of angles Ω̄.
The hyperradius is given as [BLO00]

ρ =

√√√√A−1∑
i=1

(
~ri − ~ξ0

)2
(6.51)

=

√√√√A−1∑
i=1

~ξ 2
i . (6.52)

The ~ri are the single-particle coordinates and ~ξi is the centre-of-mass coordinate. The hyper-
radius is symmetric with respect to permutation in the single-particle coordinates. The pair
of angles (θi, φi) belonging to each Jacobi coordinate ~ξi are extended via the hyperangle α,
defined by the relation

sinαi =
ξi
ρi
, (6.53)

where ξi is the radial part of the Jacobi coordinate, ρi is the hyperradius constructed up to
the i-th coordinate. The angular coordinates are collected in Ω̄. The bar is used to distinguish
it from the HO frequency Ω.

We introduce the hyperspherical oscillator basis, which consists of the eigenfunctions of the
harmonic oscillator in the hyperspherical coordinates. In abstract notation, we write is as any
basis expansion

|Eiα〉 =
∑
n′Kγ

〈
n′Kγ

∣∣Eiα〉 ∣∣n′Kγ〉 , (6.54)

where |Eiα〉 can, for example, be the Jacobi basis as in section 5.2, with E being the total
energy quantum, i a collective index for antisymmetric states, the hyperspherical principal HO
number n, the hypermomentum K, and the collective indices α and γ, which represent all
other relevant quantum numbers, in the respective coordinates. In the general case, the sum
is infinite, if the expanded state is not bounded and discrete. In the special case of a state
which is itself formed or part of a truncated basis, like the HO basis we use in the NCSM and
HORSE method, the sum is finite as well and limited in the values K can reach. The states in
the hyperspherical harmonics (HH) expansion must be orthonormal〈

n′K ′γ′
∣∣nKγ〉 = δn′n δK′K δγ′γ . (6.55)

The basis can be written in coordinate representation as [ZSS98]

|nKγ〉 = RnK(ρ)YKγ(Ω̄). (6.56)

The first part of this basis, RnK(ρ), is the hyperspherical radial function and YKγ is a collec-
tive function, incorporating the hyperspherical harmonics as well as any other functions with
relevant degrees of freedom, e.g. spin. The hyperspherical radial function reads

RnK(ρ) = RLn(ρ) = ρ−(3A−4)rnK(ρ), (6.57)
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with

rnK(ρ) = rLn(ρ) = (−1)n

√
λ2n!

Γ(n+ L+ 3
2)

(λρ)L+1 e−
ρ2

2 L
L+ 1

2
n

(
λρ2
)
, (6.58)

where λ is the oscillator length
√
~/mΩ. Due to the orthonormalization, equation (6.55), it

follows that ∫
dρ r∗n′K(ρ)rnK(ρ) = δn′n. (6.59)

Here, L
L+ 1

2
n

(
ρ2
)

is the generalized Laguerre function, with hyperspherical angular momentum

L = K +
3(A− 2)

2
. (6.60)

The energy levels are given by the analogue relation of a 3(A−1) dimensional harmonic oscillator

EnK =

(
2n+K +

3(A− 1)

2

)
~Ω =

(
N +

3(A− 1)

2

)
~Ω. (6.61)

The expansion in equation (6.54), together with the relations of the two momenta in equa-
tion (6.60) as well as the total energy in equation (6.61), indicates that the hypermomentum K
can be truncated. From the large values of the centrifugal barrier L(L+ 1), we can introduce
both a minimal value for the momentum, Kmin, as well as an upper truncation Kmax, if, e.g.,
a study with increasing K is desirable.

The differential equation which is solved by the function rnK(ρ) is the analogue to the radial
Schrödinger equation, in hyperspherical coordinates [DB10](

~2

2µ

(
− d2

dρ2
+

(K + 3(A−2)
2 )(K + 3(A−2)

2 + 1)

ρ2

)
− E

)
rnK(ρ) +

∑
n′K′γ′

VγKγ′K′(ρ)rn′K′(ρ) = 0

(6.62a)(
~2

2µ

(
− d2

dρ2
+
L(L+ 1)

ρ2

)
− E

)
rnK(ρ) +

∑
n′K′γ

VγKγ′K′(ρ)rn′K′(ρ) = 0.

(6.62b)

The term VγKγ′K′(ρ) is some two-body interaction matrix element expanded in hyperspherical
harmonics

VγKγ′K′(ρ) =
〈
YKγ(Ω̄)

∣∣∑
i<j

Vij(~ri − ~rj)
∣∣YK′γ′(Ω̄)

〉
. (6.63)

Due to the HH expansion of the potential, we have by construction a set of coupled differ-
ential equations. The replacement of K → L in equations (6.62a) and (6.62b) highlights the
interpretation of L as the analogue to the usual angular momentum.Equation (6.62), in the
absence of a potential, has two fundamental solutions, which are almost identical to the non-
hyperspherical case. The regular and irregular solution snL and cnL read, in terms of the HH
HO radial quantum number n, the hyperspherical angular momentum L, and the momentum

q =
√

2E
~Ω [ZSS98]

snL(q) =

√
2n!

λΓ
(
n+ L+ 3/2

)qL+1 exp
(−q2

2

)
L
L+ 1

2
n

(
q2
)
, (6.64)
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and

cnL(q) =
Γ[L+ 1

2 ]

π

√
2n!

λΓ
(
n+ L+ 3/2

)q−L exp
(−q2

2

)
1F1

(
− n− L− 1/2;−L+

1

2
; q2
)

=
(−1)L

Γ(−L+ 1/2)

√
2n!

λΓ
(
n+ L+ 3/2

)q−L exp
(−q2

2

)
1F1

(
− n− L− 1/2;−L+

1

2
; q2
)
.

(6.65)

The change in the prefactor in equation (6.65) corresponds to the equation as used in reference
[SMMV16]. The phase shift in the Single-State HORSE approximation is given by

tan
(
δl(q)

)
= −

sn+1,L(q)

cn+1,L(q)

= −
Γ(−L+ 1/2) q2L+1L

L+ 1
2

(n+1)

(
q2
)

(−1)L 1F1

(
− (n+ 1)− L− 1/2;−L+ 1

2 ; q2
) . (6.66)

This allows us calculate phase shifts for the tetraneutron in the Single-State HORSE democratic
decay approximation, see chapter 7.

6.4. Construction of Hyperspherical States from Jacobi-NCSM
Eigenstates

Part of this work is to exploit the advantages of the Jacobi-NCSM to construct the full HORSE
matrix in terms of increasing hyperspherical momentum K. The limiting factor in the more
common m-scheme NCSM is two-fold. Firstly, the extremely large basis space, with linear
dimension in the order of 107 to 1010, would have to be diagonalized completely, and all eigen-
vectors and eigenvalues would have to be written to disc, requiring up to a petabyte of storage
space. This is computationally unfeasible. The only way to obtain eigenvalues and vector
for matrices of this size is with iterative schemes, like the Lanczos algorithm [BNV13]. This
returns only the lowest eigenstates. Secondly, even if the whole matrix could be diagonalized
and stored in memory or on disc in the m-scheme, it would require multiple Talmi-Moshinsky
transformations to obtain the desired scattering channel with good total angular momentum
J , and getting rid of any centre-of-mass contaminations [SMMV16]. The Jacobi-NCSM, on the
other hand, is by construction free of centre-of-mass contributions and the Hamiltonian in this
basis can be fully diagonalized.

It is possible to use the eigenvectors obtained from the Jacobi-NCSM in the expansion of
equation (6.54), and further obtain the Green’s function, given in equation (6.35). We want to
apply the true many-particle boundary conditions to the Green’s function, so instead of using
the vectors given in the usual HO, we are interested in the HH expanded formulation, which
reads

Gnn′ = −
∑
ν,K,γ

〈nKγ|ψν〉 〈ψν |n′Kγ〉
Eν − E

. (6.67)

This requires the computation of the overlap of the HH state with the Jacobi-NCSM eigenstate,
which in turn is constructed from antisymmetric Jacobi basis states, given in equation (5.21)

|E123 i123 J123T123〉a ≡ |E123 i α〉 , (6.68)
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where we introduce a short-hand notation of the basis states for this section. The index i
runs over all antisymmetric basis and does not correspond to physical quantum numbers. The
index α = {J123, T123P123} collects all other quantum numbers. We change from the explicit
antisymmetrization to an implicit notation, by omitting the subscript a.
The vector product of state |nKγ〉 with the state |ψν〉 can be expanded in the Jacobi basis

〈nKγ|ψν〉 =
∑
i,α

〈nKγ|E123 i α〉 〈E123 i α|ψν〉 . (6.69)

The 〈nKγ|E123 i α〉 are unknown expansion coefficients. We obtain these, without having to
resort to an explicit representation in a hyperspherical basis, by utilizing the fact that the
minimal energy configuration has to be identical in both coordinate systems. We must have
the equality

NK = 2n+K

→ 2NK +K = Nmax +Nmin = E123, (6.70)

where NK is the principle hyperspherical HO quantum number, n the hyperspherical radial
quantum number, NK is the maximal possible hyperspherical HO radial quantum number
conforming to the total possible energy, analogous to equation (6.26). This means that the
smallest possible K value Kmin at n = 0 and the corresponding states

|n = 0,Kmin, γ〉 (6.71)

must be contained within the lowest possible energy configuration of Nmax = 0. We, therefore,
write the Kmin states as a linear combination of the basis states belonging to the Nmax = 0
space

|n = 0,Kmin, γ〉 =
∑

i,α⊆Nmax=0

cαi |E123 i α〉 , (6.72)

where the coefficients ci are determined by orthonormalization of the states, but other than
that, can be chosen freely. As we have no information about their relative amplitudes, we
can choose them to be of equal absolute value, or directly identify the basis states with the
hyperspherical states in a one-to-one relation. From this starting point, we can construct all
further HH states in an iterative scheme, where we utilize the tridiagonality of the kinetic
energy, both in the Jacobi basis and in the hyperspherical basis, which is tridiagonal in n, while
being diagonal in K and γ. By letting the kinetic energy act upon a Jacobi basis-state, we
excite it into the next higher energy quantum

T |E123 i α〉 = |E123 + 2, i α〉 = |n = 1,Kmin, γ〉 , (6.73)

without changing the value of K = Kmin. We can, therefore, write for the hyperspherical states
a relation of the form

T |n = 0,Kmin, γ〉 = β0 |n = 0,Kmin, γ〉︸ ︷︷ ︸
Nmax=0

+β1 |n = 1,Kmin, γ〉︸ ︷︷ ︸
Nmax=2

, (6.74)

which gives the Kmin states at n = 1, belonging to the next higher Nmax space. The coefficients
β should be chosen such that they ensure orthonormalization. By iteration, we obtain all
further states of the same K in the next higher lying space, for K = Kmin this reads

T |n,Kmin, γ〉 = β1 |n− 1,Kmin, γ〉+ β2 |n,Kmin, γ〉+ β3 |n+ 1,Kmin, γ〉 . (6.75)
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All other higher K states follow in the same fashion, by first identifying the Kmin states within
the Nmax = 0 space, constructing the next Kmin states within Nmax = 2 space with the help of
equation (6.74). Within the Nmax = 2 space, all remaining basis states, which are not part of
Kmin must then be part of Kmin + 2 states. The procedure of equation (6.75) then generalizes
to

T |n,K, γ, j〉 = β1 |n− 1,K, γ〉+ β2 |n,K, γ〉+ β3 |n+ 1,K, γ〉 . (6.76)

In this way, all hyperspherical states up to a desired K within the total available Nmax space
can be constructed with equation (6.72) as a starting point. The orthogonalization of the states
has to be ensured, both to obtain the sought hyperspherical expansion coefficient, as well to
account for numerical inaccuracy, which means in practical application, that this has to be
done after each time a new set of states is obtained, e.g., via a Gram-Schmidt procedure.

As a practical example, we consider the tetraneutron, which has two states at Nmax = 0, nine
at Nmax = 2, and 29 states Nmax = 4. Or, equivalently

|E123 = 2, i α〉 i = 1, 2

|E123 = 4, i α〉 i = 1, 2, .., 9

...

The minimal K in this case is Kmin = 2. That means we have also two Kmin states in
equation (6.72), meaning

|n = 0,Kmin = 2, γ〉 =
2∑
i=1

cαi |E123 = 2, i α〉 (6.77)

∣∣n = 0,Kmin = 2, γ′
〉

=
2∑
i=1

c̃αi |E123 = 2, i α〉 . (6.78)

Applying the kinetic energy operator as in equation (6.75) gives two additional Kmin states in
the Nmax = 2 space. The remaining five states must consequently belong to K = 4. Continuing
in this way, we obtain two K = 2 states at each higher Nmax value, and applying the kinetic
energy operator to the K = 4 states, we obtain five new states of the same K for each Nmax.
This leaves 13 states at Nmax = 4 which must belong to K = 6, and so on.
The hyperspherical states thus obtained can then be inserted into equation (6.69) to get the
sought expansion coefficients

〈nKγ|ψν〉 =
∑
i,α

〈nKγ|E123 i α〉 〈E123 i α|ψν〉

=
∑
i,α

∑
j,α′

cα
′
j

〈
E123 j α

′∣∣E123 i α
〉
〈E123 i α|ψν〉

=
∑
i,α

cαi 〈E123 i α|ψν〉 . (6.79)

With the coefficients cαi and thus 〈nKγ|ψν〉, we obtain the Green’s function in equation (6.67).
It should be noted that the Green’s function contains a sum over all hyperspherical K, which
makes the computation computationally expensive.
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7. Tetraneutron in the Single-State Harmonic
Oscillator Representation of Scattering
Equations

The interest in the four-neutron system in the more recent past has first been kindled by
the possibility of experimental evidence of a weakly bound state [MLO+02]. Most theoretical
studies could not substantiate the existence of a bound state [BZ03, Pie03], with one exception
[MLP14], and also a resonance was disfavoured [LC05]. A recent experiment sparked renewed
interest in a possible tetraneutron resonance in the Jπ = 0+ state, proposing a position at
0.83±0.65(stat)±1.25(syst) MeV and giving an upper limit for the width of 2.6 MeV [KSM+16].
The theoretical studies that followed disagree whether a resonance exists, let alone what its
parameters are. While some come to the conclusion that it exists, with varying results regarding
position and width [SPM+16, FRMP17, GHK+17, LMH+19], others find no evidence to support
a resonance [HLCK16, LCH17, CLHK17, Del18, DL19b, HGKV20].

One important aspect in this endeavour is the role of the nuclear interaction. Studies investi-
gating necessary modifications in the interaction, e.g., the isospin T = 3/2 channel [HLCK16],
find these modifications to be incompatible with other system in close proximity on the nu-
clear chart, breaking theoretically and experimentally well established observables. Realistic
nuclear interactions aim for an accurate description the nuclear chart, and the most advanced
interactions are based on Chiral Effective Field Theory (χEFT). The correct reproduction of
tetraneutron parameters, is, therefore, an ideal test. Most of the studies using realistic poten-
tials report that their findings do not depend too strongly on the employed interaction. The
different results thus have to be related to some degree to the used methods.

In this chapter, we present the work performed to further expand the studies presented in refer-
ence [SPM+16]. We employ the Single-State Harmonic Oscillator Representation of Scattering
Equations (HORSE), described in section 6.2, applied to the tetraneutron in the democratic
decay approximation, discussed in section 6.3, together with the Jacobi No-Core Shell Model
(NCSM) to solve the many-body problem. The extensions are of two kinds. Firstly, we greatly
expand the NCSM model space, from previously Nmax = 18 to Nmax = 26 for most of the
SRG evolved interaction, and even up to Nmax = 30 in the case of the bare two-body chiral
interaction.

Secondly, we present the first systematic study of a range of state-of-the-art χEFT NN and
3N and realistic inverse scattering NN interactions, and their impact on tetraneutron phase
shifts. The effect of the SRG is studied in comparing the bare, unevolved NN interaction to
its SRG counterparts, as well as comparing two different flow parameter values. We present
the impact of the SRG evolved NN-only, NN with induced three-body terms and initial 3N
interactions. In the case of the 3N interaction, we also use two different values for the regulator
cut-off. The systematic approach of the chiral interaction also allows us to study the phase
shifts order-by-order in the two-body sector. The interactions are listed in table 7.1.

To this end, we first present the main findings in the form of a comparative plot, followed by
individual aspects of the different interactions and SRG parameters.
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Name Type Year Reference SRG α [fm4]

JISP16 ISP NN 2007 [SVMW07] -
DAEJEON16 ISP NN 2016 [SSK+16] -
N3LOEM χEFT NN 2003 [EM03] bare, 0.04 & 0.08
N3LOEM + N2LOΛ,L χEFT NN + 3N 2007 [Nav07] 0.04 & 0.08
N2LOSAT χEFT NN 2015 [EJW+15] 0.04 & 0.08
NxLOEMN χEFT NN 2017 [EMN17] 0.04 & 0.08

Table 7.1.: Interactions used in this work. Interaction constructed from inverse scattering po-
tentials are denoted ISP.

7.1. Identifying Resonances

The characteristics of a system in the continuum can be inferred from their (partial waves) phase
shifts. We obtain the needed energies to calculate these for the Jπ = 0+ state as described in
section 7.2.
The deduction of the existence of a resonance in the four-neutron system within the Single-
State HORSE method follows from the discussion in section 3.5. According to the statements
made in section 3.5, a resonance phase shift is characterized by a sudden and sharp increase
when coming from lower and going to higher energies, passing 90◦ and going to almost 180◦,
after which it declines again. We infer resonance character from the general shape of the phase
shifts in the way just described. The phase shifts are calculated via equation (6.66) and read

tan
(
δl(E)

)
= −

sn+1,L(E)

cn+1,L(E)

= −
Γ(−L+ 1/2)

√
2E
~Ω

2L+1

L
L+ 1

2

(Nmax+2
2

)

(
2E
~Ω

)
(−1)L 1F1

(
− (Nmax+2

2 )− L− 1/2;−L+ 1
2 ; 2E

~Ω

) . (7.1)

From the inflection point of the phase shift we gain an approximate value for the resonance
position equation (3.113b)

ER →
d2δ`(E)

dE2

∣∣∣
E=ER

= 0. (7.2)

The width is approximated with the Breit-Wigner distribution, see equations (3.115) and
(3.116),

Γ = 2

(
dδ`
dE

∣∣∣
E=ER

)−1

. (7.3)

Within this work, the tetraneutron is assumed to be true 4→ 4 scattering with no sub-clusters.
This is also referred to as democratic decay [SPM+16], see section 6.3. A pure neutron bound-
state is currently deemed unlikely by almost all recent publication on the topic, which makes
the democratic decay approximation reasonable. How a trineutron resonance, should it exist,
would affect the tetraneutron, remains to be investigated. We are operating with hyperspherical
coordinates, and therefore, we have for the hypermomentum K and the hyperspherical angular
momentum in the case of the tetraneutron

L = K +
3(A− 2)

2
= K + 3. (7.4)

We use the minimal approximation of

K = Kmin = 2, (7.5)
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due to the large centrifugal barrier

L(L+ 1)

ρ2
→ 5(5 + 1)

ρ2
. (7.6)

We note that a phase shift can be broadened due to back groundcontributions, leading to a
parametrization as given in equation (3.111). The resonance position in reference [SPM+16]
for the tetraneutron resonance candidate was determined by fitting the phase shift data points
to a function parametrized as in equation (3.111), where the resonant contribution was further
parametrized as

δR` (E) = − tan−1

(
a
√
E

E − b2

)
, (7.7)

which gives the resonance position ER and width Γ via

ER = b2 − a2

2
and Γ = 2a

√
b2 − a2

4
, (7.8)

which is a rewritten form of the relations given in equations (3.100) and (3.101), within this
parametrization. The results are for the position ER ≈ 0.8 MeV and for the width Γ ≈ 1.4 MeV.

A study to extract the resonance parameters in analogy to the one in reference [SPM+16] from
a selection of the newly generated data was part of a bachelor’s thesis [Der17].

7.2. Data Generation

The data for the tetraneutron are generated within the framework of the Jacobi-NCSM. The
target state for this is a Jπ = 0+ state. To calculate phase shifts according to equation (6.66), we
generate relative coordinate matrix elements in a broad range in the HO length aHO. The NCSM
calculations are then performed with successively increasing Nmax. This gives the relevant input
for equation (6.66) as data triplets (E, aHO, Nmax), or alternatively with the HO frequency
(E, ~Ω, Nmax). For the plots, we choose to use the frequency. The obtained energies decrease
with decreasing frequency, as opposed to increasing oscillator lengths. The use of the frequency,
therefore, allows for consistent plot layout when plotting the phase shifts δ(E) and δ(~Ω),
respectively.

7.3. Main Findings

The combined comparison of the investigated interactions is shown in figure 7.1. All inter-
actions shown are given at a consistent Nmax = 26, where each data point corresponds to a
set of (E, ~Ω, Nmax = 26). The plot shows the JISP16 potential for comparison to reference
[SPM+16], alongside the DAEJEON16 and various SRG evolved χEFT interactions.

The phase shifts generally agree with each other. They all show the same distinct behaviour
of rising sharply coming from low energies, crossing 90◦ around 1.2 MeV, continuing to varying
maximal phase shift values between 100◦ and 110◦, and they slowly decrease for E > 5 MeV,
showing some slight differences going to larger energies. The phase shifts have inflection points
at approximately

ER ≈ 0.7 MeV,

and a width, via equation (3.116), of

Γ ≈ 1.2 MeV.
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7. Tetraneutron in the Single-State HORSE

These values are arrived at by interpolating the data points with a third degree polynomial.

We conclude, that the gross properties of the phase shifts obtained in the Single-State HORSE
formalism for the tetraneutron are independent of the interaction used in the NCSM calculation,
excluding the bare interaction, which is not shown in this plot.

The differences that can be seen are on the one hand due to the way the in interaction were
constructed in the first place; at the high energy end, the χEFT based ones show a phase shift
of a few degrees lower than the ISP based interactions, i.e. JISP16 and DAEJEON16. The
important energy range of 5 MeV and lower to around 1 MeV has the most spread in the phase
shifts, of around 10 degrees. In the lowest energy region, the phase shifts tend to agree, with
the noticeable exception of the DAEJEON16 potential.

These results corroborate the findings published in [SPM+16], and expand the analysis with
different state-of-the-art χEFT interactions. The inferred existence of a four-neutron resonance
from the phase shift analysis within the Single-State HORSE formalism does not depend on
the interaction, while details such as exact position and width might be affected.
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Figure 7.1.: Tetraneutron Single-State HORSE phase shifts, comparison of various interactions.
All data shown are Nmax = 26, as well as all blue lines SRG flow parameter
α = 0.08 fm4. See table 7.1 as well as the text for details on the used interactions.
The plot markers represent calculated data points, the lines connecting the markers
are linear interpolations and only serve to guide the eye.

7.3.1. NCSM Model Space Dependence

We discuss the Nmax dependence of the data first with the energy as a function of the oscillator
frequency, which represents the raw data used as input for the phase shift relation of equa-
tion (6.66). Additionally, we investigate the phase shift as a function of the frequency, as well
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as a function of the energy.

To demonstrate the Nmax sequences, we choose the interaction N3LOEM + N2LO500,L SRG
evolved with α = 0.08 fm4 [EM03, Nav07]. This χEFT potential is a common choice in ab
initio nuclear structure calculations. The complete Nmax sequences of the phase shift for all
other interactions can be found in appendix C.

Figure 7.2 shows the eigenenergy from the NCSM calculations as a function of harmonic oscil-
lator frequency. With higher HO frequencies, the energy at each model space size parameter
Nmax increases. For fixed frequency, the energy decreases with increasing Nmax. Unlike the
bound ground-state case, where a fixed-frequency gives an upper limit in the energy, which
can be improved by frequency variation, this is not the case in the pseudo-continuum. The
eigenenergy at a given frequency is not an upper bound for energies obtained with different
frequencies. The approach of choosing a favourable frequency for best convergence is thus not
possible. On the contrary, the Single-State HORSE method relies on this energy-frequency
relation in the continuum. The pattern of the Nmax sequence appears to be better converged
at lower frequencies. Nevertheless, going to larger model spaces of Nmax = 26 has a visible
impact on the energies.

Nmax

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 10 20 30 40

10

20

30

40

50

60

ℏΩ [MeV]

E
[M
eV

]

Figure 7.2.: Tetraneutron NCSM eigenenergies as function of the HO frequency ~Ω. Interaction
N3LOEM + N2LO500,L SRG evolved with α = 0.08 fm4.

The data as shown in figure 7.2 are used as input to obtain phase shifts. To better illustrate the
data relation further and better see the Nmax convergence in the phase shift than in the δ(E)
plot, we keep ~Ω as a variable in figure 7.3. At larger frequencies, the phase shift is approached
from below, going to larger angles, with increasing Nmax. At approximately ~Ω = 1.5 MeV and
below, this trend is inverted and the phase shift value is approached from above with increasing
Nmax.

Finally, going over to the energy as a variable for the phase shift, depicted in figure 7.4, whose
overall behaviour resembles figure 7.3, we see that the phase shift values for the largest Nmax lie
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7. Tetraneutron in the Single-State HORSE

on top of each other in the resolution of the plot, at least at higher energies. In the physically
most interesting region of 5 MeV and below, the convergence is not perfect. Overall, the larger
model spaces show some improvement in all three considered cases for the convergence of the
phase shifts.

The resonance energy and width as a function of Nmax, determined via equations (7.2) and (7.3),
are show in figure 7.5. The positions show a clear trend towards lower energies and widths with
increasing Nmax. The given error bars are solely the difference to the previous datum. They
give no information about the applicability of equations (7.2) and (7.3). By the definition
of an ideal resonance, which lies exactly at δ = 90◦, see equations (3.112) and (3.113a), the
distance of the inflection point to the energy where the phase shift crosses the 90◦ might give
some indication, however, we do not know of any prescription which allows the extraction of
uncertainties from this relation in a meaningful way. The exact values of figure 7.5 are listed
in table 7.2.
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Figure 7.3.: Tetraneutron Single-State HORSE phase shifts as function of the HO frequency
~Ω. Interaction N3LOEM + N2LO500,L SRG evolved with α = 0.08 fm4.

Nmax 16 18 20 22 24 26

ER 0.99 0.93±0.06 0.85±0.09 0.78±0.07 0.72±0.06 0.65±0.07
Γ 2.28 2.02±0.27 1.82±0.20 1.64±0.18 1.49±0.15 1.36±0.13

Table 7.2.: Resonances and widths as function of Nmax, as shown in figure 7.5. Interaction
N3LOEM + N2LO500,L. Uncertainties give difference to previous smaller Nmax.
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Figure 7.4.: Tetraneutron phase shift as function of the energy. Interaction N3LOEM +
N2LO500,L SRG evolved with α = 0.08 fm4.

7.3.2. Similarity Renormalization Group Dependence

The largest impact on the energy eigenvalue obtained from the diagonalization in a finite model
space has the SRG treatment of the interaction. In NCSM many-body calculations, the use of
the SRG (or other convergence improving methods) is indispensable. The tetraneutron is no
exception.

The full Nmax sequence of the phase shift as a function of E with the bare two-body N3LOEM

interaction is depicted in figure 7.6, up to Nmax = 30. Here, the convergence is clearly not
reached. The behaviour of the phase shift is also noticeably different from the SRG evolved
interactions. The phase shifts exhibit a noticeably different convergence rate in the energy
around 3 MeV. In the direct comparison, which can be seen in figure 7.7, on can see how different
the phase shifts of the bare and SRG evolved interactions are in the energy region between 1
and 5 MeV, making the terrible convergence of the bare interaction even more apparent. It is
only at energies above 6 MeV where the bare interaction approaches the SRG evolved ones in
a fashion where a few further steps in Nmax would suffice to reach the same phase shift values.

Additionally, figure 7.7 shows the effect of two different choices of the SRG flow parameter.
We used the values of α = 0.04 fm4 and α = 0.08 fm4. This is done with the NN interaction
N3LOEM as well as the NN+3N interactions N3LOEM + N2LO400,L and N3LOEM + N2LO500,L,
to further compare the effects of the cut-off parameter Λ. The maximal differences between
the α values at both Λ are three degrees. The differences between the Λ = 400 and Λ = 500 at
consistent α is less than one degree. We find that the flow parameter as well as the three-body
regulator cut-off have minor impact.
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Figure 7.5.: Resonance position ER and width Γ for the largest six Nmax, labelled accordingly.
The position and width were determined via equations (7.2) and (7.3), respectively.
The error bars give the difference to the previous value.

7.3.3. Two- and Three-body Interaction Effects

The inclusion of many-body interactions has either been neglected, by stressing the minor
impact on other four-body systems, as well as the dominant contribution of the 1S0 partial wave
in the two nucleon interaction, or only been used in a very limited fashion [SPM+16, HLCK16,
FRMP17, Del18]. To this end, we use the chiral three-body force N2LOΛ,L[Nav07]. The effect
of the three-body interaction on the phase shifts is shown in figure 7.8. The biggest difference
can be observed when comparing the SRG evolved NN interaction without the induced 3N
with the NN interaction with induced 3N part. The next step of including an initial full 3N
interaction has only minor contributions to the phase shift.
This suggest that within the Single-State HORSE method, initial three-body forces have little
impact on the existence of the tetraneutron as a nuclear resonance. Whereas SRG induced
many-body forces should not be neglected when inquiring about precise resonance parameters.

7.3.4. Chiral Order Dependence

The two-body interaction NxLOEMN[EMN17] is constructed up to fifth order, that means
N4LOEMN, and can be investigated for each order separately. It is, therefore, well suited for
analyzing the impact of the chiral order on the phase shifts. We compare each chiral order with
two SRG flow parameter values, α = 0.04 fm4 and α = 0.08 fm4, respectively. The calculations
were performed including SRG induced three-body interactions. The phase shifts can be seen in
figure 7.9. The different orders appear to follow a staggered pattern, where N2LOEMN delivers
the highest lying phase shift. The next order, N3LOEMN provides the lowest, and N4LOEMN

gives a phase shift between the previous two.
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Figure 7.6.: Tetraneutron phase shift of the NN bare (non-SRG evolved) N3LOEM interaction.
The Nmax sequence is not converged, even with a large model space of Nmax = 30.

Tlab bin (MeV) No. of data LO NLO NNLO N3LO N4LO

0-100 1975 283 11.9 1.74 1.03 1.00
0-190 2903 235 31.6 3.27 1.35 1.08
0-290 4853 206 51.5 6.30 1.63 1.15

Table 7.3.: χ2/datum for pp- plus np-scattering for the 2016 NN data base of the interaction
NxLOEMN. Values taken from [EMN17].

As the two-nucleon interaction contributes the most to the overall system, it appears reasonable
that a systematic increase in the chiral order has a notably bigger impact than, e.g., the
inclusion of the initial 3N force. Similarly to the observed effects in the induced versus the
initial three-body interaction, going from N2LO to N3LO leads to the strongest changes in
the phase shift, with slightly less changes going to N4LO. Considering the χ2/datum of the
NxLOEMN interaction, the changes in the phase shifts going to higher chiral orders are not
surprising. The χ2/datum for each order are shown in table 7.3. The difference between
N2LOEMN and N3LOEMN, are still significant, whereas the change going N4LOEMN is smaller.
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Figure 7.7.: Tetraneutron phase shift comparison of bare interaction with SRG evolved inter-
actions at Nmax = 26. Further comparison of two different SRG flow parameters
α, as well as two values of χEFT three-body cut-off parameter Λ. Note that the
bare interaction is far from convergence.
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Figure 7.8.: Tetraneutron phase shift comparison of the effect of NN vs. NN+3N induced
vs. initial 3N interaction. Shown interactions are N3LOEM and N2LO500,L. SRG
parameter α = 0.08 fm4, Nmax = 26.
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Figure 7.9.: Tetraneutron phase shift dependence of the phase shift on the chiral order.
The interaction is NxLOEMN including SRG induced three-body forces. All at
Nmax = 26.
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7.4. Conclusion

Considering the differences in the employed interaction, in is quite remarkable that they still
produce such similar phase shifts. Similarities in the phase shifts with different interactions
in the Single-State HORSE are due to delivering almost the same eigenenergies at the same
frequency ~Ω and same model space Nmax in the pseudo-continuum of the NCSM. That this
should be the case is not self-evident.
The use of SRG evolved χEFT interaction results in good Nmax convergence in the higher lying
end of the energy that can be reached with the available sets of ~Ω or aHO, respectively.
We find the resonance energy and width for all interactions to be ER ≈ 0.7 MeV and Γ ≈ 1.4 MeV,
however, a stabilization in the inflection points with respect to increasing model space size Nmax

is not reached. This can be seen in figure 7.5 and table 7.2, judging by the almost constant
difference to the previous values. Considering that the inflection point criterion is only valid
for sharp resonances, which is clearly not the case here, the results are a crude approximation.
Overall, the presented results extend the published results of reference [SPM+16] to larger
model spaces, showing a slight adjustment in the resonance position and width. The differences
are, considering the mostly unknown uncertainties in this case, small. The robust phase shifts
with respect to variation in the input interaction are remarkable. We show that the inclusion of
initial three-body forces has small impact compared to the inclusion of SRG induced three-body
forces. The increase in chiral order behaves as expected, showing order-by-order convergence,
in the sense that the next higher orders has less impact than the previous one.
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8. Analytic Continuation in the Coupling
Constant

The properties of resonances can be inferred from the knowledge of the scattering S-matrix
as is discussed in section 3.4 and section 3.5. Unfortunately, it is computationally demand-
ing to obtain solutions directly in the continuum, when using modern, realistic interactions.
There exist various methods to obtain resonance parameters, that treat bound and scat-
tering states on the same footing. However, they have to contend themselves with drasti-
cally reduced reach in terms of accuracy or size of the system etc., compared to what is
possible for pure bound-state calculation. Among them are the J-matrix based HORSE
method [AYHA08, SMVM12, SMMV16], discussed chapter 6, and the No-Core Shell Model
with RGM (NCSM/RGM) [QN08, QN09, NRQ11], and the NCSM with Continuum (NCSMC)
[BNQ13b, HQN15]. Though the latter method is very promising, calculations are not continued
onto the complex plane on which resonance are best understood. The extension of the basis
within the NCSM with explicit scattering states is referred to as NCGSM [PRM+13, FRMP17],
and results in a complex eigenvalue problem. Regardless the method of choice, the most reli-
able and accurate ones have to provide access to the complex plane by some form of analytic
continuation.

One approach to obtain access to the complex plane is the Analytic Continuation in the
Coupling Constant (ACCC). Even though the properties of the solutions to the Schrödinger
equation as a function of the interaction strength were investigated by R. Newton in the
1960’s[New60, New82], the proposition to also use them to obtain resonance parameters is
due to the work presented by Kukulin, Krasnopol’sky, and Hórǎcek in the references [KK77,
KK78, KKH89]. The ACCC has the appeal of only requiring bound-state calculations to
be performed. The continuum is accessed by finding a fit to the bound-state energies (or
wave numbers), as a function of the coupling strength of a modified interaction potential.
Some examples of its more recent application in nuclear physics include the excited states of
6He and 6Li as three-body systems [TSV97], two- and three-body cluster approximations for
5He, 5Li, 9Be, and 9B [TSVL99], the soft-dipole resonance in 6He, combined with the Com-
plex Scaling method [Aoy03], a self-consistent relativistic mean field approach with 60Ca and
122Zr [ZMZH04], the tetraneutron [LC05], and the second 2+ state of 12C [FHT06]. Even
more recently, various studies of the use of the ACCC in quantum chemistry were published
[HSPT09, PvMM+13, ČPH16, WHGM17, SMHE17]. They are of interest for this work, be-
cause they successfully demonstrate the combination of the ACCC with Configuration Interac-
tion (CI) based many-body solvers.

We have established that a resonance as well as a bound state are singularities in the S-matrix,
which in turn corresponds to a zero in the Jost function F`+ ≡ F`. Proving that the Jost
function is analytic in the coupling constant provides the basis by which we can track the S-
matrix singularity of a bound state into the continuum by changing the coupling strength. The
location of the singularity in the bound-state regime is directly determined by the energy of
the bound state. Solving the Schrödinger equation for a Hamiltonian with a modified potential

H = T + λV, (8.1)
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at different values of λ then should allow us to, e.g., find a fit which can be extrapolated into the
unbound energy range and provide the location of the S-matrix pole in the continuum and thus
the resonance. Finding an expression for the energy as function of the coupling constant, E(λ),
is the goal of the analytic continuation in the coupling constant, though it is advantageous to

use the wave number k =
√

2µE
~2 . The reason being that the Jost function and its zeros lie in the

complex plane, see figure 3.2. Inserting (negative) bound-state energies into the E-k-relation
puts the solution in the correct domain. This also means that the continuation in the energy
does not give information about the width of the scattering state in the form of an imaginary
part. The wave-number can provide this information. The purpose of this chapter and the
ACCC is, therefore, to construct an expression of the wave number

k ≡ k`(λ), (8.2)

for a partial wave with angular momentum `, which uses bound-state calculations to allow us to
extrapolate into the unbound regime. To obtain such an expression, we first want to prove that
the Jost function is analytic in the coupling constant. After that, we need to find the general
form a low energy expansion of k`(λ) has, allowing us to choose appropriate parametrization
or fit functions.

8.1. Proof of Analyticity

A resonance, as well as a bound state is defined via the relation of the two Jost functions, see
equation (3.105). The Jost functions are analytic both in going from k ∈ R to k ∈ C as well as
in the interaction strength.

Any analytic property of the Jost function F` follows directly from the same properties of its
defining constituents, the regular and irregular solution φ` and f`+, respectively. They solve
the (radial) Schrödinger equation with strength parameter λ, with their defining boundary
conditions (

− d2

dr2
+
`(`+ 1)

r2
+ λV (r)

)
u`(r) = k2u`(r), (8.3)

where the potential has absorbed other constants ~2/2µV → V . To show that F` is analytic in
the strength parameter of either the full interaction or a perturbative potential, one needs to
show this for φ` and f`+. We sketch the proof of this in the following way:

� Transform differential equation into integral equation with the help of Green’s function
with appropriate boundary conditions

� Exploit that the integral is of the Volterra type, thus solvable by iteration

� Show that the iteration converges absolutely for any λ and k, if the potential fulfils certain
conditions

We do this by casting the differential equations for the two functions to integral equations. The
proof is taken from reference [New82], where more details are found. The regular solution in
integral form, see equation (3.79), reads

φ`(k, r) = φ
(0)
` (k, r) +

∫ r

0
dr ′g`(k; r, r′)V (r′)φ`(k, r

′). (8.4)

The integral only goes up to r. The boundary conditions in equation (3.77) are defined at
r = 0. Consequently, casting the differential equation into an integral equation requires the
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corresponding boundary conditions and Green’s function g`(k; r, r′) for these boundary con-
ditions. We use a lower case g to differentiate the Green’s functions belonging to different
boundary conditions. For the case of ` = 0, the first iteration free solution, also referred to as
zero-order function, reads

φ
(0)
0 (k, r) ≡ φ(0)(k, r) =

sin(kr)

k
, (8.5)

and the Green’s function

g(k; r, r′) =

{
sin(k(r−r′))

k for r > r′

0 for r < r′.
(8.6)

For arbitrary ` 6= 0, these functions read

φ
(0)
` (k, r) = r

1
2

(
k

2

)−`− 1
2

Γ
(
`+ 3

2

)
J`+ 1

2
(kr), (8.7)

and for r > r′

g`(k; r, r′) = k r′r
(
j`(k, r

′)n`(k, r)− j`(k, r)n`(k, r′)
)

(8.8)

=
(r r′)

1
2π

2 cos(π`)

(
J`− 1

2
(kr)J−`− 1

2
(kr′)− J`+ 1

2
(kr′)J−`− 1

2
(kr)

)
, (8.9)

with j`(k, r
′) and n`(k, r) being the spherical Bessel functions and Jn(kr) being the Bessel

functions of the first kind. We arrive at a proof for the analyticity of the regular and irregular
solution by first exploiting the fact that equation (8.4) is of the Volterra-type [LP12, New82],
allowing us to iteratively construct a solution. Considering ` = 0, we write the power series
ansatz

φ(k, r) =
∞∑
n=0

λnφ(n)(k, r) (8.10)

φ(0)(k, r) =
sin(kr)

k
(8.11)

φ(n)(k, r) =
1

k

∫ r

0
dr′ sin

(
k(r − r′)

)
V (r′)φ(n−1)(k, r′). (8.12)

The above ansatz remains the same for ` 6= 0. For the sake of readability, we only treat the
` = 0 case in the following. With this power series, we are able to show that they converge
absolutely with the following inequalities. For all k and all r ∈ R, r ≥ 0, there exists a constant
C, such that the inequalities hold

|sin(kr)| ≤ Ce|Imk|r
|k|r

1 + |k|r
, (8.13)

and for all k and all r ∈ R, r ≥ r′ ≥ 0

∣∣sin(k(r − r′)
)∣∣ ≤ Ce|Imk|(r−r

′) |k|r
1 + |k|r

. (8.14)

Introducing the definition ∣∣∣φ(n)(k, r)
∣∣∣ = e|Imk|r

r

1 + |k|r
ψ(n)(k, r), (8.15)
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allows us to write

ψ(n)(k, r) ≤ C
∫ r

0
dr′
∣∣V (r′)

∣∣ r′

1 + |k| r
ψ(n−1)(k, r′) (8.16)

≤ Cn+1

∫ r

0
drn ...

∫ r2

0
dr1 |V (r1)V (r2) ... V (rn)| r1

1 + |k|r1
...

rn
1 + |k|rn

(8.17)

≤ Cn+1 1

n!

(∫ r

0
dr′
∣∣V (r′)

∣∣ r′

1 + |k|r′

)n
, (8.18)

we arrive at (still for ` = 0)

|φ(k, r)| ≤
∞∑
n=0

|λ|n
∣∣∣φ(n)(k, r)

∣∣∣ (8.19)

= e|Imk|r
∞∑
n=0

|λ|nψ(n)(k, r) (8.20)

≤ C e|Imk|r
r

1 + |k|r
exp

(
|λ|C

∫ r

0
dr′ |V (r′)| r′

1 + |k|r′

)
. (8.21)

This converges absolutely for all λ and k under the condition that∫ ∞
0

dr r|V (r)| <∞. (8.22)

Similarly, we can write for the irregular solution an iterative approach

f±(k, r) =
∞∑
n=0

λnf
(n)
± (k, r)

f
(0)
± (k, r) = e±ikr (8.23)

f
(n)
± (k, r) = −1

k

∫ ∞
r

dr′ sin
(
k(r − r′)

)
V (r′)f

(n−1)
± (r′). (8.24)

introducing a definition in analogy to equation (8.15)

h
(n)(k,r)
± = fn±(k, r)e∓ikr, (8.25)

and using equation (8.14), we arrive at the inequality

|f±(k, r)| ≤ Ce∓Imkr exp

(
|λ|C

∫ ∞
r

dr′
∣∣V (r′)

∣∣ r′

1 + |k|r′
exp

(
(|Imk| ∓ Imk)(r′ − r)

))
. (8.26)

The irregular solution is thus absolutely convergent for power series in the coupling constant
λ, if ∫ ∞

0
dr |V (r)| e(|Imk|∓Imk)r <∞. (8.27)

The above discussion only treats the case of ` = 0, which does not impact the condition put
upon the potential in equations (8.22) and (8.27). The inequalities in equation (8.13) and
equation (8.14) have to be adapted accordingly, see reference [New82] for a detailed treatment.

Having shown that the Jost function is analytic in the interaction strength parameter, we want
to track the zeros of the Jost function as they go from the bound to the unbound regime with
the help of an expression for the wave number k`(λ). To be able to do that, we need to know
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8.1. Proof of Analyticity

how the Jost function depends on k, which also provides the form how k depends on λ close
to the continuum threshold. To that end, we introduce the integral representation of the Jost
function [Dru87, New82]

F`(λ, k) = 1 +
iλ k`

(2`+ 1)!!

∫ ∞
0

dr
√

1
2πkrH

(1)
`+1/2(kr)V (r)φ`(k, r). (8.28)

Here, H
(1)
`+1/2(kr) is the Hankel function of the first kind, also known as Bessel function of the

third kind [DLM14]. From the integral representation, we can see how F`(λ, k) depends on k,
by considering the individual constituents. We use that the Hankel function can be written as
[DLM14]

H(1)
ν (z) = i csc (νπ)

(
e−νπiJν (z)− J−ν (z)

)
, (8.29)

and the Bessel functions in turn read [DLM14]

Jν (z) = (1
2z)

ν
∞∑
k=0

(−1)k
(1

4z
2)k

k!Γ (ν + k + 1)
. (8.30)

From equation (3.81), which is also given in equation (8.7), together with the Green’s function
for the regular boundary conditions, equation (8.9), as well as the Volterra-type nature of
φ`(k, r), discussed in the previous paragraphs, we infer the k dependence of φ`(k, r) must be
of the same kind as the Bessel function. The same conclusion for φ`(k, r) can be reached
when considering the boundary conditions in equation (3.77) and the resulting symmetry in
equation (3.83). The regular solution must, therefore, be an even function in k. We insert the
schematic k dependences into equation (8.28), where we drop all other parts not dependent on
k, and have

F`(λ, k) ∼ 1 +
iλ k`

(2`+ 1)!!

∫ ∞
0

dr ..
√
k

(
k`+1/2

∞∑
n=0

..k2n + k−`−1/2
∞∑
n=0

..k2n

)
..
∞∑
n=0

..k2n (8.31)

∼

(
k2`+1

∞∑
n=0

..k2n +

∞∑
n=0

..k2n

) ∞∑
n=0

..k2n. (8.32)

We see that the Jost function is dependent of k only in even powers, except for the first k2`+1.
As a consequence, we are able to parametrize the Jost function at fixed values of λ

F` (λconst, k(λ)) = A`(k) + ik2`+1B`(k), (8.33)

where the terms A`(k) and B`(k) are of the type

F`(λconst, k) = (a0 + a2k
2 + a4k

4 + ...) + ik2`+1(b0 + b2k
2 + b4k

4 + ...), (8.34)

meaning they absorb all other, non-k-dependent parts in the coefficients ai and bj . Comparing
with the integral representation in equation (8.28), it is apparent that they also are integrals over
the radial variable. This corresponds to the result given in references [Dru87, OS72, New82].

In conjunction with the analytic properties of the Jost function w.r.t. to λ, this leads to an
expansion of k around the bound-state-continuum-threshold λ0, with x =

√
λ− λ0 [OS72]

k`(λ) =
∑̀
j=1

Ajx
2j−1 +

∞∑
j=2`

Bjx
j . (8.35)
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8. Analytic Continuation in the Coupling Constant

An alternative approach to arrive at this expression is given in appendix D. Only considering
the leading terms, one arrives at the relation

k0(λ) ∼ (λ− λ̄0), (8.36)

with λ̄0 such that k0(λ̄0) = 0. For ` 6= 0, we have

k`(λ) ∼ ±c
√
λ− λ0, (8.37)

with some constant c. Any parametrization for the analytic continuation needs to incorporate
this behaviour close to the continuum threshold.

8.2. Using Padé Approximants

The analytic properties of the Jost functions under variation of the coupling constant allow us
to modify the Hamiltonian by means of varying the interaction strength and study the evolution
of its eigenenergies as a function of this binding parameter. To actually achieve this binding,
two general methods are possible. Binding the initial Hamiltonian H with an external potential
Vext

H(λ) = H + λVext, (8.38)

or modifying the initial interaction either completely by a prefactor

H(λ) = T + λVinit, (8.39)

or in partially, if the potential can be separated accordingly, e.g., in an primarily attractive and
repulsive part

H(λ) = T + (V − V p) + λV p, (8.40)

where V p is either the attractive part, which is increase with λ, or the repulsive part, being
decreased with λ. Which method to choose can be a matter of practicality, e.g. one might be
more complicated to implement, etc. The use of an external potential can be used to only bind
specific A-body substructures, while leaving others untouched. We discuss this with a focus on
the application within the Jacobi-NCSM in section 8.3.

With a properly bound system, we can exploit the threshold behaviour of the wave number
by using the relations from the previous section, i.e., equation (8.35) and the resulting equa-
tions (8.36) and (8.37),

k` ∼
√
λ− λ0 for ` 6= 0 (8.41a)

k0 ∼ λ− λ̄0 for ` = 0. (8.41b)

The term λ̄0 accommodates the branch point relation for s-waves

k0 = iκ = k0(λ0). (8.42)

A distinct feature of the ACCC as proposed in references [KK77, KKH89], is the use of Padé
approximants to describe the k(λ) trajectories, instead of, e.g., equation (8.35), or some similar
Taylor expansion.
The use of Padé approximants in this case has some clear advantages, among them being

1. Convergence on the whole domain of analyticity, as opposed to divergence of equa-
tion (8.35) at points far away from the threshold [KKH89, BGM96].
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8.2. Using Padé Approximants

2. Padé approximants fulfil the unitarity condition of the S-matrix, equation (3.26) and
equation (A.5).

3. Poles are described easily, due to the fractional nature of the Padé approximants.

We introduce the Padé approximation of a function f(z), which is representable as power series
of the form

f(z) =
∞∑
j=0

fjx
j . (8.43)

The Padé approximant of the function f(z) is given as a rational fractional of two polynomials
[BGM96]

f [N,M ](z) =
PN (z)

QM (z)
= f(z) +O

(
zN+M+1

)
, (8.44)

with N and M being the order of the respective polynomials. A further overview of properties
of Padé approximants is given appendix A.

We discuss the parametrization of the wave number via Padé approximants. Introducing the
variable x =

√
λ− λ0 for the case of ` 6= 0, we can write the wave number as

k`(x) ≈ k[N,M ]
` (x) =

PN (x)

QM (x)
= i

c0 + c1x+ ...+ cN x
N

1 + d1x+ ...+ dM xM
(8.45a)

k`(x) ≈ ... = i
c1x+ ...+ cN x

N

1 + d1x+ ...+ dM xM
. (8.45b)

We can choose to include or exclude the parameter c0, to either provide a stabilizing constant
for the fit or to enforce the k`(0) = 0 criterion. The parameters of the Padé approximation are
obtained by minimization of χ2 type problem

χ2 =
1

L

L∑
i=1

1

σ2
i

∣∣∣∣ PN (x)

QM (x)
− ki

∣∣∣∣2 . (8.46)

The quantity L is the number of data points and σi denotes the weights corresponding to the
(numerical) uncertainty of the i-th data point ki. In the case of unknown uncertainties, they
are chosen as σi = 1.

We want to emphasize the important detail, that all calculations and fits are performed with
real parameters, both the input data and the fit parameters themselves. It is by virtue of going
over to the wave number k and the variable x =

√
λ− λ0 that we have access to the complex

plane, where k allows the continuation and x determines how the trajectories of the resonance
pole move through the complex plane.

The function obtained in this way can be evaluated at any λ, especially at the value of λ
corresponding to the unmodified Hamiltonian (in most instances this would be λ = 0 or 1).
Resonance parameters are obtained via equation (3.100)

ER − iΓ/2 =
~2 (kRe − i kIm)2

2µ
, (8.47)

with µ being the reduced mass. Consequently, the position and width read

ER =
~2
(
k2

Re − k2
Im

)
2µ

and Γ =
2 ~2

µ
kRe kIm. (8.48)
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8. Analytic Continuation in the Coupling Constant

The treatment of many-body systems requires to account for the formation of possible sub-
structures. As a simple example, consider the break-up of an A-body system into a two-cluster
configuration, e.g., of the type

A→ (A− b) + b,

where any other many-body threshold lies far enough away. For example, if the A-body Hamil-
tonian can be written as

H(λp) =

A∑
i=1

h0(i) +

A∑
i<j

(
Vij − V p

ij

)
+ λp

A∑
i<j

V p
ij , (8.49)

with some primarily attractive (or repulsive) potential term V p
ij , and the single-particle energies

h0(i). The analytic continuation via Padé fit is then performed with respect to the break-up
threshold

k(λp) =
√
EA(λp)− Ethr(λp) =

PN (λp)

QM (λp)
. (8.50)

Though viable, this procedure introduces further computational effort and uncertainties, which
propagate, e.g., to the threshold parameter. An A-body system can exhibit complex sub-
structures, which are all affected by a modification of this kind. It is best to avoid this approach,
if it is possible. This is the motivation to the binding method introduced in section 8.3.2.

8.2.1. Inverse ACCC

The inverse analytic continuation in the coupling constant, or IACCC for short, is the Padé fit
of the coupling constant λ as a function of the wave number k. Considering the ` 6= 0 case, we
write

λ[N,M ](k) = i
λ0 + λ2 k

2 + ...+ λN k
N

1 + µ2 k2 + ...+ µM kM
. (8.51)

The linear term is absent, which is the consequence of the square root relation in the low energy
behaviour of k ∝

√
λ− λ0. Analogous to equation (8.46), we minimize the function

χ2 =
1

L

L∑
i=1

1

σ2
i

∣∣∣∣ PN (k)

QM (k)
− λi

∣∣∣∣2 . (8.52)

The use of the inverse approach becomes clear when looking at the first term of equation (8.51),
which is λ0. In this setting, there is no need to determine the threshold value λ0 beforehand,
as it is the first coefficient of the fit. The IACCC can be either used to obtain the value of λ0,
or the resonance parameters can be extracted directly. The resonance parameters are obtained
by finding the roots of the nominator, while simultaneously ensuring that the denominator is
non-zero,

PN (k) = 0 and QM (k) 6= 0. (8.53)

This gives up to N roots, grouped in pairs of two, symmetrical along the imaginary axis. In the
absence of any numerical uncertainties in the data to be fitted, the roots appearing at higher
orders correspond to other resonances and virtual states [HPČ14].

8.3. Using the ACCC with the Jacobi-NCSM

In this section, we discuss how the binding of a physical system within the Jacobi-NCSM,
discussed in chapter 5, can be achieved.
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Incorporating a binding scheme in a many-body bound-state method is a question of the physi-
cal consequences the binding has on sub-structures, and how they have to be treated to correctly
describe the physical system. The equations (8.38) and (8.39), give the two ways a system can
be bound artificially, that is either by some additional potential Vext, or by modification of the
initial interaction Vinit. Though, theoretically equivalent, the latter can complicate the ACCC
by introducing bound sub-clusters, each with thresholds which have to treated, when applied to
the NN- and 3N-interaction. This increases computational cost and uncertainties, and is thus
best avoided. An additional potential Vext, on the other hand, can be formulated in such a way,
that it is an irreducible a-body operator, with, e.g., 2 ≤ a ≤ A, depending on the requirements.
An additional benefit is the capability to fine tune Vext, to, e.g., result in smooth transitions
from unbound to bound states [SMHE17].
The advantages are counterbalanced with the increased difficulty to implement such an addi-
tional potential. The inclusion of irreducible four-body interaction into the NCSM is a laborious
undertaking, as well as significantly increasing the computational cost. Other methods related
to Jacobi-Faddeev implementations, or having a direct connection to a hyperspherical formula-
tions, do not suffer the same difficulties and can implement such an additional binding potential
relatively easily. On the other side, the implementation of a simple factor in front of the interac-
tion is easily done. Nevertheless, As works in other fields of physics have shown, the ACCC can
be successfully used with Configuration Interaction (CI) type methods and additional binding
potentials [HP10, SMHE17, WHGM17]. However, these application from theoretical chemistry
do not suffer from the same restrictions in computational cost as the ones in nuclear structure.
In other, modern applications of the ACCC, the use of an external potential is the method of
choice, see e.g. references [TSVL99, Aoy03, LC05].
We are thus interested to find a way to bind the four-body system, without binding the three-
and two-body sub-systems. This is the motivation for the approach we dubbed eigenvector
binding, presented in section 8.3.2, giving a additional “quasi-external” potential, constructed
from smaller NCSM model space eigenvectors. This avoids the difficult task of implementing a
new four-body interaction. Due to the ease of implementation, we also present the modification
of interaction matrix elements.

8.3.1. Modification of Matrix Elements

To achieve binding, it is possible to modify the strength of the initial interaction, either com-
pletely or in parts. The use of a prefactor in the form of

Hλ = T + λV, (8.54)

in an A-body system, where V contain two- and three-body interactions, has the drawback
of increasing all contributions indiscriminately of being repulsive or attractive, thus not neces-
sarily being practical, and possibly creating bound substructures. For some phenomenological
potentials, the distinction into attractive and repulsive parts is possible, and can be used in the
ACCC, as was already demonstrated in [KKH89]. Realistic nuclear interaction cannot be split
up in this form in any way. To use any interaction in the Jacobi-NCSM, they are expanded
into relative coordinates harmonic oscillator matrix elements and exist as partial waves of the
total orbital angular momentum L, for a given total angular momentum J . It is possible to
modify the interaction on both the two- and three-body level separately

Hλ = T + λ2bVNN + λ3bV3N , (8.55)

or in their individual partial waves.
The modification of the complete NN and 3N interaction applied to the tetraneutron is discussed
in section 9.3.1. The modification of the NN and 3N interaction excluding the 1S0 partial

87



8. Analytic Continuation in the Coupling Constant

wave applied to the tetraneutron is discussed in section 9.3.2. A modification of the 3N force
exclusively fails due to the relatively weak contribution to the binding energy. The required
changes to even achieve binding are so drastic, that it becomes impossible to extrapolate back
to the unbound state with any meaningful result.

8.3.2. Eigenvector Binding

In the desire to use an external potential, we are faced with the complications of constructing
a finite-range many-body interaction which only acts on the Hilbert space of a given particle
rank, and as such does not act upon any sub-systems of fewer constituents. For methods which
are formulated in hyperspherical coordinates or can be easily combined with them, such an A-
body (A ≥ 4) effective interaction is easier to implement, see e.g. reference [LC05]. Introducing
an additional interaction in the (Jacobi-)NCSM is accompanied with a long chain of steps to
perform, where we refer to, e.g., reference [Sch18] for a detailed treatment of this topic.
To circumvent this, we chose to construct an additional potential from the previously in a
small model space diagonalized initial four-body Hamiltonian. This ensures all symmetries of
the TJP block, which have to be specified beforehand, are respected, as well as being a true
four-body interaction only, such that bound two- and three-body systems are avoided. The
construction of this potential goes as follows: Within the Jacobi-NCSM framework, the initial
Hamiltonian is embedded into the four-body space. Then, a first diagonalization is performed
in a small model space. The Nmax of this model space is denoted by Nbin

max, e.g., Nbin
max = 0, 2, 4

for natural parity, as is the case for the tetraneutron Jπ = 0+ state. From the diagonalization
we obtain the eigenvectors

HNbin
max

∣∣∣ΨNbin
max

〉
= Eν

∣∣∣ΨNbin
max

〉
, (8.56)

which are then used to form a dyadic product and subtracted from the initial Hamiltonian

Hλ = H − λ
nev∑
ν=0

∣∣∣ΨNbin
max

ν

〉〈
ΨNbin

max
ν

∣∣∣
= H − λW. (8.57)

The index ν runs from the state with the lowest eigenenergy in the Nbin
max model space up to

the one specified by the number nev. The maximum of nev is the matrix dimension of the
model space. We refer to this scheme as eigenvector binding, owing to its construction from
eigenvectors within the Nbin

max model space.

8.4. Obtaining the Fit and Parameters

This section is dedicated to the set of parameters that impact the accuracy and reliability of
the fits to the Padé approximants. The parameters are discussed in section 8.4.1. The concrete
realization of the fit routines is discussed in section 8.4.2. The chiral interaction we use are not
investigated as variational parameter. We restrict ourselves to two chiral interactions with NN
and NN+3N forces in the application to the dineutron and the tetraneutron, respectively.

8.4.1. Parameters

To give an overview, we classify the parameters influencing the analysis by their origin and
where they come into play. Parameters that stem from the many-body method, the NCSM,
are the model space size parameter Nmax and the HO length aHO, or equivalently, the HO
frequency ~Ω. They are directly connected to the eigenenergies.
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Parameters related to the binding method are Nbin
max and nev when using eigenvector binding,

and e.g. the modification of only selected partial waves versus modification of all matrix
element. Directly related to the fit routine are the choice of minimization algorithm, the
determination and choice of starting parameters, the numerical accuracy goal σfit

rel (how many
effective digits of accuracy should be sought in the final result), and the interplay of the total
number of digits available in the raw data set. In general, non-linear fits can be strongly
dependent on the start values of the fitting parameters. This feeds back to the used algorithm
to minimize the χ2 function. An overview of the parameters than can be varied is given in
table 8.1. For the analysis of the data presented in chapter 9, the fit accuracy σfit

rel within the
fits is chosen to provide converged results and non-stalling fits.

We want to distinguish several aspects when referring to accuracy, precision, exactness and
similar terms. The NCSM, as a many-body method, yields a numerically exact result within
the given model space, with respect to all approximations and assumption made a priori. This
result is of a certain numerical accuracy, determined by the floating point accuracy, the rounding
errors during calculation etc., and how many digits are written into the results file. The first
items listed, the numerical noise, is not something we consider to be of any importance to the
reliability of the subsequent fits of the ACCC. Previously, the numerical noise was considered as
a relevant problem [KKH89]. We assume this not to be an issue with modern high performance
computers, that handle double floating point precision. Of importance to the ACCC is the
total number of available digits in the result, together with the relative accuracy, as this has
a potential impact on the fit routine. To be precise, the results are generally of order 1, and
stored with an accuracy of six digits after the decimal point, where the last digit has to be
considered as rounded.

Further relevant is the difference in convergence towards this numerically exact result of the
NCSM as a function of Nmax for different strengths in the coupling constant. Increasing the
model space size could have a bigger impact on states close to the threshold than those further
away, or vice versa. This is, e.g., shown in figure 9.8. This is related to the question of which
and how many data points to take into account, and how close to the threshold they should be
allowed to lie.

These considerations of numerical exactness have to be further distinguished from physical
exactness. How well we describe real physics can only be asserted post factum.

Parameter Remarks

Interaction Two χEFT NN+3N considered
Nmax Systematically increased. Analysis performed at largest Nmax

aHO Chosen in range of ∼ [1, 4] fm
Nbin

max 0,2 or 6
nev Either one or full sub-model space
Padé orders (N,M) = (1,1) to (6,6)
Data points Variable
Algorithm Newton, Broyden-Fletcher-Goldfarb-Shanno, Levenberg-Marquardt
Starting values See section 8.4.2
σfit

rel Relative numerical fit error during fitting routine
Determination of λ0 Interpolation, IACCC, simultaneously fitted
Inclusion of c0 See equation (8.45)

Table 8.1.: List of parameters considered in this work.
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8.4.2. Fit Protocol and Data Collection

The first step in the process is data collection. We describe in the following the procedure for
Jacobi-NCSM calculations. The threshold value λ0 is approximately determined with a few
initial calculations at the largest Nmax, approaching the threshold from above and below, with
no more than two decimal digits precision for the position of the threshold. The two closest
points above and below the threshold are linearly interpolated to obtain λ0 via E(λ) = 0. We
do this to establish the values λ must take to obtain a specific x =

√
λ− λ0 range and to be

able to calculate data sets equidistant in x. We aim for a range of x ≈ [0, 4], with somewhere
between 100 and 250 points, motivated by references [PvMM+13, SMHE17]. The raw data,
which is a set of pairs of binding strength and energy at a fixed Nmax and aHO, (λ,E), is
translated into the wave number

k =

√
2µE

~2
≡ iκ.

The binding energy under the square root is negative. We choose the sign such that we have a
real, positive κ, which lies on the positive imaginary axis when multiplied with the imaginary
number i. The data that is used for the fit are consequently the pairs (λ, κ).
The starting value for λ0 is once more determined by linear interpolation between the two
points closest above and below the threshold. If no point is available above the threshold, then
the first two bound states are linearly extrapolated to zero energy. This value is then used for
all subsequent fits as a starting value.
The choices of fits are the IACCC, section 8.2.1, to either obtain a new threshold parameter
value or use it for calculation of resonance parameters, given by equation (8.51)

λ(k) = i
λ0 + λ2 k

2 + ...+ λN k
N

1 + µ2 k2 + ...+ µM kM
.

The ACCC with fixed λ0, where the (λ, κ) pairs are put into the relation (8.46) and the
parameters thus obtained are inserted in equation (8.45), which gives the trajectory of the
wave number as a function of the coupling constant

k
[N,M ]
` (x) =

PN (x)

QM (x)
= i

c0 + c1x+ ...+ cN x
N

1 + d1x+ ...+ dM xM
,

or the ACCC with simultaneous fitting of λ0

k
[N,M ]
` (λ) =

PN (λ)

QM (λ)
= i

c0 + c1

√
λ− λ0 + ...+ cN

√
λ− λ0

N

1 + d1

√
λ− λ0 + ...+ dM

√
λ− λ0

M
. (8.58)

In practice, the fits are done as follows. As start value for λ0 we always use the one obtained
by linear interpolation. The first two Padé orders are obtained with starting values

c0 = c1 = c2 = d1 = d2 = 0.

The first two orders have proven to be very stable w.r.t. to all parameter variations almost all
of the time. Beginning with the third order, the default protocol is to obtain the starting values
for the fit parameters from the previously performed lower order fits. At each new Padé order p,
two new parameters cp, dp appear, and are at first set to zero. Should the fit either not converge
within the step limit of ≈ 4000, or stall due to insufficient decrease in the norm of the residual,
then the values are randomly chosen in half-integer steps from a range between [−19, 19], until
a fit is found or up to 60 tries. This approach and the specific numbers developed empirically,
often enough finding a fit, while not searching too long for new parameter values.
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Other settings, e.g., the accuracy goal σfit
rel, are not changed dynamically.

One approach to overcome and quantify the dependence on some of the parameters is the
so-called statistical ACCC [PvMM+13], not to be confused with the statistical Padé approxi-
mation, see appendix A. In this method, we randomly select a subset of size L from all available
data points, Ltot. The fits are performed with λ0 as a free fit parameter. Starting values are
first enforced up to a specified order, which have been determined from a low precision fit to
the complete data set Ltot. After that, the previous lower order fits serve as starting points,
with the same procedure as described above.Should a data set not deliver a fit, then a new
subset is randomly chosen, repeating the procedure. If no fit is found at a certain Padé order
after 100 new set were chosen, the routine ends and returns all fits found up to the previous
order.

In reference [PvMM+13], they select up to 3000 subsets consisting of 20 points, from a total of
30 points. We present results obtained from set ranging in size between 500 and 1000 subsets,
consisting of 30 points, out of a total of 100 to 250 points. We found the limitation to 1000
subsets to be sufficient. Tests with 5000 sets yielded no adequate improvement in stabilizing
the mean of the distribution while justifying the increase in computation time.

This approach leads to a spread in the extrapolated results. We quantify this by using the
mean value and the standard deviation of the distribution in the resonance position and width
as the result. To further account for the different quality of the fits and extrapolations, we use
the estimated fit error variance of each fit as a weight in the calculation of the mean and the
standard deviation. An example of the statistical ACCC, the layout of the plot and how to
interpret it, can be seen figure 8.6.
In the following, we discuss an example analysis with the described fit routines.

8.5. Example Discussion With Phenomenological Gaussian Potential

We introduce a simple Gaussian potential to introduce the fitting routines discussed in sec-
tion 8.4.2. We use two different methods to achieve the necessary binding. The first is an
additional external potential that varies smoothly from the given depth to zero as a function
of the relative distance. The second is a prefactor in front of the initial potential.

The toy potential also uses a modified Coulomb interaction, and reproduces the first few states
of positive parity of 8Be [BFW77]. We pick the second excited state, a Jπ = 4+ state, which is
resonant at ER = (11.35± 0.15) MeV and a width Γ ≈ 3.5 MeV [TKG+04]. The potential has
the form

V (r) = VN (r) + VC(r)

= −122.6225 exp

((
− r

2.132

)2
)

+ 4 e2 erf(r/1.33)

r
. (8.59)

Calculations are performed with the values of e2 = 1.44 MeV fm and ~2
mN

= 41.472 MeV fm2.
The Schrödinger equation is solved in a single-channelR-matrix framework on a Lagrange mesh
with 200 points and a channel radius of 80 fm. The external potential we use for binding is
taken from [SMHE17] (referred to as Voronoi potential) and is defined by

V ext = V (r) + λVext(a, b, r)

= V (r) + λ (s(a, b, r)− 1) , (8.60)
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8. Analytic Continuation in the Coupling Constant

where the external potential is a soft box potential and is defined piecewise as

s(a, b, r) =


0 r ≤ a
ρ3(10− ρ (15− 6ρ)) a < r < b

1 b ≤ r
, (8.61)

with

ρ =
r − a
b− a

.

The second form is defined via a prefactor (1 + λ), to let the extrapolated λ value always be
consistently zero when comparing two different binding methods:

V fac = (1 + λ)V (r). (8.62)

The form of the potentials is shown in figure 8.1, in three different cases: The unmodified po-
tential and the two binding mechanism, each at approximately the value of λ ≈ λ0. Comparing
V ext and V fac in this plot shows that the potential V ext is shallower, broader and not as steep
as V fac at the threshold to a bound state. The shape of the potential has an impact on the
trajectory of the S-matrix pole, which also depends on the fitting algorithm and σfit

rel. This is
shown in figure 8.5.
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Figure 8.1.: Gaussian α + α potential for ` = 4 in units of the reduced mass µ = 2mN. The
unmodified potential is blue. The external potential in orange at a value λ = 0.712,
the prefactor modification in green with λ = 0.445. These λ are the approximate
threshold values to achieve binding.

This translates, in some sense, to the bound states which we fit to. In figure 8.2, the binding
energies generated with V ext and V fac are shown as a function of the coupling constant λ. The
prefactor modification V fac shows a clear bend when approaching the threshold, whereas the
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8.5. Example Discussion With Phenomenological Gaussian Potential

external potential V ext appears almost linear. A linear and a quadratic fit to all data points
help to both visualize this and give a first idea on the resonance position.

Quadratic fits to the energy as function of the binding potential depth are used in reference
[GHK+17] to extrapolate tri- and tetraneutron resonance parameters. The results from these
fits are given in table 8.2. These procedure can be of some use, if a resonance is actually present.
Then, the missing imaginary part only restricts the prediction to an approximate resonance
position, without a width. In this phenomenological example, the potential V ext is already very
close to the experimental value. The fits obtained with V fac are far away from the expected
result. If this approach is applied to a non resonant system, one cannot hope to learn anything
from this, as the complex continuation is vital to actually be able to determine the absence of
such a resonance. This can be seen in section 9.1.

V
ext

V
fac

Linear

Quadratic

2 4 6 8 10
λ

-600

-400

-200

0

E [MeV]

Figure 8.2.: Gaussian α + α: Binding energies which are used to perform the Padé fits, 151
points each. In red, data obtained from binding with the external potential in
equation (8.60) and (8.61). In blue the modification as in equation (8.62). The
dashed lines are linear fits, the dotted lines quadratic fits to the energy.

V ext [MeV] V fac [MeV] Reference [MeV]

Linear 14.24 55.28
11.35 ± 0.15

Quadratic 12.89 30.95

Table 8.2.: Resonance position by extrapolation from linear and quadratic fits to the energy as
a function of the binding parameter.

8.5.1. Inverse ACCC – λ0 and Resonance

The determination of the root branch cut and thus the threshold value λ0 is of vital importance
to the correct analytic continuation to the complex plane. With the IACCC, we can obtain
λ0 by fitting the data, as discussed in 8.2.1. The fit protocol is discussed in 8.4.2. In this
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8. Analytic Continuation in the Coupling Constant

example, we can perform bound-state calculations as close to the threshold as is needed. For
this potential, λ0 obtained from linear interpolation of bound and unbound states and from
fitting with the IACCC do coincide, depending on the fitting algorithms, however. This is
shown in figure 8.3, for a sample size of 38 approximately equidistant points in the unifying
variable x =

√
λ− λ0, over a range x = [0.1, 3.0]. The value of λ0 is given for four different

algorithms as a function of Padé order. The two binding potentials are shown side by side.
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(a) Binding with V ext.
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Figure 8.3.: Gaussian α + α scattering potential: Threshold value λ0, obtained by fittig to 38
points, up to tenth Padé order. Four different fitting algorithms with σfit

rel = 6. The
erratic behaviour of Levenberg-Marquardt method might indicate the overshooting
of the optimal Padé order.

The three Newton-based algorithms, Newton, BFGS (Quasi-Newton) and Levenberg-Marquardt,
produce similar results and lie on top of or close to the linear interpolation result, with some
deviations. The Newton method does not always find a fit for orders starting at (5,5) as it
does either not converge or stalls in a local minimum. Different starting values impact the
obtained maximal Padé order, leading to different results when repeating the fit, see 8.4.2 for
details. The Quasi-Newton BFGS algorithm is, similarly to the Newton method, dependent
on the choice of starting values and requires multiple iterations to reach higher Padé orders.
Contrasting to this is the Levenberg-Marquardt algorithm. As long as the starting values are
reasonably good, it finds the same fit with the same parameter values in most cases, at the cost
of longer computation time. However, the fit parameters can in some cases reach values of up
to 1011, making it difficult to gauge their reliability. The Gradient method fails completely to
reproduce accurate results. It is, therefore, not considered when drawing conclusions.

From the same fit we can also obtain the resonance position by solving for the root of the
nominator in the Padé parametrization, as described in section 8.2.1. The result of that is
given in table 8.3 for only three of the four algorithms, excluding the Gradient method. Even
though the value for λ0 obtained with Levenberg-Marquardt shown in figure 8.3 takes very
different values compared to the reference line in some orders, the resonance position at these
orders is still reasonable. The BFGS (QN) results do not reproduce the experimental resonance
width (to which the potential is fitted), even jumping in value after order (7,7). This contrasts
with the stable appearance of λ0 in figure 8.3.
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8.5. Example Discussion With Phenomenological Gaussian Potential

Alg. (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9) (10,10)

NE
ER 12.913 11.411 11.077 10.72 11.855 11.873 11.873 11.873 11.873
Γ 0. 1.901 2.015 2.393 2.792 3.701 3.701 3.701 3.701

QN
ER 12.913 11.411 11.343 11.363 11.363 11.363 11.914 11.914 11.9
Γ 0. 1.901 2.386 2.517 2.517 2.517 1.531 1.531 1.511

LM
ER 12.913 11.411 11.077 11.707 11.49 11.885 11.8 11.8 11.8
Γ 0 1.901 2.015 2.954 3.411 3.767 3.611 3.611 3.612

Table 8.3.: Gaussian α+α scattering potential: Resonance position and width for V ext obtained
from solving for the roots of the numerator of the inverse ACCC. Selection of which
root of the polynomial is the correct one has to be performed “by hand”.

8.5.2. ACCC

The trajectories of the S-matrix pole from a bound state to a resonant state are shown in fig-
ures 8.4 and 8.5, where also the BFGS and the Levenberg-Marquardt algorithm are compared.
Each line corresponds to a different Padé order. The pole moves from the positive imaginary
axis down, where it corresponds to a bound state, towards the origin. At this point the root
branch cut occurs. We follow the branch cut into the fourth quadrant, see also figure 8.4 for
an example of pole trajectory in the complex plane. The binding potential has an impact on
the trajectory of the pole that is being tracked by the fit. The comparison between figure 8.5a
and 8.5b shows not only different trajectories for different potentials, but also for different
fitting algorithms. In the case of V ext, the BFGS and Levenberg-Marquardt algorithm result
in different widths, but with good agreement in the resonance position. In contrast, the use of
V fac shows agreement between the algorithms, but higher Padé orders are needed to arrive at
the correct resonance position in the case of the BFGS algorithm.

The application of the statistical ACCC, described in section 8.4.2, is depicted in figure 8.6
with the Levenberg-Marquardt algorithm and in figure 8.7 for BFGS. In the plots showing the
results of the statistical ACCC, the data is presented with the resonance energy (the position)
on the abscissa. The ordinate corresponds directly to the width Γ, from the relation given in
equation (3.101)

ER =
~2
(
k2

Re − k2
Im

)
2m

and Γ =
2 ~2

m
kRe kIm. (8.63)

Each point corresponds to a fit to a randomly chosen subset, where same colours are of the
same Padé order. All points at each order are used for calculating the mean value and the
standard deviation in resonance position ER and width Γ. The mean position and width is
indicated with a larger dot and ER is further highlighted with as line down to the abscissa.
The standard deviation is given as a box around the mean value.

Figure 8.6 shows the two different approaches to binding the Hamiltonian in combination with
the effect of data point choice for the fit and how the binding potential affects the Padé order-by-
order behaviour. Looking at the data point dependence in form of the standard deviation, given
by the size of the boxes around the mean value, the external potential V ext has a preferable
behaviour, as all sets lead to similar extrapolations. The simple prefactor method shows a larger
spread in comparison. Regarding the Padé orders, the use of V ext leads to smaller jumps, as
opposed to the prefactor method, where the first two orders are far away from the next higher
ones and the experimental result.

The same protocol together with the BFGS algorithm shows more spread in the individual
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Figure 8.4.: Example of how the S-matrix pole moves through the complex plane with specific
values of the coupling constant. The black dots are the data obtained from a
Jacobi-NCSM calculation and are fitted to. The grey dashed line indicates where
Re(k) = Im(k). Order (5,5) of V ext with BFGS algorithm, shown in figure 8.5a.

points and at all orders. Consequently, the standard deviation is much larger. The statistical
ACCC result shows the same too small resonance width as the individual fit results shown
in table 8.3 and figure 8.6. However, BFGS requires less computational effort, returning fits
to 1000 subsets in a fraction of the time that it takes to perform the fits for 200 points with
Levenberg-Marquardt.

8.5.3. Conclusion

The ACCC analysis of a potential of simple Gaussian form, which has been fitted to reproduce
experimental data, both shows what to expect of the ACCC and serves as an introduction to
the the fitting protocols we use in this work.
Even in this simple case, some differences in the comparison of the external and prefactor po-
tential can be observed. Different modifications in large scale calculations might show stronger
deviations from each other.
The determination of the the threshold value λ0 via IACCC has to be done with care. The
prescribed approach of reference [KKH89] to use the λ0 converged w.r.t. the Padé orders as
the correct one does not lead to the best results. Firstly, they tend to the directly determined
threshold value, and secondly, the best converged result, in this case obtained with BFGS, fails
to reproduce the resonance width provided by the reference.
The interplay of the fit algorithm, starting parameter values, fit accuracy goal and desired Padé
order are problems to be aware of. They can be treated with the statistical ACCC, which gives
a measure for the spread caused by choosing different data points for the fit. Within this, the
starting parameter value dependence and the absolute fit error can be absorbed, due to the
probable repetition of fits to similarly distributed data points, but with potentially different
starting values, supposing a large enough set size is used.
The result show that the Padé orders (1,1) and (2,2) are not accurate in reproducing the
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(b) Binding with potential V fac

Figure 8.5.: Gaussian α+α scattering potential: ACCC for fixed λ0 for the two different bind-
ing approaches, full data set of 150 points. λ0 determined by linear interpolation.
BFGS in solid lines, dashed lines Levenberg-Marquardt and σfit

rel= 6. Parametriza-
tion as in equation (8.45b). Experimental reference is the grey box, the width
uncertainty is set to arbitrary 5%.

resonance parameters, but are very stable with respect to set selection and starting values.
Realistic results are obtained with order (3,3).
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(a) Binding with potential V ext
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(b) Binding with potential V fac

Figure 8.6.: Gaussian α+α scattering potential: Statistical ACCC for the two different binding
approaches. 200 sets each. Parametrization as in equation (8.45b). The large
dots with a line to the axis are the mean values of all points, the boxes give the
standard deviation from the mean. Experimental reference is the grey box, the
width uncertainty is set to arbitrary 5% for better visibility. Levenberg-Marquardt
algorithm.
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Figure 8.7.: Gaussian α+α scattering potential: Statistical ACCC for the two different binding
approaches. 1000 sets each. Parametrization as in equation (8.45b). The large
dots with a line to the axis are the mean values of all points, the boxes give the
standard deviation from the mean. Experimental reference is the grey box, the
width uncertainty is set to arbitrary 5% for better visibility. BFGS algorithm.
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Coupling Constant

Interest in the four-neutron system was renewed recently due to the proposed resonance candi-
date by Kisamori et al. [KSM+16], with an energy position of 0.83±0.65(stat)±1.25(syst) MeV
and upper limit for the width of 2.6 MeV, at a significance level of 4.9σ. It has since then been
the motivation for new and further investigations into the matter [SPM+16, HLCK16, CLHK17,
LCH17, GHK+17, FRMP17, Del18, LMH+19], see also the introduction to chapter 7. There is
no consensus among theorist whether a tetraneutron resonance should exist, and if so, what its
resonance parameters are. Further experiments are still ongoing, and a final verdict from the
experimental side has yet to be made.

In this chapter we present the results of the application of the Analytic Continuation in the
Coupling Constant to the two- and four-neutron system. The focus of our investigation lies on
the tetraneutron.
We use state-of-the-art Chiral Effective Field Theory (χEFT) interactions, which have been
Similarity Renormalization Group (SRG) transformed, together with the No-Core Shell Model
(NCSM) as many-body method, see chapter 2 and 5 for details on χEFT and the NCSM,
respectively. We achieve binding of the systems by direct strength increase in the interaction
matrix elements as well with a novel approach we call eigenvector binding. The ideas behind
these two methods are described in section 8.3. The dineutron is first investigated and serves
as an example for the response of the ACCC to a non-resonant system and the use of the
eigenvector binding method.
The tetraneutron is studied exhaustively under variation of different parameters. These are
introduced in section 8.4.1. The parameters that are investigated fall into different categories.
These are either related to the interaction, the many-body method, the specifics of obtaining
a bound system, or the fitting routine. Details on the fit protocols are discussed in section 8.4
and section 8.5.

For the dineutron, we use a bare (not SRG evolved) NN-interaction. For the tetraneutron
study, we utilize two χEFT interactions, both with full NN + 3N forces. They are listed in
table 9.1.

Name Reference SRG

N3LOEM [EM03] –
N3LOEM + N2LO500,L [EM03, Nav07] SRG evolved with α = 0.12 fm4

N3LOEMN + N3LO500,NL [EMN17, HVH+19] SRG evolved with α = 0.08 fm4

Table 9.1.: Chiral interactions used in this study.

The role of the interaction is the primarily investigated parameter in the Single-State HORSE
study in chapter 7. From our conclusions drawn in this chapter, the gross properties of a
tetraneutron resonance, whether it even exist, and if so, where it approximately lies, should
not change between χEFT interactions. We, therefore, leave interaction properties fixed.
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We further investigate different harmonic oscillator (HO) lengths aHO. However, the eigenvec-
tor binding is by construction not independent of the HO length parameter.
The way the binding of the Hamiltonian is achieved has consequences for the fit stability and
prediction of resonance positions. Variations to investigate for the prefactor binding are modi-
fications of only the NN matrix elements, exclusion of specific partial waves, and the complete
NN+3N interaction matrix elements. The 3N interaction alone is too weak that any sufficiently
strong exclusive three-body interaction modification results in unusual behaviour in the eigen-
ergies and is, therefore, not further investigated. The eigenvector binding requires investigation
into the NCSM model-sub-space size Nbin

max and number of used eigenvector nev, at which the
external binding potential is constructed.
The fact that we fit a highly non-linear model to data of unknown adequacy, raises the ques-
tion of the sensitivity to the fit routines. The choice of which data points to use, the starting
values of the fit parameters, the minimization algorithm and their cross-dependencies all lead
to different extrapolated results.

The chapter is structured as follows: The dineutron system is investigated for two binding
approaches, to show the application of the ACCC to a non-resonant system.
Our main objective is the study of the tetraneutron, bound with the eigenvector method,
which is introduced in section 8.3.2. We first present the input data and their dependence on
the NCSM parameters. The subsequent subsections comprise an extensive parameter study.
Our main findings with the eigenvector binding method are presented at the end of the section.
Further, as a separate binding method, we increase the potential contribution to the tetraneu-
tron many-body Hamiltonian in order to bind the system, which is discussed in the end, before
we concluding this study.

9.1. Dineutron

The dineutron is our first application of the ACCC with a realistic Hamiltonian, constructed
from the state-of-the-art χEFT interaction N3LOEM [EM03]. It is a well-known, non-resonant
system, providing a reference as to what a non-resonant systems looks like in the ACCC, and
to make sure we do not falsely produce a resonance with the yet unproven eigenvector binding.
The two-neutron system is pure s-wave scattering, and hence cannot be a two-body shape
resonance, see section 3.5. The branch point is given for ` = 0 by equation (8.42)

k0(λ) = iκ+ (λ− λ0) . (9.1)

A proper treatment of the S-matrix poles to also extract the virtual state properties requires
the knowledge of the branching point κ0, as described in chapter 8. Within this investigation
of the dineutron, we want to make sure that we are not producing a resonance by construction,
and not accurately track the pole. We neglect the beforehand calculation of κ. However, it
is important to accommodate this circumstance by only fitting to the Padé parametrization
including the zero order, variable independent, parameter c0, as in equation (8.45a).
The raw data for the dineutron is obtained from a NCSM calculation with Emax = 300, with the
bare two-body chiral interaction N3LOEM, at HO lengths aHO= 2.5 and 3.5 fm. Each aHO set
consists of 400 data points in a λ range of approximately λ = [0, 10] for the prefactor binding
and λ = [0, 16] for the eigenvector binding. The data set for the prefactor binding is obtained
with the form

H(λ) = T + λ̄V.

To have the same extrapolation value of λ = 0, the values are shifted by λ = λ̄− 1 to

H(λ) = T + (1 + λ)V.
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Figure 9.1.: Dineutron bound state produced with two different harmonic oscillator lengths
aHO = 2.5 and aHO = 3.5 fm. Note the difference in binding energies. Dashed lines
are linear fits, dotted lines quadratic fits to the full data set of 402 points.

∼ λV ∼ λW

aHO [fm] 2.5 3.5 2.5 3.5
λ0 0.12096 0.11421 0.33902 0.20794

Table 9.2.: Threshold positions for the different binding methods.

The eigenvector binding is performed as described in section 8.3.2, which reads

Hλ = H − λ
nev∑
ν=0

∣∣∣ΨNbin
max

ν

〉〈
ΨNbin

max
ν

∣∣∣
= H − λW.

The energy as a function of the binding parameter is shown in figure 9.1a and figure 9.1b, for
the matrix element and eigenvector modification, respectively. On the resolution provided by
the two plots, the two aHO lines lie on top of each other for the matrix element modification,
whereas the eigenvector binding data are clearly distinguishable, but approaching each other
close to the threshold. The form of the matrix element modification is also distinctly differently
shaped than with the pseudo-external binding potential. The matrix element modification
shows a strong curvature, the eigenvector binding appears almost linear at larger λ. The
matrix element modification shows a slightly flatter curve at low λ values over the same range
of λ ≈ [0, 1] compared to the eigenvector binding. This difference in appearance as well as
the near-threshold behaviour is also observable in the benchmark case discussed in section 8.5,
displayed in figure 8.2. We perform a linear and quadratic fit to the energy as a function of λ to
highlight the different curvature of the two binding methods. Additionally, the quadratic fit is
a possibility to obtain an estimate of the resonance position, but only if a resonance is present
in the first place. With this in mind, these two fits serve as counter examples of the limitation
of fitting to the energy as a function of λ, without proper analytic continuation. The linear
and quadratic fits and extrapolation to the unmodified Hamiltonian are shown in table 9.3.
Lacking the information of the precise root branch cut position κ, we refrain from performing the
IACCC. We perform the statistical ACCC (SACCC) with three different algorithms, motivated
by the findings presented in section 8.5, Levenberg-Marquardt in figure 9.2, BFGS in figure 9.3,
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aHO [fm] Linear [MeV] Quadratic [MeV]

2.5 15.168 5.092
3.5 15.974 5.430

2.5 0.7275 0.5329
3.5 0.473 0.3543

Table 9.3.: Fits to the energy as function of λ. Direct matrix element modification on top,
eigenvector on the bottom. The two fits serve to better highlight the differences in
behaviour with increasing λ. The fits also serve as counter examples to the direct
extrapolation without analytic continuation.

Order : (ER, Γ )
(1,1) : (-4.64,0.00)

(2,2) : (-5.02,0.00)

(3,3) : (-5.50,-6.18)

(4,4) : (-6.91,-5.95)

(5,5) : (-3.85,-3.71)

(6,6) : (-3.89,-3.50)
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Order : (ER, Γ )
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(b) Eigenvector binding

Figure 9.2.: Statistical ACCC for two binding methods. Performed with Levenberg-Marquardt
with σfit

rel = 8, aHO = 3.5 fm, 500 subsets of 30 points, unitary weights.

and Newton in figure 9.4. We limit this analysis to only one oscillator length, aHO = 3.5 fm. A
total of 500 subsets, consisting of 30 out of 400 points, is randomly selected. Each subset serves
as fit data, whose extrapolation result is shown as dot in the figures 9.2 to 9.4. The SACCC is
introduced in section 8.4.2 and further described in section 8.5.
From the six plots depicted, five show considerable spread in the individual subset results, with
the exception of the eigenvector binding fitted with Levenberg-Marquardt, figure 9.2b. This
spread is most pronounced in the matrix element modification in combination with the Newton
and BFGS fits. Common feature of the matrix element modification is the negative average
position ER, with heterogeneous widths. The eigenvector binding results lie close to the y-axis.
The most stable extrapolations, with respect to the data point selection, are the Levenberg-
Marquardt fits, figure 9.2. The mean values of each order lie in the same region, with small
standard deviations. The exceptions are the standard deviation boxes of the Padé orders (3,3)
and (4,4) in figure 9.2a, being larger than the plotting range. The eigenvector binding gives
zero energy and zero width.

Conclusion

We conclude that no resonance is present, for both binding approaches, primarily supported
by the findings shown in figure 9.2. Within all investigated cases, the mean values of the
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9.1. Dineutron

Order : (ER, Γ )
(1,1) : (0.64,34.30)

(2,2) : (-6.37,-0.37)

(3,3) : (-53.50,14.30)

(4,4) : (-57.10,7.33)

(5,5) : (-70.40,8.19)

(6,6) : (-72.70,5.80)
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(a) Binding by direct potential modification
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(b) Eigenvector binding

Figure 9.3.: Statistical ACCC for two binding methods. Performed with BFGS with σfit
rel = 8,

aHO = 3.5 fm, 500 subsets of 30 points, unitary weights.

Order : (ER, Γ )
(1,1) : (-4.47,0.35)

(2,2) : (-5.36,-0.31)

(3,3) : (-130.00,13.70)

(4,4) : (-781.00,-49.50)

(5,5) : (-473.00,-96.10)
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(a) Binding by direct potential modification

Order : (ER, Γ )
(1,1) : (-0.18,19.10)

(2,2) : (-0.21,13.80)

(3,3) : (2.46,22.50)
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(5,5) : (-8.16,25.50)
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-20 -10 0 10 20
-20

-10

0

10

20

ER [MeV]

W
id
th

[M
eV

]

(b) Eigenvector binding

Figure 9.4.: Statistical ACCC for two binding methods. Performed with Newton with σfit
rel = 8,

aHO = 3.5 fm, 500 subsets of 30 points, unitary weights.

SACCC are counter-indicative to the existence of a resonance in the dineutron system. This
is as expected in this case. The eigenvector binding shows less dependence on data point
selection with different fit algorithms than the matrix element modification. We attribute this
to the almost linear dependence in λ. That this linearity in the E(λ) plane is not problematic
can also be observed in figure 8.2, where a truly external potential shows similar features.
The findings shown figure 9.2 are promising for potentially enabling the calculation of virtual
states with data obtained with the NCSM, if the determination of the s-wave root branch
point is performed. The observable differences in the employed fitting algorithms give further
motivation to investigate their effect on the ACCC applied to the tetraneutron. We discuss
this in section 9.2.2.
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9. Results Analytic Continuation in the Coupling Constant

9.2. Tetraneutron: Eigenvector Binding

9.2.1. Input Data

For our investigation of the tetraneutron, we choose two state-of-the-art chiral interactiona with
two- and three-body forces, denoted by N3LOEM + N2LO500,L and N3LOEMN + N3LO500,NL see
table 9.1 for SRG parameters and references. The bound-state energies required for the ACCC
are obtained by solving the many-body problem in the framework of the Jacobi-NCSM, up
to large model spaces of Nmax = 28. See chapter 5 for the introduction of the NCSM. The
Jacobi-NCSM enables the calculation of a great number of data points (∼ 150) for a fixed set of
parameters within a few hours of wall-time on a high performance cluster. We use the so-called
Padé-III approximants, which means we use more input data points for the fit than we have
degrees of freedom in the Padé parametrization, see also appendix A.

With the use of an elaborate solving method, such as the NCSM, comes necessarily the question
about the dependencies of the data from the truncation parameters inherent to the interaction,
the solver and the employed basis. The interaction truncation parameters and their effects
onto a possible tetraneutron resonance are not part of this work. The parameters that are
investigate are the model space size Nmax and the harmonic oscillator length aHO. Regarding
Nmax we have to check if the eigenenergies are converged with respect to that parameter. This
is done in section 9.2.4. The behaviour under variation of aHO is usually shown to become
independent for sufficiently large model spaces. Why this is not the case here is discussed in
section 9.2.3.

With the two chiral interactions, a large set of different harmonic oscillators lengths aHO is
produced, though not all are shown with individual analysis.

For the N3LOEM + N2LO500,L interaction, a range of aHO between [2.0, 10] fm is computed. For
the N3LOEMN + N3LO500,NL interaction, we use matrix elements with aHO= 2.5, 3.5 and 4.5 fm.

If the tetraneutron exists as a resonance, we assume it to be in a spatially sparse configuration.
In the context of the eigenvector binding, we, therefore, have to consider this when choosing the
oscillator lengths. We focus on two different aHO for the main parameter studies, aHO = 2.5 fm
and 3.5 fm, in section 9.2.2.

The Nmax sequence of the lowest lying energy of the unmodified Hamiltonian with the interac-
tion N3LOEM + N2LO500,L is shown in figure 9.5, for the interaction N3LOEMN + N3LO500,NL,
see figure 9.6. This depicts the expected behaviour for a system with positive energy eigenvalues
in the NCSM as a function of Nmax. The “ground state” energy drops with increasing model
space size. Unlike the bound-state case, a reasonable extrapolation of Nmax → ∞ can not be
made. From figure 9.5, we see that the larger the oscillator length is, the less the absolute
energy changes with increasing Nmax.

Considering the Nmax sequences for the bound states at three different coupling constants in
figure 9.8, we observe the typical convergence behaviour in the input data as we would expect
it from a bound system. At the shown length of 3.5 fm, the convergence looks reasonable
for purely bound-state observables. How this affects the extrapolation to unbound energies is
discussed in section 9.2.4.

Owing to the nature by which we construct the external potential to bind the tetraneutron,
we have the two parameters Nbin

max and nev, which specify the subspace and the number of
eigenvectors from this subspace to use.

The effect the external binding potential has on the Hamiltonian and its lowest lying states
is shown in figure 9.7. The higher lying energy states within the same Jπ = 0+ block exhibit
level crossing, as depicted in figure 9.7, but not so the lowest one, denoted E[0]. This state
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Figure 9.5.: Nmax sequence for the interaction N3LOEM + N2LO500,L at different oscillator
lengths in the pure, unmodified pseudo continuum.

moves continuously from the unbound regime at λ = 0 into the bound regime. The second
energy state, denoted by E[1], undergoes a crossing with the next higher E[2], which undergoes
level crossing with next, and so on. From the point of view of tracking a certain bound state
over the threshold into the continuum, e.g. the second lowest in the bound-state case, is not
the same state as the second lowest in the unmodified case, due to the crossings. The state
labelled E[1] actually remains in the continuum up to larger values of λ. We only extrapolate
the lowest energy state, where all level crossing should be far enough away from λ = 0, to which
we extrapolate. This is also discussed in reference [FHT06], see also the avoided level crossings
for finite volume calculations introduced in reference [Wie89]. The extrapolations with different
Nbin

max and nev is discussed in section 9.2.5.
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Figure 9.6.: Nmax sequence for the interaction N3LOEMN + N3LO500,NL for three different os-
cillator lengths in the pure, unmodified pseudo continuum.

E

(a) aHO = 2.5 fm

E

(b) aHO= 3.5

Figure 9.7.: First four energy levels with Jπ = 0+ as a function of the coupling constant.
Interaction N3LOEMN + N3LO500,NL Eigenvector binding with Nbin

max = 2 and nev

= 9. The data used for extrapolation is denoted with E[0]. Note the different
scales used on the plots.
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Figure 9.8.: Nmax sequence for the interactions N3LOEM + N2LO500,L on the top and
N3LOEMN + N3LO500,NL at the bottom row at aHO = 3.5. On the left the absolute
energies obtained for three different x values, x ≈ 0.25, 1.5, 3. On the right, the
difference (ENmax<28 − ENmax=28). Threshold determined by linear interpolation.
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9. Results Analytic Continuation in the Coupling Constant

9.2.2. ACCC and IACCC Analysis, Algorithm-, Start Value- and Data Point
Dependence

The discussions in sections 8.5, 9.1 and 9.3, demonstrate that the used algorithm in combination
with the selection of the data points, used in the fit, has an effect on the extrapolation. To
not have to deal with the choice of data points and start values over and over again, we use
the statistical ACCC [PvMM+13], which is described in section 8.4.2. Within this approach,
we simultaneously fit the value of λ0. This requires less manual input to choose a presumably
good λ0, but also increases fit instability.
In this section, we want to justify the use of the already introduced statistical ACCC and its
application within the hereafter following tetraneutron study.

To this end, we use the IACCC to determine the threshold parameter λ0 which is then used
in the regular ACCC. This approach is the originally recommended procedure [KKH89]. The
difficulties arising in this framework, when applied to the data that we have available, motivate
the use of the statistal ACCC together with the Levenberg-Marquardt algorithm as primary
fit method.

Minimization Algorithm and Start Parameter Dependence with Fixed Data Sets

The stability of fits is dependent on the starting values of the fit parameters, to varying degrees.
Tightly bound to the choice of good starting points is the performance of the algorithm used
to minimize the χ2 problem. Additionally, different methods might be better or suited than
others.

The algorithms which we compared are the Mathematica implementations of the Newton
method (NE), the Quasi-Newton Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS), also
referred to as Quasi-Newton (QN), the Levenberg-Marquardt algorithm (LM), which is a so-
called Gauss-Newton method, and nonlinear Gradient (GR).

These methods make different approximations to compute the Hessian matrix. Assuming the
complexity of the problem one wants to solve is within the scope of each method, as well as
being suitable to actually be solved with a given method, they should arrive at the same result,
within the errors made in the initial assumption on which a specific method is based. The
computational costs, the number of steps needed to converge, and the required memory can
vary. For details on the specific implementation of the algorithms within Mathematica, see
reference [Mat20].

When applied to a specific problem with varying compatibility to different minimization algo-
rithms, it comes as no surprise that, e.g., the sensitivity of starting values of the fit parameters
can have a stronger influence.

In the case of the ACCC, we fit to a non-linear model of Padé approximants, either to

k
[N,M ]
` (x) =

PN (x)

QM (x)
= i

c0 + c1x+ ...+ cN x
N

1 + d1x+ ...+ dM xM
, (9.2)

or without parameter c0

k
[N,M ]
` (x) =

PN (x)

QM (x)
= i

c1x+ ...+ cN x
N

1 + d1x+ ...+ dM xM
, (9.3)

or with additional fit parameter λ0

k
[N,M ]
` (λ) = i

c0 + c1

√
λ− λ0 + ...+ cN

√
λ− λ0

N

1 + d1

√
λ− λ0 + ...+ dM

√
λ− λ0

M
, (9.4)
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Figure 9.9.: The three data sets to compare the algorithm dependence from interaction
N3LOEMN + N3LO500,NL, aHO=2.5 fm. Each set consists of 30 points. The thresh-
old value is determined via linear interpolation λ0 ≈ 6.702.

and

k
[N,M ]
` (λ) = i

c1

√
λ− λ0 + ...+ cN

√
λ− λ0

N

1 + d1

√
λ− λ0 + ...+ dM

√
λ− λ0

M
, (9.5)

which emphasizes the non-linearity further. Furthermore, the parameters are highly correlated.
We are thus generally looking for a global minimum in a landscape of many local minima, which
can be additionally degenerate w.r.t. the fit parameters.
An effort to reduce the degrees of freedom is presented in [ČPH16], called the Regularized
Analytic Continuation. We do not employ this approach, limiting ourselves to the use of the
ACCC, the inverse ACCC, and the statistical ACCC.
We observe differences in the Padé extrapolations when using different minimization techniques,
seen in figures 8.3, 8.5 to 8.7 and 9.2 to 9.4, and leaves the case of ill-posed problems for the
applied Newton, Quasi-Newton, and Gauss-Newton methods. A statement of which method
to use is give,n e.g., in [SMHE17], where they advocate the use of the BFGS algorithm when
performing a non-linear fit that simultaneously optimizes the threshold parameter λ0. In the
results of the α + α scattering with a phenomenological potential, see section 8.5, we noted
different behaviour in the algorithms when using an external potential versus manipulation of
the initial interaction to bind the system.

We perform a fitting sequence on three data sets sampled from the same initial set, with the
mentioned methods and different starting parameters. The sets are obtained with
N3LOEMN + N3LO500,NL at aHO = 2.5 fm, with all results shown with Nmax = 28, Nbin

max = 2
and nev = 9.
The sample sets are divided in x =

√
λ− λ0 as follows:

� Set A has 30 points in the region x = [0, 2.3].

� Set B has 30 points in the region x = [0.2, 3.9].

� Set C has 30 points in the region x = [1.7, 4.0].

The three sets as a function of λ, as well as a function of x, are shown in figure 9.9. To
give ranges roughly equidistant in the variable x, the threshold value is determined via linear
interpolation from the two closest points above and below the threshold from the complete
available data set.
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9. Results Analytic Continuation in the Coupling Constant

Set Algo. (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8)

A

NE 6.7117 6.66884 – – – –
QN 6.7117 6.70164 6.70214 6.70202 6.70196 6.70183 6.7017
LM 6.7117 6.70164 6.70213 6.70216 6.70216 6.70216 6.70216
GR 6.71373 6.72498 6.74403 6.753 6.72522 6.75911 6.72257

B

NE 6.76678 6.60807 6.70193 6.70218 – – –
QN 6.76678 6.69649 6.69939 6.70150 6.70014 6.69893 6.70142
LM 6.76678 6.69649 6.70193 6.70218 6.70216 6.70216 6.70216
GR – – – – – – –

C

NE 6.97824 6.46543 – – – – –
QN 6.97824 6.6986 6.84708 6.74094 6.68301 6.69306 6.72643
LM 6.97824 6.6986 6.67734 -816284. -1.33131 6.70648 42.0862
GR – – – – – – –

Table 9.4.: Threshold values λ0 obtained via IACCC for three different sets consisting of 30
points, see text for details. Interaction N3LOEMN + N3LO500,NLwith aHO=2.5 fm.
Start values at all orders set to 0, except for λ0 = 6.70216. Note that the first
IACCC Padé order starts at (2,2). NE = Newton, QN = Quasi-Newton (BFGS),
LM = Levenberg-Marquardt, GR = gradient.

Performing the IACCC, we compare the obtained threshold values λ0 for each set between the
three methods and different starting parameters. The first comparison is done with a starting
parameter for λ0 and the rest all set to 0 and is listed in table 9.4. The second comparison is
with all λ0 as before and starting values set to 1 at all orders, see table 9.5.

The third method is to use the results from the previous lower order fit as start values for the
next higher order. This leaves two new parameters, whose start values are first set to 0. Should
this not lead to a converged result, then, in a first step, the parameter in the nominator, λN ,
is randomly chosen from a range of [-15,15] in half integer steps, while the denominator µM
is kept at 0. If this still is not sufficient after 8 tries, then µM is also randomly chosen to be
either -1, 0 or 1. This procedure is repeated either until a fit is found, or aborted after 60 tries.
This approach is admittedly arbitrary and solely based on the observation, that the different
combinations in the sign of the undetermined starting parameters have a bigger impact on if a
fit is found than the precise value. The results for this are listed in table 9.6.

Comparing the results, we find that the Levenberg-Marquardt algorithm shows proper conver-
gence behaviour in the Padé orders, for the data sets A and B for all three starting parameter
value choices, ending up at what was the initial guess by linear interpolation. On the other
hand, for data set C, the same method results in unrealistic values, especially in the case of
using the previous lower order fit as input. The fact that the results show little variation with
the starting parameter values, provided the data set is good, qualifies the Levenberg-Marquardt
algorithm to be the primary method. The Newton approach often does not converge or needs
lengthy searches for suited starting values, which increases calculation time; but when it does
converge, which is in this instance only the case for starting values from the previous lower
order fits, the results agree with the other methods. The Quasi-Newton BFGS algorithm shows
little variation with different starting values between the different data sets. In these examples,
it is the middle ground in terms of reliability and calculation time – not really showing a con-
verged parameter value in the Padé orders, but also not returning off-the-chart results. The
disadvantage in this is that also inadequate fits are found, possibly skewing the conclusion one
might draw from such fits.
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9.2. Tetraneutron: Eigenvector Binding

The Gradient method is the least flexible in escaping a local minimum, thus resulting in con-
verged Padé orders, but not necessarily finding the global minimum. It should not be used.
We only show it for reference.
The inverse ACCC is the recommended approach in reference [KKH89] to determine the cor-
rect threshold value λ0. The presented results do not reveal what the correct values to use are.
Focusing on a data set which would be a reasonable choice when being limited in the amount of
data points one can calculate, set B, as it spans a broad range of x values, the results obtained
from the IACCC with the Levenberg-Marquardt algorithm suggest that in this particular ex-
ample the value λ0 = 6.70216 should be used,as it is converged in the Padé orders. It is not
clear how to choose λ0 in the case of non-converging values. In the common literature, e.g.,
references [KKH89, TSVL99, Aoy03], no recommendations are made regarding the handling of
this scenario, if λ0 is to remain constant, apart from demanding that a good λ0 shows Padé
order convergence to a reasonable amount within the expected numerical accuracy of the data.
This raises further questions. The Padé approximants have an optimal order at finite accuracy
data, after which the description of the data worsens with growing order [KKH89]. Finding
the best λ0 fit combination by that stability argument thus requires the knowledge of the
“break-down” order. How this is determinable from some calculable criterion is not clear.
This question is avoided when simultaneously fitting λ0. The drawback is a potentially more
unstable fit, due to the strong non-linearity, as well as worse Padé order agreement, since each
order has a different threshold value. Though, as is shown for a simple example in section 8.5,
as well as in reference [SMHE17], the simultaneous fit result in reasonable data.
To further illustrate the difficulties going the way of first performing the IACCC to obtain λ0

and subsequently performing the regular ACCC, we take each λ0 from each IACCC Padé order
and perform the ACCC fit with the same algorithm, limiting us to the BFGS and Levenberg-
Marquardt methods. We choose the set B as an example. The same procedure with set A and
C can be found in appendix E.
The parameter values are based on the previous lower order fits. The results of this are shown in
figures 9.10 and 9.11. These plots show the S-matrix pole trajectories in the complex k-plane.
How to interpret this type of plot is discussed in figure 8.4. On the positive imaginary axis
lie the bound states which are fitted. The fit is then extrapolated by decreasing λ below the
threshold, with λ = 0 corresponding to the end of the line. A resonance has its ending point in
the fourth quadrant, Re(k) > 0, Im(k) < 0 and |Im(k)| < Re(k). Each figure shows the ACCC
fits with the λ0 from the IACCC with the corresponding order given in the lower left corner of
each window.

The BFGS method in figure 9.10 has remarkable agreement in the Padé orders, for most λ0

values, even for very high orders of up to (8,8). However, at IACCC orders (4,4) to (7,7), the
ACCC orders (3,3) and higher move into the first quadrant. In the last two panels, they change
the direction, going to regions that correspond to negative resonance positions ER.
In contrast, the Levenberg-Marquardt results in figure 9.11 exhibit no real order by order
convergence, generally being unstable in this regard. The fit lines do, however, end in many
cases in a region that would correspond to a resonance, though at very different positions and
widths.
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Set Algo. (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8)

A

NE 6.7117 6.66654 6.70213 – – –
QN 6.7117 6.70164 6.70214 6.70202 6.70195 6.70183 6.7017
LM 6.7117 6.70164 6.70213 6.70216 6.70216 6.70216 6.70216
GR 6.71908 6.73101 6.74441 6.75437 6.75706 6.7579 6.75787

B

NE 6.76678 6.69649 6.70193 6.70218 – – –
QN 6.76678 6.69649 6.69944 6.7015 6.70015 6.70175 6.70143
LM 6.76678 6.69649 6.70193 6.70218 6.70216 6.70216 6.70216
GR – – – – – – –

C

NE 6.97824 6.4535 6.6685 6.63892 – – –
QN 6.97824 6.6986 6.83325 6.73869 6.68093 6.69248 6.72682
LM 6.97824 6.6986 6.67734 -197987 -179.258 6.70648 –
GR – – – – – – –

Table 9.5.: Threshold values λ0 obtained via IACCC for three different sets consisting of 30
points, aHO= 2.5 fm. Start values at all orders set to 1, except for λ0 = 6.70216.
See also table 9.4.

Set Algo. (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8)

A

NE 6.7117 6.70164 6.70213 6.70215 6.70217 6.70215 6.70217
QN 6.7117 6.70164 6.70214 6.702133 6.70218 6.70217 6.70216
LM 6.7117 6.70164 6.70213 6.70216 6.70216 6.70216 6.72069
GR 6.71373 6.70278 6.7028 6.70177 6.70171 6.70178 6.70176

B

NE 6.76678 6.69649 6.70193 6.69689 6.70216 6.70213 6.70213
QN 6.76678 6.69649 6.70193 6.7019 6.70211 6.70211 6.7021
LM 6.76678 6.69649 6.70193 6.70218 6.70216 6.70216 6.70216
GR 6.74406 6.76914 6.72593 6.72493 6.70371 6.70711 6.70004

C

NE 6.97824 6.6986 6.66919 6.64561 6.69681 6.6282 6.66101
QN 6.97824 6.6986 6.67325 6.67309 6.67357 6.67348 6.67215
LM 6.97824 6.6986 6.67734 -579142 −2.8 · 107 −2.5 · 107 −1.1 · 107

GR 6.84137 6.94414 6.8679 6.87059 6.80217 6.79886 6.80037

Table 9.6.: Threshold values λ0 obtained via IACCC for three different sets consisting of 30
points, aHO= 2.5 fm. Start values are taken from the previous order. For details,
see text as well as table 9.4.
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Figure 9.10.: Tetraneutron S-matrix pole trajectories. Data set B, λ0 determination and fit
performed with Quasi-Newton BFGS. Nmax = 28, aHO = 2.5 fm.
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Figure 9.11.: Tetraneutron S-matrix pole trajectories. Data set B, λ0 determination and fit
performed with Levenberg-Marquardt. Nmax = 28, aHO = 2.5 fm.
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Minimization Algorithm and Start Parameter Dependence with Variable Subsets

The choice of which points are used to fit data has some impact on the outcome of the extrap-
olation, but also on the stability of the fit. This can already be seen in the previous subsection
9.2.2. To obtain a measure of the impact of data point choice, we use the statistical ACCC
[PvMM+13], introduced in section 8.4, where also the fit protocol is explained. From the mean
value and standard deviation of the distribution, we gain an estimate for the dependence of
the fit to the data point selection. We assume that at the same time, some effects of the start
value dependence can be absorbed, with a large enough number of sampled sets. The standard
deviations, shown as boxes around the mean value, do not give an error estimate in a statistical
sense. This means that they do not yield a probability of finding the correct value within
that region. They can only provide information about the sensitivity to data selection and the
reliability of the mean value of the statistical ACCC (SACCC) to be a good approximation to
an ordinary ACCC.

To both demonstrate the data point and the fit algorithm dependency, we discuss the results of
three SACCC calculations with a small sample size of 100 subsets. The Newton method is shown
in figure 9.12, the BFGS algorithm in figure 9.13, and the Levenberg-Marquardt algorithm in
figure 9.14. The plots illustrate the (resonance-) energy-width plane. Each dot corresponds to
one subset. The larger dots indicate the mean value, surrounded by the standard deviation
boxes. The left hand side of each plot gives the mean and standard deviation with equally
weighted points, the right hand side uses the estimated fit error variance of the fit routine to
weight each point accordingly in the determination of mean and standard deviation. The same
interaction and aHO is used as in section 9.2.2. All fits are performed with the parametrization
as in equation (8.45b). Further, the Padé order is shown up to large orders of (9,9).
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Figure 9.12.: Statistical ACCC, 100 sets of 30 points, Newton algorithm with σfit
rel = 8,

N3LOEMN + N3LO500,NL, aHO = 2.5 fm. Comparison of two weightings. The grey
box gives the experimental range [KSM+16]. Nbin

max = 0, nev = 2. Parametrization
as in equation (8.45b). The grey dashed lines connect the mean values of each
order to guide the eye.

Considering at the Newton and BFGS fits in figures 9.12 and 9.13, the far spread of the
individual points is immediately apparent. The first two Padé orders are consistent between
all methods and do not spread. The unweighted means are accordingly far out, and are not
in the shown region of the plots. However, the majority of the fits have large estimated fit
error variances, according to the analysis of variance (ANOVA). Calculating the mean and
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standard deviation with the inverse fit error variance as weights for each point, the locations
shift drastically to a position where all algorithms are roughly compatible up to the (4,4) order.
A very different outcome is presented when using the Levenberg-Marquardt algorithm, shown in
figure 9.14. Here, the spread of the individual fits is contained to a moderate region, compared
to the other two fit methods. Each point is also associated with an estimated fit error variance
of similar magnitude to the others, leading to relatively small changes when comparing the
differently weighted means.
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Figure 9.13.: Statistical ACCC, 100 sets of 30 points, Quasi-Newton BFGS with σfit
rel = 8,

N3LOEMN + N3LO500,NL, aHO = 2.5 fm. Comparison of different weightings. The
grey box gives the experimental range [KSM+16].
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Figure 9.14.: Statistical ACCC, 100 sets of 30 points, Levenberg-Marquardt with σfit
rel = 8,

N3LOEMN + N3LO500,NL, aHO = 2.5 fm. Comparison of different weightings. The
grey box gives the experimental range [KSM+16].

To illustrate how the fit parametrization of equation (8.45), also given in equations (9.4)
and (9.5), affects the extrapolations, we perform calculations as in figures 9.12 to 9.14 for
1000 subsets of 30 points, each with the three presented algorithms and parametrization as in
equation (8.45b), as well as in equation (8.45a). The results of this is given in tables 9.7 and 9.8
for an oscillator length of aHO = 2.5 fm and in tables 9.9 and 9.10 for aHO = 3.5 fm. Listed
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9.2. Tetraneutron: Eigenvector Binding

are the mean values with standard deviation, where the results for the Newton and BFGS are
weighted with the estimated fit error variance. The effect on the mean values at each Padé
order is overall comparatively small, with a few exceptions. However, the standard deviation
is noticeably reduced with the Newton method at orders (4,4) and above. With the BFGS and
Levenberg-Marquardt method, the impact is much smaller, but tending to smaller standard
deviations at lower orders when including c0, but not necessarily leading to a reduction at
higher orders.
The findings presented here are an argument for the use of the Levenberg-Marquardt algorithm
in the statistical ACCC.

Mean resonance position ER [MeV] excluding c0, aHO = 2.5 fm
(2,2) (3,3) (4,4) (5,5) (6,6)

NE 6.42 ± 0.17 9.20 ± 0.15 9.18 ± 0.16 5.21 ± 1150 8.50 ± 237
QN 6.38 ± 0.12 9.52 ± 4.01 9.31 ± 0.88 8.23 ± 1.22 8.42 ± 0.64
LM 6.39 ± 0.13 9.24 ± 0.17 8.91 ± 0.49 5.93 ± 0.77 6.54 ±0.92

Mean resonance width Γ [MeV] excluding c0

NE 4.26 ± 0.53 12.2 ± 0.48 11.1 ± 0.53 18.2 ± 149 -30.2 ± 338
QN 4.13 ± 0.49 12.0 ± 11.4 11.6 ± 1.48 12.8 ± 1.77 12.9 ± 0.95
LM 4.16 ± 0.45 12.3 ± 0.52 11.8 ± 0.74 18.4 ± 1.10 18.7 ± 2.31

Table 9.7.: Tetraneutron resonance energy position ER and width Γ in MeV, rounded to
two significant for values > 1, three significant digits otherwise. Interaction
N3LOEMN + N3LO500,NL, at aHO = 2.5 fm, Nbin

max = 0, nev = 2. Levenberg-
Marquardt results correspond to those depicted in figure 9.22.

Mean resonance position ER [MeV] including c0, aHO = 2.5 fm
(2,2) (3,3) (4,4) (5,5) (6,6)

NE 7.03 ± 0.42 9.09 ± 0.13 8.72 ± 0.25 6.16 ± 1320 6.28 ± 899000
QN 6.90 ± 0.35 9.17 ± 0.34 8.60 ± 0.42 8.79 ± 0.90 8.44 ± 0.34
LM 6.76 ± 0.25 9.18 ± 0.07 8.52 ± 0.44 6.39± 0.66 6.84 ± 0.92

Mean resonance width Γ [MeV] including c0

NE 5.93 ± 0.59 11.52 ± 0.63 10.7 ± 0.31 4.09 ± 8.53 4.74 ± 96.6
QN 5.76 ± 0.64 11.7 ± 0.85 11.14 ± 0.94 10.2 ± 3.25 6.84 ± 0.51
LM 5.60 ± 0.53 11.7 ± 0.34 10.8 ± 0.32 18.8 ± 0.90 19.0 ± 2.16

Table 9.8.: See description of table 9.7. Levenberg-Marquardt results correspond to those de-
picted in figure 9.22.
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Mean resonance position ER [MeV] excluding c0, aHO = 3.5 fm
(2,2) (3,3) (4,4) (5,5) (6,6)

NE 3.61 ± 0.15 4.51 ± 0.04 4.62 ± 0.03 4.53 ± 99.4 11.0 ± 678
QN 3.61 ± 0.17 4.46 ± 0.11 4.60 ± 0.17 4.46±0.31 4.40±0.19
LM 3.65 ± 0.16 4.49 ± 0.03 4.38 ± 0.048 4.20 ± 0.214 4.19 ± 0.15

Mean resonance width Γ [MeV] excluding c0

NE 2.47 ± 0.26 6.29 ± 0.14 6.07 ± 0.08 3.00 ± 58.7 -21.2 ± 196
QN 2.46 ± 0.27 6.40 ± 0.52 6.24 ± 0.41 5.24 ± 1.59 6.11 ± 0.80
LM 2.53 ± 0.28 6.33 ± 0.14 5.82 ± 0.10 5.82 ± 0.23 5.99 ± 0.27

Table 9.9.: See description of table 9.7. Levenberg-Marquardt results correspond to those de-
picted in figure 9.22.

Mean resonance position ER [MeV] including c0, aHO = 3.5 fm
(2,2) (3,3) (4,4) (5,5) (6,6)

NE 3.94 ± 0.18 4.43 ± 0.08 3.90 ± 0.52 3.55 ± 4.11 3.34 ± 336
QN 3.91 ± 0.18 4.37 ± 0.29 4.24 ± 0.26 4.00 ± 0.85 4.82 ±0.54
LM 3.86 ± 0.17 4.52 ± 0.07 4.30 ± 0.07 4.14 ± 0.15 4.29 ± 0.13

Mean resonance width Γ [MeV] including c0

NE 3.10 ± 0.19 6.37 ± 0.14 3.25 ± 1.02 2.48 ± 3.03 3.56 ± 478
QN 3.06 ± 0.22 6.22 ± 0.19 5.64 ± 0.68 5.38 ± 3.33 4.76 ± 0.54
LM 3.02 ± 0.21 6.20 ± 0.10 5.70 ± 0.06 5.82 ± 0.23 6.19 ± 0.22

Table 9.10.: See description of table 9.7. Levenberg-Marquardt results correspond to those
depicted in figure 9.22.
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9.2.3. Harmonic Oscillator Length Dependence

The dependence on the oscillator length, or equivalently the frequency, in a usual bound-state
calculation is something that is only an artefact of the finite model space, and thus becomes
less and less as Nmax increases [PNB09]. It is, therefore, common to perform the calculation
of an observable whose harmonic oscillator dependency is yet unknown, with a few different
frequencies, compare their Nmax convergence behaviour, chose the frequency with the best
convergence, and stick with it for the remaining calculations [PNB09]. Not so in the case
of eigenvector binding. Here, the binding potential is constructed from the aHO dependent
Hamiltonian, and thus the extrapolated result is dependent on this as well. Not being stationary
under variation of the external potential means one is model dependent, and thus diminishes
the predictive power. The oscillator length takes on the role of the spatial extension of the
potential. For an outspread system, an appropriate aHO is needed to accommodate the wave
function. The choice of aHO causes a systematic uncertainty due to the a model-dependence
and the spatial restriction of the system.

The aHO dependence of the unmodified data for the two different chiral interactions used is
shown in figures 9.5 and 9.6, and discussed in section 9.2.1.

In figure 9.15 and figure 9.16, we show the binding energy as a function of λ, corresponding to
the interactions N3LOEM + N2LO500,L and N3LOEMN + N3LO500,NL, respectively. The bound-
state energies at different oscillator lengths behave analogously to the unbound scheme, that
is that smaller lengths, which lie higher in energy, require more binding energy in the form of
λ. In other words, this means that the threshold value λ0 must lie at larger values for smaller
aHO. Not all aHO are calculated over a wider range in the unbound regime. This is the reason
for the distinct kinks visible in figure 9.15. In figure 9.16, additionally two different (Nbin

max,nev)
are shown, which is discussed in section 9.2.5.
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Figure 9.15.: Tetraneutron binding energies close-up for different oscillator lengths near the
threshold. Interaction N3LOEM + N2LO500,L, Nbin

max= 2, nev= 1.

Considering the Padé extrapolations in figures 9.17 and 9.22 (see sections 8.4.2 and 8.5 for
the introduction of the SACCC), there are obvious differences in how one would interpret the
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Figure 9.16.: Tetraneutron binding energies close-up for three oscillator lengths near the thresh-
old, combined with different Nbin

max and nev values, see also section 9.2.5. Interac-
tion N3LOEMN + N3LO500,NL.

results depending on the oscillator length aHO. For both interactions, the aHO ≤ 2.5 fm behave
significantly different than the larger lengths regarding the Padé orders. In the case of the data
obtained from N3LOEM + N2LO500,L, in figure 9.17, the aHO = 2.0 fm fit is inconsistent in the
Padé orders. From order (2,2), the mean value jumps from a value of (ER,Γ) ≈ (7.4, 3.6) MeV
to (ER,Γ) ≈ (19.4, 9.0) MeV, and continuing in a unsystematic pattern going to higher orders.
The relatively consistent clustering of the individual extrapolations at orders (3,3) and (4,4),
together with the spread in extrapolation results in the next higher orders, indicates the limit
of the Padé approximation to describe this data set.

For the oscillator length 2.5 fm with the interaction N3LOEMN + N3LO500,NL in figure 9.22,
the Padé orders do not agree in the width, but are more moderate in their overall Padé order-
by-order behaviour, compared to the aHO = 2.0 fm case, and agree reasonably well w.r.t the
resonance position, see also table 9.12.

At oscillator lengths above 3.5 fm, the Padé orders are agreeing with each other and could be
considered broad resonances, at this specific length. Furthermore, the larger oscillator lengths
approach the experimentally proposed candidate region, indicated by the grey shaded area.
The behaviour of the resonance energy and width as a function of aHOis shown in figure 9.18.
The plot illustrates the difficulty in assessing if some form of stabilization with further in-
creasing HO length takes place. The energy and width lie on top of each other starting with
aHO = 3.5 fm, and continue to decrease. To see what limit of aHO → ∞ under the heuristic
assumption of exponential decay is, two fits are shown. The result in a range for ER of 0.86 to
0.58 MeV.

Nevertheless, the result looks significantly different from the dineutron case. Thus, even with
the uncertainty of the decreasing resonance energy and width prediction with increasing aHO,
the overall results do support the existence of a resonance. Further, under the assumption dif-
fuse system, larger HO length should be favoured. This gives an upper limit to the parameters,
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9.2. Tetraneutron: Eigenvector Binding

whereas the extrapolation to aHO → ∞ leads to a tentative lower bound. For the interaction
with eigenvector binding parameters Nbin

max = 2, nev = 1, taking the first aHOwith stable Padé
orders as upper limit, which is aHO = 3.5 fm, we find (0.58 ≤ ER ≤ 3.75 ± 0.3) MeV and
(0.5 ≤ Γ ≤ 3.6± 0.5) MeV.

2.0
3.5

10.0

Figure 9.17.: Tetraneutron statistical ACCC extrapolation results for the data sets from fig-
ure 9.15, N3LOEM + N2LO500,L interaction. 1000 subsets of 30 points, Levenberg-
Marquardt with σfit

rel = 8, mean and standard deviation not weighted. Nmax = 28,
Nbin

max = 2, nev = 1. Parametrization as in equation (8.45b). Experimental can-
didate indicated by grey box. The labels denote the first two and the last corre-
sponding aHO in fm.
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Figure 9.18.: The resonance and width as a function of aHO for the (4,4) Padé order, cor-
responding to results shown in figure 9.17. Interaction N3LOEM + N2LO500,L,
Nmax=28. The exponential fits are purely heuristic and are no prediction. One
fit is performed with given errors as weights.

9.2.4. Nmax Behaviour

The Nmax behaviour of the bound data for different binding strengths in figure 9.8 suggests
something akin to convergence at Nmax= 20. And indeed, the Nmax behaviour for the extrapo-
lation becomes more robust with increasing model space size, in the sense that the Padé orders
agree with each other.
Figure 9.19 shows the Nmax sequence of the mean values at each Padé order for the statistical
ACCC, with aHO = 3.5 fm and the interaction N3LOEMN + N3LO500,NL. The individual fits
to the subsets have been omitted for better visibility. The first two orders are robust with
increasing Nmax and change comparatively little. The orders (3,3) and above show strong
changes when going from Nmax = 10 up to Nmax = 28. With increasing Nmax, the mean values
approach each other. Though not shown, to not overload the plot, the fits are performed up
to order (6,6), which has a similar behaviour to order (5,5). From these results, we assume the
Nmax-dependence of the extrapolation not to be the dominating uncertainty, especially when
compared to the oscillator length, data point, starting values, and minimization algorithm
choice.
The good agreement already at Nmax ≈ 20 could potentially open up the use of the ACCC
to the m-scheme NCSM, both for further investigations into the tetraneutron with on-the-fly
constructed phenomenological four-body interactions to use as external binding potential, as
well as slightly heavier systems with mass number A ∼ 6.
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Figure 9.19.: Nmax sequence of the mean values of statistical ACCC. 1000 subsets out of at
least 221 total data points at Nmax = 10. Nbin

max = 0, nev = 2 , for the interaction
N3LOEMN + N3LO500,NL at aHO = 3.5 fm. The lowest three Nmax values are
labelled for identification. The dashed lines connect points of the same order to
guide the eye. Mean and standard deviation weighted with estimated fit error
variance. The grey box gives the experimental range from [KSM+16].

9.2.5. Dependence on Nbin
max and nev

In this subsection, we study the effect the choice of the binding model space size Nbin
max has on

the eigenenergy, and how it affects the fits. For some diagonalizable matrix A with normalized
eigenvectors |x〉 and eigenvalue ε, we have the relation

(A− λ |x〉〈x|) |x〉 = (ε− λ) |x〉 . (9.6)

It is to expect that calculations performed with Nbin
max very close to Nmax behave almost like a

trivial linear shift in the energy, as in equation (9.6), see section 8.3.2 for the construction of
the eigenvector binding potential. We, therefore, restrict the analysis to the smallest Nbin

max =
0, 2, 4, 6, with the two- and three-body interaction by N3LOEM + N2LO500,L. These are shown
in figure 9.20, with the corresponding minimal and maximal amount of eigenvectors nev taken
into account to achieve the binding. With increasing Nbin

max, the threshold value approaches
the linear relation, indicated by the grey line in the plots. The difference in the threshold
position λ0 between min(nev) and max(nev) for the same Nbin

max becomes more pronounced with
the growing number of total eigenvectors of the model space. The difference in the threshold
position between Nbin

max = 0 and Nbin
max = 6 is already substantial, requiring approximately half

the energy.

To illustrate the differences further, as well as to gauge the Padé extrapolation, a simple linear
and quadratic fit to all bound data points is performed and extrapolated to λ = 0, shown in
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continuum threshold

Figure 9.20.: The energy as a function of the binding parameter λ for binding model spaces
Nbin

max = 0, 2, 4, 6 and nev values of only one eigenvector and all eigenvectors
contained in the corresponding Nbin

max. The grey line is a shift by a constant as it
would be the case for Nbin

max = Nmax. The HO length is aHO = 3.5 fm, interaction
N3LOEMN + N3LO500,NL , Nmax = 28.

table 9.11. As expected, the difference between linearly and quadratically extrapolated results
become smaller and the fractions get closer to unity. Interestingly, the inclusion of all available
eigenvectors leads to less “linearity” than only taking one vector into account. However, the
bound states produced, and thus the fits, can benefit from the smooth, almost linear behaviour
as a function of λ, in the bound-state regime [SMHE17], compare also to the behaviour of the
bound-state data with an external potential, delivering similarly looking data in figure 8.2.

The majority fo fits are performed with Nbin
max = 0, 2 or 4, with either just the lowest eigenstate,

or the corresponding maximal nev = 2, 9 and 29, respectively, to remain as far as possible from
the linear shift by a constant.

Note that considerations of potentially being too close to trivial linearity are not the only
factor in the choice of how many eigenvectors to use. It is dictated first by the energy as a
function of λ behaviour above the threshold, while still in the continuum. Should the lowest
lying eigenstate in the unmodified case already undergo level crossings when binding several
energy states, then exclusively binding the lowest state would lead to a spurious extrapolated
result. Fortunately for us, as shown in figure 9.7, the state that is the lowest one at λ = 0 is
also the first to cross the threshold without level crossing and becomes the “ground state” of
the newly bound system. This allows modification with only one eigenvector.

The effect of the binding subspace on the Padé fits and extrapolation is depicted in figure 9.21,
and is easy to follow for the lowest two Padé orders (1, 1) and (2, 2). The smallest Nbin

max shows
practically no difference between the two modifications, as only two HO configurations even
exist at this level, with minimal differences in the bound-state energies. Considering larger
Nbin

max values, the extrapolated values decrease in energy ER as well as width Γ. This trend
should naturally approach the unmodified NCSM result of E ≈ 1.23 MeV at aHO = 3.5 fm for
Nbin

max = Nmax, with undetermined width. Unlike the first two orders, the higher lying orders
are difficult to assign to a clear trend, both in regards of the (Nbin

max, nev) dependence as well as
order-by-order convergence, except for the Nbin

max = 0, 2 case, where the Padé orders show the
most resemblance of order-by-order convergence, with simultaneous small dependence on the
used data points, indicated by the significantly smaller boxes around the mean values. Though
only orders up to (4,4) are shown in figure 9.21, for the sake of clarity, the orders (5,5) and
(6,6) behave as erratically for Nbin

max > 2 as the orders (3,3) and (4,4).

The closeness of the Nbin
max = 6 continuum threshold to the direct linear modification, which
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(Nbin
max , nev ) linear quadratic ∆ lin. / quad.

(0, 1) 4.499 3.855 0.644 1.167
(0, 2) 4.498 3.854 0.644 1.167
(2, 1) 3.502 3.074 0.428 1.139
(2, 9) 3.380 2.932 0.448 1.153
(4, 1) 2.831 2.550 0.281 1.11
(4,29) 2.721 2.417 0.304 1.126
(6, 1) 2.435 2.229 0.206 1.093
(6,79) 2.313 2.085 0.228 1.109

Table 9.11.: Extrapolation result for a linear and quadratic fit to zero binding strength of the
data set shown in figure 9.20. Units in MeV, around 100 points in each set.

would correspond to Nbin
max = 28, with only approximately 1 MeV difference, is disconcerting.

The effect of nev can not observed to be of great importance at these Nbin
max values.

When applying the data to the ACCC, the increased instability in the Padé orders with growing
Nbin

max is another indicator to use the smallest binding subspaces. The fact that the dependence
on the selection of input points for the fit is increased with larger Nbin

max is counter intuitive,
when expecting the data to be more linear. However, it has to be considered, that the linearity
directly in the continuum is the problem in that aspect, not necessarily in the bound states.
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(6,79)
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(0,1)
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Figure 9.21.: Statistical ACCC of the four-neutron system, for the (Nbin
max, nev) pairs (0,1), (0,2),

(2,1), (2,9), (4,1), (4,29), (6,1) and (6,79), indicated by the corresponding labels.
Only the weighted mean values are shown. Nmax=28, 1000 sets, 30 data points per
set. Levenberg-Marquardt, σfit

rel=8, with weighted mean and standard deviation.
Excluding c0, equation (8.45b). Interaction N3LOEM + N2LO500,L, aHO = 3.5 fm.
The grey lines connect each (Nbin

max, nev) pair to guide the eye.

9.2.6. Main Findings and Comparison to Other Works

We present the main findings of our investigation into the tetraneutron with the eigenvector
binding method in the form of a statistical ACCC plot, a table giving the results shown in the
plot for each Padé order, and a table comparing our results with the resonance candidate given
in reference [KSM+16], and other works which find a resonance. The SACCC is introduced in
sections 8.4.2 and 8.5.2, where the underlying fit protocols are explained.

Figure 9.22 shows our extrapolation results in the energy-width plane, of 1000 randomly chosen
sets consisting of 30 points, from a total of 270 data points, in a range of x =

√
λ− λ0 ≈ [0, 4].

The model space size is Nmax = 28. The larger dots and boxes are the mean values with
standard deviation for the 1000 ACCC extrapolation per Padé order. The interaction is
N3LOEMN + N3LO500,NL [EMN17, HVH+19]. The plot includes three different HO lengths
aHO, indicated with a label on the Padé order (N,M) = (1, 1). The eigenvector binding pa-
rameter pairs are (Nbin

max = 0, nev = 2). For details on Nbin
max and nev, see section 8.3, for the

analysis of the impact of the eigenvector binding parameters, see section 9.2.5.

The Padé orders do not appear to converge in the width at aHO = 2.5 fm. Convergence w.r.t.
the Padé order appears at aHO ≥ 3.5 fm. Even so, the resonance position ER is relatively stable
also for aHO = 2.5 fm. The Padé order (5,5) and (6,6) at aHO = 2.5 fm split up into two distinct
clusters, which leads to the larger standard deviation compared to the lower orders. To a lesser
extent, this is also the case for order (3,3), for all three aHO lengths. This is an effect of the
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parameter start value and subset dependence, indicating that different local minima exist for
different starting values, assigned by the previous lower order fit.
We find a resonance for the three presented HO lengths. The resonance parameter at Padé
order (4,4) are compared to the findings from chapter 7 and other works in table 9.13. Note
that the table only includes references where a resonance candidate is found. The complete list
of values for each Padé order are listed in table 9.12. See also the main ACCC conclusion in
section 9.4.

aHO 2.5 fm 3.5 fm 4.5 fm

Order ER [MeV] Γ [MeV] ER [MeV] Γ [MeV] ER [MeV] Γ [MeV]

(1,1) 6.68±0.07 1.66±0.07 3.71±0.05 0.63±0.03 2.49±0.04 0.29±0.02
(2,2) 6.32±0.07 3.88±0.31 3.52±0.07 2.28±0.15 2.36±0.05 1.41±0.10
(3,3) 9.06±1.07 11.79±2.97 4.38±0.23 6.09±1.35 2.46±0.05 3.96±0.56
(4,4) 9.14±0.40 11.32±1.22 4.56±0.09 6.1±0.46 2.52±0.07 3.91±0.43
(5,5) 7.53±1.84 13.92±3.33 4.26±0.30 5.93±0.25 2.59±0.07 3.65±0.33
(6,6) 6.69±1.37 17.77±3.56 4.13±0.21 5.91±0.28 2.56±0.05 3.71±0.14

Table 9.12.: Resonance parameters at each Padé order, from SACCC with standard deviation,
corresponding to data shown in figure 9.22. Results are rounded to two decimals.

Ref. ER [MeV] Γ [MeV]

[KSM+16] 0.83± 0.65± 1.25 2.6
[SPM+16] 0.8 1.4
[GHK+17] 2.1 –
[FRMP17] 7.3 3.7
[LMH+19] 2.64 2.38

Single-State HORSE 0.7 1.2
(4,4) at aHO=2.5 fm 9.14±0.40 11.32±1.22
(4,4) at aHO=3.5 fm 4.56±0.09 6.1±0.46
(4,4) at aHO=4.5 fm 2.52±0.07 3.91±0.43

Table 9.13.: Comparison of resonance parameters from other references with our work. The
presented values are approximated to be reasonably comparable. They are intended
to reflect the main findings of the respective references, without claiming to be
complete. See the original works for precise values.

Our results are partly compatible to resonance parameters found by the presented references.
However, we note this with reservation. The visible dependence on the harmonic oscillator
length, which is analysed in detail in section 9.2.3, is reason for caution in giving a defini-
tive resonance position and width. From the arguments presented section 9.2.3, we take the
aHO = 3.5 fm as an upper limit for the energy and width, we find (ER ≤ 4.56± 0.09) MeV and
(Γ ≤ 6.1± 0.46) MeV. Note that the eigenvector binding parameters are Nbin

max = 0 in this case,
compared to Nbin

max = 2 used in section 9.2.3, causing different resonance parameters at the
same HO length. Under this aspect, broader parameter studies in possible future investigations
with other methods, either those among the already presented, or not yet applied, could help
in identifying the origin of the observed differences.
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Figure 9.22.: Tetraneutron SACCC extrapolation results for the data sets from figure 9.16. HO
lengths of 2.5, 3.5, and 4.5 fm, Nmax = 28, Nbin

max = 0, nev = 2. Interaction
N3LOEMN + N3LO500,NL, 1000 subsets of 30 points, Levenberg-Marquardt algo-
rithm with σfit

rel = 8, points weighted equally for mean and standard deviation.
Parametrization as in equation (8.45b). The experimental result [KSM+16] is
given as grey boxes, corresponding to uncertainty regions (stat.), (syst.) and
(stat. + syst.).

9.3. Tetraneutron: Modification of χEFT Matrix Elements

The main goal of this work is to find out if a tetraneutron resonance exists, and if so, to
determine the resonance position and width. To apply the ACCC, we are faced with the
challenge is how to achieve binding of the system in a proper way, such that we either avoid
bound substructures or treat them correctly. In section 9.2, we constructed a quasi-external
potential in four-body space to bind the system. In this section, we modify the NN- and 3N-
interaction matrix elements to achieve binding. This means to perform the ACCC relative to
the dineutron threshold, possibly even to the trineutron threshold as well, as claimed, e.g. by
references [GHK+17, LMH+19], if bound substructures occur. However, we first only consider
the direct extrapolation as done with the dineutron, i.e.

k(λ) =

√
2m

~2
E4n, (9.7)
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as opposed to the wave number with respect to the dineutron or even trineutron threshold

k(λ) =

√
2m

~2
(E4n − E2n) (9.8)

k(λ) =

√
2m

~2
(E4n − E3n − E2n). (9.9)

The simultaneous treatment of multiple thresholds increases the uncertainty to unknown de-
grees. We do not pursue this approach within this work.

9.3.1. 2N + 3N Modification

We modify the whole interaction by multiplying all two- and three-body interaction matrix
elements with the same factor

H(λ) = T + λ

∑
i,j

Vij +
∑
i,j,k

Vijk

 , (9.10)

where Vij and Vijk are the two- and three-body matrix elements, respectively. This binds the
dineutron as well, we are, however, not taking this into account and consequently extrapolate
over the dineutron threshold.

The data sets obtained with this binding approach are shown in figure 9.23. The four depicted
HO lengths are moving apart from each other with increasing λ. This is different from the
similar comparison done for the dineutron in figure 9.1a. However, all aHO approach the
threshold at close proximity to each other, with λ0 ∼ 1.34. Note that the coupling constant is
dimensionless, unlike in the eigenvector binding case.

The value of the prefactor is in this case of special importance. In table 9.2, the value of
the dineutron threshold is determined to be λ0(2n) = 1.12096 for aHO = 2.5 fm (shifted by a
constant of ‘1’). This means that, when relaxing the binding strength, the neutron-neutron
separation threshold is reached before the “true” four-neutron channel opens up, in the sense
of the so-called democratic decay, see section 6.3. In references [DL19a, DL19b], this pro-
cedure is denied to be applicable to the tetraneutron. However, in the combination of an
external two-body potential, which also binds the dineutron, this approach is used in references
[GHK+17, GHK+19].

The Nmax sequence for an example data set with aHO = 3.0 fm in figure 9.24 depicts three
different points at constant λ, corresponding to a weakly bound, intermediately bound, and a
strongly bound state, determined at the largest available Nmax = 28. The plot shows that the
data is clearly not converged in terms of Nmax and that the larger λ or x becomes, the slower
the convergence rate is.

The energy behaviour as a function of Nmax at strong coupling constants is reason for caution.
The combination together with the extrapolation over the dineutron threshold makes the relia-
bility of obtained results questionable. An exhaustive investigation into the various parameter
dependencies is, therefore, not performed. We limit the discussion in this case to the results of
the statistical ACCC results for two different minimization algorithms.

The Padé fit and extrapolation preformed with the Levenberg-Marquardt algorithm can be
seen in figure 9.25. The Levenberg-Marquardt method does not converge when forcing the
fit through the origin by not using the c0 parameter as in equation (8.45b). We employ the
parametrization of equation (8.45a) and further compare the mean values with equal weighting
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Figure 9.23.: Comparison of four different HO lengths aHO of the total binding energy as a
function of the coupling constant. Interaction N3LOEM + N2LO500,L.

and estimated error variance. A significant dependence on the data point selection is apparent,
with the mean values lacking consistency w.r.t. the Padé orders. The weighting with the error
variance does not improve mean Padé order consistency. Judging by these values, a resonance is
not present. Especially the location of the first two orders, which are robust in the eigenvector
analysis, raise serious doubts about the applicability of the procedure.

The fit with the Newton method is performed without the c0 parameter as in equation (8.45b),
thus forcing the extrapolation through the origin in the k(λ) plane. The SACCC is shown in
figure 9.26. The spread in the extrapolated results for the different subsets is quite significant,
although with some clustering around the origin and the experimentally predicted region for
both methods shown. Similar to the results of the Levenberg-Marquardt fit, the first two orders
lie in different regions. The orders (3,3) and (4,4) cluster around the region of ER ≈ 2.5 MeV,
and the (5,5) order is left of the width-axis at negative energies.

The presented results are not clear in their interpretation. The erratic behaviour in the Padé
orders, especially the lower ones, and, e.g., the difficulties to obtain fits with otherwise successful
Levenberg-Marquardt algorithm, are at least not indicative to the existence of resonance, at
least within this binding approach, with mentioned shortcomings. On the other hand, these
finding are also not ruling out a resonance. In the discussion in section 8.5, we point out the
inadequacy of the Padé orders (1,1) and (2,2) to reproduce a known result, while still being
consistent in the subset sampling. The dineutron discussed in section 9.1, is, together with the
Levenberg-Marquardt as minimizer, consistent in order (1,1) and (2,2), and again consistent in
the higher orders. This is not the case for the matrix element modification. Together with the
worsened Nmax convergence rate for strongly bound states, we conclude the binding scheme to
be inadequate for the application of the ACCC.
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Figure 9.24.: Tetratneutron Nmax sequence for three different points, corresponding to x ≈
0.25, 1.5, 3 at Nmax = 28. On the left the absolute values, on the right the differ-
ence at each Nmax to Nmax= 28. Interaction N3LOEM + N2LO500,L α = 0.08 fm4

and aHO = 3.0 fm.

Speculatively, the clustering observed in the Padé (3,3), and partly the (4,4) order in figures 9.25
and 9.26, could correspond to the findings of [GHK+17].
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Figure 9.25.: Tetraneutron statistical ACCC for the matrix element manipulation.
Parametrized as in equation (8.45a). Nmax = 28, 1000 sets, 30 data points,
Levenberg-Marquardt method with σfit

rel = 8. In grey the experimental range from
[KSM+16].
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Figure 9.26.: Tetraneutron statistical ACCC for the matrix element modification. Parametriza-
tion as in equation (8.45b). 1000 subsets of 30 points. Newton method with
σfit

rel = 8.
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9.3.2. 2N + 3N Excluding 1S0 Partial Wave

In order to avoid binding the dineutron subsystem, we exclude the 1S0 partial wave from being
enhanced by a prefactor. The resulting extrapolations for the statistical methods with a subset
size of 1000 set can be seen in figure 9.27. The interaction is N3LOEM + N2LO500,L. The
obtained energies and width located at very large energies and widths of ER ≈ 90 MeV and
Γ ≈ 250 MeV. Contrary to the modification including the 1S0 partial wave, the Padé orders are
remarkably robust and close to each other, indeed fortifying the reasoning that the dineutron
threshold could break the applicability of the method, as presented in section 9.3.1.
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Figure 9.27.: Statistical ACCC of the four-neutron system, with increased matrix element
strength, excluding the 1S0 partial wave, which remains unmodified. Nmax=28,
1000 sets, 30 data points per set. BFGS with weighted mean and standard devi-
ation on the left, unweighted Levenberg-Marquardt on the right.

Omitting the main attractive component of the interaction, in an attempt to bind the four-
neutron system, results in a very different trajectory in the S-matrix pole that we are actually
tracking with the ACCC. Obtaining a bound system in this case requires very strong modifi-
cations in the interaction, and could lead to any number of unforeseen effects. In light of these
findings, the modification of only three-body matrix elements should fare no better to obtain
an artificially bound tetraneutron which gives clear, indicative results from the performed fit.
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9.4. Tetraneutron Conclusion

The results presented here lead us to the following conclusions: Firstly, the use of the analytic
continuation in the coupling constant is achieved with data obtained from a configuration-
interaction type many-body method. The relative coordinate implementation of the No-Core
Shell Model, the Jacobi-NCSM, reaches large enough model spaces to guarantee sufficient Nmax

convergence, at least when using pseudo-external potentials. This is clearly not the case for the
direct matrix element modification, where strongly bound states exhibited markedly different
convergence than the weaker bound states.

Secondly, our main findings, presented in figure 9.22 and compared with other works in ta-
ble 9.13, support the existence of a tetraneutron resonance. The eigenvector binding, as addi-
tional potential, was successfully applied to bind a system to perform the ACCC. Due to the
construction, it acts only in four-body space, and, therefore, does not bind the di- and trineu-
tron. The approach has the deficiency of not being independent of the additional potential,
making the results model dependent. This is apparent by the strong variation in the obtained
values of the resonance position and width as the HO length aHO increases. However, under the
assumption of a diffuse system, which thus requires a minimal aHO to be sufficiently contained
within the HO, we arrive at approximate values for an upper limit. Given by the stabilization
in the Padé orders at aHO = 3.5 fm, we determine this to be the minimal aHO. Further, by the
behaviour for aHO →∞ obtained from the heuristic fits shown in figure 9.18, we observe a res-
onance in the possible range of (0.56 ≤ ER ≤ 4.56±0.09) MeV and (0.5 ≤ Γ ≤ 6.1±0.46) MeV.
Secondly, the direct modification of all interaction matrix elements to achieve binding does not
support a resonance, judging by the statistical ACCC calculations we performed, however, this
is primarily due to its erratic behaviour in the fits, suggesting an inadequate binding method,
considering the extrapolation through the dineutron threshold.

Thirdly, the approach of leaving the 1S0 partial wave untouched, the main carrier of internuclear
attraction, as well as being responsible to bind the dineutron, while increasing the strength of
the other partial waves, is not in favour of a tetraneutron resonance. The obtained fits were
stable in the Padé orders, but returned values in the order of 90 MeV for the resonance energy
and 250 MeV for the width.

The favourable existence of a resonance, potentially a very broad one, is contradicting to
previous works employing the ACCC to study the four-neutron system, which came to the
conclusion that a resonance does not exist [LC05].
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10. Summary and Outlook

The inclusion of continuum degrees of freedom into ab initio nuclear structure calculations is a
crucial, yet challenging task. They are an indispensable ingredient for the accurate treatment
of nuclear structure and the connection to experiments performed at the extremes of low en-
ergy scattering. The development of truly unified ab initio approach for treating bound and
scattering states on equal footing is an ongoing effort in the community. One special aspect of
scattering physics are resonances. Their existence has important influence on the formation of
other systems throughout the nuclear chart, so their determination is of vital importance. One
such resonance, whose existence is the focus of current research, is the tetraneutron. It was
the aim of this work to combine the bound-state method of the NCSM and advanced χEFT
interactions, together with approaches that give access to continuum physics and resonance
parameters, and investigate their application to the tetraneutron. The methods to achieve this
presented in this work were the Harmonic Oscillator Representation of Scattering Equations
and the Analytic Continuation in the Coupling Constant.

We have introduced the HORSE method and its variation, the Single-State HORSE. With this
method, we calculated phase shifts in the so-called democratic decay approximation, meaning
we assumed true four-particle to four-particle scattering, which was done in a hyperspherical
framework. This work was a continuation of the already published Single-State HORSE tetra-
neutron investigation of Shirokov et al. [SPM+16]. We employed an array of advanced χEFT
interactions, with different SRG flow parameters, compared them to a bare interaction, as well
as to the inverse scattering potentials JISP16 and DAEJEON16. All this was done in large
model spaces of Nmax ≥ 26. The resulting phase shifts are characteristic for resonances with
noticeable background contribution, if one applies the two-body scattering interpretation of
phase shifts. They clearly passed the 90◦ with increasing energy, and went up to almost 110◦.
We demonstrated a remarkably robust behaviour in the phase shifts with respect to different
interaction families and SRG parameters. This was not guaranteed, as the calculations are
performed in the NCSM pseudo-continuum, potentially allowing for larger differences between
the different interactions than it would be the case in a bound-state calculation. While the
SRG-evolved interaction showed convergence in the phase shifts at higher energies, there was
room for improvement at lower energies. We showed that the bare interaction was far from
convergence, even at large model spaces of Nmax = 30. We determined an approximate reso-
nance position with the inflection point criterion and the width via the Breit-Wigner formula,
and obtained values of ER ≈ 0.7 MeV, and a width of Γ ≈ 1.4 MeV.

We also introduced the groundwork for obtaining the hyperspherical basis needed for the cal-
culation of the full HORSE Green’s function within the framework of the Jacobi-NCSM.

In an alternative approach to obtain resonance parameters, we introduced the Analytic Contin-
uation in the Coupling Constant, which makes resonances on the complex k-plane accessible.
The biggest challenge in combining the ACCC with the NCSM is finding a binding mechanism,
which does not bind substructures, to avoid further complications and uncertainties, and at the
same time is compatible with the symmetries of the relative-coordinate many-body basis. To
that end, we introduced a binding scheme, that constructs an additional binding potential from
eigenvectors of a smaller model space. This is done in four-body space, and thus does not bind

137



10. Summary and Outlook

two- and three-body subsystems. As a second approach to achieve binding, motivated by other
publications, we modified the interaction matrix elements, increasing the binding via a prefac-
tor. Further, we introduced the statistical ACCC to absorb data selection dependencies and fit
effects in a large set of randomly chosen subsets of the initially generated eigenenergies. Applied
to the non-resonant system of the dineutron, we made sure not to artificially create resonances
with the eigenvector binding, which was indeed not the case, for both binding approaches. We
studied the effect of eigenvector binding in the tetraneutron, performing a parameter study in
the HO length parameter aHO, model space size Nmax, the binding model space size Nbin

max and
number of eigenvectors nev considered, the minimization algorithm, and start parameter value
dependence. All parameters influenced the ACCC extrapolation within varying degrees, with
the exception of Nmax, which showed proper convergence and almost independent end results
for Nmax ≥ 20. The ACCC results support the existence of a resonance. However, the binding
potential is aHO dependent, so the extrapolations are as well. We obtained different parameters
for different aHO, giving resonance positions in a wide range.
By the arguments presented in sections 9.2.3 and 9.4, we arrived at a range for the resonance
energy and width of (0.56 ≤ ER ≤ 4.56± 0.09) MeV and (0.5 ≤ Γ ≤ 6.1± 0.46) MeV.
The modification of all interaction matrix elements delivered a different result. No clear re-
lation between the Padé orders emerged, and difficulties in fitting consistently indicated that
the ACCC is not applicable. In this binding scheme, weakening the modification still binds
the dineutron after the four-neutron system becomes unbound. This was presented as possible
origin of the observed inconsistencies. The omission of the 1S0 partial wave in the modification
delivered more stable fits with less data point dependence, relative to the complete matrix
element modification and the magnitude of the obtained values. These were extremely large,
with resonance energies of the order of 90 MeV and widths of order 250 MeV, incompatible
with observable resonances, and indicative that the modification of all matrix elements, and
binding the dineutron, is indeed problematic. The large values raise the question about validity
of modifying higher partial waves and the possibility to infer physical results from these ACCC
extrapolations.

The HORSE method has yet a few interesting applications, where we laid the path for future
investigation of the scattering S-matrix, calculated from the complete HORSE Green’s function
in the Jacobi-NCSM.
And exciting prospect, and important test to the eigenvector binding, is the use of a many-
body potential not directly linked to the initial Hamiltonian, which would correspond to a
phenomenological potential of simple and finite shape, expanded in the NCSM basis. Phe-
nomenological four-body potentials, which can be calculated on-the-fly, are currently being
implemented, albeit for the m-scheme NCSM. The inclusion of such a scheme into the Jacobi-
NCSM is unfortunately no simple task. However, the presented results at a model space size of
Nmax = 20 were already promising in the convergence of the extrapolations, meaning that also
the m-scheme NCSM might be viable for the ACCC, and maybe even A = 5 systems could
be investigated, if the model space size can be reached. Limiting factor is the computational
feasibility and cost. Using the Importance-Truncated NCSM for the ACCC might be possible
and raises an interesting question regarding the interplay of an importance-truncated basis and
the behaviour of the S-matrix poles. Future development in the NCGSM and its application to
the tetraneutron will hopefully be able to shed further light onto the existence of a tetraneutron
resonance.
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A. Properties of Padé approximants

The following properties of Padé approximants are taken from the references [BGM96, Bak12,
KKH89]. We present a very restricted selection of the most important features. For proofs,
further properties and generally much more information, we refer to the above references.

Let f(z) be a function representable as power series

f(z) =

∞∑
j0

fjx
j . (A.1)

The Padé approximant of the function f(z) is given as a rational fractional of two polynomials

f [N,M ](z) =
PN (z)

QM (z)
= f(z) +O(zN+M+1). (A.2)

One can differentiate between three types of Padé approximants:

I. The coefficient coincide with the coefficients of the Taylor series in equation (A.1) of order
N +M + 1

II. The values at N +M + 1 points of f(zi) coincide

III. The function values are given at K > N + M + 1 points with errors {εi}. This is also
referred to as statistical Padé.

The are consequently referred to as type I, type II and type III Padé approximants.

Invariance under conformal transformation of the argument
A transformation of the argument of the function f(z)

z =
az′

1 + bz′
(A.3)

does not change the diagonal Padé approximants

f [N,N ](z) = f [N,N ]

(
az′

1 + bz′

)
= g[N,N ](z′) (A.4)

Unitarity:
The diagonal Padé approximant fulfils the unitarity relation of the partial wave scattering
matrix S`(z)S

∗
` (z∗) = 1

(f∗(z∗))[N,M ] = (f [N,M ](z∗))∗ (A.5)

Convergence:
The convergence of the Padé approximants in the region of z ∈ D

f(z) = lim
N→∞

lim
M→∞

f [N,N ](z) (A.6)

is conjectured for the general case. Some proofs exist for meromorphic functions.
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B. Special Functions

A comprehensive list special functions is collected in the Digital Library of Mathematical Func-
tions (DLMF) [DLM14], the official successor to the handbook by Abramowitz and Stegun
[AS64]. We list special functions used in this work in the following.

B.1. Hypergeometric Function

For |z| < 1, the hypergeometric function is defined as

2F1(a; b; z) =
∞∑
n=0

a(n)b(n)

c(n)

zn

n!
, (B.1)

with the rising factorial (≡ Pochhammer symbol)1

q(n) =

{
1 for n = 0∏n
k=1(q + k − 1) = q(q + 1)...(q + n− 1) for n > 0

. (B.2)

B.2. Confluent Hypergeometric Function

M(a, c, z) =
∞∑
n=0

a(n)zn

c(n)n!
= 1F1(a; c; z) (B.3)

= lim
b→∞

2F1(a; b; c; z/b). (B.4)

a(n) as in eq. (B.2).

B.3. Laguerre Polynomials

Ln(x) =
n∑
k=0

((−1)k)/(k!)(n; k)xk. (B.5)

Rodriguez representation

Ln(x) =
ex

n!

dn

dxn
(
e−xxn

)
=

1

n!

(
d

dx
− 1

)n
xn. (B.6)

Lkn(x) =
exx−k

n!

dn

dxn
(e−xxn+k) (B.7)

=

n∑
m=0

(−1)m
(n+ k)!

(n−m)!(k +m)!m!
xm. (B.8)

1the falling factorial will be denoted here as (q)n
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B.4. Hermite Polynomials

B.4. Hermite Polynomials

Connection with Laguerre polynomials

H2n(x) = (−4)n n!L
(− 1

2
)

n (x2) = 4n n!
n∑
i=0

(−1)n−i
(
n− 1

2

n− i

)
x2i

i!
. (B.9)

B.5. Coulomb Function

B.5.1. Coulomb Wave Functions With Complex Arguments

The dimensionless Coulomb-Schrödinger equation reads

w′′(z)−
(
l(l + 1)

z2
− 2η

z
+ 1

)
w(z) = 0. (B.10)

Regular solution, the regular Coulomb Wave Functions (CWF)

Fl,η(z) = Cl(η)zl+1e±iz 1F1(1 + l ± iη; 2l + 2;∓2iz) (B.11)

Cl(η) = 2l exp

[
1

2

{
− πη +

(
ln Γ(1 + l + iη)

)
+ ln

(
Γ(1 + l − iη)

)}
− ln

(
Γ(2l + 2)

)]
. (B.12)

Here, 1F1 is the Kummer confluent hyper-geometric function, Cl the normalizing Gamow
factor.

� For real parameters, Coulomb functions (CWF) vary over wide range with moderately
varying |η|

� CWF are multivalued for complex z. This means branch cuts must be imposed on the
negative real z-axis ⇒ no straightforward implementation of complex variables.

� In the past, some cases were impossible to calculate numerically. Among these were

– Whittaker functions with η purely imaginary.

– CWF close to imaginary axis for large modulus of η or Im(l).

– Direct calculation of H±l,η(z) for Re(z) < 0 and ±Im(z) < 0 impossible.
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C. Phase Shift Nmax Sequences of Interactions
Used in the Single-State HORSE Analysis

Here we show the Nmax sequences of the phase shifts of the various interactions only shown in
the summarising plot figure 7.1, at Nmax = 26.
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Figure C.1.: Tetraneutron phase shift as function of the energy. Interaction N3LOEM +
N2LO400,L SRG evolved with α = 0.08 fm4.
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Figure C.2.: Tetraneutron phase shift. Interaction N2LOEMN SRG evolved with α = 0.08 fm4.
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Figure C.3.: Tetraneutron phase shift. Interaction N3LOEMN SRG evolved with α = 0.08 fm4.
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C. Phase Shift Nmax Sequences of Interactions Used in the Single-State HORSE Analysis
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Figure C.4.: Tetraneutron phase shift. Interaction N4LOEMN SRG evolved with α = 0.08 fm4.
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Figure C.5.: Tetraneutron phase shift. Interaction N3LOEM + induced 3N SRG evolved with
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Figure C.6.: Tetraneutron phase shift. Interaction N2LOSAT SRG evolved with α = 0.08 fm4.
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Figure C.7.: Tetraneutron phase shift. Interaction DAEJEON16.
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D. Alternative Derivation of Low-Energy
Behaviour of k(λ)

The derivation given in [KKH89] uses the Hellmann-Feynman Theorem. Starting with the
Schrödinger equation (

− d2

dr2
+
`(`+ 1)

r2
+ λ

2µ

~2
V (r)− k2

)
ψλ,`(k, r) = 0, (D.1)

where ψλ(k, r) is the bound-state eigenfunction at some λ. We use the Hellmann-Feymann
theorem

∂E`
∂λ

=
~2k`(λ)

µ

∂k`(λ)

∂λ
=
〈ψλ|V |ψλ〉
〈ψλ|ψλ〉

. (D.2)

Assuming the potential to be of finite range, being negligable after point R, we get

~2k`(λ)

µ

∂k`(λ)

∂λ
=

∫ R

0
dr |ψλ(k, r)|2 V (r)∫ R

0
dr |ψλ(k, r)|2 +

∫ ∞
R

dr |ψλ(k, r)|2
, (D.3)

The configuration space separation allows us to consider two distinct analytic functions with
known properties. In the region [r,R] we find

ψλ,`(k, r) = c1 (kr)`+1
∞∑
i=0

ai (kr)2i. (D.4)

The region [R,∞[ gives
ψλ,`(k, r) = c2 k

`+2K`(ikr), (D.5)

where K`(ikr) is the modified Bessel function of the second kind [DLM14]. We distinguish
between the ` = 0 and the ` 6= 0 case. For ` = 0 we find

~2k0(λ)

µ

∂k0(λ)

∂λ
= k0

∞∑
j=0

dj k
2j
0

∞∑
j=0

fj k
j
0

, (D.6)

the coefficients are radial integrals. For ` 6= 0, the result reads

~2k`(λ)

µ

∂k`(λ)

∂λ
=

∞∑
j=0

gj k
2j
`

`−1∑
j=0

hj k
2j
` +

∞∑
j=2k

qj k
j−1
`

(D.7)
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Only taking the leading terms, one arrives at the same conclusion for k(λ) as given in section 8.1,

k0(λ) ∼ (λ− λ̄0) (D.8)

with k0(λ̄0) = 0. For ` 6= 0, we have

k`(λ) = ±c
√
λ− λ0 (D.9)

with some constant c.
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E. ACCC Fits to Fixed Data Sets

To gauge the impact of the different threshold values, different data sets as well as the effect
the algorithm has on the fit, we perform for each λ0 from the IACCC the corresponding ACCC
with the same algorithm as is used in the IACCC, with one exception for the data set C and the
Levenberg-Marquardt algorithm, where we used the λ0 values obtain from the BFGS method.
These plots show the S-matrix pole trajectories in the complex k-plane. How to read this plot
is shown in figure 8.4. On the positive imaginary axis lie the bound states which are fitted.
The fit is then extrapolated into the fourth quadrant, with λ = 0 corresponding to the end
of the line. Shown in each figure are the ACCC fits with the λ0 from the IACCC with the
corresponding order given in the lower left corner of each window.
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Figure E.1.: Tetraneutron S-matrix pole trajectories. Data set A, λ0 determination and fit
performed with Quasi-Newton BFGS. Nmax = 28, aHO = 2.5 fm. The grey dashed
line is the angle bisector.
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E. ACCC Fits to Fixed Data Sets
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Figure E.2.: Tetraneutron S-matrix pole trajectories. Data set A, λ0 determination and fit
performed with Levenberg-Marquardt. Nmax = 28, aHO = 2.5 fm.
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Figure E.3.: Tetraneutron S-matrix pole trajectories. Data set C, λ0 determination and fit
performed with Quasi-Newton BFGS. Nmax = 28, aHO = 2.5 fm.
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E. ACCC Fits to Fixed Data Sets
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Figure E.4.: Tetraneutron S-matrix pole trajectories. Data set C, λ0 from result with Quasi-
Newton BFGS and fit performed with Levenberg-Marquardt. Nmax = 28, aHO =
2.5 fm.
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Cambridge University Press, 1996, doi: 10.1017/cbo9780511530074.

[Bin10] Sven Binder. Angular Momentum Projection and Three-Body Forces in the No-
Core Shell Model. Master’s thesis, Technische Universität Darmstadt, 2010.

[BKS03] S.K. Bogner, T.T.S. Kuo, and A. Schwenk. Model-independent low momentum
nucleon interaction from phase shift equivalence. Physics Reports, 386(1):1–27,
2003, doi: 10.1016/j.physrep.2003.07.001.

[BLCR14] Sven Binder, Joachim Langhammer, Angelo Calci, and Robert Roth. Ab-
initio Path to Heavy Nuclei. Physics Letters B, 736:119–123, 2014,
doi: 10.1016/j.physletb.2014.07.010.

155

http://dx.doi.org/10.1016/0550-3213(67)90016-8
http://dx.doi.org/10.1103/physrevc.68.034313
http://dx.doi.org/10.1016/c2009-0-30629-7
http://dx.doi.org/10.1007/978-1-4020-6073-1
http://dx.doi.org/10.4249/scholarpedia.9756
http://dx.doi.org/10.1016/0375-9474(68)90593-9
http://dx.doi.org/10.1103/physrevc.75.061001
http://dx.doi.org/10.1103/physrevc.75.061001
http://dx.doi.org/10.1016/0375-9474(77)90287-1
http://dx.doi.org/10.1016/0375-9474(77)90287-1
http://dx.doi.org/10.1017/cbo9780511530074
http://dx.doi.org/10.1016/j.physrep.2003.07.001
http://dx.doi.org/10.1016/j.physletb.2014.07.010


Bibliography

[BLO00] Nir Barnea, Winfried Leidemann, and Giuseppina Orlandini. State dependent
effective interaction for the hyperspherical formalism. Physical Review C, 61(5),
2000, doi: 10.1103/physrevc.61.054001.

[BMS+00] J.M. Bang, A.I. Mazur, A.M. Shirokov, Yu.F. Smirnov, and S.A. Zaytsev. P-
Matrix and J-Matrix Approaches: Coulomb Asymptotics in the Harmonic Os-
cillator Representation of Scattering Theory. Annals of Physics, 280(2):299–335,
2000, doi: 10.1006/aphy.1999.5992.
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