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ABSTRACT

In recent years many-body perturbation theory encountered a renaissance in the field of ab
initio nuclear structure theory. In various applications it was shown that perturbation theory,
including novel flavors of it, constitutes a useful tool to describe atomic nuclei, either as a
full-fledged many-body approach or as an auxiliary method to support more sophisticated non-
perturbative many-body schemes. In this work the current status of many-body perturbation
theory in the field of nuclear structure is discussed and novel results are provided that
highlight its power as a efficient and yet accurate (pre-processing) approach to systematically
investigate medium-mass nuclei. Eventually a new generation of chiral nuclear Hamiltonians is
benchmarked using several state-of-the-art flavours of many-body perturbation theory.
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1 INTRODUCTION

A major goal of quantum many-body theory is to provide accurate solutions of the stationary Schrödinger
equation

H|ΨA
k 〉 = EA

k |ΨA
k 〉 (1)

for a given input Hamiltonian H , where |ΨA
k 〉 denotes the k-th eigenstate of the A-body system with

eigenvalue EA
k . As for the study of the atomic nucleus at low energy, the starting point is a realistic

Hamiltonian arising from the modeling of the strong interaction

H = T + V +W + ... , (2)
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in terms of nucleonic degrees of freedom. In Eq. (2), T denotes the intrinsic kinetic energy, V

the two-nucleon (2N) potential, W the three-nucleon (3N) potential and so on. Nowadays, high-
precision Hamiltonians are systematically constructed within the framework of chiral effective field theory
(χEFT) [1, 2, 3, 4, 5, 6]. Earlier on, more phenomenological models were employed that fitted a somewhat
ad hoc parametrization to reproduce few-body observables, e.g. 2N scattering data. Examples of such
potentials are the Argonne [7] or Bonn [8] potentials. It was recognized in various many-body studies
that the inclusion of three-nucleon interactions is mandatory to reproduce nuclear phenomenology, e.g.,
nuclear saturation properties or the correct prediction of the oxygen neutron dripline [9, 10]. The relevance
of three-nucleon interactions constitutes a key difference from other fields of many-body research like
atomic physics, molecular structure, or solid-state physics, and poses significant challenges.

Over the past two decades, the range of applicability of ab initio nuclear many-body theory has been
extended significantly. While 20 years ago first-principle solutions of the quantum many-body problem
were restricted to nuclei lighter than A ≈ 12, formal and computational developments have made
it possible to investigate a much wider range of masses. Initially, the ab initio treatment employed
mostly large-scale diagonalization methods like the no-core shell model (NCSM) [11, 12, 13], or
quantum Monte Carlo (QMC) [14, 15, 16, 17] techniques. In addition, the few-body (A = 3, 4)
solution could be constructed using the Fadeev approach or its Fadeev-Yakubowski extension [18, 19].
A major breakthrough occurred in the early 2000s when the re-import of so-called expansion methods
from quantum chemistry provided systematically improvable many-body approximations for medium-
mass closed-shell systems up to 132Sn. In such approaches an initial guess for the exact wave function
is taken as a reference state and corrections to this starting point are constructed through a chosen
expansion scheme. Initially, this was done within the framework of self-consistent Green’s function
(SCGF) [20, 21, 22, 23, 24, 25] and coupled cluster (CC) [26, 27, 28, 29, 30, 31] theories that
had proven to be extremely efficient at grasping dynamical correlations in electronic systems. Later
on, the same strategy was transferred to other many-body expansion methods such as many-body
perturbation theory (MBPT) [32, 33, 34, 35, 36, 37], in-medium similarity renormalization group
(IMSRG) [38, 39, 10, 40, 41, 42, 43, 44] or the unitary model operator approach (UMOA) [45, 46].
All of these methods provide a consistent description of ground-state energies of closed-shell mid-mass
nuclei even though the rationales behind their expansions are not trivially related to one another. For sure,
this consistency is a remarkable sign of success for ab initio nuclear many-body theory.

While closed-shell systems, dominated by so-called dynamical correlations, transparently allow for the
use of single-reference techniques, the extension to open-shell systems requires a different strategy due to
the degeneracy of single Slater-determinant reference states with respect to elementary excitations. Open-
shell systems located in the vicinity of shell closures can be targeted via equation-of-motion (EOM)
techniques where one or two nucleons are attached to the correlated ground state of a closed-shell
nucleus [47, 48]. In nuclear systems, however, the strong coupling between spin and orbital angular
momenta is such that long sequences of nuclei with open-shell character arise as the mass increases.
Consequently, EOM approaches do not provide a viable option to tackle most of the open-shell systems
that differ from closed-shell ones by more than one or two mass units. Two different routes have been
followed in recent years to overcome this difficulty: i) the construction of ab initio-rooted valence-space
(VS) interactions used in a subsequent shell-model diagonalization and ii) the use of correlated reference
states capturing so-called static correlations and thus lifting from the outset the degeneracy with respect
to elementary excitations. The design of VS interactions has been performed in various frameworks,
going from simple low-order MBPT approaches [49] to more advanced non-perturbative schemes like
IMSRG [39, 44] or CC [30]. While the design of the effective interaction can be performed at low
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polynomial cost, the final diagonalization, even though taking place in a limited valence space, still
exhibits factorial scaling in the number of active nucleons pointing to the hybrid scaling of the approach.

In this article, the construction of VS interactions is not discussed and the focus is rather on the
alternative strategy to overcome the limitations of single Slater-determinant-based expansions via the
use of more general reference states. Reference states handling the bulk of static correlations from the
outset re-introduce an energy gap in open-shell systems such that expanding the exact ground-state via
elementary excitations of the reference state becomes well-defined again. In practice, this is done by
resorting to either a multi-determinantal reference state or to a single symmetry-broken determinantal
reference state. In an ab initio spirit, this was first done within the frame of SCGF theory, i.e. through the
Gorkov extension of SCGF (GSCGF) [50] formulated on the basis of a Hartree-Fock-Bogoliubov (HFB)
reference state breaking U(1) global-gauge symmetry associated with particle number conservation. Soon
after, a multi-reference version of IMSRG (MR-IMSRG) was designed based on a particle-number-
projected HFB state [51]. Around 2013, these two methods provided the first ab initio description of
arbitrary mid-mass singly open-shell nuclei. Later on, expansion methods were merged with configuration
interaction (CI) technology by using reference states from a prior NCSM calculation performed in a
model space of limited size. In this way, one can systematically improve the many-body solution, either
by increasing the size of the reference space or by relaxing the truncation of the many-body expansion.
Within the framework of perturbative approaches this strategy yields multi-configurational perturbation
theory (MCPT) [36] whereas for IMSRG it leads to the introduction of the in-medium no-core shell model
(IM-NCSM) [52].

More recently, the use of particle-number-breaking reference states has been exploited in MBPT and CC
theory, thus giving rise to Bogoliubov MBPT (BMBPT) and Bogoliubov CC (BCC). While BCC has only
undergone proof-of-principle applications in limited model spaces so far [53], BMBPT has been applied
successfully in large-scale applications up to medium-heavy isotopic chains [37]. Next, the additional or
alternative breaking of SU(2) rotational symmetry associated with angular-momentum conservation will
provide a systematic access to doubly open-shell nuclei [54]. While intensive efforts are already dedicated
to this extension, no systematic result are available yet.

Whenever using a symmetry-broken reference state, an additional step must be envisioned to account
for the quantum fluctuations eventually responsible for the lifting of the fictitious degeneracy associated
with the broken symmetry. Indeed, the latter is only emergent in finite systems [55, 56, 57] such
that it is mandatory to restore good symmetry quantum numbers. Doing so does not only change
the energy (dramatically in certain situations) but also allows for the proper handling of transition
operators characterized by symmetry selection rules. The formalism to achieve this step was proposed
recently [54, 58, 59], but only applied to a schematic solvable model so far in the nuclear context [60]
and will thus not be covered in the present article. Another topic of importance not presently covered
relates to the benefit of applying so-called resummation methods to the Taylor expansion associated with
perturbation theory. While traditional methods such as Padé resummation [61, 32, 33] can typically be
employed with success, the newly formulated eigenvector continuation method [62, 63] was recently
applied successfully to BMBPT [64] and show great promises for the future. Last but not least, and since
the present document focuses on finite nuclei, the recent efforts made to describe nuclear matter, at zero
and finite temperature, on the basis of MBPT are not discussed [65, 66, 67, 68].

Eventually, the objective of the present article is to describe the on-going revival of MBPT, both in
its basic form and in some of its novel extensions, to describe finite closed-shell and open-shell nuclei.
Furthermore, the goal is to demonstrate how MBPT complement non-perturbative methods in two ways,
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i.e. (i) it can act as an inexpensive pre-processing method to accelerate non-perturbative techniques and
(ii) as a post-processing tool to further improve upon non-perturbative many-body approaches.

The present document is structured as follows. Before actually coming to perturbation theory, its
possible sources of breakdown are discussed in Sec. 2. The nuclear Hamiltonian and softening techniques
are introduced in Sec. 3. In Sec. 4, formal perturbation theory is laid out. Section 5 is then dedicated
to the standard Slater-determinant-based MBPT applicable to closed-shell systems. Multi-configurational
perturbation theory and Bogoliubov many-body perturbation theory are discussed as open-shell extensions
in Secs. 6 and 7, respectively. In the next two sections, MBPT is employed as a cheap and efficient pre-
processing tool for non-perturbative many-body methods. In Sec. 8 MBPT is used to pre-select important
configurations, i.e. as a data compression tool, in a non-perturbative calculation whereas in Sec. 9 it
is used to pre-optimize single-particle states, thus accelerating the convergence of the non-perturbative
calculation with respect to the one-body basis dimension. In Sec. 10, MBPT is eventually employed as an
inexpensive method to provide systematic tests of a newly designed family of χEFT nuclear Hamiltonians
over a large set of nuclei. Conclusions and outlooks are provided in Sec. 11.

2 PERTURBATIVE VERSUS NON-PERTURBATIVE PROBLEM

Before actually discussing MBPT, it is useful to consider the possible reasons for the failure of expansion
methods. With these considerations at hand, various MBPT flavors can be better understood based on
the interplay between the symmetries characterizing the reference state around which the exact eigenstate
is expanded, its single- or multi-determinantal character as well as the resolution scale of the employed
Hamiltonian.

2.1 Rationale

It has often been argued in the past that the nuclear many-body problem is ”intrinsically non-
perturbative” such that MBPT is bound to fail to describe correlations between nucleons. The statement
is, in such generality, not true and the strong disfavour against MBPT techniques is, to a large extent,
based on historically grown bias.

It is crucial to understand the basic fact that the ’(non-)perturbative’ character of a system characterized
by a Hamiltonian H has no meaning in absolute and can only be stated with respect to a chosen starting
point. This notion relates, at least implicitly, to an ’unperturbed problem’, defined through an unperturbed
Hamiltonian H0 and its associated eigenstates, with respect to which the targeted solution is meant to be
expanded. If the expansion can be written as a converging powers series in H1 ≡ H − H0, the problem
is perturbative. Consequently, the more optimized H0, the better the chances for the problem of actual
interest to be made perturbative. For example, taking free particles as a reference point1, the description
of any bound state can only be non perturbative with respect to it. However, more optimized choices of
H0, making the description, perturbative might be accessible.

The critical point really resides in the cost required to find an appropriateH0 and its exact eigensolutions,
i.e., if the cost to do so is similar to the one needed to employ a non-perturbative method, the perturbation
theory built on top of it is not so appealing. In the end, the question is rather: can one find H0 and solve
for its eigenstates at a moderate cost such that the eigenstates of H are obtained from them through a
converging power series in H1 ≡ H − H0? While success is certainly not guaranteed in general, the
search for an optimal, yet simple enough, H0 must be performed in the most open-minded way. Typically,

1 The unperturbed Hamiltonian H0 sums individual kinetic energies in this case.
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Figure 1. Schematic matrix representation of the residual nuclear two-body interaction at play in
perturbation theory. The size of the matrix elements is proportional to the darkness of the pixel while the
red (blue) color indicate schematically a negative (positive) sign. In the present case, typically associated
to MBPT on top of a closed-shell Slater determinant, the IR (UV) couplings translate into large negative
(positive) matrix elements between pairs of unoccupied and occupied states near the Fermi level (between
any pairs of occupied and highly excited virtual states).

the statement that the nuclear many-body problem is ”intrinsically non-perturbative” has been based on
too restrictive assumptions of what H0 is allowed to be.

2.2 Ultra-violet and infra-red divergences

Whether a perturbative approach is viable or not certainly depends on the nature of the Hamiltonian, i.e.,
on the nature of the elementary degrees of freedom at play and of their interactions. As a matter of fact,
two characteristics of the 2N interaction make the many-body problem hard to solve, e.g., possibly non-
perturbative. The first one relates to the strong short-range central and tensor-forces between the nucleons
inducing strong correlations in the ultra-violet (UV) regime. The second one relates to the large scattering
lengths associated with the existence of a weakly bound proton-neutron state and of a virtual di-neutron
state, which induce strong many-body correlations in the infra-red (IR) regime. These characteristics
induce typical patterns, i.e., large matrix elements, of the residual interaction as schematically depicted
in Fig. 1: the upper-left corner corresponds to nuclear matrix elements between high-lying occupied and
low-lying virtual states, i.e. to physics around the Fermi surface. Those matrix elements involve strong
attractive IR couplings that fall off when moving further away from the Fermi surface. Complementary,
repulsive UV couplings become more prominent if energetically higher virtual states are considered,
independently of the particular pair of occupied states they interact with.

The potential occurrence of a UV-driven divergence is not nucleus specific and concerns all expansion
methods, not just MBPT. Still, specific non-perturbative expansions may, at a given truncation order,
resum a specific infinite subset of perturbation theory contributions that appropriately handles the
divergence driven by the large UV couplings displayed in Fig. 1. In the end, a pure power series in H1 is
certainly the most sensitive expansion to strong low-to-high momentum couplings in the Hamiltonian that
typically make the series to diverge after a few reasonable low-order contributions. It happens, however,
that UV-driven divergences can be tamed to a large extent via a pre-processing of the Hamiltonian through
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Figure 2. Top panel: Schematic representation of neutron or proton energy shells and associated
occupations corresponding to a two-particle/two-hole excitation on top of the reference Slater determinant,
i.e. the ground state of H0, appropriate to a 16O-like nucleus (N=Z=8). The last occupied shell in the
reference state is the Fermi level and its energy separation to the first empty level is denoted as ∆EF. Left:
closed-shell nucleus for which the number of nucleons is such that (i) the Fermi level is fully occupied
and (ii) ∆EF � 0. Center: sub-closed shell nucleus for which the number of nucleons is such that (i) the
Fermi level is fully occupied and (ii) ∆EF is small. Right: open-shell nucleus for which the number of
nucleons is such that the Fermi level is only partly occupied such that ∆EF = 0.
Bottom panel: Emergence of an infra-red divergence in the MBPT expansion of the ground-state energy
of 16O induced by a step-wise reduction (going from blue, to yellow, to green, to purple and to red) of the
size of the particle-hole gap in the spectrum of H0.

renormalization group transformations. These transformations are briefly introduced in Sec. 3.2 and their
consequences on the MBPT expansion is illustrated in Sec. 5.6.2.

The potential occurrence of a IR-driven divergence is nucleus specific but concerns all expansion
methods, not just MBPT. Infra-red-driven divergences occur whenever the A-body unperturbed reference
state, i.e. the ground state of H0, is (nearly) degenerate with respect to elementary, e.g. particle-hole,
excitations. Considering a standard Slater-determinant reference state, and as illustrated in the top panel
of Fig. 2, this situation occurs whenever the number of constituents is such that the highest occupied shell
is only partially filled (is too close to the first empty shell), thus defining so-called open-shell (closed-
sub-shell) nuclei. Combined with large IR matrix elements (see Fig. 1), this cancellation (reduction) of
the particle-hole gap makes the perturbative expansion (nearly) singular from the outset such that even
the few first terms (e.g. Eq. (45)) are not well behaved. A numerical illustration of the emergence of such
a IR divergence is provided in the bottom panel of Fig. 2. This major difficulty can be controlled to a
large extent via the use of more general classes of unperturbed Hamiltonians H0 and reference states than
typically considered in the past. This idea and the corresponding results are discussed in Secs. 6 and 7.
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Of course, even with the use of renormalization group transformations of the Hamiltonian and rather
general classes of reference states, the two characteristics of the nucleon-nucleon interaction in the UV
and IR regimes may eventually compromise the convergence of any practical perturbative expansion and
call for resummation techniques or the use of explicitly non-perturbative methods.

3 THE NUCLEAR HAMILTONIAN

3.1 The bare operator

As briefly mentioned in the introduction, chiral effective field theory (χEFT) provides a convenient
framework to construct systematically improvable nuclear Hamiltonians valid in the low-energy regime
relevant to nuclear structure [4, 6]. Starting from nucleons and pions as explicit degrees of freedom,
the long- and mid-range parts of the interaction are mediated by multiple-pion exchanges whereas the
unresolved short-range part is modelled via contact terms and derivatives of contact terms. In the early
1990’s Weinberg paved the way for a systematic treatment of the strong interaction by introducing a
power-counting scheme stipulating the a priori importance of the infinite number of allowed contributions
in the operator expansion [1, 2, 3]. Operators with higher particle rank naturally arise at higher orders in
this scheme. Eventually, the parameters, i.e., the low-energy constants (LEC’s), entering the operator
expansion are fitted to low-energy experimental data [69, 70].

Eventually, the second-quantized form of the many-body Hamiltonian takes, in an arbitrary basis {|p〉 ≡
c†p|0〉} of the one-body Hilbert spaceH1, the form

H = T + V +W + . . . (3)

≡ 1

(1!)2

∑
pq

tpq c
†
pcq

+
1

(2!)2

∑
pqrs

v̄pqrs c
†
pc
†
qcscr

+
1

(3!)2

∑
pqrstu

w̄pqrstu c
†
pc
†
qc
†
rcuctcs

+ ... .

The Hamiltonian is, thus, represented via a set of one-, two- and three-body matrix elements tpq, v̄pqrs and
w̄pqrstu, respectively. In a modern language the above matrix elements define tensors of mode n = 2, 4, 6,
respectively, where the mode specifies the number of indices.

3.2 Similarity renormalization group

While the tensors defining the Hamiltonian built within χEFT may display large low-to-high momentum
couplings, pre-processing tools can be used to tame them. During the past decade the (free-space)
similarity renormalization group (SRG) approach has become the standard technique to generate a
”softened” basis representation of an operator more amenable to many-body calculations [71].

Frontiers 7



Tichai et al.

The SRG approach is based on a unitary transformation of the initial operator O parametrized by a
continuous parameter α ∈ R, i.e.,

O(α) = U †(α)OU(α) . (4)

Equation (4) can be re-cast into a first-order differential equation

d

dα
O(α) = [η(α), O(α)] (5)

involving an anti-Hermitian generator η(α) that can be chosen freely to achieve a desired decoupling
pattern in the transformed operator. A convenient choice employed in many calculations is given by

η(α) ≡ [T,O(α)] , (6)

such that the SRG evolution can be interpreted as a pre-diagonalization of the operator in momentum
space, thus suppressing the coupling between high- and low-momentum modes. This procedure thus
drives the Hamiltonian towards a band-diagonal form. Writing H(α) ≡ T + V (α) + W (α) + . . .
in the same single-particle basis as the starting Hamiltonian, the SRG transformation corresponds to
generating α-dependent tensors v̄pqrs(α), w̄pqrstu(α) . . . whose UV elements linking single-particle states
corresponding to low and high momenta are strongly suppressed.

In many-body applications SRG-evolved operators display highly improved model-space convergence,
thus facilitating studies of mid-mass nuclei. The impact on the convergence properties of the MBPT series
will be illustrated in Sec. 5.6.2. However, the numerical improvements come at the price of induced many-
body operators, i.e., the unitary transformation shifts information to operators with higher particle ranks.
For instance, employing an initial two-body operator O2B leads to

O2B SRG−−−−−−→ O2B(α) +O3B(α) +O4B(α) + ... . (7)

In practice, Eq. (7) must be truncated at a given operator rank, thus discarding higher-body operators. This
approximation formally violates the unitarity of the transformation in Fock space and eventually induces
a dependence of many-body observables on the SRG parameter α. A reasonable trade-off must be found
for the value of α employed, i.e., it must improve the model-space convergence while keeping the effect
of induced many-body operators at a minimum. The optimal parameter range may vary depending on the
operator one starts from.

3.3 The ’standard’ Hamiltonian

All many-body applications discussed below, except for the novel ones presented in Sec. 10, employ
a chiral Hamiltonian containing a 2N interaction at next-to-next-to-next-to-leading-order (N3LO) with a
cutoff value of Λ2N = 500 MeV/c [72, 73]. Three-body forces are included up to next-to-next-to-leading
order (N2LO) with a local regulator [73] based on a cutoff value of Λ3N = 400 MeV [74]. This constitutes
a ’standard’ Hamiltonian used in many recent ab initio studies of light and medium-mass nuclei.

Additionally, the intrinsic Hamiltonian is consistently SRG-evolved in the two- and three-body
sectors [75, 76]. The particular value of the SRG parameter is specified in each individual application.
To avoid the complication of dealing with genuine three-body operators various forms of so-called
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normal-ordered two-body approximations (NO2B) are employed, depending on the particular nature of
the A-body reference state [74, 77, 78].

4 FORMAL PERTURBATION THEORY

The presentation of perturbation theory can be separated into formal perturbation theory and many-body
perturbation theory [79]. Formal perturbation theory allows one to understand the general rationale and
most relevant properties of the formalism. This is done by employing abstract Dirac notations and by
specifying the initial assumptions via the action of Hilbert or Fock space operators on basis vectors. In
particular, many key results can be obtained without specifying the content of the Hamiltonian (e.g. the
rank of the operators it contains), the nature of the partitioning (e.g. the symmetries characterizing each
contribution) and the associated reference state.

4.1 Partitioning

The starting point of perturbation theory relates to a partitioning of the Hamiltonian

H ≡ H0 +H1 , (8)

into an an unperturbed part H0 and a perturbation H1 ≡ H −H0. The main assumption relies on the fact
that the eigenvalue equation for H0 is numerically accessible, i.e.,

H0|Φk〉 = E
(0)
k |Φk〉 , (9)

delivering the set of unperturbed eigenstates and eigenergies {|Φk〉, E(0)
k ; k ∈ N} making up an

orthonormal, i.e.

〈Φk|Φl〉 = δkl , (10)

basis of the many-body Hilbert space.

Remark: A large part of this document is dedicated to the description of nuclear ground states, i.e. k = 0.
Consequently, the corresponding index is dropped in the following whenever targeting the ground state,
e.g. |ΨA

0 〉 = |ΨA〉, |Φ0〉 = |Φ〉 or E(0)
0 = E(0).

One typically employs intermediate normalization, i.e., the ground state |ΨA〉 of H is connected2 to the
unperturbed ground-state |Φ〉 of H0 such that

1 = 〈Φ|ΨA〉 . (11)

Associated with the above partitioning are the projection operators

P ≡ |Φ〉〈Φ| , (12a)

Q ≡ 1− P , (12b)

where P |Φ〉 = |Φ〉 and Q|Φ〉 = 0 by orthonormality. It can be shown that P and Q do meet the
requirements of projection operators, i.e., Hermiticity and idempotency [79]. The operator Q can be

2 Both states are supposed to be adiabatically connected when the perturbation H1 is switched on.

Frontiers 9



Tichai et al.

explicitly written as

Q ≡
∑′

k

|Φk〉〈Φk| ≡
∑

|Φk〉6=|Φ〉
|Φk〉〈Φk| , (13)

where the primed sum indicates the exclusion of the reference state from the summation. With these
operators at hand, the exact ground-state can be written as

|ΨA〉 = P |ΨA〉+Q|ΨA〉
= |Φ〉+ |χ〉 , (14)

where the correlated part |χ〉 ≡ Q|ΨA〉, which is the unknown to be solved for, denotes the orthogonal
complement of |Φ〉.

Eventually, the exact ground-state energy is typically accessed in a projective way3 by left-multiplying
Eq. (1) with the reference state 〈Φ| such that

EA = 〈Φ|H|ΨA〉
= 〈Φ|H0|Φ〉+ 〈Φ|H1|Φ〉+ 〈Φ|H1|χ〉
= Eref + ∆E , (15)

where Eref ≡ 〈Φ|H|Φ〉 = E(0) + 〈Φ|H1|Φ〉 and ∆E ≡ EA − Eref = 〈Φ|H1|χ〉 denote reference and
correlation energies, respectively. When using a reference state of product type, e.g. a Slater determinant,
∆E accounts for correlations between the nucleons beyond the mean-field approximation.

4.2 Resolvent operator

The complete derivation of formal perturbation theory is best performed in terms of the (Rayleigh-
Schrödinger) many-body resolvent operator

RRS ≡
∑′

k

|Φk〉〈Φk|
E(0) − E(0)

k

, (16)

which, due to orthonormality of the employed many-body basis, annihilates the reference state

RRS|Φ〉 = 0 . (17)

It is possible to employ alternative choices, such as the Brillouin-Wigner resolvent

RBW ≡
∑′

k

|Φk〉〈Φk|
EA − E(0)

k

, (18)

which differs from RRS by the presence of the exact energy in the denominator instead of the unperturbed
energy E(0). In practice, Brillouin-Wigner perturbation theory requires an (computationally intensive)

3 The projective character of standard MBPT or CC is to be distinguished from an expectation value approach, where the correlated state appears both as the
bra and the ket in the evaluation of the energy.
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iterative solution and, additionally, suffers from a lack of size-extensivity4. Therefore, this choice is only
scarcely used in many-body applications. All of the subsequent results are obtained using a Rayleigh-
Schrödinger resolvent. Consequently, the upper-case label ’RS’ is dropped to avoid notational clutter.

4.3 Power-series expansion

After a long but straightforward derivation [79], one obtains the correlated part of many-body ground-
state and associated energy under the form [80, 81, 82]

|χ〉 =
∞∑
k=1

(RH1)k|Φ〉c , (19a)

∆E = 〈Φ|H1

∞∑
k=1

(RH1)k|Φ〉c . (19b)

The lower index ’c’ stipulates the connected character of the expansion ensuring its size-extensivity, i.e.,
proper scaling of observables with system size5. Combining Eqs. (15) and (19b), one obtains the total
ground-state wave-function and energy as power series in H1

|ΨA〉 ≡
∞∑
p=0

|Ψ(p)〉 , (20)

EA ≡
∞∑
p=0

E(p) , (21)

such that |Ψ(0)〉 = |Φ〉 and Eref = E(0) + E(1), i.e. the first non-trivial correction contributing to the
ground-state correlation energy corresponds to the second-order term of the power series. It reads as

E(2) = 〈Φ|H1RH1|Φ〉c , (22)

and can be re-written more explicitly by expanding the resolvent as

E(2) =
∑′

k

〈Φ|H1|Φk〉〈Φk|H1|Φ〉
E(0) − E(0)

k

. (23)

Equation (23) provides a prototypical example of a PT expression associated with ground-state energy
corrections involving a resolvent operator connecting the unperturbed reference state (i.e. the P space) to
excited states of H0 (i.e. the Q-space), and then going back to the reference state through the perturbation
H1. As will be seen with explicit MBPT, the nature of the elementary excitations of the reference state
effectively involved at a given order depend on the rank, i.e. the k-body character, of the perturbation H1.

4.4 Recursive formulation

Equations (19a) and (19b) conveniently provide explicit expressions for the energy and state corrections
whenever working at rather low orders. To go to high orders and study the convergence properties of

4 A quantum-mechanical method is coined as size-extensive if the energy of a systems computed with this method scales linearly in the number of particles.
5 The first disconnected contribution originally appears at fourth order. It can be shown that the renormalization terms cancel such disconnected contributions
at every order [81, 82, 79], thus providing the final connected form.
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perturbation theory as a power series, a different scheme becomes more useful. It relates to (i) making
more explicit that the perturbative expansion relates to the power series expansion of a mathematical
function taken at a particular value of its variable and to (ii) computing the coefficient of the series in a
recursive way.

On the basis of the partitioning introduced in Eq. (8), one defines a one-parameter family of
Hamiltonians

H(λ) ≡ H0 + λH1 , (24)

such that H(0) = H0 and H(1) = H . Perturbation theory assumes that the exact eigenstates and
eigenenergies of H(λ) can be parameterized through the power series ansatz

E(λ) ≡ E(0) + λE(1) + λ2E(2) + ... , (25a)

|Ψ(λ)〉 ≡ |Ψ(0)〉+ λ|Ψ(1)〉+ λ2|Ψ(2)〉+ ... . (25b)

Setting λ = 0, the problem becomes equivalent to Eq. (9) while setting λ = 1, one recovers the expansions
of Eqs. (20) and (21) associated with the fully interacting problem.

Inserting the power series ansatz into the stationary Schrödinger equation for H(λ) and grouping
together the terms proportional to λp leads to

E(0)|Φ〉+
∞∑
p=1

λp
(
H1|Ψ(p−1)〉+H0|Ψ(p)〉

)
= E(0)|Φ〉+

∞∑
p=1

λp
( p∑
j=0

E(j)|Ψ(p−j)〉
)
. (26)

Left multiplying Eq. (26) with 〈Φ| and using intermediate normalization yields

∞∑
p=1

λp〈Φ|H1|Ψ(p−1)〉 =
∞∑
p=1

λpE(p) , (27)

which allows one to write the p-order ground-state energy correction as

E(p) = 〈Φ|H1|Ψ(p−1)〉 . (28)

Left multiplying Eq. (26) with 〈Φm|, m 6= 0 and matching the terms proportional to λp provides the
relation (

E(0) − E(0)
m

)
〈Φm|Ψ(p)〉 = 〈Φm|H1|Ψ(p−1)〉 −

p∑
j=1

E(j)〈Φm|Ψ(p−j)〉. (29)

Introducing the coefficients

C
(p)
m0 ≡ 〈Φm|Ψ(p)〉 =

1

E(0) − E(0)
m

〈Φm|H1|Ψ(p−1)〉 −
p∑
j=1

E(j)〈Φm|Ψ(p−j)〉

 , (30)
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allows one to expand the p-order ground-state correction |Ψ(p)〉 on the unperturbed basis {|Φm〉}
according to

|Ψ(p)〉 =
∑
m

C
(p)
m0|Φm〉, (31)

such that Eq. (28) becomes
E(p) =

∑
m

〈Φ|H1|Φm〉C(p−1)
m0 . (32)

Inserting Eq. (31) into Eq. (30) further provides a recursive scheme to compute C(p)
m0

C
(p)
m0 =

1

E(0) − E(0)
m

∑
q

〈Φm|H1|Φq〉C(p−1)
q0 −

p∑
j=1

E(j)C
(p−j)
m0

 , (33)

with the initial condition C(0)
m0 = δm0.

Eventually, Eq. (32) and (33) form a set of recursive relations from which the ground-state energy
and state corrections can be obtained to all orders. In practice, the eigenbasis of H0 and the associated
matrix elements of H1 are built such that the latter is stored in memory. The recursive steps are then
identified as large-scale matrix-vector multiplications, thus, using the same technology as configuration-
interaction approaches like the NCSM. While being formally convenient and obviating the explicit
algebraic computation of order-p corrections, this approach is limited by the storage of the Hamiltonian
due to the extensive size of the many-body basis. Therefore, only proof-of-principle studies in model
spaces of limited dimensionality can be performed and realistic calculations of mid-mass nuclei are out
of reach in this way.

5 CLOSED-SHELL MANY-BODY PERTURBATION THEORY

With the results of formal perturbation theory at hand, one can envision to apply them to specific
many-body systems. To do so, one must further specify the nature of the partitioning and of the
associated reference state. In particular, the maximum rank and symmetries of H0 must be characterized.
Additionally, the goal of MBPT is to express all quantities, e.g., many-body matrix elements and
unperturbed eigenenergies, entering the formulae at play in terms of the actual inputs to the many-body
problem, i.e. the mode-2k tensors defining the k-body contributions to the Hamiltonian (Eq. (3)).

A series of tools exists to compute the expectation value of products of (many) operators in a vacuum
state in an incrementally faster, more flexible and less error-prone way. The first step in this series
corresponds to using the second-quantized representation of many-body operators in a chosen single-
particle basis and to performing canonical commutations of fermionic operators. Next comes Wick’s
theorem [83], which is nothing but a procedure to capture the result in a condensed and systematic fashion.
Still, the combinatorics associated with the application of Wick’s theorem quickly becomes cumbersome
whenever a long string of creation and annihilation operators is involved. Furthermore, many terms thus
generated give identical contributions to the end result. Many-body diagrams address this issue [79] by
providing a pictorial representation of the contributions and, even more importantly, by capturing at once
all identical contributions, thus reducing the combinatorics tremendously. While being incredibly useful,
the number of diagrams itself grows tremendously when applying MBPT beyond the lowest orders, thus
leading to yet another combinatorial challenge. This translates into the difficulty to both generate all
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allowed diagrams at a given order without missing any and to evaluate their expression in a quick and
error-safe way. Consequently, the last tool introduced to tackle this difficulty consists of an automatized
generation and evaluation of diagrams [84, 85, 86, 87, 88, 89, 90, 91]. All these technical, yet crucial,
aspects of MBPT are not addressed in the present article and the interested reader is referred to the
references.

5.1 Reference state

The present chapter is dedicated to the simplest form of MBPT appropriate to closed-shell systems. This
first version relies on the use of a symmetry-conserving Slater determinant reference state

|Φ〉 ≡
A∏
i=1

c†i |0〉 , (34)

where the set of single-particle creation operators {c†p} acts on the physical vacuum |0〉. This constitutes
an appropriate starting point of the perturbative expansion as long as |Φ〉 denotes a closed-shell Slater
determinant in agreement with the left-hand case in Fig. 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant impact on the qualitative behaviour of the
perturbative expansion.

5.2 Normal ordering

Applying Wick’s theorem with respect to |Φ〉, the Hamiltonian can be rewritten in terms of normal-
ordered contributions

H = H [0] +
∑
pq

H
[2]
pq : c†pcq : +

1

4

∑
pqrs

H
[4]
pqrs : c†pc

†
qcscr : + . . . , (35)

where :: denotes the normal order of the involved creation and annihilation operators. Thus, H [0] is the
expectation value of H in |Φ〉 whereas H [2]

pq and H [4]
pqrs define matrix elements of effective, i.e., normal-

ordered, one-body and two-body operators, respectively. The dots denote normal-ordered operators of
higher ranks, up to the maximum rank kmax characterizing the initial Hamiltonian (Eq. (3)). Through the
application of Wick’s theorem, an effective operator of rank keff receives contributions from all initial
operators with rank k, where keff ≤ k ≤ kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body approximation (NO2B) [74, 77], the residual
three-body part H [6] is presently discarded. For explicit expressions of the matrix elements defining the
normal-ordered operator, see Refs. [74, 77, 78].

5.3 Partitioning

To explicitly set up the partitioning of the Hamiltonian (Eq. 8), one adds and subtracts a diagonal
normal-ordered one-body operator

H̄ [2] ≡
∑
p

ep : c†pcp : (36)

such that

H0 = H [0] +
∑
p

ep : c†pcp : , (37a)
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H1 ≡ H̆ [2] +H [4] , (37b)

with
H̆ [2] ≡ H [2] − H̄ [2] =

∑
p 6=q

H
[2]
pq : c†pcq : . (38)

Introducing the set of Slater determinants obtained from |Φ〉 via n-particle/n-hole excitations

|Φab···
ij··· 〉 ≡ c†ac

†
b . . . cjci|Φ〉 , (39)

one obtains an orthonormal basis of the A-body Hilbert space

HA = {|Φ〉, |Φa
i 〉, |Φab

ij 〉, |Φabc
ijk〉, ...} , (40)

which is nothing but the eigenbasis of H0

H0|Φ〉 = H [0]|Φ〉, (41a)

H0|Φab···
ij··· 〉 = (H [0] + εab···ij··· )|Φab···

ij··· 〉 , (41b)

where

εab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole) states the nucleons are excited into (from).
Equation (41) corresponds to the explicit form of Eq. (9) in the case of a Slater determinant reference
state.

Convention: One-body states occupied (unoccupied) in the reference determinant are labelled by
i, j, k, ... (a, b, c, ...) and are referred to as hole (particle) states. Generic one-body states are denoted
by p, q, r, ....

The single-particle energies {εp} are parameters of the theory that are fixed by the partitioning, which
itself defines the reference state. They can be chosen arbitrarily as long as the A occupied hole states
have lower energies than the remaining particle states, such that εab···ij··· > 0. A simple choice employed
in nuclear physics consists of building |Φ〉 by filling up the A lowest single-particle eigenstates of the
spherical harmonic oscillator Hamiltonian [32, 33], i.e., setting

H0 ≡
~p 2

2m
+

1

2
mω2~r 2 , (43)

where the oscillator frequency ω specifies the width of the potential. A more standard choice throughout
various fields of many-body physics and chemistry relates to the so-called Møller-Plesset partitioning that
corresponds to taking H̆ [2] = 0, i.e. H1 = H [4]. This is obtained by using the reference Slater determinant
|Φ〉 solution of the Hartree-Fock (HF) variational problem and by defining H̄ [2] from the eigenvalues of
the one-body HF Hamiltonian.
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5.4 Perturbative expansion

Given the eigenbasis ofH0 characterized by Eqs. (34), (39) and (41), the many-body resolvent (Eq. (16))
takes the form

R = −
∑
ai

|Φa
i 〉〈Φa

i |
εai

−
(

1

2!

)2∑
abij

|Φab
ij 〉〈Φab

ij |
εabij

−
(

1

3!

)2 ∑
abcijk

|Φabc
ijk〉〈Φabc

ijk |
εabcijk

+ ... , (44)

and is to be fed into Eq. (19b) that, once truncated at a given power in H1, provides the correlation energy
at the corresponding perturbative order.

5.5 Low-order formulas

As alluded to above, the evaluation of low-order corrections is facilitated by representing the MBPT
expansion diagrammatically. This is typically done using either Hugenholtz or (anti-)symmetrized
Goldstone diagrams, i.e. the time-ordered counterpart of Feynman diagrams that are used to compute
matrix elements in quantum field theory. The interested reader is referred to the literature, e.g. Ref. [79],
for an elaborate discussion of the diagrammatic rules and their relation to Wick’s theorem.

Focusing on the first non-trivial correction to the reference energy (Eq. 23), the second-order correction
takes the algebraic form

E(2) = −
∑
ai

H
[2]
ai H

[2]
ia

εai
− 1

4

∑
abij

H
[4]
abijH

[4]
ijab

εabij
, (45)

and is, thus, expressed in terms of the tensors defining the residual interaction H1 (Eq. (37b)) in normal-
ordered form. The first contribution in Eq. 45 relates to a so-called non-canonical diagram that vanishes
if the reference state is taken to be the HF Slater determinant. The second term constitutes the genuine
and dominant second-order correction that contributes for any Slater determinant reference state. Using
the HF Slater determinant reference state has the practical benefit of lowering the number of many-body
diagrams to be considered. While this feature is not relevant at second-order, the proliferation of non-
canonical diagrams at higher order [91] makes the writing of numerical codes more cumbersome. Still, at
a given order non-canonical diagrams are always of sub-leading complexity from a computational point
of view, i.e. they involve fewer single-particle summations, such that they do not drive the computational
cost.

Since E(2) provides the leading contribution to the perturbative expansion, one observes that dynamical
correlations are dominated by low-lying 2p2h-contributions. Most importantly, it is clear from Eq. (45)
that the second-order correction is manifestly negative, i.e. it increases the binding energy. This stems
from the fact that the numerators are squared norms of matrix elements contributing to H1 and that the
denominators are positive as long as the Slater determinant reference state displays a non-zero shell gap
between occupied and unoccupied states, i.e., as long as one deals with a closed-shell nucleus.

5.6 Results

The first goal of the present analysis is to study the convergence characteristics of the perturbative
expansion. In absence of analytical knowledge, this study must be based on empirical observations of
high-order corrections, which is achieved through the recursive formulation of Sec. 4.4 in small model
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Figure 3. Partial sums (left panels) and order-by-order corrections (right panels) for the ground-state
energy of 16O using the Hamiltonian described in Sec. 3. Top (bottom) panels correspond to the HO (HF)
partitioning. All calculations are performed using Nmax = 2, 4, 6 (l, H,F) and an oscillator frequency of
~ω = 24 MeV. The SRG parameter is set to α = 0.08 fm4. Figure taken from Ref. [34].

spaces. Following this analysis, results of low-order MBPT calculations in realistic model spaces are
presented to illustrate state-of-the-art ab initio applications to doubly closed-shell nuclei [34].

5.6.1 Impact of partitioning

While perturbation theory defines a general framework to access nuclear observables, the performance
strongly depends on the choice of the partitioning H = H0 + H1 or, equivalently, on the underlying
vacuum fixing the starting point for the expansion. Subsequently, two choices for H0 are presently
compared in the calculation of the ground-state energy of 16O, i.e the one-body (i) spherical harmonic
oscillator (HO) and (ii) self-consistent HF6 Hmiltonians (cf. Sec 5.3). The model space is truncated
employing the Nmax-truncation similar to the NCSM. Panel (a) of Fig. 3 shows the sequence of partials
sums using a HO partitioning for a set of model spaces. The partial sums are divergent in all cases, which
can equally be seen from the exponential divergence of high-order energy corrections in panel (c). On
the other hand, using a HF reference state yields a rapidly converging perturbation series (panel (b)) and
the energy corrections are exponentially suppressed as a function of the perturbative order (panel (d)),
indicating robust convergence. In all cases the converged results agree up to numerical accuracy with the
exact CI diagonalization.

Obviously, the reference state heavily affects the performance of MBPT. In the above case, this can
be understood by the poor quality of the HO reference, e.g. the wrong asymptotic radial dependence
of single-particle HO eigenstates (Gaussian instead of exponential suppression). Consequently, in the
following a HF determinant is used as a reference state when results are reported for closed-shell nuclei.

6 The HF problem is solved in a symmetry-restricted way, enforcing rotational invariance of the resulting single-particle basis.

Frontiers 17



Tichai et al.

−30

−28

−26

−24

−22

−20

−18

−16

E
(p

)
su

m
[M

eV
]

partial sums

(a) 10−5

10−3

10−1

10

103

|E
(p

)|[M
eV

]

energy corrections

(d)

−140

−120

−100

−80

−60

E
(p

)
su

m
[M

eV
]

(b) 10−5

10−3

10−1

10

103

|E
(p

)|[M
eV

]

(e)

2 6 10 14 18 22 26 30

-120

-140

-160

perturbation order p

E
(p

)
s
u
m

[M
eV

]

(c)

2 6 10 14 18 22 26 30

10−5

10−3

10−1

10

103

perturbation order p

|E
(p

)|[M
eV

]

(f)

4He

16O

24O

Figure 4. Partial sums (left panels) and order-by-order corrections (right panels) corresponding to the
ground-state energy obtained from the Hamiltonian described in Sec. 3. Top, middle and bottom panels
correspond to 4He (Nmax = 6), 16O (Nmax = 6) and 24O (Nmax = 4), respectively. All calculations are
performed setting the oscillator frequency to ~ω = 20 MeV. The different plot markers correspond to
SRG flow parameter α = 0.02(l), 0.0625( H) and 0.08 fm4(F). Figure taken from Ref. [34].

5.6.2 SRG dependence

Using a HF partitioning, the impact of the SRG transformation of the Hamiltonian on the perturbative
series is now illustrated. In Fig. 4 the ground-state energy of 4He, 16O and 24O is displayed while varying
the value of the flow parameter α defining the SRG transformation. The left-hand panels show that the
perturbative series converge in all cases thus demonstrating the reliability of HF-MBPT. For the light
4He, the results are independent of the flow parameter and the MBPT expansion converges rapidly in all
cases. For 16O and 24O, the rate of convergence is slower for harder interactions, i.e., for lower values
of α. Furthermore, the partial sums admit a damped oscillatory behaviour in the oxygen isotopes for
α = 0.02 fm4. These features can be better seen from the right-hand panels, where lower values of α
induce a slower suppression of higher-order corrections (panels (e) and (f)).
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Figure 5. Ground-state binding energies per particle (top panel) and correlation energy per particle
(bottom panel) of closed-shell nuclei from second-order MBPT (◦), third-order MBPT (l), CCSD (4)
and CR-CC(2,3) ( H) using the Hamiltonian described in Sec. 3. All calculations are performed using 13
oscillator shells and an oscillator frequency of ~ω = 20 MeV. The SRG parameter is set to α = 0.08 fm4.
Figure taken from Ref. [34].

5.6.3 Realistic calculations

The previous results reveal that using an optimized HF reference state combined with a sufficiently
soft interaction defines a well-controlled regime where perturbation theory can be robustly applied to
closed-shell nuclei. For heavier nuclei and larger model spaces the high-order perturbative series cannot
be computed recursively and, rather, low-order expressions are evaluated via explicit single-particle
summations7.

In Fig. 5, the ground-state energy per particle (top panel) and the correlation energy per particle (bottom
panel) of a selection of doubly closed-shell nuclei ranging from 4He to 132Sn is displayed at second- and
third-order in MBPT [34]. A model space built out of 13 major harmonic oscillator shells is employed.
Since the target nuclei are out of reach of exact diagonalization, MBPT results are compared to state-
of-the CC calculations employing the same input Hamiltonian and the same HF determinant reference
state.

The top panel demonstrates that third-order calculations fully capture the bulk part of the ground-state
energy and are in remarkable agreement with more sophisticated non-perturbative CC results, i.e. the
deviation with CR-CC(2,3) is less than 1% in all cases. A more refined analysis can be deduced from the
bottom panel where the mean-field binding energy has been subtracted. The correlation energy accounts
in most mid-mass systems for about 1 − 2 MeV/A such that the reference HF results capture roughly
60 − 70% of the overall binding energy. The CCSD correlation energy lies between second- and third-
order results even though the CCSD wave function resums correlation effects beyond third order, thus
indicating a repulsive effect on the binding from 2-particle/2-hole-excitations at 4th order and beyond.
When (approximately) including triple excitations through CR-CC(2,3), slightly stronger binding than in
third-order MBPT is generated.

Of course, the enormous benefit of low-order MBPT is that it excellently reproduces highly sophisticated
CC results at a computational cost that is two orders of magnitude lower due to its non-iterative character.

7 Using the notion of tensors, the summation over a common index of several tensors defines a tensor contraction.
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6 MULTI-CONFIGURATIONAL PERTURBATION THEORY

Driven by the capacity of HF-MBPT to grasp dynamical correlations induced in closed-shell systems
by soft chiral Hamiltonians, extensions to genuine open-shell systems were envisioned. As alluded to
in Sec. 2, the presence of degeneracies with respect to particle-hole excitations does not allow the use
of a single symmetry-conserving Slater-determinant reference state. A first possibility is to use a multi-
determinantal reference state, which was shown to be very useful in electronic structure applications [92,
93] and as a pre-processing tool in NCSM calculations [94].

6.1 Rationale

The starting point of multi-configurational perturbation theory (MCPT) is the definition of an initial
reference space

Mref ≡ span
{
|Φν〉

}
(46)

built from a set of orthonormal many-body Slater determinants |Φν〉. The extended reference space
redefines the nature of the P -space (and thus of the Q-space) introduced in Eq. (12). The multi-
configurational reference state |Ψref〉 is chosen to be a normalized vector obtained from a diagonalization
inMref, i.e.,

|Ψref〉 ≡
∑

ν∈Mref

cν |Φν〉 , (47)

where cν denotes the expansion coefficients, typically obtained from a NCSM calculation. The initial
diagonalization provides a set of non-degenerate but multi-determinantal reference states carrying good
symmetry quantum numbers. At the price of giving up the product-type character of the reference state,
the degeneracy is lifted and a well-defined perturbative expansion can be designed [36].

Convention: The symbol |Ψ〉 is used to emphasize the multi-determinantal character of the reference
state and distinguish it from a single product state. Furthermore, two different notations are employed to
designate the Slater determinants spanning the complete Hilbert space: (i) Slater determinants belonging
to Mref are denoted by |Φν〉, i.e., as a capital Greek letter carrying a lower-case Greek index, whereas
(ii) Slater determinants outside Mref are denoted by |φi〉, i.e., as a lower-case Greek letter carrying a
lower-case Roman index.

It is worth noting that MCPT naturally accesses excited states by building the perturbation theory on top
of the various vectors produced through the prior diagonalization inMref. Of course, it is not guaranteed
that the energetically lowest state in the initial NCSM calculation eventually corresponds to the ground
state in the fully correlated limit, i.e., perturbative corrections may induce level crossings among the
various states.

6.2 Partitioning

Formally, the unperturbed Hamiltonian is written in the spectral representation as

H0 ≡
∑

k∈Mref

E
(0)
k |Ψk〉〈Ψk|+

∑
i/∈Mref

E
(0)
i |φi〉〈φi| , (48)
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where |Ψk〉 denote the NCSM eigenvectors withinMref, including the particular one, e.g. the lowest state,
playing the role of the reference state. Consequently, one obtains the following eigenvalue relation for the
unperturbed Hamiltonian

H0 |Ψk〉 = E
(0)
k |Ψk〉 , (49)

since the set of determinants {|Φi〉 /∈ Mref} is orthogonal to |Ψk〉. In principle, the construction of H0

requires a full diagonalization in the reference space, i.e., the solution of all eigenvectors and eigenvalues
making the construction of the unperturbed solution rapidly unfeasible if the dimension of the reference
state grows significantly. As will become clear below, the computation of the lowest-order correction only
require to access the reference state, which is thus the only the eigenvector that needs to be solved for
explicitly in this case. In that case one may resort to Lanczos algorithms, thus targeting a limited number
of extremal eigenstates.

Zeroth-order energies E(0)
i of the unperturbed Slater determinants making up the Q space, i.e. {|Φi〉 /∈

Mref}, are given by the sum of occupied single-particle energies defined as diagonal matrix elements of
the one-body Hamiltonian

hpq ≡ tpq +
∑
rs

H
[4]
prqsρ

(0)
rs , (50)

where the one-body density matrix of the reference state8 is introduced

ρ
(0)
pq = 〈Ψref|c†pcq|Ψref〉 . (51)

In principle, an explicit three-body term can be included as well at the price of invoking the two-body
density matrix. However, for the sake of computational simplicity a normal-ordered two-body (NO2B)
approximation is employed to approximately account for the inclusion of 3N interactions [77].

The zeroth-order energy of the reference state is also defined via the single-particle energies defined in
Eq. (50) while taking into account the multi-determinantal character of the reference state through the
mean occupation of single-particle states, i.e., the diagonal elements of the one-body density matrix ρ(0)

pp ,
so that

E
(0)
ref =

∑
p

εpρ
(0)
pp . (52)

6.3 Low orders

With the partitioning of the Hamiltonian defined above, zeroth- and first-order MCPT contributions to
the energy read as

E(0) = 〈Ψref|H0|Ψref〉 = E
(0)
ref , (53)

E(1) = 〈Ψref|H1|Ψref〉 = 〈Ψref|H|Ψref〉 − E(0)
ref , (54)

8 If the density matrix involved in Eq. (50) were the one of the fully correlated eigenstate of H , the one-body operator h would be nothing but the Baranger
Hamiltonian [95, 96]. Whenever the reference state reduces to the HF Slater determinant, h identifies with the HF one-body Hamiltonian.
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such that their sum reproduces the full reference energy ENCSM
ref obtained via the diagonalization of the

full Hamiltonian H inMref.

The second-order energy correction reads similarly to the one at play in standard MBPT, i.e.

E(2) = −
∑
i/∈Mref

|〈Ψref|H|φi〉|2

E
(0)
i − E

(0)
ref

, (55)

where the sum runs over states outside of the reference space and where the contribution fromH0 vanishes
by orthogonality 〈Ψref|Φi〉 = 0. To explicitly evaluate E(2) the reference state is expanded according to
Eq. (47)

E(2) = −
∑

µµ′∈Mref

c?µcµ′
∑
i/∈Mref

〈Φµ|H|φi〉〈φi|H|Φµ′〉
E

(0)
i − E

(0)
ref

. (56)

All many-body matrix elements appearing in the algebraic expressions of the perturbative corrections
involve Slater determinants only and can be readily evaluated using standard NCSM technology. As an
efficient alternative, normal-ordering techniques and standard Wick’s theorem are employed such that an
associated diagrammatic can be designed. It is worth noting that intermediate states from within Mref
only start contributing at fourth order [36] such that they do not appear in the evaluation of E(2). In
Eq. (56), the Hamiltonian is normal ordered with respect to the rightmost determinant |Φµ′〉 for each term
in the sum over µ′ and the two matrix elements are evaluated using the associated Wick’s theorem. Similar
techniques have been applied in quantum chemistry [97, 98]. The computational scaling of the second-
order correction for large reference spaces is given by dim(Mref)

2 · n2
p · nh, where np and nh denote the

number of particle and hole states, respectively.

6.4 Results

In the following the performance of MCPT, specifically denoted as NCSM-PT in the present case, is
gauged in a similar spirit as for HF-MBPT in Sec. 5.

6.4.1 High-order corrections in light systems

The recursive treatment of HF-MBPT laid out in Sec. 4.4 has proven invaluable to understand the
convergence characteristic of the perturbative expansion. While NCSM-PT does not employ a Slater-
determinant reference, the recursive formulation can be extended in a straightforward way [36]. Figure 6
displays the convergence behaviour of the perturbative series for 6,7Li built on top of the four lowest
states of the Nmax = 0 NCSM diagonalization. The left-hand panels show that the perturbative series is
convergent for both systems and all target states with a slight overbinding of the second-order partial sum
for many states. In all cases the converged results agree with exact diagonalization. Furthermore, right
panels reveal an (almost) exponential suppression of higher-order energy corrections indicating rapid
convergence of the expansion. The rate of convergence is mostly independent of the target state or the
nucleus, except for the ground and first 2+ states in 6Li that both converge slightly slower.

The high-order benchmarks strongly motivate the use of low-order partial sums as good approximations
to the binding energies of heavier systems. Subsequently, systems with mass number A ≈ 30 are
investigated through realistic MCPT calculations in large model spaces.
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Figure 6. High-order binding energies from NCSM-PT employing N ref
max = 0 reference states using the

Hamiltonian described in Sec. 3. All calculations are performed including configurations up to Nmax = 8
and employ an oscillator frequency of ~ω = 20 MeV. The SRG parameter is set to α = 0.08 fm4. Figure
taken from Ref. [36].

6.4.2 Low orders in A ≈ 30 nuclei

In Fig. 7 ground-state energies of carbon, oxygen and fluorine isotopes are shown and compared to
large-scale importance truncated NCSM (IT-NCSM) diagonalization whenever available. The reference
states are obtained from a diagonalization in a Nmax = 0 or 2 space. In all cases a HF single-particle basis
is employed in order to minimize the dependence on the oscillator frequency9.

For all nuclei the reference energies and second-order NCSM-PT results show a sizeable dependence
on the size of the reference space. Throughout all investigated isotopic chains though, results from
reference states built within aN ref

max = 2 space almost perfectly reproduce the exact (IT-)NCSM ones. This
significant improvement in ground-state energies hints at important correlations incorporated through the
reference states obtained from a N ref

max = 2 diagonalization that are absent for N ref
max = 0, thus providing

an ideal compromise between computational efficiency and accuracy. In particular, neutron-rich fluorine
isotopes are out of reach of conventional NCSM calculations and NCSM-PT provides an efficient ab
initio approach to investigate the neutron drip line. A single NCSM-PT calculation requires typically two
to three orders of magnitude less computational resources than the corresponding IT-NCSM calculation.

In practice, the reference states employed in the above calculations contain between several hundreds
of thousands up to a few million determinants, thus, providing an excellent account of static correlations.
Note that in most cases the reference state accounts for up to 80% of the overall binding energy such that
residual dynamical correlations can indeed be grasped efficiently from low-order perturbation theory.

9 The HF problem is solved employing a so-called equal-filling approximation to ensure rotational invariance of the mean-field density. The underlying
NCSM-PT formulation is based on m-scheme quantities and does not employ angular-momentum coupling techniques as most correlation expansions do.
Consequently, even- and odd-mass systems can be described on equal footing.
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Figure 7. Reference (◦/ �) and second-order NCSM-PT (l/ �) energies with N ref
max = 0 and 2,

respectively, for the ground states of 11−20C, 16−26O and 17−31F using the Hamiltonian described in Sec. 3.
All calculations are performed using 13 oscillator shells and an oscillator frequency of ~ω = 20 MeV.
The SRG parameter is set to α = 0.08 fm4. Importance-truncated NCSM calculations ( H) are shown for
comparison. Experimental values are indicated by black bars. Figure taken from Ref. [36].

6.4.3 Low-lying spectroscopy

As already exemplified in the high-order investigation, excited states can be straightforwardly accessed
through NCSM-PT by targeting different reference states from the NCSM spectrum. From absolute
NCSM-PT binding energies, excitation energies are obtained by subtracting the correlated ground-state
energy. In Fig. 8 the associated NCSM-PT spectra are compared to bare NCSM calculations for a
selection of open-shell carbon and oxygen isotopes. All calculations employ a HO single-particle basis to
separate center-of-mass degrees of freedom in the many-body wave function. It is well-known that NCSM
excitation energies of states with identical parity display a much faster convergence than absolute binding
energies, thus yielding stable results in the right-hand columns of each panel. When a level re-ordering
appears with increasing Nmax in the NCSM calculation, e.g. for the two lowest states in 12C or the third
and fourth states in 19O, NCSM-PT reproduces the correct level ordering at small values of N ref

max. As for
ground-state energies, NCSM-PT results based on a reference state with N ref

max = 2 reproduce well the
NCSM spectra, while going to N ref

max = 4 only refines the quality of a subset of excitation energies.

The NCSM-PT framework is thus highly valuable to perform light-weighted perturbative calculations
in medium-light systems up to mass numbers A . 40. Due to its versatility and conceptual simplicity the
low-lying spectrum of genuine open-shell nuclei can be described at low computational cost.

7 BOGOLIUBOV MANY-BODY PERTURBATION THEORY

While the use of multi-configurational reference states can efficiently resolve situations of strong static
correlations, it displays several limitations, i.e. (i) the physical origin of the underlying correlations in the
reference state is unclear, (ii) it does not easily ensure size-extensivity and (iii) it is numerically prohibitive
in heavy nuclei. The objective is thus to present an alternative based on single-reference product states
that bypasses these limitations.

7.1 Rationale

An alternative route to lift the particle-hole degeneracy of the reference state in open-shell systems is to
authorize the reference state to break a symmetry of the underlying Hamiltonian. In semi-magic nuclei,
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for comparison. Figure taken from Ref. [36].

the relevant symmetry is U(1) global gauge symmetry associated with particle-number conservation10.
Breaking U(1) symmetry permits to efficiently deal with Cooper pair instability associated with the
superfluid character of open-shell nuclei. The degeneracy of a Slater determinant with respect to particle-
hole excitations is lifted via the use of a Bogoliubov reference state and transferred into a degeneracy
with respect to transformations of the symmetry group. As a consequence, the ill-defined (i.e. singular)
expansion of exact quantities with respect to a symmetry-conserving Slater determinant is replaced by
a well-behaved one. Extending the treatment to doubly open-shell nuclei requires a similar treatment of
SU(2) symmetry associated with the conservation of angular momentum.

Eventually, the degeneracy with respect to U(1) transformations must also be lifted by restoring the
symmetry. However, BMBPT only restores the symmetry in the limit of an all-order resummation,
and thus displays a symmetry contamination at any finite order. While BMBPT can still be used as a
stand-alone approach as is done in the present work, it eventually provides the first step towards the
implementation of the so-called particle-number projected BMBPT (PNP-BMBPT) [58] that restores
good particle number at any truncation order.

7.2 Bogoliubov algebra

The BMBPT formalism is based on the introduction of the Bogoliubov reference state

|Φ〉 ≡ C
∏
k

βk|0〉 , (57)

10 In fact the relevant symmetry group is the direct product UN (1) × UZ(1) since both proton and neutron number are conserved separately.

Frontiers 25



Tichai et al.

where C is a complex normalization constant and |0〉 denotes the physical vacuum. The Bogoliubov
product state presently defining the P -space of perturbation theory is a vacuum for the quasi-particle
operators {β†k, βk}, i.e.,

βk|Φ〉 = 0 ∀k , (58)

obtained from the creation and annihilation operators associated with a basis of the one-body Hilbert space
via the unitary Bogoliubov transformation [99]

βk ≡
∑
p

U∗pkcp + V ∗pkc
†
p , (59a)

β†k ≡
∑
p

Upkc
†
p + Vpkcp . (59b)

Generically speaking, the Bogoliubov transformation is only constrained by unitarity such that a
large manifold of Bogoliubov states is at hand. To actually set up the perturbation theory, a particular
Bogoliubov reference state must be specified. Typically, the transformation matrices (U, V ) are obtained
by solving the Hartree-Fock-Bogoliubov (HFB) variational problem that naturally extends the simpler
HF approximation to treat pairing correlations while sticking to a single reference product state. The
columns of the transformation matrices (U, V ) correspond to the eigenvectors of the HFB eigenvalue
equation [99] whereas the associated eigenvalues {Ek > 0} deliver the so-called quasi-particle energies11.
Since Bogoliubov states are not eigenstates of the particle-number operator A, the expectation value of A
is constrained to match a specific number of particles, e.g. the particle number A0 of the target system.
In the HFB method for example, the constraint is enforced via the use of a Lagrange multiplier λ in the
minimization of the expectation value of the grand potential

Ω ≡ H − λA . (60)

In actual applications, separate Lagrange multipliers λN and λZ are used to constrain proton and neutron
numbers N and Z, respectively. In the subsequent formalism A stands for either one of them.

7.3 Quasi-particle normal ordering

In the next step, Wick’s theorem is employed to normal order the grand potential Ω with respect to the
Bogoliubov reference state

Ω = Ω00︸︷︷︸
≡ Ω[0]

+ Ω20 + Ω11 + Ω02︸ ︷︷ ︸
≡ Ω[2]

+ Ω40 + Ω31 + Ω22 + Ω13 + Ω04︸ ︷︷ ︸
≡ Ω[4]

+ . . . , (61)

where Ωij denotes the normal-ordered component involving i (j) quasi-particle creation (annihilation)
operators, e.g.,

Ω31 ≡ 1

3!

∑
k1k2k3k4

Ω31
k1k2k3k4

β†k1β
†
k2
β†k3βk4 . (62)

11 In the present work, the Bogoliubov transformation is limited to treat the like-particle pairing although it could be further generalized to address neutron-
proton pairing as well.
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The tensors defining each normal-ordered term display antisymmetry properties, i.e.

Ωij
k1...kiki+1...ki+j

= (−1)σ(P )Ωij
P (k1...ki|ki+1...ki+j)

, (63)

where σ(P ) refers to the signature of the permutation P . The notation P (. . . | . . .) denotes a separation
into the i quasiparticle creation operators and the j quasiparticle annihilation operators such that
permutations are only considered among members of the same group. Thus, Ω00 is the expectation
value of Ω in |Φ〉 whereas Ω[2] and Ω[4] define effective, i.e., normal-ordered, one-body and two-
body operators, respectively. Working in the particle-number-conserving normal-ordered two-body
approximation (PNO2B) [78], the effective three-body part Ω[6] is presently discarded12. Details on the
normal-ordering procedure as well as expressions of the matrix elements of each operator Ωij in terms of
the original matrix elements of the Hamiltonian and of the (U, V ) matrices can be found in Refs. [53, 78].

7.4 Partitioning

To set up the perturbation theory, the Hamiltonian (i.e. grand potential) must be partitioned into an
one-body unperturbed part Ω0 and a residual part Ω1, i.e.,

Ω = Ω0 + Ω1 . (64)

Focusing on the case where the Bogoliubov reference state is the solution of the HFB variational problem,
i.e. using a Møller-Plesset scheme, Ω appearing in Eq. (61) is naturally partitioned given that

Ω20 = Ω02 = 0 (65)

and that Ω11 is in diagonal form, i.e.,

Ω0 ≡ Ω00 +
∑
k

Ek β
†
kβk , (66a)

Ω1 ≡ Ω40 + Ω31 + Ω22 + Ω13 + Ω04 , (66b)

with Ek > 0 for all k. Introducing all many-body states obtained via an even number of quasi-particle
excitations of the vacuum

|Φk1k2...〉 ≡ β†k1 β
†
k2
. . . |Φ〉 , (67)

the unperturbed system is fully characterized by its complete set of orthonormal eigenstates in Fock space

Ω0 |Φ〉 = Ω00 |Φ〉 , (68a)

Ω0 |Φk1k2...〉 =
[
Ω00 + Ek1k2...

]
|Φk1k2...〉 , (68b)

where the strict positivity of unperturbed excitations

Ek1k2... ≡ Ek1 + Ek2 + . . . (69)

characterizes the lifting of the particle-hole degeneracy authorized by the spontaneous breaking of U(1)
symmetry in open-shell nuclei at the mean-field level.

12 The particle-number-conserving nature of the PNO2B approximation further requires to drop specific contributions to Ω[4] as well; see Ref. [78] for a
detailed discussion.
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With these ingredients at hand, the perturbation theory can be entirely worked out algebraically or
diagrammatically. This can be done on the basis of a (imaginary) time-dependent formalism or of a time-
independent formalism. While the former framework leads to working with Feynman (time-dependent)
diagrams, the latter makes use of Goldstone (time-ordered) diagrams. Recently, the complete Rayleigh-
Schrödinger BMBPT formalism, including the automatic generation and algebraic evaluation of all
possible diagrams appearing at an arbitrary order n on the basis of 2N and full 3N interactions has been
published in Ref. [91].

Eventually, the BMBPT expansion of the correlation energy can be written in compact form as a
superfluid extension of the Goldstone formula (Eq. (19b))

∆Ω = 〈Φ|Ω
∞∑
k=1

( 1

Ω00 − Ω1
Ω1

)k
|Φ〉c , (70)

where the Hamiltonian is replaced by the grand potential.

7.5 Low orders

As a result of Wick’s theorem with respect to |Φ〉, the first few orders contribute to Eq. (70), with
Ω(p) ≡ E(p) − λA(p) and Ωref = Ω(0) + Ω(1), according to13

Ωref = +Ω00 , (71a)

Ω(2) = − 1

24

∑
k1k2k3k4

Ω40
k1k2k3k4

Ω04
k3k4k1k2

Ek1k2k3k4
, (71b)

Ω(3) = +
1

8

∑
k1k2k3k4k5k6

Ω40
k1k2k3k4

Ω22
k3k4k5k6

Ω04
k5k6k1k2

Ek1k2k3k4Ek5k6k1k2
. (71c)

The lifting of the degeneracy with respect to particle-hole excitations is embodied in the fact that the
energy denominators in Eq. (71) are non-singular and well behaved. Indeed, quasi-particle energies are
bound from below by the superfluid pairing gap at the Fermi energy, i.e.,

Mink{Ek} ≥ ∆F > 0 . (72)

This would not be true in standard MBPT based on a Slater determinant reference state, where energy
denominators associated with particle-hole excitations within the open shell would be zero in Eq. (45).
Of course, BMBPT does strictly reduce to standard MBPT in a closed-shell system [91]. In particular,
the single third-order diagram whose algebraic expression is given in Eq. (71c) generates the three, i.e.,
particle-particle, hole-hole and particle-hole, third-order HF-MBPT diagrams [91]. This reduction of the
number of diagrams at any order p is a consequence of working in a quasi-particle representation that
does not distinguish particle and hole states. Conversely, all summations over quasi-particle labels run
over the entire dimension of the one-body Hilbert space, which significantly increases the computational
cost compared to standard MBPT. In any case, low-order BMBPT corrections only induce low polynomial
scaling with respect to quasi-particle summation and do not suffer from the storage of large tensors as in
more sophisticated all-order many-body approaches such as (B)CC or IMSRG.

13 Non-canonical contributions are set to zero here given that we use the HFB reference state. When using an arbitrary Bogoliubov reference state, additional
non-canonical contributions arise [91].
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Extracting the p-order contribution to the binding energy from Eq. (70) requires the subtraction of the
Lagrange term λA(p). ComputingA(p) can be done straightforwardly by replacing the leftmost operator Ω
by A in Eq. (70) [91]. As the reference state is constrained to have the correct particle number on average,
it implies that A(1)

0 = A0. Working with the HFB reference state, it can be shown that A(2)
0 = 0 due to the

fact that Ω20 = Ω02 = 0. Consequently, the first correction to the average particle number appears at third
order such that

A
(1)
0 + A

(3)
0 6= A0 , (73)

i.e., the computed average particle number does not match the targeted number A0 of the physical system.
This feature requires an iterative BMBPT scheme in order for the particle number to be correct at the
working order, e.g., p ≥ 3, of interest [100]. To do so, one needs to rerun the HFB calculation with a p-
dependent chemical potential such that, through a series of iterations, one eventually obtains, e.g., A(1)

0 +

. . . + A
(p)
0 = A0. Such a costly algorithm can fortunately be very well approximated by an a posteriori

correction scheme that entirely bypasses the iterative scheme [100]. The third-order results presented in
Sec. 7.6.1 have been computed without any adjustment of the average particle number whereas the novel
ones discussed in Sec. 10.2 have been obtained on the basis of the a posteriori correction scheme.

While the BMBPT expansion efficiently grasps static correlation effects associated to nuclear
superfluidity, the breaking of a continuous symmetry in a finite quantum system is always fictitious.
Consequently, a full-fledged many-body formalism requires the additional restoration of the broken
symmetry, i.e., a mixing of gauge-rotated Bogoliubov vacua which are connected to each other via
(highly non-perturbative) symmetry transformations. While the formalism has already been laid out [58],
realistic calculations remain yet to be performed. Still, proof-of-principle applications to the model pairing
Hamiltonian employing particle-number-projected BCC theory [60] revealed the significant impact of the
symmetry projection in the weakly broken regime corresponding to open-shell nuclei in the vicinity of
shell closures.

7.6 Results

7.6.1 Low-order calculations in mid-mass nuclei

Figure 9 displays ground-state energies, two-neutron separation energies, particle-number variance
and perturbative particle-number corrections along oxygen, calcium and nickel isotopic chains at the
mean-field (i.e. HFB) level, as well as at second- and third-order in the BMBPT expansion. Top
panels reveal that, while static correlations have partially been accounted for by employing a symmetry-
broken reference state, the bulk of dynamical correlations are efficiently grasped via low-order BMBPT
corrections. For (sub-)closed-shell nuclei the third-order correction is consistently suppressed indicating
rapid convergence. In open-shell systems third-order partial sums are strongly contaminated due to a
significant excess of neutrons brought by the third-order contribution to the average neutron number. As
discussed earlier, calculations at third-order and beyond must eventually be done while constraining the
average particle number to match the physical value [100]. This is reported on in Sec. 10.2.

Panel (b) exhibits a qualitative reproduction of two-neutron separation energies already at the mean-field
level. Results are quantitatively improved once second-order effects are incorporated. Panel (c) shows
the neutron-number dispersion σ ≡

√
〈A2〉 − 〈A〉2 that grows with mass number. While the second-

order contribution does not decrease yet the neutron-number dispersion, one expects higher orders to do
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calculations are performed using 13 oscillator shells and an oscillator frequency of ~ω = 20 MeV. The
SRG parameter is set to α = 0.08 fm4. Picture taken from Ref. [37].

so [100]. In closed-shell systems, the particle-number dispersion is zero as a hallmark of the particle-
number-conserving character of the wave function throughout the expansion.

A detailed study of the convergence characteristics of the BMBPT expansion via the calculation of
high-order corrections similar to the ones presented in Sec. 5 (Sec.6.4.1) for HF-MBPT (NCSM-PT)
calculations of closed-shell (open-shell) nuclei has just be completed [100] and is thus not reported on
here.

7.6.2 Comparison to non-perturbative calculations

Figure 10 compares second-order BMBPT ground-state and two-neutron separation energies with results
obtained from state-of-the-art non-perturbative many-body frameworks along oxygen, calcium and nickel
isotopic chains. In particular, IT-NCSM provides essentially exact reference results along the oxygen
chain. In heavier closed-shell nuclei, advanced CR-CC(2,3) calculations also provide reference results.

In all cases, second-order BMBPT is in excellent agreement with other methods, displaying deviations
of less than 2%. In particular, IT-NCSM results are very well reproduced in oxygen isotopes. While
NCSM-PT (see Sec. 6) and MR-IMSRG systematically generate stronger binding, GSCGF at the ADC(2)
level is very close for all systems investigated. In the case of closed-shell nuclei the stronger binding
obtained in the CR-CC(2,3) calculation highlights the importance of an (approximate) incorporation of
3-particle/3-hole excitations.
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Figure 10. Absolute ground-state binding energies (top) and two-neutron separation energies (bottom)
along O, Ca and Ni isotopic chains using the Hamiltonian defined in Sec. 3. Plot markers correspond to
second-order BMBPT (�), second-order NCSM-PT (l), large-scale IT-NCSM (F), GSCGF-ADC(2) ( H),
MR-IMSRG(2) ( ) and CR-CC(2,3) ( �). All calculations are performed using 13 oscillator shells and an
oscillator frequency of ~ω = 20 MeV. The SRG parameter is set to α = 0.08 fm4. Picture taken from
Ref. [37].

As seen from two-neutron separation energies, all ab initio methods consistently predict the same shell
structure and location of the neutron trip line. This feature highlights both the great success of recently
developed many-body methods and the excellent performance of perturbative techniques such as NCSM-
PT and BMBPT in particular. On the other hand, the strong deviation of absolute binding energies14

from experimental data, most pronounced in neutron-rich calcium and nickel isotopes, is common to all
employed frameworks and clearly points to defects of the employed Hamiltonian. A detailed discussion
of this crucial issue is postponed to Sec. 10, where a new family of chiral Hamiltonians is tested with
the goal to cure the poor agreement presently obtained for nuclear ground-state observables of mid-mass
nuclei.

8 IMPORTANCE TRUNCATION

In previous sections, MBPT was considered as a full-fledged standalone framework to access the
solution of the quantum many-body problem. However, MBPT techniques can also be used to support
non-perturbative approaches by pre-processing the many-body configuration space. Subsequently, the
concept of importance truncation (IT) is presented as a procedure to a priori remove a set of tensor
entries to be solved for on the basis of an importance measure [101, 94, 102, 103]. Historically, this
idea was first applied in electronic structure theory to perform a pre-selection of multi-reference CI
amplitudes [104, 105].

8.1 Original context: configuration interaction methods

The IT concept is ideally suited for basis expansion methods, such as general configuration interaction
(CI) approaches or, more specifically, the NCSM. Given the expansion of an eigenstate |Ψn〉 of H in
some many-body basis |φi〉, the importance of each basis state can be quantified through the associated
expansion coefficient C(n)

i ≡ 〈φi|Ψn〉. This importance measure can be estimated within first-order

14 The strong deviation also concerns charge radii that are not presently discussed.
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MCPT, discussed in Sec. 6, starting from a multi-configurational reference state |Ψref〉

κ
(1)
i =

〈φi|H|Ψref〉
E

(0)
i − E

(0)
ref

. (74)

The reference state provides an initial approximation of |Ψn〉 within the reference space Mref and κi
is used to assess a priori the importance of each basis state |φi〉 /∈ Mref. Only states with importance
measures above an importance threshold κmin are included into the model space for the subsequent CI
calculation.

Since the eigenvalue problem is solved exactly in the importance-truncated model space, IT provides
a variational approximation to the full solution. Moreover, the effect of discarded configurations can
be estimated via the second-order MCPT energy correction (56). This together with extrapolations to
vanishing importance thresholds κmin → 0 can be used to reconstruct the energies in the full model
space. As testified by the results already presented in Figs. 7, 8 and 10, the IT concept has allowed one
to push NCSM calculations beyond p-shell nuclei, up to neutron-rich oxygen isotopes. More details on
importance-truncated CI approaches are discussed in Refs. [94, 102].

8.2 New context: coupled-cluster method

In the context of non-perturbative expansion methods, the general idea is to discard irrelevant entries of
the largest mode-n tensor that needs to be solved for and that drives the numerical scaling as well as the
storage cost of the method. This is done by a priori estimating the importance of each of its entries on the
basis of a less costly many-body method, e.g. MBPT. While the underlying formalism is only sketched in
this section, the reader is referred to Ref. [103] for a detailed discussion.

8.2.1 Wave-function ansatz

To illustrate the concept, BMBPT is employed as a method to pre-process the cluster amplitudes
constituting the unknown tensors to be solved for within the BCC method. This non-perturbative approach
is based on the wave-function ansatz [53]

|Ψ〉 ≡ eT |Φ〉 , (75)

where the connected quasiparticle cluster operator T ≡ T1 + T2 + T3 + . . . is defined through

Tn ≡
1

n!

∑
k1···k2n

t2n0
k1···k2nβ

†
k1
· · · β†k2n , (76)

etc. The BCC amplitudes t2n0
k1···k2n constitute the unknown mode-n tensors of present interest.

Instead of solving for all unknown cluster amplitudes, IT selects a subset of tensor entries that are
determined non-perturbatively by solving BCC amplitude equations while residual corrections from the
discarded tensor entries are treated in low-order BMBPT. Consequently, the ground-state energy E0

consists of a contribution from BCC in the IT subspace E(IT)
0 and a residual BMBPT correction δ

(res)
0

from the complementary subspace
E0 = E(IT)

0 + δ
(res)
0 . (77)
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Of course, the selection of the IT subspace must be performed without the knowledge of the full solution,
which is where low-order BMBPT estimates enter into play.

8.2.2 Importance-truncated tensor

Considering the n-tuple BCC amplitude tensor Tn ≡ {t2n0
k1...k2n

}, the corresponding importance-
truncated tensor based on the IT measure κ(p)(t2n0

k1...k2n
) from BMBPT at order p is obtained as

T (p)
n (κmin) ≡ {t2n0

k1...k2n
such that κ(p)(t2n0

k1...k2n
) ≥ κmin} , (78)

where κmin defines the IT threshold. The original tensor is recovered in the limit of κmin → 0, i.e.,

lim
κmin→0

T (p)
n (κmin) = Tn . (79)

With an importance-truncated tensor comes the associated data compression ratio

Rc ≡
# elements of Tn

# elements of T (p)
n (κmin)

, (80)

which relates the initial amount of data to the compressed one resulting from the IT process. Whenever
Rc > 1, the compressed tensor requires less storage than the original one.

8.2.3 Results

Applying IT to T3, the goal is eventually (not done here) to solve BCCSDT equations for the retained
entries and correct for the omitted ones in perturbation. The feasibility of the approach directly depends
on the reduction offered by the IT for a desired accuracy given that a full BCCSDT calculation is currently
undoable in realistic model spaces, even when employing an angular-momentum-coupled scheme.

Figure 11 displays the impact of the data compression obtained by applying IT for 18O as a function
of the HO single-particle basis size. To provide a reference, the compression of T2 is illustrated first
in the left panel before coming to the real challenge constituted by the treatment of T3. Three different
storage schemes are displayed corresponding to a full storage of all tensor entries (diamonds), the tensor
entries allowed by fundamental symmetries of the interaction (squares) and the IT-compressed entries
from perturbative estimate (circle) for different values of κmin. The percentage associated with the IT-data
indicates the corresponding error on the second-order contribution to the ground-state energy

∆Ω
(2)
0 =

1

4!

∑
k1k2k3k4

|t40(1)
k1k2k3k4

|2Ek1k2k3k4 . (81)

Results demonstrate that even for T2, i.e. a mode-4 tensor, the storage of all index combinations requires
tremendous amounts of memory (> 200 GB per working copy) that is at the edge of supercomputing
facilities15. Employing a symmetry-adapted storage scheme, several orders of magnitude can be saved.
More importantly, discarding irrelevant tensor entries through IT additionally compresses the data by three
orders of magnitude at the price of inducing a systematic error of less than 1%, i.e., a few hundreds of
keV, on the second-order correlation energy. Correspondingly, the storage of the T2 amplitudes is lowered
to less than 1 MB per working copy. One can assign an ’effective one-body dimension’ to this number

15 Solving non-linear problems requires the storage of various copies of the coupled-cluster amplitudes.
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Figure 11. Number of tensor entries of T2 amplitudes (left) and T3 amplitudes (right) as a function of
model space using the Hamiltonian described in Sec. 3. The oscillator frequency is given by ~ω =
20 MeV. Different plot markers indicate different storage scheme including all entries ( �), symmetry-
allowed entries (�) and IT-compressed entries (l). For emax ≥ 10 an additional E3max-truncation (�) for
the T3 amplitudes is introduced. All calculations employ a canonical HFB reference state. Pictures taken
from Ref. [103].

of tensor entries yielding e(eff)
max ≤ 5, i.e., converged BCCSD results could be obtained using an effective

model space including less than six major shells.

While the storage of T2 amplitudes is actually within reach of state-of-the-art capacities, the extension
to T3 amplitudes poses a severe computational problem. Performing the same analysis as above, even the
symmetry-adapted tensor requires more than 100 TB of memory. Performing the IT-compression of T3,
the corresponding fourth-order contribution to the ground-state energy

∆Ω
[4T ]
0 =

∑
k1k2k3
k4k5k6

|t60(2)
k1k2k3k4k5k6

|2Ek1k2k3k4k5k6 , (82)

can be evaluated with 1% accuracy while discarding 99.99% of all T3 tensor entries. Because triples
correction to the ground-state energy first appear at fourth order, a one-percent relative error on ∆Ω

[4T ]
0

relates to an absolute error of a few keV, which is negligible in mid-mass ab initio studies.

Eventually, the use of IT shifts the boundary of what is computationally unfeasible such that, in the
following years, the implementation of IT-BCCSDT defines an ambitious and yet reachable goal.

9 BASIS OPTIMIZATION

The present section discusses how MBPT can be used as an auxiliary tool to construct an alternative
single-particle basis accelerating the convergence of non-perturbative many-body methods as compared
to commonly employed bases.
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9.1 Rationale

In nuclear structure calculations, tensors defining H are typically expressed in the eigenbasis of the
spherical HO Hamiltonian. Next, a self-consistent mean-field, e.g. HF, calculation is typically performed
to generate the reference state such that the beyond-mean-field step and the associated tensors are
transformed into the corresponding mean-field, e.g. HF, one-body basis.

While the use of HO orbitals authorizes the rigorous center-of-mass factorization in NCSM calculations,
they are plagued at long distances with a pathological Gaussian falloff and a strong dependence of the
many-body results on the width of the confining HO potential. Contrarily, HF orbitals display a proper
exponential falloff but may induce a sizeable center-of-mass contamination and a slower convergence in
large-scale NCSM diagonalizations compared to HO orbitals.

9.2 Natural orbitals

Naturally, one wonders about the existence of a single-particle basis that admit only little sensitivity to
the oscillator frequency while maintaining rapid model space convergence. Because the exact one-body
density matrix

ρpq =
〈Ψ|c†pcq|Ψ〉
〈Ψ|Ψ〉 , (83)

contains information about the fully correlated wave function, its eigenbasis, defining so-called natural
orbitals, is expected to deliver an optimal choice.

This expectation was confirmed by employing the one-body density matrix obtained from a large-
scale NCSM calculation [106]. For mid-mass nuclei, this strategy has the downside to require a full CI
solution to obtain the optimized single-particle basis. However, as already observed several decades ago
in quantum chemistry calculations [107, 108], approximate natural orbitals perform surprisingly well in
applications. Instead of using the exact CI wave function, a correlated density matrix is constructed within
a polynomially scaling expansion method, MBPT providing a particularly simple example to do so [109].
Similar approaches can be followed by using the Λ-extension of CC theory or by diagonalizing the dressed
one-body propagator in SCGF theory. Note, however, that the construction of an auxiliary basis already
involves a computationally non-trivial solution within a non-perturbative many-body approach.

9.3 Density matrix in closed-shell MBPT

Starting from Eq. (25b) and following Ref. [110], the one-body density matrix up to second order in the
residual interaction can be written as [109]

ρ = ρ(00) + ρ(02) + ρ(20) + ρ(11) +O(λ3) , (84)

where

ρ
(00)
pq ≡

〈Φ|c†pcq|Φ〉
〈Φ|Φ〉 (85)

denotes the zeroth-order HF density matrix whereas

ρ
(02)
pq ≡ 〈Φ(0)| c†pcq |Φ(2)〉 = ρ

(20)∗
qp , (86a)
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Figure 12. NCSM ground-state energy of 16O as a function of the frequency ~ω (denoted as ~Ω on the
figure) of the underling HO basis for Nmax = 2, 4, 6, 8, 10 spaces. The NCSM diagonalization itself is
performed either in the initial HO basis (left), in the HF basis (center) or in the natural-orbital basis from
second-order HF-MBPT (right). The Hamiltonian described in Sec. 3 is employed. Figure taken from
Ref. [109].

ρ
(11)
pq ≡ 〈Φ(1)| c†pcq |Φ(1)〉 , (86b)

denote its MBPT corrections whose matrix elements are expressed in the HF basis. Explicit expressions
for the individual corrections to the mean-field density in terms of two-body matrix elements can be found
in Refs. [110, 109].

9.4 Results

The impact of using natural orbitals is now gauged by performing a systematic variation of the
underlying single-particle basis in NCSM calculations. Figure 12 displays 16O ground-state energy
as a function of the frequency characterizing the underling HO basis for various values of Nmax.
Results obtained from the NCSM diagonalization performed in the HO and HF bases as well as in the
natural-orbital basis extracted from second-order HF-MBPT are displayed.

The left panel shows the typical strong dependence of NCSM results on the underlying frequency
when using HO one-body basis states, thus yielding a pronounced parabolic shape around the variational
minimum for all values of Nmax. While the use of HF orbitals (middle panel) lowers the sensitivity to ~ω
the model space convergence is not improved and the ground-state energy has a linear falloff at higher
frequencies. Finally, the NCSM ground-state energy obtained using the natural-orbital basis (right panel)
is almost independent of the oscillator frequency and displays a faster model-space convergence as a
function of Nmax. Similar conclusions hold for other observables, e.g., charge radii, low-lying excitation
energies and electro-magnetic transition strengths, as discussed in Ref. [109].

Eventually, the use of one-body density matrices from low-order MBPT to construct of an optimal
computational basis is a simple yet powerful tool to account for high-lying particle-hole excitations that
are otherwise hard to grasp in configuration-driven methods like NCSM.
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Figure 13. Even oxygen isotopes ground-state energies from reference (empty symbols) and second-
order (full symbols) NCSM-PT with N ref

max = 2 (left panel) and from IM-NCSM (right panel). The
consistent non-local 2N plus 3N chiral interactions at N2LO (l) and N3LO (�) presented in Ref. [111] are
employed with a cutoff Λ = 500 MeV. The uncertainty bands represent both many-body and interaction
uncertainties (see text). Both many-body calculations make use a natural-orbital basis obtained in 13
oscillator shells with ~ω = 20 MeV.

10 TESTING NOVEL χEFT NUCLEAR HAMILTONIANS

The computational efficiency of perturbative approaches makes them ideally suited for survey calculations
over a large range of nuclei. A specific scenario for such survey calculations is the development of novel
chiral EFT interactions, where large numbers of many-body calculations are necessary to constrain or
validate the choice of low-energy constants as well as to characterize the effect of different regulator
formulations. Recently, a new family of consistent chiral 2N plus 3N interactions up to N3LO based
on non-local regulators was developped [111]. This new set of interactions is able to simultaneously
reproduce ground-state energies and charge radii up into the medium-mass regime. Moreover, the full
sequence of chiral orders from LO to N3LO is available for different cutoff values, which facilitates
a rigorous uncertainty quantification. In the applications discussed below, the new interactions are
consistently SRG-evolved in the 2N and 3N sectors down to α = 0.04 fm4 and tested through
non-expensive perturbative methods over a larger set of nuclei than those addressed in Ref. [111].

10.1 NCSM-PT

First, NCSM-PT is employed to calculate ground-state energies along the oxygen chain using
interactions from Ref. [111]. In Fig. 13, results obtained from N2LO and N3LO interactions are
compared to experiment including a quantification of systematic theoretical uncertainties resulting from
both the many-body and interaction truncations. The benchmarks discussed in Sec. 6 showed that
calculations with the N ref

max = 2 typically provide a good agreement with non-perturbative methods and
that ground-state energies for larger reference spaces typically fall between N ref

max = 0 and 2 results.
Therefore, the difference between these two calculations offers a convenient way to estimate many-body
uncertainties in NCSM-PT calculations. Uncertainties resulting from truncating the chiral expansion of
nuclear interactions are estimated from the order-by-order variation of the energies using the prescription
discussed in Refs. [112, 113, 114]. The interaction-induced uncertainty of an observable XN3LO at order
N3LO, e.g., is given by max(Q |XN3LO − XN2LO|, Q2 |XN2LO − XNLO|, Q3 |XNLO − XLO|, Q5 |XLO|)
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with the expansion parameter Q estimated as the ratio of a typical momentum scale characterizing mid-
mass systems over the breakdown scale, which results in Q ≈ 1/3 [114]. The uncertainty band shown in
Fig. 13 combines both uncertainties, where many-body uncertainties are typically larger than interaction
uncertainties.

The NCSM-PT ground-state energies can be compared with results from the in-medium no-core shell
model (IM-NCSM) displayed on the right-hand side of Fig. 13. The non-perturbative IM-NCSM method
combines a multi-reference in-medium SRG transformation of the Hamiltonian that decouples a small
NCSM model space, with a subsequent NCSM calculation using the transformed Hamiltonian [52].
The associated uncertainty bands include once again both many-body and interaction uncertainties. The
comparison reveals an excellent agreement between NCSM-PT and IM-NCSM, which themselves agree
with experiment within estimated uncertainties.

10.2 BMBPT

In addition to low-order NCSM-PT benchmarks in oxygen isotopes, the novel set of interactions is tested
on a large set of mid-mass semi-magic nuclei up to third-order in BMBPT16.

To estimate the many-body uncertainty arising from the finite truncation of the BMBPT expansion a
nucleus-independent error of 3% is assumed. A recent study of high-order BMBPT calculations revealed
that the third-order partial sum typically induces a many-body error of about 2% [100]. Because the
employed Hamiltonian was softer and further SRG-evolved to lower resolution scale, a more conservative
3%-error in the current setting seems plausible. The overall uncertainty is then given by summing this
many-body error and the interaction uncertainty stipulated before. The additional uncertainty associated
with the model space truncation induced by the finite single-particle basis is presently not incorporated.
Clearly, the construction of reasonable models of many-body uncertainties is highly non-trivial and
employing simplistic parametric models, e.g., geometric sums for perturbation series, can lead to wrong
estimates if the perturbation series does not obey the underlying assumptions.

In Fig. 14, ground-state energies of oxygen and calcium isotopes are displayed for two different values
of E3max = 14, 16. The first striking result is that the overbinding obtained in Ca isotopes with the
’standard’ Hamiltonian (see Fig. 10) is resolved, i.e. the systematic trend throughout O and Ca isotopes
is now consistent with experimental data. In particular, low-order BMBPT results provide a much
better reproduction of experimental ground-state energies of very neutron-rich Ca isotopes than with the
’standard’ Hamiltonian for which the degrading increases systematically with neutron number.

Going in more details, one observes that the reference HFB energy, i.e., the lowest order in the BMBPT
expansion, accounts for much less binding (i.e. less than half of the total binding energy) than with
the ’standard’ Hamiltonian, thus indicating a ’harder’ interaction17. Moreover, the third-order correction
is typically larger in the present case. While the the first three BMBPT orders are systematically and
strongly suppressed, this indicates that the new interactions are indeed less perturbative. One can thus
expect higher orders to contribute non-negligibly.

Focusing now on two-neutron separation energies, the end results are very satisfactory and of similar
or even greater quality than with the ’standard’ Hamiltonian. Interestingly, HFB results are further away
in the present case, indicating that not only absolute values but also the trend with neutron number is

16 As compared to Fig. 9, third-order are presently corrected for the particle-number contamination via the so-called a posteriori correction studied and
validated in Ref. [100].
17 This feature reflects both the different characters of the chiral Hamiltonians themselves and the fact that the ’standard’ Hamiltonian was SRG-evolved down
to α = 0.08 fm4 instead of α = 0.04 fm4 for the new ones.
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Figure 14. BMBPT systematics along O (left) and Ca (right) isotopic chains using the non-local chiral
two- plus three-nucleon interactions at N3LO presented in Ref. [111]. Top panel: absolute binding
energies. Bottom panel: two-neutron separation energies. Plot markers correspond to HFB (l), second-
order BMBPT (�) and third-order BMBPT ( �). All calculations are performed using 15 oscillator
shells and an oscillator frequency of ~ω = 20 MeV. The single-particle orbital angular-momentum
quantum number was limited to l ≤ 10. Open and closed symbols correspond to different truncations
E3max = 14, 16, respectively.

different. Still, second and third order contributions consistently compensate for this apparent, but in fact
fictitious, degrading at the HFB level. One eventually observes that results are still less accurate near
major shell closures, which is consistent with the expectation that restoring particle-number symmetry
through PBMBPT [58] will have the largest impact near shell closures.

While the results in oxygen isotopes are virtually identical for both E3max values, the truncation in
E3max plays an increasingly important role in neutron-rich calcium isotopes, i.e. ground-state energies
beyond A = 50 obtained for E3max = 14 and 16 start deviating more strongly, pointing to the importance
of truncated three-body matrix elements as already shown in Ref. [111]. This constitutes a technical
challenge for the future when ab initio calculations move to even heavier and more neutron-rich nuclei.

Clearly, the above features points toward a systematically improved quality of the novel set of
interactions compared to prior generations of chiral Hamiltonians that tend to fail in mid-mass systems.
In the future, this statement will be further benchmarked by validating the consistency of low-lying
spectroscopy and charge radii with experimental data in the mid-mass region.

11 CONCLUSIONS AND OUTLOOK

The present paper reviewed the status of MBPT techniques in the field of ab initio many-body calculations
of finite nuclei. After discussing formal properties of the power-series ansatz, the main goal was to provide
an in-depth understanding of the MBPT expansion and its range of applicability. Most importantly, two
ways of extending Slater-determinant-based MBPT towards open-shell systems were discussed. Multi-
configurational perturbation theory and Bogoliubov MBPT were shown to provide complementary ways
to tackle the particle-hole degeneracy and the associated strong correlations in open-shell nuclei.
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Figure 15. BMBPT ground-state energies for oxygen and calcium isotopes at third order of the
perturbative expansion using consistent non-local chiral two- plus three-nucleon interactions at N2LO
(blue) and N3LO (red). Open symbols show the corresponding HFB ground-state energies. The
uncertainty bands represent both, many-body and interaction uncertainties (see text). All calculations
are performed using 15 oscillator shells and an oscillator frequency of ~ω = 20 MeV. The single-particle
orbital angular-momentum quantum number was limited to l ≤ 10.

Each of the subparts dedicated to the various flavors of many-body perturbation theory displayed results
of large-scale calculations touching upon the very frontier of current ab initio studies dedicated to mid-
mass (open-shell) nuclei. While highly accurate non-perturbative alternatives are available, the formal
and computational simplicity is at the very heart of perturbative approaches. Indeed, these features enable
large surveys along complete isotopic chains at a small fraction of the computational cost necessary to
utilize more sophisticated approaches. In view of the increasing activity related to the construction of
improved generations of nuclear Hamiltonians, simple and yet accurate many-body schemes constitute a
very valuable tool to quickly characterize their overall performance.

Furthermore, MBPT provides not only a standalone many-body framework, but can also be used as
an inexpensive pre-processing tool to accelerate non-perturbative methods. Two facets discussed in this
work are data compression from MBPT-based importance truncation and basis optimization from low-
order MBPT density matrices. Both tools have been used with great success to either tame the curse of
dimensionality or cure pathological defects in the computational basis at low computational price.

This (by far not exhaustive) list of MBPT-related applications in nuclear theory highlights the start of a
renaissance of perturbation theory fostered by renormalization group techniques used to soften nuclear
Hamiltonians. In parallel, the deepened understanding of infrared-divergences, their origin in open-shell
systems and systematic ways to overcome them will hopefully help cure the (unfortunately still present)
disfavour against MBPT for nuclear structure research.

Future developments will expand many of the ideas laid out in this work. Better control on uncertainties
in the nuclear Hamiltonian pave the way for targeting more exotic systems in the upcoming years.
In particular, a proper account of static correlations associated with nuclear deformation has been
identified as a critical goal by various groups worldwide. Consequently, the implementation of frameworks
employing a systematic breaking (and restoration) of SU(2) symmetry will be of high relevance. However,
due to the increasing number of basis states these efforts will require significant computational resources
as well as extensive formal developments. To control the increase of computational requirements (memory
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and runtime), so-called tensor factorization techniques have been proposed recently where high-mode
tensors are decomposed into sums of product of lower-rank ones [115, 103]. While initial proof-of-
principle applications have demonstrated the high potential, extensive additional research is required in
this direction.

On a short timescale the benchmarking of importance truncation and natural orbitals in non-perturbative
medium-mass applications will deepen the understanding of the role of the computational basis and
distribution of correlations in Hilbert space. Furthermore, by employing data compression tools will
greatly help relax the many-body truncation truncation at play such that first-principle calculations will
witness a level of accuracy that has been out of reach so far.
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[86] Csépes Z, Pipek J. An effective recursive algorithm for generating many-body Hugenholtz and

Goldstone diagrams. J. Comp. Phys. 77 (1988) 1.
[87] Lyons J, Moncrieff D, Wilson S. Diagrammatic many body perturbation expansion for atoms and

molecules: Automatic generation & analysis of 5th order hugenholtz energy diagrams. Comp. Phys.
Comm. 84 (1994) 91.
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