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Abstract

We present extensions and new developments of the in-medium no-core shell model (IM-

NCSM), which is a novel ab initio many-method that merges the multi-reference in-medium

similarity renormalization group (MR-IM-SRG) with the no-core shell model (NCSM)—two

complementary and successful ab initio many-body methods.

Within the IM-NCSM framework, the MR-IM-SRG employs a correlated NCSM reference state

and unitarily transforms observables such that the reference state is decoupled. Consequently,

the model-space convergence of a subsequent NCSM calculation is substantially accelerated—

demonstrating the power of the IM-SRG decoupling scheme—and the IM-NCSM can treat

nuclei that are out of reach for traditional NCSM calculations.

In earlier applications we already employed the IM-NCSM for addressing scalar observables

w.r.t. ground and excited states in even open-shell nuclei, however, this initial formulation of

the IM-NCSM had several restrictions that we eliminate in this work.

Due to the spherical formulation of the IM-SRG equations—which is mandatory from a com-

putational point of view—the total angular momentum of the reference state is required to

vanish and, thus, the IM-NCSM was restricted to the treatment of even nuclei. The particle-

attached/particle-removed extension overcomes this restriction and makes odd nuclei acces-

sible. Furthermore, the spherical formulation of the IM-SRG equations did not account for

non-scalar operators and, therefore, the consistent transformation of electromagnetic observ-

ables was not possible. By deriving and implementing the IM-SRG equations corresponding

to non-scalar observables, we open up the possibility to calculate electromagnetic observables

from the IM-NCSM. These observables are sensitive to di�erent aspects of the wave functions

and, therefore, ideal for validating theoretical models and new opportunities for fruitful col-

laborations with experimentalists are opened up. For the transformation of observables we

implemented a Magnus-type transformation, which determines the generator for the IM-SRG

transformation and greatly reduces the computational e�ort.

Considering numerical applications, we employ the IM-NCSM for the calculation of ground-

state energies, excitation energies, radii, magnetic dipole moments, electric quadrupole mo-

ments, B(M1) transitions, and B(E2) transitions, where we study various medium-mass nuclei

up to calcium isotopes. These calculations are already converged at very small model-space
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sizes—showing the great advantage of the IM-NCSM—and the results are compatible with

large-scale NCSM calculations. These applications demonstrate that the IM-NCSM is now ca-

pable of addressing the full range of nuclear structure observables—including spectroscopic

and electromagnetic observables—in fully open-shell nuclei.
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Zusammenfassung

In dieser Arbeit stellen wir Erweiterungen und Neuentwicklungen des In-Medium No-Core

Shell-Model (IM-NCSM) vor. Das IM-NCSM ist eine neuartige Ab-Initio-Vielteilchenmethode,

welche die Multi-Reference In-Medium Similarity Renormalization Group (MR-IM-SRG) mit

dem No-Core-Shell-Modell (NCSM) vereint, wobei ein wesentlicher Aspekt des IM-NCSM die

Komplementarität dieser beiden Methoden ist.

Im Rahmen des IM-NCSM verwendet die MR-IM-SRG einen korrelierten NCSM-Referenz-

zustand und transformiert Observablen derart, dass eine Entkopplung des Referenzzustands

erreicht wird. Folglich ist die Modellraumkonvergenz einer nachfolgenden NCSM-Berech-

nung wesentlich beschleunigt und das IM-NCSM kann Kerne behandeln, die für traditionelle

NCSM-Berechnungen unerreichbar sind.

In früheren Anwendungen wurde das IM-NCSM bereits zur Berechnung von skalaren Obser-

vablen bezüglich des Grundzustands und angeregten Zustände in Kernen mit o�enen Schalen

eingesetzt. Diese erste Formulierung des IM-NCSM hatte jedoch mehrere Einschränkungen,

welche durch diese Arbeit beseitigt werden.

Aufgrund der sphärischen Formulierung der IM-SRG-Gleichungen – welche unerlässlich für

eine rechentechnisch e�ziente Implementierung ist – muss der Gesamtdrehimpuls des Re-

ferenzzustandes verschwinden, woraus folgt, dass das IM-NCSM auf die Behandlung von

geraden Kernen beschränkt war. Die Particle-Attached/Particle-Removed Erweiterung des

IM-NCSM überwindet diese Einschränkung und macht die Behandlung von ungerade Ker-

nen möglich. Darüber hinaus war die sphärische Formulierung der IM-SRG-Gleichungen ein-

geschränkt auf skalare Observablen. Folglich war eine Transformation von elektromagneti-

schen Observablen nicht möglich. Mittels einer Herleitung und Implementierung von IM-

SRG-Gleichungen, welche den sphärischen Tensorrang der zu transformierenden Observable

variabel hält, erö�nen wir die Möglichkeit elektromagnetische Observablen mittels des IM-

NCSM zu berechnen. Diese Observablen sprechen auf andere Aspekte der Wellenfunktion an

und sind daher von großem Nutzen für die Validierung von theoretischen Modellen und bieten

neuen Mg̈lichkeiten für Kollaborationen mit Experimentatoren. Für die Transformation von

Observablen haben wir eine Magnus-artige Transformation implementiert, welche den Gene-

rator der IM-SRG Transformation bestimmt und den Rechenaufwand erheblich reduziert.
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In numerischen Anwendungen verwenden wir das IM-NCSM für die Berechnung von Grund-

zustandsenergien, Anregungsenergien, Radien, magnetischen Dipolmomenten, elektrischen

Quadrupolmomenten, B(M1) Übergängen und B(E2) Übergängen, bei denen wir verschiedene

mittelschwere Kerne bis zu Kalziumisotopen untersuchen. Diese Berechnungen sind bereits

bei sehr geringem Modellraumgrößen konvergiert – was den großen Vorteil des IM-NCSM

zeigt – und die Ergebnisse sind kompatibel mit großskaligen NCSM-Berechnungen. Diese

Anwendungen zeigen, dass das IM-NCSM nun in der Lage ist, die gesamte Fülle von Kern-

strukturobservablen zu berechnen – einschließlich spektroskopischer und elektromagneti-

scher Observablen – in Kernen mit vollständig o�enen Schalen.
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Acronyms and Abbreviations

3N three-nucleon

BLAS basic linear algebra subprograms

CC coupled cluster

CCSD coupled cluster with singles and doubles

CI con�guration interaction

EFT e�ective �eld theory

HF Hartree-Fock
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HO harmonic oscillator

IM-SRG in-medium similarity renormalization group

IT-NCSM importance-truncated no-core shell model

LO leading order

MCPT multi-con�gurational perturbation theory
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NLO next-to-leading order

N
2
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NN nucleon-nucleon

NO2B normal-ordered two-body

npnh n-particle n-hole

ODE ordinary di�erential equation

PA/PR particle-attached/particle-removed

QCD quantum chromodynamics

RKF Runge Kutta Fehlberg

SRG similarity renormalization group

VSSM valence-space shell model
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Chapter 1.

Introduction

Theoretical nuclear physics aims for an understanding of the structure and dynamics of nuclei

from �rst principles. To this end, two intertwined problems have to be addressed: The con-

struction of a nuclear Hamiltonian and the solution of the many-body Schrödinger equation—

both tasks are far from trivial.

For the construction of a nuclear Hamiltonian, we face the problem that the protons and neu-

trons a nucleus consists of are no fundamental particles—they are compounds of quarks and

gluons—and, therefore, the nuclear interaction is not fundamental. Instead, the underlying

theory is quantum chromodynamics (QCD)—the theory of the strong interaction between the

colored quarks and gluons.

Directly deriving a nucleon-nucleon interaction from the underlying theory is not possible

since QCD is highly non-perturbative in the relevant low-energy regime—which is also known

as the con�nement of quarks and gluons into color-neutral hadrons.

However, one may construct a chiral e�ective �eld theory (�EFT) for low-energy QCD, where

one usually follows the suggestion of Weinberg [Wei79] and writes down the most general

Lagrangian that is consistent with the general symmetries of QCD—especially including the

broken chiral symmetry. As we are aiming for an e�ective theory describing the low-energy

regime of nuclear physics, it is the nucleons and pions—instead of quarks and gluons—that

are the relevant degrees of freedom. In this context, pions are the Goldstone bosons of the

spontaneously broken chiral symmetry, which are not massless as chiral symmetry is also

explicitly broken. Heavier mesons and nucleon resonances, however, are “integrated out”

and the e�ects of high-energy physics are taken into account by the so-called low-energy

constants (LECs), which have to be determined through a �t to experimental data.

A problem that arises within such an �EFT is that the Lagrangian still contains an in�nite

number of terms. For that purpose, chiral perturbation theory (�PT) allows for ordering these

in�nitely many terms w.r.t. their respective importance via an expansion in powers of (
Q
Λ� )

�
,

where Q is the characteristic momentum or pion mass, Λ� ≈ 1GeV is the chiral symmetry
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Chapter 1. Introduction

breaking scale, and � is the chiral order. As a consequence, each order � only contains a �-

nite number of contributions [Wei90]. The �rst orders arising within this power counting

scheme are referred to as leading order (LO, � = 0), next-to-leading order (NLO, � = 2), next-

to-next-to-leading order (N
2
LO, � = 3) and so forth, where contributions at � = 1 vanish

due to parity and time-reversal symmetry. The great advantage of �PT is that it allows for a

consistent and systematic choice of interaction terms and explains the empirically observed

hierarchy of nuclear forces like, e.g., two-nucleon (NN) interactions are more important than

three-nucleon (3N) interactions. Another advantage of interactions derived from �EFT is their

direct connection to the underlying theory of QCD and the natural appearance of particular

many-body forces at a speci�c order. Therefore, interactions derived from �EFT are system-

atically improvable and, thus, in accordance with the ab initio spirit. In contrast, realistic

phenomenological potentials like, e.g., the CD-Bonn [Mac01] and Argonne V18 [WSS95] lack

this connection to an underlying fundamental theory and the inclusion of 3N forces—which

has been shown to be mandatory for an adequate description of nuclei—is less systematic.

For years, there was only a very limited selection of chiral interactions available such that we

usually employed the NN interactions at N
3
LO by Entem and Machleidt [EM03] and 3N inter-

actions at N
2
LO by Navratil [Nav07] . However, applying these interactions for nuclei beyond

the lower sd-shell revealed their shortcomings as ground-state energies and radii signi�cantly

deviate from experimental data [Bin+14].

During the recent past, there is a new dynamic in developments of interactions derived from

�EFT. To give a few examples, there are interactions by Ekström et al. [Eks+15], which use

NN and 3N interactions at N
2
LO and include many-body observables for the determination

of its LECs—in contrast to the traditional approach, where only few-body data is employed.

Furthermore, there is the family of interactions from Entem, Machleidt, and Nosyk [EMN17],

which consist of NN interactions up to N
4
LO, together with a non-local 3N interaction at

N
3
LO [Heb+15]—allowing for a study of the chiral convergence. Lastly, there is yet another

family of interactions that is developed within the LENPIC collaboration. For the construction

of these interactions, semi-local regulators are employed and one of the goals is to study the

convergence of the chiral expansion and to quantify theoretical uncertainties due to trunca-

tions of the chiral expansion through an order-by-order analysis [Bin+16; Bin+18; Epe+19].

This demonstrates that there is a remarkable e�ort for developing the newest generations of

chiral interactions, which eventually paves the way for a new era of high-precision theoretical

nuclear physics in the medium-mass regime.

The nuclear Hamiltonian, however, is not the only aspect in the context of calculations of nu-

clear structure observables: We still have to solve the Schrödinger equation, which cannot be

solved exactly and we have to employ controllable approximations. However, a well-known

property of realistic nuclear interactions are strong tensor forces and strong short-range re-

pulsions leading to strong couplings of high and low-momentum modes. Many-body calcula-

tions with these “bare” interactions pose a major challenge as the convergence of many-body

methods that rely on a basis expansion is slowed down—or even inhibited. The free-space

similarity renormalization group (SRG) [BFP07; BFS10; RNF10] tries to remedy this problem

by aiming for a generic decoupling of low and high momenta. As the SRG is usually carried out

2



in two and three-body space [Rot+14], the improved convergence behavior is accompanied

by an error due to the neglection of SRG-induced higher-order contributions.

In recent years ab initio approaches for the solution of the nuclear many-body problem were

developed at an exciting pace and tremendous progress has been made in this area. Broadly

speaking, the many-body approaches we will be mostly dealing with can be separated into

three classes: shell-model-type approaches, medium-mass methods, and hybrid methods.

Two important representatives of shell-model-type approaches are the valence-space shell

model [KB66; Cau+05; Cor+14] as well as the ab initio no-core shell model (NCSM) [Nav+07;

Nav+09; Bro01; BNV13], which numerically solve a large-scale matrix eigenvalue problem

within a model space spanned by a set of many-body states. Thereby, they give direct access

to the eigenstates of the Hamiltonian such that we are able to obtain ground and excited-state

observables on equal footing. Aiming at an exact ab initio solution of the nuclear many-body

problem, the NCSM is one of the most successful methods available, however, it is limited by

its factorial scaling w.r.t. particle number of the nucleus considered and, therefore, its range

of applicability is restricted to p-shell—or lower sd-shell nuclei in the case of the importance-

truncated NCSM (IT-NCSM) [RN07; Rot09].

The in-medium similarity renormalization group (IM-SRG) [TBS11; TBS12; Her+13a], the cou-

pled cluster method [Wło+05; Hag+07; Hag+08; Bin+13b; Bin+13a], and the self-consistent

Green’s functions approach [CBN13; Som+14] are representatives of the class of ab initio

medium-mass methods. These methods employ fundamentally di�erent truncation patterns

than shell-model-like approaches and scale much more mildly w.r.t. particle numbers making

medium-mass nuclei accessible. However, in their basic formulation they are restricted to the

description of ground-state observables of nuclei with shell or sub-shell closures.

It is the IM-SRG, which this work will be mostly dealing with, and that distinguishes itself

by the simplicity of its basic concept and �exibility. The IM-SRG is a rather new many-body

method employing the SRG framework for the unitary transformation of the Hamiltonian

such that a particular many-body reference state is decoupled from particle-hole excitations,

where the reference state is usually chosen as an approximation for the ground state of the

nucleus under consideration. The single-reference version of the IM-SRG—being restricted to

single Slater determinant reference states and, therefore, the calculation of ground states in

closed-shell nuclei—was �rst proposed by Tsukiyama et al. in [TBS11]. However, in [Her+13a]

Hergert et al. introduced the multi-reference IM-SRG (MR-IM-SRG), which generalizes the IM-

SRG framework to correlated reference states and, therefore, open-shell nuclei are becoming

accessible. Using a particle-number projected Hartree-Fock-Bogoliubov (HFB) reference state,

the multi-reference IM-SRG was then successfully employed for even-mass isotopes in semi-

magic chains in [Her+13a; Her+14].

Lastly, there is also the class of hybrid methods, which merge shell-model-like approaches

with medium-mass methods with the aim to merge the individual advantages, while overcom-

ing most of the shortcomings. Over the past few years, many hybrid methods have entered

the stage of ab initio many-body methods showing their great potential. The valence-space

3



Chapter 1. Introduction

shell model relies on e�ective valence-space interactions, which, traditionally, are constructed

phenomenologically [KB66; Cau+05; Cor+09]. However, both the IM-SRG [TBS12; Bog+14;

Str+16; Str+17] and the coupled cluster method [Jan+16] open up the possibility to derive non-

perturbative e�ective valence-space interactions within an ab-initio framework. Apart from

hybrid methods that are based on the valence-space shell model, various innovative NCSM-

based hybrid methods were developed like, e.g., the NCSM-PT [Tic+18], which consists of an

NCSM calculation in a small model space together with a low-order many-body perturbation

theory correction for capturing residual correlations.

Finally, we merged the MR-IM-SRG with the NCSM—which we refer to as IM-NCSM. Within

the IM-NCSM framework, the MR-IM-SRG employs a correlated NCSM reference state and

transforms the Hamiltonian and other observables in such a way that the model-space con-

vergence of a subsequent NCSM calculation is substantially accelerated. Through a consis-

tent evolution of observables, we gain direct access to observables w.r.t. ground and excited

states.

In earlier applications [Geb+16; Geb17], we employed the IM-NCSM for addressing ground

and excited-state observables in even open-shell nuclei. However, there were two major re-

strictions that are eliminated through this work: Firstly, only scalar observables could be con-

sistently evolved due to the spherical formulation of the IM-SRG equations—which is manda-

tory from a computational point of view. However, in order to meet the requirements for

modern many-body methods, the possibility to treat non-scalar observables is essential: Elec-

tromagnetic decay processes usually correspond to such non-scalar operators and—being sen-

sitive to di�erent aspects of the wave functions—these processes may substantially contribute

to the validation of our theoretical models. To this end, we overcome this restriction of the

IM-SRG by explicitly accounting for eventual non-scalar contributions during the angular mo-

mentum coupling of the IM-SRG commutator equations. Secondly, our implementation of the

IM-SRG is restricted to reference states with vanishing total angular momentum so that only

even nuclei may be treated. While this restriction is hard to overcome in practical applica-

tions, we established an extension of the IM-NCSM that allows a treatment of odd nuclei after

all. With these and other developments and investigations that are presented in this work,

the IM-NCSM is now able to study the full range of nuclear structure observables in fully

open-shell medium-mass nuclei.

This work is organized as follows: In chapter 2 we discuss the most important aspects of

the NCSM, which includes the IT-NCSM and single-particle bases other than the harmonic

oscillator. The basic concepts of single and multi-reference normal order and related approxi-

mation schemes—which are a fundamental ingredient for the formulation of the IM-SRG—are

addressed in chapter 3. Throughout chapter 4 we cover the basic concepts of the IM-SRG:

After a brief summary of the general SRG framework and the free-space SRG, we discuss pos-

sible choices for the reference states, the IM-SRG(2), the Magnus formulation, the construc-

tion of adequate generators, and an illustrative application of the single-reference IM-SRG.

In chapter 5 we present the more involved details of commutator evaluations—which are the

computationally most time-consuming part of the IM-SRG. After discussing the m-scheme

4



commutator equations, we give a summary of angular momentum theory and spherical tensor

operators, followed by a derivation of the spherical commutator equations via diagrammatic

angular momentum coupling techniques. In chapter 6 the IM-NCSM and most of our new de-

velopments are discussed. After illustrative applications of the IM-NCSM and an explanation

of the details of the IM-NCSM framework, we will address several methodical improvements,

extensions, and investigations: the optimization of generators, studies of the dependence on

the reference state, the particle-attached/particle-removed extension for the treatment of odd

nuclei, and the calculation of observables—including electromagnetic transitions. After hav-

ing studied the characteristics of the IM-NCSM, we apply this many-body method for an in-

vestigation of oxygen, �uorine, and neon isotopes and explore the dependence on the chiral

interaction in chapter 7. Finally, a summary and an outlook is given in chapter 8.
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Chapter 2.

No-Core Shell Model

Aiming at an exact ab initio solution of the nuclear many-body problem employing state-

of-the-art realistic nuclear interactions, the no-core shell model (NCSM) is one of the most

successful methods available [Nav+09; BNV13]. Formally, the NCSM belongs to the class of

con�guration interaction (CI) approaches which numerically solve a large-scale matrix eigen-

value problem within a model space spanned by a set of many-body states and, thereby, give

access to the eigenstates of the Hamiltonian. Conceptionally, the NCSM is a rather simple

approach from which we are able to obtain ground and excited-state observables on equal

footing. However, the NCSM is limited by its factorial scaling w.r.t. particle numbers of the

nuclei considered and, therefore, its range of applicability is restricted to p-shell and lower

sd-shell nuclei. Even though it may not be applied to nuclei beyond the lower sd shell in

its standard formulation, the NCSM is a many-body method of greatest importance within

theoretical nuclear physics. In the context of other many-body methods with more involved

truncation patterns, due to its exact nature the NCSM sets a standard that other methods

have to compete against and which allows us to quantify the e�ects of inherent truncations

on numerical results.

Three complementary remedies for the aforementioned limitations of the NCSM, which al-

low us to signi�cantly extend the reach of the NCSM and which may be used individually or

in conjunction with each other are presented throughout this work. Firstly, we will be ad-

dressing the so-called importance-truncated NCSM (IT-NCSM) [Rot09] in section 2.3 which

employs low-order multicon�gurational perturbation theory for discarding basis states that

are irrelevant for the description of speci�c eigenstates of a Hamiltonian and, thereby, signif-

icantly reduces the model-space size. Secondly, we will introduce and motivate the natural

orbitals [Tic+19] in section 2.4 as an alternative single-particle basis that exhibits greatly im-

proved convergence properties in NCSM calculations. Lastly, we will address so-called hybrid

methods, i.e., combinations of the NCSM with other “traditional” many-body methods. The

discussion of this aspect is not con�ned to this chapter but a large part of this work is dedi-

cated to the in-depth discussion of the foundation, details, and numerical application of such

7



Chapter 2. No-Core Shell Model

an hybrid method: the so-called in-medium no-core shell model (IM-NCSM). It combines the

multi-reference in-medium SRG (MR-IM-SRG) [Her+13a] with the NCSM in order to over-

come most of their individual shortcomings while preserving most of their advantages. Over

the past few years, many other NCSM-based hybrid methods have entered the stage of ab
initio many-body methods and were successfully applied in the context of nuclear structure

theory like, e.g., the NCSM-PT [Tic+18], showing the great potential that originates from

future developments and advancements of such hybrid methods.

2.1. Basic Concepts

Considering the general quantum properties of a nucleus, it can be described as a fermionic

A-body system. As such, it is associated with the antisymmetric A-body Hilbert space a.s.

A
which solely consists of antisymmetric many-body states. Therefore, the NCSM employs a

model space spanned by a set of Slater determinants {|�i⟩}, i.e., antisymmetrized product

states, where each Slater determinant |�i⟩ consists of A harmonic oscillator
1

single-particle

states |pi⟩. Therefore, an arbitrary Slater determinant |�⟩ may be written as

|�⟩ = |p1p2…pA⟩ =
√
A! ̂( |p1⟩ ⊗ |p2⟩ ⊗ ⋯ ⊗ |pA⟩ ) , (2.1.1)

where ̂ denotes the well-known antisymmetrizer. Note that the set of all Slater determinants

forms a basis of a.s.

A . Each single-particle state |p⟩ can be written as

|p⟩ = |n(ls)jmj tmt⟩ = |nljmjmt⟩ , (2.1.2)

where n denotes the radial quantum number
2
, l denotes the orbital angular momentum, s

refers to the spin, j stands for the total ls-coupled angular momentum, mj refers to the projec-

tion quantum number with regard to j, t denotes the isospin, and mt its associated projection.

Note that, for brevity, we usually omit the spin s and isospin t information as both are simply

1
2 for nucleons. Additionally, the principal quantum number is de�ned as e = 2n + l such that

the harmonic oscillator single-particle energy is given through � = (e + 3
2 )ℏΩ.

Without any truncation pattern on either the single-particle basis or the many-body basis,

the many-body model-space dimension would be in�nite. Considering the NCSM, the model

space is solely truncated through an upper limit on the unperturbed excitation energy of each

many-body basis state of NmaxℏΩ. For illustrating this truncation scheme, let us, �rstly, de�ne

the energy E of a Slater determinant as the sum of the single-particle harmonic oscillator

1
Strictly speaking, the very notion of the NCSM goes hand in hand with the harmonic oscillator basis which

has some striking features as we will see in a moment. However, in the context of this work the discussion of

this basic formulation of the NCSM is mostly of educational value: It serves as a reasonable starting point for

extending the NCSM with regard to other single-particle bases. This extension is straightforward and practical

applications throughout this work will usually be based on other single-particle bases than the harmonic

oscillator.

2
We employ the convention n = 0, 1, 2, ….
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protons neutrons protons neutrons

1s1/2

1p1/2, 1p3/2

2s1/2, 1d3/2, 1d5/2

2p1/2, 2p3/2, 1f5/2, 1f7/2

3s1/2, …

e=0

e=1

e=2

e=3

e=4

Figure 2.1.: This �gure schematically illustrates the truncation scheme that is employed for

the construction of an Nmax-truncated model space as it is characteristic for the

NCSM approach. On the left-hand side one of the base determinants of
18

O is

depicted: 8 protons and 8 neutrons are �lling up the 1s and 1p shell, respectively,

and 2 neutrons are only partially �lling up the 2s and 1d shell. Due to the fact that

there are multiple energetically degenerate determinants that only di�er by the

speci�c orbitals the two upper neutrons are occupying the Nmax = 0 model space

of
18

O is multidimensional. The right-hand side shows an example for a Slater

determinant with N = 4 harmonic oscillator excitation quanta, i.e., a basis state

which would be included within a model space with Nmax ≥ 4.

energies. Secondly, we de�ne the base determinant |�0⟩ as a determinant which minimizes

this energy. Employing the previous two de�nitions, the unperturbed excitation energy E⋆ of

a determinant |�i⟩ may now be easily de�ned as the energy di�erence between itself and the

base determinant |�0⟩. Furthermore, the number of harmonic oscillator excitation quanta N
of a determinant is given through N = E⋆

ℏΩ . Using this de�nition, it will prove as useful to

employ |�Ni ⟩ as a short-hand notation for referring to the i-th NCSM basis state with exactly

N harmonic oscillator excitation quanta. Therefore, the Nmax-truncated model space can now

be written as the span of its many-body basis

Nmax = span(
{
|�Ni ⟩ ||| N ≤ Nmax

}
) . (2.1.3)

The corresponding eigenstates obtained from solving the eigenvalue problem are given in

terms of superpositions of basis determinants

| Nmax

i ⟩ = ∑
|�j⟩∈Nmax

cij |�j⟩ , (2.1.4)

where cij may be associated with the overlap between the eigenstate | Nmax

i ⟩ and the NCSM

basis state |�j⟩. The characteristic truncation scheme of the NCSM is further illustrated by

means of �g. 2.1: It depicts the base determinant as well as a determinant with four harmonic

oscillator excitation quanta with regard to
18

O.

Note that, as it is only the Nmax truncation scheme of the model space that separates the

NCSM approach from an exact treatment of the Schrödinger equation, we have to study the

impact of this Nmax truncation on numerical results, i.e., assess convergence rates w.r.t. Nmax

and eventually assign meaningful uncertainties.
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Chapter 2. No-Core Shell Model

A striking advantage of the harmonic oscillator basis within the context of the NCSM is that

it leads to a separation of intrinsic and center-of-mass degrees of freedom, whereby the in-

trinsic part of these eigenstates is translationally invariant.
3

In other words, any eigenstate

| ⟩ factorizes into an intrinsic part | int⟩ and center-of-mass | cm⟩ part

| ⟩ = | int⟩ ⊗ | cm⟩ , (2.1.5)

which only depend on relative and center-of-mass coordinates and momenta, respectively.

Furthermore, eigenstates with the same intrinsic component but di�erent center-of-mass com-

ponents are degenerate. For removing eigenstates with an excited center-of-mass component

from our spectrum, we follow the scheme outlined in [RGP09], which eventually goes back to

Gloeckner and Lawson in [GL74], and add a center-of-mass Hamiltonian that purely acts on

the center-of-mass part of our wavefunction

Ĥtot = Ĥint + �cmĤcm . (2.1.6)

The center-of-mass Hamiltonian may be constructed as

Ĥcm =
P̂
2

2Am
+
mΩA
2

R̂
2
−
3
2
ℏΩ , (2.1.7)

where m refers to the nucleon mass and P̂
2

and R̂
2

refer to the center-of-mass momentum

and coordinate, respectively. It is noteworthy that the last term within the de�nition of Ĥcm

ensures that the center-of-mass ground-state energy is shifted to zero. By using non-zero

values for �cm and solving the eigenvalue problem for Ĥtot, we have resolved the aforemen-

tioned degeneracy and are shifting eigenstates with an excited center-of-mass component to

higher eigenvalues, i.e., removing those eigenstates from the energetically lower part of the

spectrum.

We would like to remark that a problem that comes along with any single-particle basis other

than the harmonic oscillator basis when employed in the NCSM is that the factorization of

intrinsic and center-of-mass degrees of freedoms is not exact anymore and only recovered

for Nmax → ∞, i.e., the exact solution. While the diagonalization is still based on a total

Hamiltonian given through eqs. (2.1.6) and (2.1.7), we have to be careful regarding the speci�c

choice for the scaling parameter �cm. This is due to the fact that the factorization of eigenstates

is not exact anymore: �cm has to be chosen large enough such that approximately degenerate

eigenstates are shifted upwards in the spectrum and it should be as small as possible such that

its action on dominantly intrinsic eigenstates is kept at a minimum. Two common diagnostics

for assessing the center-of-mass impact on an eigenstate | ⟩ is the calculation and tracking

of ⟨ |Ĥcm| ⟩ and the behavior of ⟨ |Ĥtot| ⟩ under variations of �cm. Considering numerical

calculations
4
, we have found that the optimum for �cm lies in the range of 0.2 to 1.

3
We will discuss the case for single-particle bases other than the harmonic oscillator later on.

4
Within this work the NCSM is usually employed within the context of the IM-NCSM. As a consequence, we do

not employ the harmonic oscillator single-particle basis but a more abstract “IM-SRG basis”.
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A further advantage of the NCSM approach is its versatility: We are able to calculate ground

and low-lying excited states and, as we have direct access to the eigenstates of the Hamilto-

nian, a large range of nuclear structure observables like, e.g., energies, radii and transitions

may be obtained with little e�ort. Also the extension to three-body or even four-body inter-

actions is straightforward—in contrast to other many-body methods like, e.g., the IM-SRG.

The only limitation of the NCSM is the factorial growth of the model-space size w.r.t. the

particle number A and excitation energy NmaxℏΩ. As we are not aiming at a full diagonal-

ization of the Hamilton matrix but are only interested in a few low-lying eigenstates of the

Hamiltonian we are employing a Lanczos-type algorithm, which massively reduces the com-

putational e�ort and makes calculations with many-body model space sizes up to 109 or even

1010 [MVS09] possible. However, considering, e.g.,
16

O even such huge model-space sizes are

already reached at around Nmax = 10 which is usually not su�cient for obtaining converged

results w.r.t. Nmax. Therefore, such “traditional” NCSM calculations are limited to the descrip-

tion of nuclei with mass numbers A ≤ 16 [Bin+18].
5

2.2. Symmetries

For further reducing the model-space size and, as a consequence, extend the reach of NCSM

calculations, we may take rotational symmetry and parity conservation into account.

As the Hamiltonian is rotationally invariant it follows that the eigenstates are degenerate w.r.t.

the projection quantum number MJ of the associated A-body total angular momentum J . As

MJ is an additive quantum number it is simply given through the sum of the single-particle

projection quantum numbers

MJ =
A
∑
i=1

mji , (2.2.1)

and we can project the model space  onto one speci�c MJ . Assuming that we do not want

to impose any further restrictions on the total angular momenta of the eigenstates contained

in the model space, we are usually using the lowest possible absolute value for MJ , i.e., MJ = 0
and MJ = 1

2 for nuclei with even and odd particle numbers, respectively.
6

Furthermore, the Hamiltonian is parity conserving and, thus, we may even further reduce the

model-space size by including positive or negative parity basis states only. The parity of a

Slater determinant is given through the product of the parities of the single-particle states it

5
These numbers already refer to calculations with free-space SRG (see chapter 4) transformed interactions. Cal-

culations with “bare” interactions limit the range of applicability to even lighter nuclei.

6
Note that a model space restricted to, e.g. , M = 1 does not contain eigenstates with J = 0 anymore.
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consists of. As the parity of a single-particle state |nljmjmt⟩ is given through (−)l the parity

Π of a determinant can be written as

Π =
A

∏
i=1

(−)li . (2.2.2)

Note that we are usually restricting the model space to states with natural parity— the parity

of the uncorrelated ground state predicted by the naïve shell model— as opposed to basis states

with unnatural parity. Due to the opposite parity of two determinants which are associated

with consecutive numbers of excitation quanta, N and N + 1, respectively, the inclusion of

parity conservation implies that the model space exclusively consists of basis states with either

an even or odd number of excitation quantaN and, as a consequence, the truncation parameter

Nmax has to be increased in steps of two.

Summarizing, the Nmax-truncated model space Nmax

MJ ,Π that takes parity conservation and ro-

tational invariance into account and is used for representing the underlying Hamiltonian and

for solving the large-scale matrix eigenvalue problem, can now be written as

Nmax

MJ ,Π = span(

{
|�Ni ⟩ ||| N ≤ Nmax, |�Ni ⟩ has parity Π and projection MJ

}

) , (2.2.3)

where the parity Π is usually determined through the parity of the Nmax = 0 (Nmax = 1) con-

�gurations for natural (unnatural) parity eigenstates and for even (odd) total particle numbers

we usually use MJ = 0 (MJ = 1).

2.3. Importance Truncation

One possibility to overcome the limitations of the NCSM due to the growth of its model space

to untractable sizes is the so-called importance truncation leading to the importance-truncated

NCSM [RN07; Rot09]. It introduces an a priori measure for selecting only the physically most

relevant basis states necessary for an adequate description of speci�c eigenstates while taking

the properties of the underlying Hamiltonian into account. As shown in [Rot09], a substantial

amount of basis states may be discarded without an impact on the quality of the description of

certain eigenstates. As a consequence, the size of such an importance-truncated model space is

massively reduced compared to the model-space size of an associated full NCSM calculation.

Thus, this scheme allows us to extend the reach of the NCSM to higher Nmax and particle

numbers A.

For discussing the principles of the importance-truncation scheme within the NCSM frame-

work, let us begin with a brief summary of multi-con�gurational many-body perturbation

theory (MCPT). For this purpose, let us assume that we are starting from a full model space

full spanned by a set of many-body basis states {|�i⟩}. Furthermore, ref shall be a sub-

space of full and | ref⟩ an eigenstate living within ref. In the following, we will be using

12
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| ref⟩ as a �rst approximation or, in other words, zeroth-order approximation for the corre-

sponding eigenstate we are interested in. Following the general idea of MCPT for estimating

low-order corrections to the reference state | ref⟩, we have to separate the Hamiltonian into

an unperturbed part Ĥ0 part and a perturbation Ŵ . Using | ref⟩ as the unperturbed state, this

separation may be performed as follows

Ĥ0 = �ref | ref⟩⟨ ref| + ∑
i∉

ref

�i |�i⟩⟨�i | , (2.3.1)

with �ref = ⟨ ref|Ĥ | ref⟩ and the unperturbed energies chosen as �i = �ref + Δ�i , which is asso-

ciated with the Møller-Plesset-type formulation of MCPT.
7

Using this approach, the zeroth-

order contribution to the eigenstate is the reference state itself and the �rst-order correction

is given through

| ⟩(1) = − ∑
i∉

ref

⟨�i |Ŵ | ref⟩
�i − �ref

|�i⟩ = ∑
i∉

ref

− ⟨�i |Ĥ | ref⟩
�i − �ref⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≡�i

|�i⟩ , (2.3.2)

where we de�ned the so-called importance measure �i . This a priori importance measure �i
plays a central role: It assesses the signi�cance of a basis state |�i⟩ lying outside of ref for

the description of an eigenstate of the Hamiltonian, which, in zeroth-order, is described via

| ref⟩. The so-called importance threshold �min imposes a lower limit on the absolute value of

the importance measure |�i | such that we include only those basis states in our model space

with |�i | > �min and discard all others.
8

In the context of the NmaxℏΩ truncated space of the NCSM, the general idea of importance

truncation may be implemented by means of a sequential scheme as will be outlined in the

following.
9

Starting with a full NCSM calculation in a small NmaxℏΩ space, we obtain an

initial reference state | ref⟩. Employing this reference state, we then construct an importance-
truncated (Nmax +2)ℏΩ space and perform an NCSM calculation within this space from which

we obtain a new, updated, reference state. This updated reference state is then used for the

construction of the importance-truncated (Nmax + 4)ℏΩ space and so on. Compared to the full

NCSM the computationally most demanding part of the IT-NCSM is now the construction of

the importance-truncated space, whereas the diagonalization itself is computationally much

less consuming due to the fact that the importance-truncated model space is much smaller.

As the computational cost drastically increases with the number of basis states the reference

state | ref⟩ is composed of, we only take those basis states into account whose contribution

to the reference state is larger than cmin. Usually, this rather technical cmin truncation pa-

rameter is of the order 1 × 10−4 and is chosen such that the impact on numerical results is

7
Employing this de�nition, the unperturbed reference state is an eigenstate of the unperturbed Hamiltonian and

the zeroth-order energy correction is the expectation of the full Hamiltonian w.r.t. the reference state.

8
Note that the idea of importance truncation is very generic and may also be used in other contexts.

9
The sequential scheme has been found to be the most e�cient scheme.
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negligible. For taking the impact of the �min truncation on calculated observables into ac-

count, we perform calculations at each Nmax for a whole sequence of increasing �min val-

ues, i.e., {�0
min

, �1
min

, �2
min

, …} from which we obtain a corresponding sequence of observables

{E(�0
min
), E(�1

min
), E(�2

min
), …}. As the full NCSM is recovered in the limit �min → 0 at each

Nmax, we perform an a posteriori threshold extrapolation to vanishing importance thresholds

from which we obtain an approximation for the full NCSM E(�min = 0) together with an

uncertainty estimation ΔE(�min = 0).

Note that the scheme for the construction of the importance-truncated model space may be

easily extended such that not only one but several eigenstates are taken into account. Having

de�ned a speci�c importance threshold �min, a basis state |�i⟩ is included in the importance-

truncated model space if its importance measure w.r.t. any reference state is above the impor-

tance threshold.

2.4. Single-Particle Basis Optimizations

The convergence of NCSM calculations w.r.t. Nmax may be signi�cantly improved through the

choice of alternative single-particle bases.
10

Two alternative single-particle bases that play

a dominant role within the context of this work are the Hartree-Fock basis and the natural-

orbital basis. Note that especially within the context of the IM-NCSM (see chapter 6), other

single-particle bases than the harmonic oscillator are particularly valuable for optimizing the

NCSM-based reference state.

Hartree-Fock Basis. The simple picture that the eigenstate of an A-body nucleus is rep-

resented by a Slater determinant, i.e., an anti-symmetrized product state which consists of A
single-particle states where each is occupying a speci�c orbit is only a crude approximation.

Such a mean-�eld picture would only be true if the nucleons were moving within an external

potential with no inter-nucleonic forces. However, the opposite is true: A nucleus is a highly

correlated many-body system, i.e., the nucleons are strongly interacting.

Even though a Slater determinant might not be adequate for representing the exact ground-

state, we may aim for the construction of a Slater determinant that is energetically as close

to the ground state as possible—this is the Hartree-Fock approximation. Formally being a

Rayleigh-Ritz variational problem of the form

�
(

⟨Φ|Ĥ |Φ⟩
⟨Φ|Φ⟩ )

= 0 , (2.4.1)

10
Note that the notion of the NCSM usually implies the employment of the harmonic oscillator single-particle

basis while, strictly speaking, the mere generalization to any other basis would require the notion of an CI

approach.
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it aims for minimizing the energy of a Slater determinant |Φ⟩ by conducting a particularly

constructed unitary single-particle basis transformation. The variational problem eventu-

ally leads to the nonlinear Hartree-Fock equations which can be solved iteratively until self

consistency is reached (which means that the single-particle states are not changing any-

more from one iteration to the next). Once the iteration is converged, we obtain a self-

consistent mean �eld together with its associated eigenstates and eigenenergies—the Hartree-

Fock single-particle states and single-particle energies.

The Hartree-Fock approximation is not only useful as a many-body method on its own, but

more importantly a good starting point for more sophisticated many-body methods that ex-

plicitly include the e�ects of correlations. This is due to the fact that the corresponding

single-particle basis transformation is conducted with regard to a speci�c nucleus and, as

a consequence, the Hartree-Fock single-particle basis already re�ects to a certain extent the

fundamental properties of the nucleus under consideration.

The Hartree-Fock approximation is a standard tool of, e.g., nuclear structure physics and quan-

tum chemistry and, therefore, well-covered in the literature and more general information on

the construction and details of the Hartree-Fock approximation can be found in, e.g., [SO96;

Suh07; RS80].

As successful as the Hartree-Fock basis might be applied within the context of, e.g., the single-

reference IM-SRG, or coupled cluster theory [Hag+16; Hag+14] for targeting medium-mass

nuclei, it comes along with major problems when employed in NCSM-like approaches, as it

has already been pointed out in [Tic+19]. Broadly speaking, this is due to the fact that the

Hartree-Fock approximation is eventually aiming for an uncorrelated mean-�eld and only

variationally optimizes occupied single-particle states while unoccupied states are only �xed

through orthonormality. The interplay of, �rstly, de�ciencies of the wavefunctions of unoc-

cupied Hartree-Fock states, and secondly, the fact that the Nmax-truncated model space does

not fully resolve the single-particle space in which the Hartree-Fock transformation takes

place, leads to the fact that the Hartree-Fock basis does not enhance but even impedes the

Nmax convergence. As a consequence, the Hartree-Fock basis is not an adequate choice for

the NCSM.

Natural Orbital Basis. Another alternative single-particle basis with advantageous proper-

ties is the natural orbital basis: It does not only enhance the Nmax convergence of observables,

but also removes the ℏΩ dependency [Tic+19]. Generally, the natural-orbital basis is the eigen-

basis of the one-body density matrix. While there exist several approaches for the construction

of this one-body density matrix, which di�er by the amount of correlations they are taking

into consideration, we found that it is su�cient to employ a second-order corrected one-body

density matrix which originates from many-body perturbation theory. An advantage of this

approach—in contrast to approaches, which employ a fully correlated ground-state from, e.g.,

a previous NCSM calculation, for the construction of the density matrix—is computational

simplicity.
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Due to the fact that all single-particle states—including those that are not occupied within

the Hartree-Fock Slater determinant—are contributing to the correlated ground-state and to

the one-body density matrix it follows that also all single-particle states are eventually opti-

mized.

For more details on the natural orbitals like, e.g., their construction and a comparison of NCSM

calculations employing the harmonic oscillator, Hartree-Fock, and natural orbital basis can be

found in [Tic+19] and references therein. Due to their advantageous properties, the natural

orbitals are most commonly employed within the IM-NCSM framework as will be discussed

in more detail in chapter 6.
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Chapter 3.

Normal Order

In this chapter we discuss one of the cornerstones of this work: The concept of normal order,

which is employed in this work for the truncation of operators at a speci�c particle rank in

a systematic and controllable manner. This truncation is necessary as analytic complexity

as well as computational e�ort increase dramatically for higher particle ranks. Furthermore,

normal order is a fundamental ingredient of the IM-SRG framework, re�ected by the fact that

operators within the IM-SRG are entering in normal-ordered form up to a speci�c particle

rank. More speci�cally, we are usually employing the normal-ordered two-body (NO2B) ap-

proximation [Rot+12; GCR16], i.e., operators are included up to the normal-ordered two-body

rank. Additionally, normal ordering also lays the foundation for the evaluation of many-body

matrix elements by means of an application of Wick’s theorem.

Broadly speaking, normal ordering reassigns speci�c parts of an operator to lower particle

ranks based on a so-called reference state | ref⟩. This reference state should already capture

the main structure of an eigenstate of the quantum system under consideration to a certain

degree, such that correlations represented by the reference state are already absorbed into the

normal-ordered Hamiltonian. Usually, an approximation for the ground state is chosen as the

reference state.

Often, normal order is only de�ned w.r.t. a single Slater determinant reference state | ref⟩,

which is referred to as single-reference normal ordering. This approach is only applicable to

closed-shell systems as only here a Slater determinant may represent an adequate approxi-

mation for the ground state and can, therefore, be used as a reference state. In the context of

single-reference normal ordering, the reference state is interpreted as a physical vacuum and

de�nes occupied and unoccupied single-particle states as hole and particle states, respectively.

Furthermore, a particle-hole picture is employed for rede�ning speci�c creation and annihi-

lation operators to quasiparticle creators and annihilators. Single-reference normal order is

then nothing but a particular order of a product of annihilation and creation operators such
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Chapter 3. Normal Order

that its expectation value w.r.t. | ref⟩ vanishes. For more information on the topic of single-

reference normal order that goes well beyond the following introductory discussion see, e.g.,

[BS09].

For open-shell nuclei it is not su�cient to use a single Slater determinant as a reference

state due to the fact that there are usually many energetically degenerate Slater determinants.

Therefore, we may resort to a multi-determinantal approach, i.e., an approach in which the

reference state can be represented by superposition of single Slater determinants. Obviously,

in this case the single-reference normal order approach, which is based on a particle-hole

picture, breaks down. For that purpose, Kutzelnigg and Mukherjee generalized the concept

of normal order to multi-con�gurational reference states [KM97] and we will mainly follow

their line of thought here. However, we will employ a slightly di�erent notation, which was

�rst introduced by Kong, Nooijen, and Mukherjee in [KNM10]. Note that, besides both of

the aforementioned references, an educationally valuable introduction into the topic of multi-

reference normal order can also be found in [Geb17; Her17].

3.1. Second �antization

Considering the antisymmetric Fock space  a
, the so-called basic creation and annihilation

operators written as âp and âq , respectively, are formally de�ned by their action on a Slater

determinant as follows

âp |p1…pA⟩ =

{
|pp1…pA⟩ if p ∉ {p1, … , pA}
0 else

, (3.1.1)

âp |p1…pA⟩ =

{
(−)k−1 |p1…pk−1pk+1…pA⟩ if p = pk
0 if p ∉ {p1, … , pA}

. (3.1.2)

From this de�nition we obtain the well-known anticommutation relations

[âp , âq]+ = [âp , âq]+ = 0 , [âp , âq]+ = �pq . (3.1.3)

For convenience, we will employ the following notation for strings of basic creation and an-

nihilation operators

âp1…pnq1…qn = â
p1 … âpn âqn … âq1 , (3.1.4)

and exclusively consider particle-number conserving strings, i.e., only those with the same

number of basic creation and annihilation operators. Note that we refer to âp1…pnq1…qn as a basic

n-body operator. An arbitrary n-body operator Ô can now be written as

Ô =
1

(n!)2
∑
p1…pn
q1…qn

Op1…pn
q1…qn â

p1…pn
q1…qn , (3.1.5)
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3.2. Single-Reference Normal Order

where Op1…pn
q1…qn ≡ ⟨p1…pn |Ô|q1…qn⟩ depicts an n-body matrix element.

Let us now introduce an index convention that is most commonly used throughout this work.

We employ either letters of the Latin alphabet p, q, … or plain numbers 1, 2, … as single-particle

state indices such that a two-body matrix elements may be written, e.g., as O 1p
2q . In contrast,

letters of the Greek alphabet �,  , … are usually used as many-body state indices such that

many-body states are usually expressed as, e.g., |�⟩ , | ⟩ , ….

3.2. Single-Reference Normal Order

Let us begin with the more simple case of normal order w.r.t. a single Slater determinant refer-

ence state | ref⟩ = |p1…pA⟩. The single-particle states |p1⟩ , … , |pA⟩ occupied in this reference

state are called hole states, whereas states that are unoccupied are called particle states. Fur-

thermore, let us assume that together the occupied and unoccupied single-particle states form

an orthonormal basis set. We may interpret the reference state | ref⟩ as a physical vacuum by

taking the following relations into account

âi | ref⟩ = 0 , âi | ref⟩ ≠ 0 , âa | ref⟩ ≠ 0 , âa | ref⟩ = 0 , (3.2.1)

where the indices i and a refer to a hole and a particle state, respectively. It becomes clear

that—employing a particle-hole picture—we may reinterpret âi and âa as quasiparticle anni-

hilator and âi and âa as quasiparticle creator. The term (single-reference) normal order and

the associated normal order operator may now be de�ned as follows.

De�nition 3.2.1: Normal Order

An arbitrary string of creation and annihilation operators denoted as X̂1⋯ X̂n is said to be

in normal order if all quasiparticle annihilators appear right to all quasiparticle creators

De�nition 3.2.2: Normal Order Operator

The normal order operator—denoted by means of two curly brackets {X̂1⋯ X̂n} enclosing

their argument—brings an arbitrary sequence of creators and annihilators X̂1⋯ X̂n into

normal order via applying a permutation � to the order of its arguments and including

a phase factor re�ecting the sign of the speci�c permutation �

{X̂1⋯ X̂n} ≡ (−)sgn(�) X̂�(1)⋯ X̂�(n) . (3.2.2)

For avoiding ambiguities, the speci�c reference state | ref⟩ w.r.t. which a product X̂1⋯ X̂n
is in normal order may be indicated through a subscript like, e.g., {X̂1⋯ X̂n}| 

ref
⟩.
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Chapter 3. Normal Order

Note that the result of the normal order operator is not unique as there may be several se-

quences that are all compatible with the de�nition of normal order, which is illustrated by the

following examples

{âℎ1 âa1 âℎ2 â
a2} = âℎ2 â

a2 âℎ1 âa1 = −â
a2 âℎ2 â

ℎ1 âa1 = … (3.2.3)

An important aspect of normal order is that the expectation value of a normal-ordered product

w.r.t. the reference state always vanishes

⟨ ref|{X̂1… X̂n}| ref⟩ = 0 . (3.2.4)

This particular property will become a fundamental ingredient for the following de�nition of

multi-reference normal order.

In practical applications we are often interested in expressing a sequence of operators X̂1… X̂n
in terms of normal-ordered products. In principle this can be achieved via iteratively applying

the fermionic anti-commutation relations shown in eq. (3.1.3). However, the direct application

of these anti-commutation relations can get very time-consuming and tedious. The remedy

for this problem is Wick’s theorem which gives us a simple and straightforward formula for

expressing a product as a sum of its corresponding normal-ordered products.

Theorem 3.2.1: Wick’s Theorem

An arbitrary product of operators is equal to its normal-ordered product plus all possible

normal-ordered products with single contractions

X̂1⋯ X̂n = {X̂1⋯ X̂n} + ∑
all contr.

{X̂1⋯ X̂i ⋯ X̂j ⋯ X̂n} , (3.2.5)

where a contraction is a complex number and a normal-ordered product with a single

contraction is de�ned as

{X̂1⋯ X̂i ⋯ X̂j ⋯ X̂n}

=X̂iX̂j (−)sgn(�) {X̂1⋯ X̂i−1X̂i+1⋯ X̂j−1X̂j+1⋯ X̂n} , (3.2.6)

and � refers to permutation necessary for X̂i and X̂j being next to each other without

changing their original order.

The question how we can determine the value of a speci�c contraction is given by Wick’s

theorem itself. Applying Wick’s theorem to the product X̂1X̂2 and considering the expectation

value of the resulting equation, we obtain

⟨ ref|X̂1X̂2| ref⟩ = ⟨ ref|({X̂1X̂2} + X̂1X̂2 )| ref⟩ . (3.2.7)
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3.2. Single-Reference Normal Order

Taking into account that a contraction is de�ned as a complex number and that the expectation

of a product in normal order vanishes yields

X̂1X̂2 = ⟨ ref|X̂1X̂2| ref⟩ . (3.2.8)

As we are using a single Slater determinant as reference state there are only two non-vanishing

contractions that we need to consider. The �rst type is called a hole contraction

âp âq = ⟨ ref|âp âq | ref⟩ = 
 pq , (3.2.9)

where 
 refers to the one-particle density matrix of the reference state. The second type of

non-vanishing contraction is also called particle contraction

âp â
q = ⟨ ref|âp â

q | ref⟩ = 
̄ pq = �
p
q − 


q
p , (3.2.10)

where we used 
̄ for referring to the one-hole density matrix. For the single-reference case

the aforementioned density matrices simplify as follows


 pq = np�
p
q , (3.2.11)


̄ pq = (1 − np)�
p
q , (3.2.12)

where np indicates a so-called occupation number, formally de�ned as follows

np =

{
1 if p is hole state

0 if p is particle state

, (3.2.13)

which refers to the eigenvalues of the diagonal one-body density matrix whose value is—in

the single-reference case—either zero or one.

Finally, the generalized Wick’s theorem deals with products of normal-ordered products.

Theorem 3.2.2: Generalized Wick’s Theorem

A product of two normal-ordered products evaluates to

{X̂1⋯ X̂n}{Ŷ1⋯ Ŷm} ={X̂1⋯ X̂nŶ1⋯ Ŷm}

+ ∑
ext. contr.

{X̂1⋯ X̂i ⋯ X̂nŶ1⋯ Ŷj ⋯ Ŷm} , (3.2.14)

where only external contractions have to be taken into consideration, i.e., contractions

between di�erent original normal-ordered products like, e.g., X̂iŶj .

Therefore, Wick’s theorem gives a formula for the e�cient evaluation of products of normal-

ordered products.
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Chapter 3. Normal Order

3.3. Multi-Reference Normal Order

For the case of a multi-determinantal reference state, which can be written as a superposition

of single Slater determinants

| ref⟩ = ∑
i
ci |�i⟩ , (3.3.1)

it is not directly clear how to de�ne normal order in a traditional particle-hole sense. This is

due to the fact that for a multi-determinantal reference state there is no clear distinction any-

more between occupied hole and unoccupied particle states and as a consequence a reordering

that is primarily based on such an assignment is not applicable anymore. However, in [KM97]

Kutzelnigg and Mukherjee generalized normal ordering such that it becomes well-de�ned and

applicable within the context of multicon�gurational reference states, which we will be refer

to as multi-reference normal ordering. In the following we will outline the guiding principles of

this generalization, even though we will use a slightly di�erent notation introduced by Kong,

Nooijen, and Mukherjee in [KNM10].

The generalization of normal ordering w.r.t. multi-determinantal reference states is based on

the following three guiding principles.

1. Normal-ordered operators w.r.t. any reference state must be linear combinations of

normal-ordered operators w.r.t. the vacuum.

2. The expectation value of a normal-ordered product w.r.t. the reference state | ref⟩ must

vanish.

3. If the reference state | ref⟩ is a single Slater determinant, the single-reference normal

order must be reproduced.

Within the context of multi-reference normal order, k-body density matrices 
 [k] are a funda-

mental ingredient. The matrix elements of 
 [k] are given through the relation


 p1…pkq1…qk = ⟨ ref|âp1…pkq1…qk | ref⟩ . (3.3.2)

Furthermore, we will be employing the antisymmetrizer ̂, which fully antisymmetrizes an

object w.r.t. index transpositions within its upper and lower row as depicted through the ex-

ample

̂(�pq �rs ) = �pq �rs − �ps �rq . (3.3.3)

We can now introduce the irreducible k-body density matrices �[k] for 1 ≤ k ≤ A, which
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3.3. Multi-Reference Normal Order

encode genuine k-body correlations, and are given via the following recursive relation
1

�pq = 

p
q , (3.3.4)

�pqrs = 
 pqrs − ̂ (�pr �
q
s ) , (3.3.5)

�pqrstu = 
 pqrstu − ̂ (�ps �
q
t �

r
u + �

pq
st �

r
u ) , (3.3.6)

where we omitted the superscript k in �[k] for brevity as the particle rank is implicitly given

by the number of indices. Before we state the multi-reference version of Wick’s theorem, let

us de�ne the notion of a multi-reference contraction.

De�nition 3.3.1: Multi-Reference Contraction

A contraction of rank m is a number taking over m upper p1…pm and m lower indices

q1…qm from an operator â…… . The set p1…pmq1…qm is referred to as contracted indices.

For m = 1 we call this a one-one contraction, otherwise an m-m or multiple contraction.

A rank-m contraction is given by the corresponding irreducible m-body density matrix

�[m].

Theorem 3.3.1: Multi-Reference Wick-like Theorem

An operator can be expressed in terms of multi-reference normal-ordered terms via

âx1…xAy1…yA = {â
x1…xA
y1…yA} + ∑

all unique

contractions

{âx1…xAy1…yA} . (3.3.7)

Each contraction leads to a contribution of a � tensor of the form

(−)sgn(�) �x1y2 �
x3xi
yjyA {â

x2x4…xi−1xi+1…xA
y1y3…yj−1jj+1…yA−1} , (3.3.8)

where � is the permutation to bring the indices back to their original order.

Let us illustrate the multi-reference normal ordering procedure by the following examples.

For a one-body operator we obtain

âpq = {â
p
q} + �

p
q . (3.3.9)

Taking the expectation value w.r.t. the reference state | ref⟩ and using the de�nition of the

irreducible density matrix �[1] shows that the expectation value of a normal-ordered one-body

operator vanishes

⟨ ref|{âpq}| ref⟩ = 0 . (3.3.10)

1
Strictly speaking, �[k] are k-body cumulants of the, w.r.t. the particle rank of the full A-body density matrix 
 [A],
reduced density matrix 
 [k].
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Applying the normal ordering procedure to a two-body operator gives

âpqrs ={â
pq
rs } + �

p
r {â

q
s } − �

p
s {â

q
r } − �

q
r {â

p
s } + �

q
s {â

p
r }

+ �pr �
q
s − �

p
s �

q
r + �

pq
rs (3.3.11)

={âpqrs } + ̂ (�pr {â
q
s } + �

p
r �

q
s + �

pq
rs ) . (3.3.12)

By taking the expectation value of the equation above w.r.t. the reference state | ref⟩ and using

⟨ ref|{â
p
q}| ref⟩ = 0, we obtain

⟨ ref|{âpqrs }| ref⟩ = ⟨ ref|âpqrs | ref⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=�pqrs +̂(�pr �qs )

−�pr �
q
s + �

p
s �

q
r − �

pq
rs = 0 . (3.3.13)

Consequently, the multi-reference normal order ful�lls the condition that expectation values

of normal-ordered products vanish.

Let us now address the multi-reference version of the generalized Wick’s theorem which gives

us a formula for evaluating the product of two operators in normal order in a fast and e�cient

manner.

Theorem 3.3.2: Generalized Wick’s Theorem

• The product of two normal-ordered products yields

{âp1…pmq1…qm}{â
r1…rn
s1…sn} = {â

p1…pmr1…rn
q1…qms1…sn} + ∑

all ext. contr.

{âp1…pmr1…rnq1…qms1…sn} , (3.3.14)

where only external contractions are contributing, i.e., internal contractions with

contracted indices coming only from one of the normal-ordered products are ex-

cluded. Every contraction pattern must contribute only once and is, thus, unique.

• Every term with its unique contraction pattern involves, �rstly, a speci�c set of

contracted indices which appear in one or more contractions, and secondly, a set

of uncontracted indices that appear in the corresponding normal-ordered operator.

• Every contraction is given by the associated irreducible density matrix �. There is,

however, an exception for one-one contractions between a lower index qi of the

�rst normal-ordered product and an upper index of the second normal-ordered

product rj which is given through

� pq ≡ �pq − �
p
q = −
̄

p
q , (3.3.15)

where 
̄ pq refers to a one-hole density matrix element.

• Every unique term carries a phase factor which is determined by the parity of the

permutation needed to bring the indices back into the initial order.
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For illustrating the application of the generalized Wick’s theorem, let us consider a product

of two normal-ordered one-body operators which may be evaluated as follows

{âpq}{â
r
s} = {â

pr
qs } − 


p
s {â

r
q} + 
̄

r
q {â

p
s } + 


p
s 
̄

r
q + �

pr
qs . (3.3.16)

Considering the context of this work, the generalized Wick’s theorem plays a central role for

the IM-SRG as it is being employed for evaluating commutators of normal-ordered products.

3.4. Representation Changes

As we will see during the following discussion in chapter 4 and chapter 5, all operators enter-

ing the IM-SRG framework are in non-vacuum normal order, i.e., they are expressed in terms

of basic operators that are in normal order w.r.t. a speci�c reference state | ref⟩. Thus, starting

from an arbitrary operator in vacuum normal order containing up to three-body operators

X̂ =V0 +∑
pq

V p
q {â

p
q}|0⟩ +

1
4
∑
pqrs

V pq
rs {â

pq
rs }|0⟩ +

1
36

∑
pqrstu

V pqr
stu {â

pqr
stu }|0⟩ . (3.4.1)

We apply Wick’s theorem to all basic operators of all particle ranks, classify every resulting

term w.r.t. the particle rank of its normal-ordered basic operator, and eventually obtain an

operator that is in normal order w.r.t. a reference state | ref⟩

X̂ =R0 +∑
pq

Rpq {â
p
q}| ref

⟩ +
1
4
∑
pqrs

Rpqrs {â
pq
rs }| ref

⟩ +
1
36

∑
pqrstu

Rpqrstu {â
pqr
stu }| ref

⟩ . (3.4.2)

Note that we will occasionally refer to the form given in eq. (3.4.1) as the vacuum represen-

tation of X̂ while eq. (3.4.2) shows the reference-state representation. Likewise, the matrix

elements associated with the vacuum and reference-state representation are conveniently re-

ferred to as vacuum and reference-state matrix elements, respectively.

The change between the vacuum and reference-state representation is referred to as a repre-

sentation change and the corresponding expressions relating the associated matrix elements

with each other may be obtained through the application of Wick’s theorem. Following this

approach, reference-state matrix elements are given in terms of vacuum matrix elements as

follows

R0 = V0 +∑
pq

V p
q 


p
q +

1
4
∑
pqrs

V pq
rs 


pq
rs +

1
36

∑
pqrstu

V pqr
stu 


pqr
stu , (3.4.3)

R12 = V
1
2 +∑

pq
V 1p
2q 


p
q +

1
4
∑
pqrs

V 1pq
2rs 


pq
rs , (3.4.4)

R1234 = V
12
34 +∑

pq
V 12p
34q 


p
q , (3.4.5)

R123456 = V
123
456 . (3.4.6)
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The inverse of these relations can be written as

V0 =R0 −∑
pq

Rpq 

p
q −

1
4
∑
pqrs

Rpqrs (

pq
rs − 4


p
r 


q
s )

−
1
36

∑
pqrstu

Rpqrstu (

pqr
stu − 18
 ps 


qr
tu + 36


p
s 


q
t 


r
u ) , (3.4.7)

V 1
2 =R

1
2 −∑

pq
R1p2q 


p
q −

1
4
∑
pqrs

R1pq2rs (

pq
rs − 4


p
r 


q
s ) , (3.4.8)

V 12
34 =R

12
34 −∑

pq
R12p34q 


p
q , (3.4.9)

V 123
456 =R

123
456 . (3.4.10)

Note that a derivation of these relations can be found in [Geb17].

Usually, the operator X̂ is a spherical tensor operator with a particular tensor rank.
2

Taking

spherical symmetry into account, eqs. (3.4.3) to (3.4.6) and eqs. (3.4.7) to (3.4.10) can be trans-

formed into their spherical counterpart, i.e., equations in terms of reduced matrix elements

that do not exhibit any dependence on projection quantum numbers anymore. The result of

this transformation can be found in appendix B.1.

Taking spherical symmetry into consideration and assuming that X̂ is a spherical tensor

operator of rank L, we make an essential observation: The individual particle ranks of the

normal-ordered representation of X̂ are only exhibiting the original spherical tensor rank L if

the density matrices are scalars. This would not only increase the complexity of our theory

but also give rise to various fundamental and conceptional questions. For that purpose, we

will exclusively perform normal ordering w.r.t. reference states with vanishing total angular

momentum—as only those lead to density matrices whose decomposition consists of scalars

only.

3.5. Normal-Ordered Two-Body Approximation

A prominent example for the application of normal ordering is the NO2B approximation.

Starting from a three-body operator in vacuum normal order

X̂ [3] = +
1
36

∑
pqrstu

V pqr
stu {â

pqr
stu }|0⟩ , (3.5.1)

where V pqr
stu refer to three-body matrix elements with regard to the vacuum normal order,

we express the basic operators in terms of (multi-reference) normal-ordered operators via

2
See section 5.2 for more information on the topic of spherical tensor operators.
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Wick’s theorem, i.e., perform a representation change of X̂ from vacuum to reference-state

representation and obtain

X̂ [3] =R0 +∑
pq

Rpq {â
p
q}|Ψ⟩ +

1
4
∑
pqrs

Rpqrs {â
pq
rs }|Ψ⟩ +

1
36

∑
pqrstu

Rpqrstu {â
pqr
stu }|Ψ⟩ . (3.5.2)

The NO2B approximation omits the normal-ordered three-body part in the equation above

such that we obtain the following operator

X̂ [3]
NO2B

≡ R0 +∑
pq

Rpq {â
p
q}|Ψ⟩ +

1
4
∑
pqrs

Rpqrs {â
pq
rs }|Ψ⟩ , (3.5.3)

where the matrix elements of this NO2B-approximated operator are directly given through

eqs. (3.4.3) to (3.4.6) by setting all initial vacuum matrix elements other than the three-body

matrix elements elements to zero. Eventually, we obtain the following result for the matrix

elements of the reference-state representation of X̂ [3]
NO2B

R0 =
1
36

∑
pqrstu

V pqr
stu 


pqr
stu , R12 =

1
4
∑
pqrs

V 1pq
2rs 


pq
rs , R1234 = ∑

pq
V 12p
34q 


p
q . (3.5.4)

Note that some many-body methods like, e.g., the NCSM are only taking vacuum matrix ele-

ments as their input in which case X̂ [3]
NO2B

has to be of the form

X̂ [3]
NO2B

≡ V̆0 +∑
pq

V̆ p
q {â

p
q}|0⟩ +

1
4
∑
pqrs

V̆ pq
rs {â

pq
rs }|0⟩ , (3.5.5)

where the corresponding vacuum matrix elements V̆0, V̆
p
q , and V̆ pq

rs of the vacuum represen-

tation of X̂ [3]
NO2B

may be obtained by employing eqs. (3.4.7) and (3.4.10).

The fact that X̂ [3]
NO2B

is now an e�ective two-body operator demonstrates that the NO2B ap-

proximation allows the approximate inclusion of genuine three-body e�ects embedded into

the matrix elements of lower particle ranks while only two-body machinery has to be em-

ployed. It has been empirically shown in several publications [GCR16; Bin+13a; Rot+12] that,

relative to a full inclusion of 3N forces, this neglection has an impact of 1 − 2% on ground and

excited state energies.
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Chapter 4.

Multi-Reference IM-SRG—Basics

This chapter aims at discussing the general concepts of the IM-SRG and the approach it is

based on: the similarity renormalization group. We will begin with a brief discussion of the

general SRG framework and outline the idea of the so-called free-space SRG as an example

for a commonly used SRG-based approach other than the in-medium SRG. After that, we will

address the fundamental elements of the IM-SRG like, e.g., the IM-SRG(2), the Magnus expan-

sion, and generators. We would like to emphasize at this point that—even if usually denoted as

IM-SRG for brevity—our studies and developments explicitly refer to a multi-reference version

of the IM-SRG. Compared with the single-reference IM-SRG, the multi-reference IM-SRG is

the more general case regarding the allowed structure of the reference state and eventually

reduces to the single-reference IM-SRG if the reference is chosen as a Slater determinant.

Thus, the single-reference IM-SRG is merely a special case of the multi-reference IM-SRG.

Note that we will not get too involved into the details of commutator evaluations—one of the

pillars of the IM-SRG—but moved all of the associated derivations and discussions to chapter 5

instead.

4.1. Similarity Renormalization Group

In this section we are discussing the general idea of the SRG framework, which is the foun-

dation of, both, the free-space SRG and the in-medium SRG. We would like to note that more

information on the SRG in general and its utilization in the context of the free-space SRG can

be found in, e.g., [RRH08; RNF10; BFS10].

The general idea of the SRG in the formulation of Wegner [Weg94; Weg00] is to transform

the Hamiltonian to a more diagonal form w.r.t. a speci�c basis. For that purpose, we apply

an unitary transformation Û (�), which is continuous w.r.t. a so-called �ow parameter � , to a
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Hamiltonian Ĥ yielding a transformed, �-dependent Hamiltonian

Ĥ (�) = Û †(�)Ĥ Û (�) , Ĥ (0) ≡ Ĥ , (4.1.1)

where, due to the unitary nature of this transformation, the eigenvalue spectrum of the trans-

formed Hamiltonian Ĥ (�) is independent of � . The unitary transformation can be reformu-

lated through an operator �ow equation by taking the derivative w.r.t. �

d
d�

Ĥ (�) =
dÛ †(�)
d�

Ĥ (0)Û (�) + Û †(�)Ĥ (0)
dÛ (�)
d�

. (4.1.2)

Due to the unitarity of Û (�) it follows that Û (�)Û †(�) = 1̂ holds. The derivative of this relation

w.r.t. � can then be written as

d
d�

Û †(�) = − Û †(�)
dÛ (�)
d�

Û †(�) . (4.1.3)

By de�ning the anti-Hermitian generator of the unitary transformation as follows

�̂(�) ≡ −Û †(�)
dÛ (�)
d�

, (4.1.4)

we eventually obtain a �rst-order operator di�erential equations for the Hamiltonian and the

unitary transformation, respectively,

d
d�

Ĥ (�) = [�̂(�) , Ĥ (�)] , Ĥ (0) = Ĥ ,

d
d�

Û †(�) = �̂(�)Û †(�) , Û †(0) = 1̂ .

(4.1.5)

(4.1.6)

The �exibility of the SRG framework is rooted in the fact that we are free to choose the speci�c

form of the generator �̂(�). Thus, the behavior of the associated transformation can be tailored

to speci�c needs via an appropriate construction of the generator �̂(�).

Consistent Evolution of Observables. It is important to bear in mind that, once we

are transforming the Hamiltonian, we have to transform the operators of other observables

accordingly. This fact may be illustrated as follows: Starting from the general eigenvalue

problem for the Hamiltonian

Ĥ |Ψi⟩ = Ei |Ψi⟩ , (4.1.7)

where |Ψi⟩ and Ei refer to the i-th eigenstate and eigenvalue, respectively, we may transform

this equation to

Û †(�)Ĥ Û (�)Û †(�) |Ψi⟩ = EiÛ †(�) |Ψi⟩ . (4.1.8)

Now, we are facing an alternative eigenvalue problem namely w.r.t. the unitarily transformed

Hamiltonian Ĥ (�) = Û †(�)Ĥ Û (�) whose eigenvectors |Ψi(�)⟩ are formally related to the
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eigenvectors of the initial Hamiltonian through |Ψi(�)⟩ = Û †(�) |Ψi⟩ and whose eigenvalues

are obviously invariant under this transformation

Ĥ (�) |Ψi(�)⟩ = Ei |Ψi(�)⟩ . (4.1.9)

Assuming that we are solving the eigenvalue problem for Ĥ (�) now, it follows that we natu-

rally obtain the eigenstates |Ψi(�)⟩. Expressing a general matrix element of an observable Ô
with regard to the untransformed i-th and j-th eigenstate in terms of a matrix element with

regard to the corresponding transformed i-th and j-th eigenstate

⟨Ψj |Ô|Ψi⟩ = ⟨Ψj |Û (�)Û †(�)ÔÛ (�)Û †(�)|Ψi⟩ = ⟨Ψj(�)|Ô(�)|Ψi(�)⟩ , (4.1.10)

demonstrates that we have to unitarily transform the observable via Ô(�) = Û †(�)ÔÛ (�)
such that the matrix element is invariant.

1
This unitary transformation of observables can be

reformulated by means of a �rst-order di�erential equation

d
d�

Ô(�) = [�̂(�) , Ô(�)] . (4.1.11)

For cases in which the generator �̂(�) explicitly depends on the evolved Hamiltonian—as it is

most commonly the case for the IM-SRG—the operator di�erential equations for observables

have to be solved simultaneously with the one for the Hamiltonian.

Induced Many-Body Interactions. An important aspect that comes along with the SRG

framework are induced many-body interactions up to the A-body particle rank. This fact be-

comes directly evident when considering the operator �ow equation given through eq. (4.1.11)

for an arbitrary Ô. Assuming that at � = 0 the generator �̂(0) is an x-body operator and the

observable Ô(0) is a y-body operator, the evaluation of the commutator on the right-hand side

of the �ow equation produces operators up to the particle rank of x +y −1.2 Thus, integrating

the di�erential equation for Ô(�) one in�nitesimal step �� forward from � = 0 to � = ��
gives a set of operators of the following form

{
… , Ô[x+y](��), Ô[x+y−1](��)

}
. (4.1.12)

Given that x > 1, it follows from x+y−1 > y that the maximum particle rank of the transformed

components of Ŷ is increasing, and after a �nite number of integrations the particle rank of

one of those components reaches A. As the unitary transformation is not carried out in A-

body space but con�ned to lower particle ranks through truncating all operators involved

at, e.g., the three-body level, we are neglecting induced higher-order interactions and, as a

consequence, we are formally violating the unitarity of our transformation. Therefore, we

1
From another point of view, we are performing a generic unitary transformation of the many-body basis of the

A-body Hilbert space through which it also becomes directly evident that all observables have to be consis-

tently transformed.

2
Note that this is a direct consequence of Wick’s theorem.
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have to assess the impact of those omitted induced interactions through a study of the �
dependence of calculated observables.

Generators & Decoupling Pa�ern. A simple choice for the generator, originally pro-

posed by Wegner [Weg94; Weg00], consists of a commutator between the diagonal part of the

Hamiltonian Ĥ d(�) and the Hamiltonian itself

�̂(�) = [Ĥ
d(�) , Ĥ (�)] , (4.1.13)

Ĥ d(�) = ∑
{�i}

⟨�i |Ĥ (�)|�i⟩ |�i⟩⟨�i | . (4.1.14)

Obviously, the de�nition of Ĥ d(�) presumes a choice for the many-body basis {|�i⟩} which is

the basis w.r.t. which the Hamiltonian shall be diagonalized. Considering the �ow equation

in a matrix representation with regard to the eigenbasis of Ĥ d(�), two things can be shown:

Firstly, the diagonal form Ĥ d(�) is a trivial �xed point. This can easily be veri�ed by assuming

that the Hamiltonian is equal to the proposed diagonal form, i.e., Ĥ (�) = Ĥ d(�) from which

it follows that the generator and therefore also the derivative
d
d� Ĥ (�) vanish. Secondly, the

o�-diagonal matrix elements of the Hamiltonian are continuously suppressed throughout the

evolution and, consequently, the diagonal form is an attractive �xed point of the evolution to

which the Hamiltonian is being driven [RNF10; Weg94].

Considering a more general choice for the generator

�̂(�) = [Ĝ(�) , Ĥ (�)] , (4.1.15)

and studying the associated �ow equation through its matrix representation w.r.t. the eigen-

basis of Ĝ(�), the previous statement—where Ĝ(�) was chosen as Ĥ d(�)—can be generalized

to the statement that the Hamiltonian is being driven to a form that is diagonal in the eigen-

basis of Ĝ(�). Through such a choice we are departing from the original choice of Wegner,

which aims at a full diagonalization for � → ∞, and instead aim at a prediagonalization of

the Hamiltonian w.r.t. a speci�c basis, i.e., the eigenbasis of Ĝ(�). This demonstrates that

through a speci�c choice of our generator we can drive the Hamiltonian to a certain extent to

any desired band or block-diagonal form [BFS10].

4.1.1. Free-Space SRG

A well-known characteristic of realistic nuclear interactions is that they exhibit strong tensor

forces and strong short-range repulsions. As a consequence, those interactions lead to a strong

coupling of high and low momentum modes and strong short-range correlations. Performing

many-body calculations with these so-called “bare” interactions poses a major challenge for

many-body methods like, e.g., the NCSM. Considering the NCSM approach, the many-body

model space consists of Slater determinants which, in principle, can capture any interaction,

provided that the model space truncation parameter Nmax is chosen large enough. However,
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Slater determinants are not an adequate basis for representing strong short-range correlations

as this requires energetically very high lying basis states, i.e., very high Nmax and it is di�cult

to obtain converged NCSM results beyond the lightest nuclei. The so-called free-space SRG

tries to remedy this problem by aiming for a generic decoupling of low and high momenta.

For that purpose, the generator of the free-space SRG is usually chosen as follows

�̂(�) = (2�)2 [T̂int , Ĥ (�)] , (4.1.16)

where we have used the intrinsic kinetic energy operator T̂int and the reduced nucleon mass

�. Note that this choice leads to a �ow parameter having the dimension fm
4
. As discussed

previously, this choice for the generator drives the Hamiltonian to a diagonal form w.r.t. the

eigenbasis of T̂int, i.e., leads to a band-diagonal form w.r.t. momentum eigenstates. Through

this prediagonalization in momentum space we obtain a “softer” and unitary-equivalent in-

teraction with improved convergence properties in subsequent many-body calculations. Fur-

thermore, interactions transformed by means of the free-space SRG are model-space and nu-

cleus independent so that the same transformed Hamiltonian can be used as input for many

di�erent calculations.

For more information regarding our current implementation of the free-space SRG and the

consistent evolution of chiral three-nucleon interactions see [Rot+14]. An educationally valu-

able overview over the topic of the (free-space) SRG, background information, and compar-

isons with other alternative approaches for tackling the impact of strong short-range correla-

tions can be found in [BFP07; BFS10; RNF10].

4.2. In-Medium SRG—Motivation and General Concepts

Generally speaking, the IM-SRG aims at suppressing a speci�c, so-called o�-diagonal part of

the Hamiltonian. To that end, let us partition the Hamiltonian as follows

Ĥ ≡ Ĥ d + Ĥ od
, (4.2.1)

where Ĥ d
and Ĥ od

indicate the diagonal and o�-diagonal parts of the Hamiltonian. It is im-

portant to note that the diagonal and o�-diagonal parts do not have to coincide with the actual

diagonal and o�-diagonal part w.r.t. a matrix representation. Instead, they may be freely cho-

sen to a certain extent.

However, common to all cases considered throughout this work is that the o�-diagonal part

is chosen such that the Hamiltonian becomes block-diagonal w.r.t. a speci�c many-body basis

. Partitioning the many-body basis  into  and  , i.e.,  =  ∪ and  ∩ = ∅, the

o�-diagonal part is usually chosen as the part of the Hamiltonian that couples  and  with

each other. Formally, the o�-diagonal Hamiltonian may, therefore, be written as

Ĥ od = ∑
v∈

∑
w∈

⟨v|Ĥ |w⟩ |v⟩⟨w| + herm. conj. (4.2.2)
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Figure 4.1.: This �gure depicts a schematic matrix representation of the initial (left) and �nal

(right) Hamiltonian and illustrates the common decoupling pattern which the IM-

SRG is in all of its applications usually aiming for. While the initial Hamiltonian

couples elements from  and  with each other, the unitary transformation Û
is decoupling these two spaces from each other such that, �nally, the span of 
becomes an invariant subspace of Ĥ , i.e., the matrix representation of Ĥ is block-

diagonalized.

Once the o�-diagonal Hamiltonian Ĥ od
is suppressed, the matrix representation of Ĥ w.r.t.

 becomes block-diagonal and the span of  is an invariant subspace of Ĥ , which is further

illustrated in �g. 4.1. An obvious advantage of such a block-diagonalization is that we do not

have to solve the eigenvalue problem within a model space spanned by  anymore, but may

as well solve the eigenvalue within the smaller model space spanned by  .

As already indicated by its name, the IM-SRG is an SRG-based method and achieves the sup-

pression of a speci�c o�-diagonal part of an initial Hamiltonian Ĥ through an unitary trans-

formation

Ĥ (s) ≡ Û †(s)Ĥ (0)Û (s) , Ĥ (0) ≡ Ĥ , (4.2.3)

where s is a continuous �ow parameter. As already shown in the previous section, this unitary

transformation can be rewritten as an operator di�erential equation or �ow equation

d
ds
Ĥ (s) = [�̂(s) , Ĥ (s)] , Ĥ (0) = Ĥ , (4.2.4)

where �̂(s) refers to the anti-Hermitian generator of the unitary transformation. Evidently,

the generator has to take the speci�c choice for the o�-diagonal part into account and has

to be constructed accordingly. Other observables Ô obey a very similar operator di�erential

equation

d
ds
Ô(s) = [�̂(s) , Ô(s)] , Ô(0) = Ô . (4.2.5)

As already noted previously, observables have to be evolved simultaneously with the Hamil-

tonian if—as it is most commonly the case—the generator explicitly depends on the evolved

Hamiltonian.
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chiral interaction

Free-Space SRG

In-Medium SRGIn-Medium SRG many-body methods

many-body methodsE0, Rch, ...

Figure 4.2.: Illustration of the �exibility of SRG approaches. Starting from a chiral interaction

and performing a free-space SRG, the IM-SRG may be employed as a stand-alone

many-body method directly giving access to nuclear structure observables or, al-

ternatively, it may be employed for preprocessing operators associated with nu-

clear structure observables which are then passed on to subsequent many-body

methods.

A great advantage of the IM-SRG is its �exibility and simplicity. Especially through di�erent

choices of generator types and o�-diagonal parts, we can tailor this method for speci�c appli-

cations and control its numerical e�ciency and behavior. As it is also illustrated in �g. 4.2, we

can either directly calculate nuclear structure observables using the IM-SRG framework as it

is routinely performed within the single-reference IM-SRG (see section 4.8) or, alternatively,

construct e�ective interactions and use IM-SRG evolved operators as input for subsequent

many-body methods, as it is being done within the IM-NCSM framework (see chapter 6).

Furthermore, there are new opportunities emerging like the construction of valence-space

interactions from an IM-SRG treatment (see appendix A).

IM-SRG(k). Characteristic for the IM-SRG approach—and the main di�erence to the free-

space SRG approach—is that it is being formulated “in medium”, i.e., all operators are normal-

ordered w.r.t. a speci�c reference state
3 | ref⟩ and, for practical reasons, truncated consistently

at a speci�c particle rank k initially (s = 0) and throughout the evolution (s > 0). Such a

truncation pattern—denoted as IM-SRG(k)—can also be formally expressed as follows

Ĥ (s) = Ĥ [0](s) + Ĥ [1](s) + … + Ĥ [k](s) =
k
∑
i=0

Ĥ [i](s) , (4.2.6)

Ô(s) = Ô[0](s) + Ô[1](s) + … + Ô[k](s) =
k
∑
i=0

Ô[i](s) , (4.2.7)

3
The reference state | ref⟩ is a �rst approximation for (usually) the ground state obtained from, e.g., a HF, NCSM

or HFB calculation
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�̂(s) = �̂[1](s) + … + �̂[k](s) =
k
∑
i=1

�̂[i](s) . (4.2.8)

where X̂ [i](s) indicates the normal-ordered i-body part of a generic operator X̂ (s) whose gen-

eral operator structure may be written as

X̂ [i](s) =
1
(i!)2

∑
p1…pi
q1…qi

X p1…pi
q1…qi (s) {â

p1…pi
q1…qi} , (4.2.9)

where it is important to note that the dependence on the �ow parameter s is carried by the

matrix elements. Considering the di�erential equation for the Hamiltonian for demonstration

purposes, the Hamiltonian and the generator—both truncated at the k-body level—may now

be plugged into the operator di�erential equation for the Hamiltonian which yields

d
ds
Ĥ [x](s) = Π̂[x]

k
∑
i=1

k
∑
j=0

[�̂
[i](s) , Ĥ [j](s)] , (4.2.10)

where Π̂[x] refers to the projector on the x-body space and 0 ≤ x ≤ k for closing the system of

equations. Each commutator within the sum on the right-hand side may also be written as

[�̂
[i](s) , Ĥ [j](s)] = (

1
(i!)(j!))

2

∑
p1…pi
q1…qi
r1…rj
s1…sj

�p1…piq1…qi (s) ℎ
r1…rj
s1…sj (s) [{â

p1…pi
q1…qi} , {â

r1…rj
s1…sj }] . (4.2.11)

The right-hand side of the equation above can then be conveniently evaluated by employ-

ing the generalized Wick’s theorem (see chapter 3). Obviously, each commutator between

an i and j-body operator eventually contributes to various particle ranks of the derivative,

which demonstrates that di�erent particle ranks are coupled with each other throughout the

evolution in a highly non-trivial way.

Eventually, the evaluation of eq. (4.2.10) yields a coupled system of �rst-order ordinary di�er-

ential equations in terms of the matrix elements of the involved operators, which may formally

be expressed as follows

d
ds
ℎ⃗(s) = ⃗ (�⃗(s), ℎ⃗(s)) , (4.2.12)

where ℎ⃗(s) and �⃗(s) indicate the entirety of all matrix elements up to the k-body rank of

the Hamiltonian and the generator, respectively, and the function ⃗ represents the matrix-

element-based commutator evaluation, i.e., it de�nes the system of ODEs. This system of

di�erential equations may then be numerically solved until Ĥ od
is “su�ciently” suppressed.

Furthermore, from the generalized Wick’s theorem it is evident that evaluating eq. (4.2.10)

produces induced many-body interactions up to the A-body rank. More speci�cally, the com-

mutator between two i-body and j-body operators X̂ [i]
and Ŷ [j], respectively, produces oper-

ators up to the (i + j − 1)-body rank from which it becomes evident that after each integration
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step of the ODE the maximum particle rank is eventually increasing. As a consequence, the

IM-SRG is exact except for initially and intermediately discarded normal-ordered many-body

interactions beyond the particle rank k.

4.3. Reference States

Information about the reference state | ref⟩ is entering the IM-SRG framework solely through

the k-body irreducible density matrices �[k], which encode genuine k-body correlations and

naturally emerge when evaluating commutators via Wick’s theorem. As already noted previ-

ously, it is solely the type of the reference state, which sets the single-reference and the more

general multi-reference version of the IM-SRG apart.

On the one hand, within the context of the multi-reference IM-SRG the reference state may be

multi-determinantal and obtained, e.g., from a Hartree-Fock-Bogliubov calculation [Her+13a;

Her+14] or an NCSM calculation [Geb+16]. As a consequence of its multi-determinantal na-

ture, the multi-reference version is applicable to open-shell nuclei and the naturally arising

higher-order irreducible density matrices are explicitly taken into account. However, as an

arbitrary correlated reference state may produce irreducible density matrices up to the A-

body level, we have to impose some kind of truncations on the particle-rank of these density

matrices as otherwise the computational e�ort would increase dramatically and eventually

beyond feasibility. The stages at which irreducible density matrices are emerging and which

eventually are subject to truncations with regard to their particle rank are, �rstly, the com-

mutator evaluation (see chapter 5), and secondly, the generator construction (see section 4.7).

Even though we will discuss both of these topics in more detail later on, it is worth noting

that throughout this work we did not include any irreducible density matrices beyond the

two-body rank.

On the other hand, the single-reference version of the IM-SRG requires the reference state

to be a single Slater determinant which may be, e.g., obtained from a previous Hartree-Fock

calculation (see section 2.4). As a consequence, all irreducible density matrices beyond the

one-body rank are naturally vanishing and the matrix elements of the one-body density ma-

trix are either zero or one. The single-reference IM-SRG may, therefore, be considered as

a special case of the more general multi-reference IM-SRG, as employing a Slater determi-

nant within the framework of the multi-reference IM-SRG leads to the simple single-reference

IM-SRG. An obvious downside of the single-reference IM-SRG is that it is only applicable to

closed-shell nuclei as only for those a Slater determinant is an adequate �rst approximation

for the ground-state. Furthermore, it is restricted to the description of ground-state observ-

ables. However, even though the capabilities of the single-reference version are a subset of

those of the multi-reference version, it remains a standard tool for nuclear structure theory

and eventually is favored over the multi-reference version in speci�c applications due to its

conceptional simplicity and the fact that it yields reliable nuclear structure observables at a

fraction of the computational cost.
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Furthermore, it is important to note that we restrict ourselves to reference states | ref⟩ with

total angular momentum Jref = 0 and, as a consequence, to the description of even nuclei

only. This is due to the fact that we only want to include scalar density matrices and, given a

reference state | ref⟩with a speci�c Jref, the spherical tensor rank L of the associated irreducible

density matrices obeys 0 ≤ L ≤ 2Jref such that L is only restricted to zero if and only if Jref = 0.
There are two main problems that would arise with non-scalar density matrices: Firstly, there

is a signi�cant increase in computational e�ort, and secondly, the IM-SRG transformation

would begin to break the conservation of the spherical tensor rank of a speci�c observable Ô
so that an initially scalar operator would transform into a non-scalar operator.

4.4. IM-SRG(2)

As noted previously, we have to truncate our operators at a speci�c particle rank for both

analytical and computational reasons. In this work, we are going to discuss and employ the

IM-SRG(2)
4
, which is mainly due to the fact that already the IM-SRG(3) shows a tremendous

increase in complexity of its �ow equations and computational e�ort inhibiting a “full” IM-

SRG(3) up to now. Nevertheless, we are in the process of developing approaches that approx-

imate the impact of induced three-body interactions.

However, within the context of the IM-SRG(2) we are consistently truncating our operators

at the normal-ordered two-body level

Ĥ (s) = E(s) +∑
pq

f pq (s){â
p
q} +

1
4
∑
pqrs

Γpqrs (s){â
pq
rs } , (4.4.1)

�̂(s) = ∑
pq

�pq (s){â
p
q} +

1
4
∑
pqrs

�pqrs (s){â
pq
rs } , (4.4.2)

where all operators are normal-ordered w.r.t. a reference state | ref⟩ and we adopted the com-

mon convention to employ f and Γ for referring to one and two-body matrix elements, re-

spectively, of the Hamiltonian. Let us now assume that we are starting with a Hamiltonian

Ĥfull that contains a two-body kinetic-energy part T̂ [2], a two-body interaction V̂ [2]
and a

three-body interaction V̂ [3]
and may, therefore, be written as

Ĥ = T̂ [2] + V̂ [2] + V̂ [3]
. (4.4.3)

The operator for the kinetic energy may be written as T̂ [2] = ∑i<j
(p̂ i−p̂ j )2

2Am [HR09], where p̂ i
indicates the momentum operator for the i-th particle, A is the mass number, and m is the

nucleon mass. The three-body interaction, whose operator form is given through

V̂ [3] =
1
36

∑
pqrstu

V pqr
stu â

pqr
stu , (4.4.4)

4
Strictly speaking, we will employ either IM-SRG(2) or Magnus(2).
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is now approximated by means of its NO2B approximation V̂ 3N

NO2B
, i.e., the normal-ordered

three-body part in the reference-state representation of V̂ [3]
is neglected such that we obtain

V̂ [3] ≈ V̂ 3N

NO2B
= X(s) +∑

pq
X p
q (s){â

p
q} +

1
4
∑
pqrs

X pq
rs (s){â

pq
rs } . (4.4.5)

The zero, one and two-body matrix elements of this NO2B-approximated three-body interac-

tion V̂ [3]
NO2B

are essentially given through eq. (3.5.4). It is worth noting that through this NO2B

approximation information on the three-body force is partially embedded within the matrix

elements of lower particle-ranks. The initial Hamiltonian at s = 0 can now be written as

Ĥ (0) = T̂ [2] + V̂ [2] + V̂ 3N

NO2B
. (4.4.6)

By Inserting the Hamiltonian and the generator given through eq. (4.4.1) and eq. (4.4.2), re-

spectively, into the corresponding operator di�erential equation for Ĥ (s), we obtain

d
ds
Ĥ (s) = [�̂(s) , Ĥ (s)] (4.4.7)

= [�̂
[1](s) , Ĥ [1](s)] + [�̂

[1](s) , Ĥ [2](s)]

+ [�̂
[2](s) , Ĥ [1](s)] + [�̂

[2](s) , Ĥ [2](s)] , (4.4.8)

where, e.g., Ĥ [i]
indicates the i-body part of the Hamiltonian. By Evaluating the commutator

on the right-hand side of this equation via Wick’s theorem,
5

we eventually obtain a coupled

system of �rst-order ordinary di�erential equations in terms of the matrix elements of the

Hamiltonian and the generator. Schematically, this ODE can be expressed as follows

d
ds
ℎ⃗(s) = ⃗�(�⃗(s), ℎ⃗(s)) , (4.4.9)

where we denoted the entirety of all matrix elements of the Hamiltonian and the generator

at the �ow parameter s as ℎ⃗(s) and �⃗(s), respectively. Additionally, the irreducible density

matrices are a parameter to this ODE which is why they are indicated as a subscript of  . As

the generator itself is merely a function of the Hamilton operator, we may also write the ODE

as

d
ds
ℎ⃗(s) = ⃗�,� (ℎ⃗(s)) , (4.4.10)

where the generator or, more speci�cally, the function that constructs generator matrix ele-

ments �⃗(s) taking ℎ⃗(s) as input is now added to the parameter list of ⃗ . In practical applications

the ODE system is then solved numerically (see appendix B for more information).

5
Note that the derivation as-well-as an in-depth discussion of the equations associated with commutator evalu-

ations is contained in chapter 5
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4.5. Magnus Expansion—General Concepts

Up to now, we were discussing a formulation of the IM-SRG in which the unitary transforma-

tion of observables

Ĥ (s) = Û †(s)Ĥ (0)Û (s) , Ĥ (0) = Ĥ , (4.5.1)

Ô(s) = Û †(s)Ô(0)Û (s) , Ô(0) = Ô , (4.5.2)

was carried out via directly solving the associated operator di�erential equations

d
ds
Ĥ (s) = [�̂(s) , Ĥ (s)] , Ĥ (0) = Ĥ , (4.5.3)

d
ds
Ô(s) = [�̂(s) , Ô(s)] , Ô(0) = Ô . (4.5.4)

Let us now refer to solving these kinds of operator di�erential equations as the direct evolution
of observables. Since the generator may explicitly depend on the evolved Hamiltonian a major

drawback of this direct evolution is that the di�erential equations for observables eventually

have to be solved simultaneously with the one for the Hamiltonian. Resorting to directly

solving the di�erential equation of the unitary transformation itself

d
ds
Û †(s) = �̂(s)Û †(s) , Û †(0) = 1̂ , (4.5.5)

is not feasible as Û (s) is an A-body operator. However, directly related to �nding a solution

for the unitary transformation is an approach which was �rst proposed by the mathematician

Wilhelm Magnus [Mag54] in the 1950s: the so-called Magnus expansion. Since then, it has

been successfully applied in many di�erent contexts, however, it was only recently that it has

been applied within the context of the IM-SRG by Morris et al. in [MPB15].

De�nition 4.5.1: Magnus Expansion

A unitary transformation Û (s) may be written as an exponential

Û †(s) = exp (Ω̂(s)) , Ω̂(0) = 0 , (4.5.6)

where Ω̂(s) denotes the an anti-Hermitian Magnus operator. As rigorously discussed in

[Bla+09], it follows that the Magnus operator Ω̂(s) obeys the di�erential equation

d
ds
Ω̂(s) =

∞
∑
k=0

Bk
k! [

Ω̂(s) , �̂(s)]k , Ω̂(0) = 0̂ , (4.5.7)

where Bk refers to the Bernoulli numbers.
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For writing the di�erential equation for Ω̂(s) in a compact form, we introduced [X̂ , Ŷ ]k as a

short-hand notation for nested commutators w.r.t. to two arbitrary operators X̂ and Ŷ . For-

mally, the recursive de�nition of those nested commutators may be stated as follows

[X̂ , Ŷ ]k
= [X̂ , [X̂ , Ŷ ] ]k−1

, [X̂ , Ŷ ]0
= Ŷ . (4.5.8)

Note that a derivation for the di�erential equation for Ω̂(s) given through eq. (4.5.7) as well

as a thorough mathematical review addressing, e.g., the important questions of the existence

and convergence of the Magnus expansion can be found in [Bla+09].

An appealing feature of the Magnus expansion becomes particularly evident when studied

within the context of Lie groups and Lie algebras: Interpreting the unitary transformation Û (s)
as an element of an abstract Lie group G, the anti-Hermitian generator �̂(s) is element of the

corresponding Lie algebra g. Due to the fact that the commutator maps two elements of g back

into g and Ω̂(s) is constructed from multiple nested commutators of the form [Ω̂(s), �̂(s)]k , the

operator Ω̂(s) always stays within the vector space of the Lie algebra g. As a consequence, the

corresponding exponential of Ω̂(s) is always unitary and certain symmetries are automatically

conserved throughout the evolution. Therefore, the Magnus expansion may be seen as an

approach with which we have implicit access to the unitary transformation Û (s) by directly

obtaining the corresponding Lie algebra element Ω̂(s).

Construction of the Magnus Operator I. The straightforward way for obtaining a so-

lution for Ω̂(s) is the direct integration of the ODE for Ω̂(s) given through eq. (4.5.7). Thus,

instead of explicitly solving the di�erential equations for observables, we may instead solve

the associated di�erential equation for Ω̂(s). This ODE for Ω̂(s) may schematically written as

follows

d
ds
Ω⃗(s) = ⃗� (Ω⃗(s), ℎ⃗(s)) , (4.5.9)

where, similar to previous considerations, Ω⃗(s) and ℎ⃗(s) indicate the entirety of all matrix

elements of the Magnus operator and the Hamiltonian, respectively, and ⃗ de�nes the actual

system of ODEs.

Compared to the direct evolution of, e.g., the Hamiltonian, a practical advantage of the Magnus

expansion stems from the observation that the numerical solution of this di�erential equation

for Ω̂(s) is more robust with regard to numerical errors such that the numerical integration of

the ODE can be carried out at larger stepsizes.

Construction of the Magnus Operator II. For completeness, we want to present another

possibility for obtaining a solution for the Magnus operator Ω̂(s). It is given through the
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application of the so-called Picard iteration which yields [Bla+09]

Ω̂1(s) = ∫
s

0
ds �̂ (s, Ĥ (0)) , (4.5.10)

�̂m−1(s) =
m−1
∑
l=0

1
l! [

Ω̂m−1(s) , Ĥ (0)]l
, (4.5.11)

Ω̂m(s) =
m−2
∑
k=0

Bk
k! ∫

s

0
ds [Ω̂m−1(s) , �̂ (s, �̂m−1(s))]k

. (4.5.12)

The object Ω̂m(s) may be interpreted as follows: Assuming that Ω̂(s) may be written as an

expansion w.r.t. the parameter �

Ω̂(s) =
∞
∑
n=1

�nX̂n(s) , (4.5.13)

the solution Ω̂m(s) recovers the �rst m terms of this expansion. Additionally, it can be shown

that the associated unitary transformation Û †(s) = exp (Ω̂m(s)) is exact up to orders (sm+1).
From a mathematical point of view it might be interesting to construct a solution for Ω̂(s)
through eqs. (4.5.10) to (4.5.12). In contrast to the previous approach—where Ω̂(s) was ob-

tained by solving a di�erential equation—we would now construct the solution for Ω̂(s) by

solving integral equations. However, even though these equations can be simpli�ed due to

the fact that the generator does not explicitly depend on the �ow parameter s, they are not

applicable in practical applications as, e.g., we would have to store many copies of the evolved

operators at various values for the �ow parameter s for evaluating the integrals. We performed

an exploratory study, where we included terms of up to m = 3, which showed that higher or-

der terms are necessary for obtaining an adequate solution. This would imply a signi�cant

increase in complexity w.r.t., both, analytical derivation and computational implementation.

Observable Transformation. Assuming that we are able to construct the Magnus oper-

ator Ω̂(s), a vital question is how we can carry out the unitary transformation of an initial

observable Ô(0) such that we obtain its transformed counterpart Ô(s). For that purpose, let

us consider eq. (4.5.6) showing the original Ansatz for the unitary transformation in terms of

an exponential of the Magnus operator. This illustrates that, in principle, we have access to

the unitary transformation through exponentiation. However, we are never calculating the

unitary transformation explicitly but employ the Baker-Campbell-Hausdor� (BCH) series for

the unitary transformation of arbitrary observables

Ô(s) = Û †(s)Ô(0)Û (s) = e+Ω̂(s)Ô(0)e−Ω̂(s) BCH=
∞
∑
k=0

1
k! [

Ω̂(s) , Ô(0)]k
. (4.5.14)

Opposed to the direct evolution of observables, this kind of evolution of observables is now

referred to as Magnus-type evolution of observables.
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Let us now take the opportunity and brie�y compare the two di�erent kinds of evolutions, i.e.,

the Magnus-type evolution and direct evolution, with each other. On the one hand, the direct

integration of the ODE for an operator Ô(s) by an in�nitesimal step forward such that we ob-

tain Ô(s + �s) may be interpreted as the application of an in�nitesimal unitary transformation

�̂U (s). The complete unitary transformation giving Ô(s) from Ô(0) may then be interpreted

as a consecutive application of in�nitesimal unitary transformations.

However, while the transformation associated with directly solving the ODE for an observ-

able is guaranteed to be unitary through the very structure of the associated ODE, we never

gain any direct access to the underlying unitary transformations. On the other hand, the big

advantage of the Magnus expansion is that it combines all of these tiny, consecutive transfor-

mations and casts them them into the Magnus operator Ω̂(s) such that we gain access to the

complete unitary transformation.

It is important to keep in mind that a transformation of observables is not only necessary

after we have found a solution for Ω̂(s) but also during the construction of Ω̂(s) as
d
ds Ω̂(s) may

implicitly depend on the Hamiltonian Ĥ (s). For obtaining Ĥ (s), we may either directly evolve

Ĥ (s) simultaneously with Ω̂(s) or perform a Magnus evolution of Ĥ (s) and evaluate the BCH

series. At the moment, we employ the Magnus evolution of Ĥ (s) for reducing the memory

requirements of our implementation.

4.6. Magnus(2)

Similarly to the IM-SRG(2), we have to truncate our operators at a speci�c particle rank for

keeping analytical and computational e�orts within certain limits. Therefore, we use the

following Ansatz for the Magnus operator Ω̂(s)

Ω̂(s) = ∑
pq
Ωp
q {â

p
q} +

1
4
∑
pqrs

Ωpq
rs {â

pq
rs } , (4.6.1)

i.e., we are truncating this operator at the NO2B level. Furthermore, the evaluation of each of

the convoluted commutators in the derivative for Ω̂(s)

Ω̂′(s) ≡
d
ds
Ω̂(s) =

∞
∑
k=0

Bk
k! [

Ω̂(s) , �̂(s)]k , (4.6.2)

and the BCH series for observables

Ô(s) =
∞
∑
k=0

1
k! [

Ω̂(s) , Ô(0)]k
, (4.6.3)

is also truncated at the NO2B level. This truncation scheme is referred to as Magnus(2). Taking

into account that the series Ω̂′(s) as well as the BCH series are in�nite, it follows that both
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have to be subject to some kind of truncation scheme in practical applications, which will be

addressed throughout this section.

We would like to emphasize that the transformation Û †(s) = exp(Ω̂(s)) associated with the

Magnus operator Ω̂(s) is always unitary—even if the calculation of Ω̂(s) or Ω̂′(s) is subject to

truncations and approximations. The only departure from an exact unitary transformation of

an observable Ô, however, arises due to truncations of the BCH series for Ô, where especially

the NO2B approximation introduces a theoretical uncertainty.

As both the derivative for Ω̂(s) and the BCH series rest upon the evaluation of nested com-

mutators, we would like to remark that the numerical computation of a nested commutator of

depth k is generally performed iteratively by means of k sequential commutator evaluations:

Always evaluating only one simple commutator at a time, the numerical result is stored and

inserted into the commutator of the next higher order. As a consequence, the numerical cal-

culation of those nested commutators breaks down to the calculation of simple commutators

similar to the ones we have already encountered in view of the operator ODEs for observables.

This emphasizes the importance of an e�cient, general purpose commutator evaluation ma-

chinery, which will be discussed in chapter 5.

Construction and Convergence of the Magnus Operator. Algorithmically, the Mag-

nus expansion or, more speci�cally, the derivative for the Magnus operator is constructed

iteratively. Considering the formula for the derivative

d
ds
Ω̂(s) =

∞
∑
k=0

Bk
k! [

Ω̂(s) , �̂(s)]k , (4.6.4)

and expressing the k-th term in this series as follows

Bk
k! [

Ω̂(s) , �̂(s)]k =
Bk
k! [

Ω̂(s) , [Ω̂(s) , �̂(s)]k−1 ] , (4.6.5)

illustrates that the depth-k commutator appearing at order k of the series only requires the

computation of only one additional commutator as the commutator already calculated at or-

der k − 1 is reappearing again and may therefore be reused. Furthermore, we established a

speci�c convergence criterion for the calculation of the derivative of the Magnus operator by

truncating the associated series at a speci�c order x

Ω̂′x (s) ≡
x
∑
k=0

Bk
k! [

Ω̂(s) , �̂(s)]k . (4.6.6)

Formally, the order x at which the series is considered as converged ful�lls the criterion

‖‖‖Ω̂
′
x (s) − Ω̂′x−1(s)

‖‖‖
‖‖‖Ω̂

′
x (s)

‖‖‖
< � ≡ 1 × 10−2 and Bx ≠ 0 , (4.6.7)
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where only orders with non-vanishing Bernoulli numbers are taken into account. Note that

we generally employ a simple two-norm ‖X̂ ‖ ≡
√
X 2 + ∑ij(X i

j )2 + ∑ijkl (X
ij
kl )2. The particular

value for � in this case has to be chosen small enough such that a further decrease has no

additional impact on numerical results. Taking numerical e�ciency into consideration, it

should also not be chosen too small. As the evaluation of commutators is the driving force

regarding computational e�ort the total number of commutator evaluations should always be

kept at a minimum. For practical applications, we are using � = 1 × 10−2 as a further decrease

of this value has no impact on our numerical results and the series is usually converged at

orders k of 2 to 4.

However, employing only the convergence criterion given through eq. (4.6.7), there may be

occasional problems with divergencies for the series of Ω̂′(s) due to too large stepsizes during

the numerical integration of the ODE for Ω̂(s). We made the observation that the series seemed

to converge taking only lower order terms (k ≈ 2) into account, but at intermediate orders of

the series (k ≈ 10) the norm of corresponding terms began to increase exponentially. One

possible solution is to require a certain lower bound for the order at which the series for

Ω̂′(s) may be truncated like, e.g., always calculate the series up to at least the tenth order.

However, as we want our implementation to be as computationally e�cient as possible and

as the commutator evaluation is the computationally most expensive part, we prefer a solution

with which we can diagnose eventual divergencies of the Magnus series already at relatively

low orders of the series. As the explosive increase is rooted in the fact that the norm of

the commutator itself is not decreasing but rapidly increasing with regard to k, we require,

additionally to eq. (4.6.7), the following heuristically motivated condition to be ful�lled

‖‖‖[Ω̂(s) , �̂(s)]k
‖‖‖

‖‖‖[Ω̂(s) , �̂(s)]k−1
‖‖‖

!< 1 for all k with 1 ≤ k ≤ kmax, (4.6.8)

where kmax is the order at which the series is converged according to eq. (4.6.7). We choose

this condition due to the observation that once the norm of commutator part is su�ciently

decreasing w.r.t. the order k, it is keeping this behavior also at higher orders and, as a con-

sequence, Ω̂′(s) converges. However, if during the evolution of Ω̂(s) eq. (4.6.8) is not ful�lled

at any order k, the series for Ω̂′(s) is considered as divergent and the current integration step

is restarted with a decreased stepsize—as a too large stepsize is the root of the problem after

all.

As already mentioned previously, the numerical integration of the ODE for Ω̂(s) is numerically

much more robust than a corresponding integration of the ODE for the Hamiltonian. This

might be partially rooted in the fact that, considering the direct integration of the ODE for

the Hamiltonian, numerical errors may lead to a break of unitarity. In contrast, during the

integration of the ODE for Ω̂(s) eventual numerical errors only have an impact on the Magnus

operator. Even if these numerical errors lead to a deviation from the decoupling pattern we

were originally aiming for, the associated transformation will always remain unitary. It is this

conservation of unitarity, which leads to the fact that we could even solve the ODE for Ω̂(s) via
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a simple Euler method. However, we are employing a more involved approach as described

in appendix B.

Construction and Convergence of the BCH Series. Similarly to the construction of the

series for Ω̂′(s), also the BCH series is constructed iteratively. Considering the BCH series,

Ô(s) =
∞
∑
k=0

1
k! [

Ω̂(s) , Ô(0)]k
≡

∞
∑
k=0

Ôk , (4.6.9)

the k-th order contribution of the series, denoted as Ôk , may also be written as follows
6

Ôk(s) =
1
k [Ω̂(s) , Ôk−1(s)] . (4.6.10)

This shows that the k-th order term may be constructed by reusing the result of the order

k − 1 such that at each order only one additional commutator has to be computed. As the

BCH series has to be truncated at a speci�c order in practical applications, we are choosing a

convergence criterion similar to the one for the derivative of the Magnus operator which may

be written as follows

� [x]
norm

≡
‖‖‖Ôx (s)

‖‖‖
‖‖‖∑

x
k=0 Ôk(s)

‖‖‖
< � ≪ 1 . (4.6.11)

The particular choice for the value of � obviously has a signi�cant impact on both compu-

tational e�ort and precision of our numerical results as the transformation is, formally, only

unitary for � → 0. Therefore, the choice for � may vary depending on the particular con-

text.

For �nding an adequate choice for the threshold �, let us �rst consider �g. 4.3. It depicts the

evolution of the expectation value of a Magnus-evolved Hamiltonian

⟨ ref|
kBCH

max

∑
k=0

Ĥk(s) | ref⟩ , (4.6.12)

where several di�erent orders kBCH

max
are shown. Additionally, it depicts the evolution of the

expectation of a directly evolved Hamiltonian. Evidently, the inclusion of the �rst three orders

is most important for obtaining a ground-state energy that agrees with the direct integration

of the ODE for the Hamiltonian.

Furthermore, the individual contributions at each order to the expectation value may have

di�erent signs: While the �rst-order contribution is strongly attractive, the second order con-

tribution is repulsive. Note that we only show kBCH

max
≤ 4 as higher orders lie practically on top

of each other, i.e., the series is rapidly converging.

6
Note the di�erence between Ôk and Ω̂′

k : The former refers to the k-th order term, while the latter indicates the

partial sum up to the k-th order term.
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Figure 4.3.: Ground-state energy for
16

O. Solving the ODE for the Magnus operator, we em-

ployed the solution for Ω̂(s) for obtaining the transformed Hamiltonian Ĥ (s) by

means of the BCH series. The �gure depicts the expectation value of this Magnus-

evolved Hamiltonian for several orders kbch

max
at which the BCH series was trun-

cated (also depicted through eq. (4.6.12)). Additionally, the �gure shows the ex-

pectation value of a directly evolved Hamiltonian Ĥ (s). The calculation was per-

formed with the White generator and the N
3
LOEM + N

2
LO400L interaction (see

chapter 6 for more information on commonly used interactions).

Another interesting feature of the Magnus evolution of observables becomes obvious when

comparing the stepsizes of the the Magnus and the direct evolution of Ĥ (s) with each other.

As each symbol corresponds to an ODE integration step for either Ω̂(s) or Ĥ (s), it becomes

apparent that—given a speci�c numerical error threshold which should be chosen such that

there is no impact on calculated observables
7
—the automatic stepsize control allows the ODE

for the Magnus operator to be integrated at slightly larger stepsizes than it is the case for the

ODE for the Hamiltonian. The potentially larger stepsizes illustrate another advantage of the

Magnus evolution.

For studying the impact of a truncation of the BCH series at the k-th order, the left-hand side

of �g. 4.4 shows the evolution of the relative expectation value of the k-th order term de�ned

7
See appendix B for for more information and speci�c values for the error thresholds.
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Figure 4.4.: Similarly to �g. 4.3, we solved the ODE for the Magnus operator such that we

obtained Ω̂(s) at several values for the �ow parameter s and which was employed

for the evaluation of the BCH series for the Hamiltonian. The left-hand side depicts

the relative expectation value of the k-th order contribution of the BCH series � [k]exp

(see eq. (4.6.11)) and the right-hand side shows the relative norm of the k-th order

contribution � [k]norm (see eq. (4.6.13)). Calculations were performed for
16

O.

as

� [k]
exp

≡
‖‖‖⟨ ref| Ĥk(s) | ref⟩

‖‖‖
‖‖‖⟨ ref| ∑k

x=0 Ĥx (s) | ref⟩
‖‖‖

. (4.6.13)

Furthermore, the right-hand side depicts the relative norm of the k-th order term de�ned

in eq. (4.6.11), Considering the values for � [k]exp, a rather strict precision goal of about � [k]exp ≤
1 × 10−4 is obtained at k ≈ 5 which corresponds to � [k]norm ≈ 1 × 10−6. Therefore, we choose

� = 1 × 10−6 for all observables that are transformed after Ω̂(s) has been successfully evolved.

However, during the evolution of Ω̂(s) we have to transform the Hamiltonian multiple times.

We have found that it is usually su�cient to transform the Hamiltonian in a rather approxi-

mate manner by employing a threshold of about � = 1 × 10−2 which is usually reached at the

�rst or second order of the BCH series. While this is obviously not adequate for obtaining

su�ciently precise values for the expectation value of the Hamiltonian, we have found that it

is usually su�cient to let the generator only “see” the lowest order contributions of the BCH

series to Ĥ (s). This indicates that these parts are already containing the relevant o�-diagonal

part which we wish to suppress. The great advantage of this approximate approach is that we

are able to signi�cantly boost the numerical e�ciency as the number of necessary commuta-
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tor evaluations is greatly reduced while—as we have veri�ed in numerical applications—the

choice of � ≈ 1 × 10−2 has no signi�cant impact on our numerical results.

Furthermore, we would like to emphasize that this kind of approximation for Ĥ (s) only in-

troduces another approximation for the series of Ω̂′(s)—additionally to the truncation of the

series at speci�c order. Even if any of these two kinds of approximations leads to a solution

Ω̂(s) with which we depart from the originally intended decoupling pattern, the associated

transformation is still unitary.

4.7. Generators for the IM-SRG

As mentioned before, the IM-SRG aims at suppressing a speci�c o�-diagonal part of the Hamil-

tonian such that a particular decoupling pattern is achieved. Which part of the Hamiltonian

we would like to suppress depends on the nature of our problem and can vary signi�cantly.

However, all problems discussed in this work de�ne the o�-diagonal part as the part of the

Hamiltonian that couples a reference-state | ref⟩ to particle-hole excitations. The question

that arises is how to construct a generator �̂(s) that suppresses a speci�c o�-diagonal part

during the IM-SRG evolution. As it turns out, there are several choices—so-called generator

types—available which we discuss in this chapter. In contrast to the decoupling pattern, the

generator type governs the decoupling behavior, i.e., it controls the numerical e�ciency and

stability of the evolution. The o�-diagonal part and the generator type are two independent

degrees of freedom that serve as the main ingredients for the construction of a speci�c gen-

erator �̂(s) and its matrix elements.

Pictorially, the generator type de�nes the path within the operator space of unitary equivalent

Hamiltonians from an initial to a �nal Hamiltonian Ĥ (0) and Ĥ (∞), respectively. Eventually,

it even de�nes which particular Ĥ (∞) the Hamiltonian is driven to, since there are in�nitely

many unitarily equivalent operators that are compatible with a decoupling pattern that con-

tains invariant subspaces. However, we are not using an IM-SRG(A) but an IM-SRG(k) frame-

work. As a consequence, unitarity is formally broken and a variation of the path from Ĥ (s)
to Ĥ (s + �s) potentially has an impact on the induced many-body terms beyond the k-particle

rank. Hence, the generator type not only de�nes the decoupling behavior but it also controls

the error of the IM-SRG(k).

In this work we will employ three di�erent generators types: White [Whi02], imaginary-time,

and Wegner [Weg94]. In what follows, we will discuss their operator structure in A-body

space and, if possible, give formulas for the construction of their matrix elements. Note that

an in-depth analysis of the properties and behavior of generators that goes well beyond our

brief discussion can be found in [Her+16; Her17].

Another generator that is commonly employed in the context of the MR-IM-SRG with HFB

reference states is the Brillouin generator [Her17]. This generator employs the irreducible
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Brillouin conditions [KM04] such that the energy is variationally minimized under the cor-

responding unitary transformations. While this generator has not been employed in this

work, we might reconsider this generator type in future applications—especially in view of

the newest generator optimizations that we recently implemented (see chapter 6).

Wegner Generator. From a conceptional point of view, the Wegner generator, �rst pro-

posed by Wegner in [Weg94], is the most simple choice. As already discussed in section 4.1,

it is de�ned as the commutator between the diagonal part of the Hamiltonian Ĥ d(s) and the

Hamiltonian itself

�̂(s) = [Ĥ
d(s) , Ĥ (s)] = [Ĥ

d(s) , Ĥ od(s)] . (4.7.1)

It can be shown that Ĥ d(s) is a trivial, attractive �xed point of an associated evolution of

Ĥ (s)

d
ds
Ĥ (s) = [�̂(s) , Ĥ (s)] , (4.7.2)

which is reached for s → ∞ as Ĥ od(∞) vanishes. Note that for cases in which Ĥ d(s) and Ĥ od(s)
commute with each other due to degeneracies in the spectrum of Ĥ (s), we may observe �xed

points already at �nite values of s [Her+16]. In practical calculations, however, the Wegner

generator is a very ine�cient choice, since the resulting system of ODEs becomes sti�.

It is worth noting that the Wegner generator leads to a true renormalization-group transfor-

mation, i.e., it preferably suppresses o�-diagonal matrix elements with large energy di�er-

ences of the corresponding diagonal elements. This property can be nicely demonstrated by

analyzing the asymptotic suppression behavior of o�-diagonal matrix elements, which yields

[Her+16]

⟨i|Ĥ od(s)|j⟩ = ⟨i|Ĥ od(s0)|j⟩ e−(Ei−Ej )
2(s−s0)

, s > s0 , (4.7.3)

where s0 has to be su�ciently large. Here, we chose the eigenbasis of Ĥ d(s) for the represen-

tation of Ĥ od(s) and Ei refers to the eigenvalues of Ĥ d(s).

As the de�nition of the Wegner generator is based on a commutator, its matrix elements may

be constructed by utilizing the general purpose commutator-evaluation machinery, which will

be addressed in chapter 5.

In second quantization, the o�-diagonal Hamiltonian takes the form

Ĥ od = ∑
pq
(f od)pq {â

p
q} +

1
4
∑
pqrs

(Γod)pqrs {â
pq
rs } , (4.7.4)

where the o�-diagonal matrix elements are given through

(f od)12 = ⟨ ref|Ĥ {â12}| ref⟩ + [1 ↔ 2] , (4.7.5)

(Γod)1234 = ⟨ ref|Ĥ {â1234}| ref⟩ + [(1, 2) ↔ (3, 4)] . (4.7.6)
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White & Imaginary-Time Generator. In this work, we will be mostly dealing with two

generator types: Firstly, the White generator, which was �rst proposed by White in [Whi02]

in the context of quantum chemistry, and secondly, the imaginary-time generator, which is

originally inspired by Quantum Monte Carlo methods [Car+15]. Both of these generators

show an improved decoupling behavior and the associated ODE systems are less sti� than for

the Wegner generator. Furthermore, their construction is computationally less demanding

than the Wegner generator.

Let us assume that we are aiming to decouple two subspaces , ′ ⊂ a.s.
from each other

with the properties  ∪′ = a.s.
and  ∩′ = ∅. The decoupling condition, therefore,

reads

⟨Ψ|Ĥ |Ψ′⟩ != 0 ∀ |Ψ⟩ ∈ B, |Ψ′⟩ ∈ B′ , (4.7.7)

where B and B′ denote the basis of  and ′
, respectively. We may now write down the

de�nition of both generators in A-body space as follows

�̂ = ∑
Ψ∈B
Ψ′∈B′

⟨Ψ|Ĥ |Ψ′⟩ (⟨Ψ|Ĥ |Ψ⟩ − ⟨Ψ′|Ĥ |Ψ′⟩) |Ψ⟩ ⟨Ψ′| − h.c. , (4.7.8)

where the argument of the function  are di�erences of the diagonal part and varies with the

speci�c generator type

 (x) =
{

x−1 for White

sgn(x) for imaginary-time

. (4.7.9)

Note that we suppressed any dependency on the �ow parameter s for brevity. Similar to

previous considerations with regard to the Wegner generator, an analysis of the asymptotic

suppression behavior of the matrix elements of the o�-diagonal part Ĥ od(s) for s > s0 yields

[Her+16; Her17]

⟨i|Ĥ od(s)|j⟩ = ⟨i|Ĥ od(s0)|j⟩ e−(s−s0) , (4.7.10)

⟨i|Ĥ od(s)|j⟩ = ⟨i|Ĥ od(s0)|j⟩ e−|Ei−Ej |(s−s0) , (4.7.11)

for the White and imaginary-time generator, respectively, where |i⟩ and Ei refer to eigenstates

and eigenvalues of Ĥ d(s), respectively. It is the approximate suppression behavior that treats

all matrix elements equally regardless of any energy di�erences that makes the White gen-

erator the numerically most e�cient choice. However, in some cases we might encounter

divergencies of generator matrix elements due to vanishing denominators. As a resort the

numerically less e�cient but more stable imaginary-time generator may be employed.

However, as the IM-SRG is formulated in terms of operators in second quantization, we have

to cast the de�nition above into the form

�̂(s) = ∑
pq

�pq {â
p
q}| ref

⟩ +
1
4
∑
pqrs

�pqrs {â
pq
rs }| ref

⟩ . (4.7.12)
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For that purpose, let us now assume that B only has one element denoted as |Ψ⟩, which is also

employed as the reference state, i.e., | ref⟩ ≡ |Ψ⟩. Furthermore, we employ that any |Ψ′⟩ ∈ B′
can be expressed as a (generalized) k-particle k-hole excitation w.r.t. |Ψ⟩, i.e.,

|Ψ′⟩ = {âp1…pkq1…qk } |Ψ⟩ . (4.7.13)

Inspired by the de�nition of the generator matrix elements in A-body space, we obtain the

following de�nition for a general k-body generator matrix element.

De�nition 4.7.1: Generator Matrix Elements

A general k-body matrix element of the White or imaginary-time generator in reference-

state representation w.r.t. |Ψ⟩

�̂(s) = ∑
pq

�pq {â
p
q}|Ψ⟩ +

1
4
∑
pqrs

�pqrs {â
pq
rs }|Ψ⟩ + … , (4.7.14)

may be written as follows

�p1…pkq1…qk = ⟨Ψ|Ĥ{âp1…pkq1…qk }|Ψ⟩ (Δp1…pkq1…qk ) − [p1…pk ↔ q1…qk] , (4.7.15)

where we use a short-hand notation for the di�erence of diagonal elements

Δp1…pkq1…qk ≡ ⟨Ψ0|Ĥ |Ψ0⟩ − ⟨Ψ0|{âp1…pkq1…qk }
†Ĥ {âp1…pkq1…qk }|Ψ0⟩ , (4.7.16)

and employ the de�nition

 (x) =
{

x−1 for White

sgn(x) for imaginary-time

. (4.7.17)

This de�nition naturally leads to a vanishing generator, once the decoupling condition is ful-

�lled, i.e., the o�-diagonal part of the Hamiltonian is suppressed. As a consequence, any Ĥ (s)
that is compatible with the decoupling pattern is a �xed point of the operator di�erential equa-

tion
d
ds Ĥ (s) = [�̂(s) , Ĥ (s)] and the �ow stops. It is important to note that the general de�ni-

tion of White and imaginary-time matrix elements given through de�nition 4.7.1 is employed

in several contexts throughout this work: the single-reference IM-SRG, the multi-reference

IM-SRG within the context of the IM-NCSM, the construction of e�ective valence-space in-

teractions via the single-reference IM-SRG.

4.8. Applications—Single-Reference IM-SRG

A straightforward and conceptionally rather simple application of the general framework that

gives us useful insights into its essential concepts is the single-reference IM-SRG. It utilizes
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the IM-SRG framework for the decoupling of a reference state | ref⟩ from its ph-excitations

{âp1q1} | ref⟩, {âp1p2q1q2} | ref⟩. The single-reference IM-SRG is characterized by the choice of a

single Slater determinant as reference state. As a �rst step, we have to de�ne the o�-diagonal

part of the Hamiltonian that we are aiming to suppress, i.e., partition the Hamiltonian into

a diagonal and an o�-diagonal part Ĥ = Ĥ d + Ĥ od
. To that end, we have to examine which

matrix elements of the Hamiltonian are coupling the reference state to its excitations. Using

Wick’s theorem, it is straightforward to obtain

⟨ ref|Ĥ {âp1q1}| ref⟩ = f p1q1 n̄p1nq1 , (4.8.1)

⟨ ref|Ĥ {âp1p2q1q2}| ref⟩ = Γp1p2q1q2 n̄p1 n̄p2nq1nq2 , (4.8.2)

where Ĥ refers to the Hamiltonian in reference-state representation given in eq. (4.4.1). It is

these matrix elements that form the o�-diagonal part Ĥ od
. The only thing that is left before we

are able to construct speci�c generator matrix elements is a speci�cation of a particular gen-

erator type. Considering the White and imaginary-time generator and employing de�nition

4.7.1, their matrix elements may be written as

�12 = f
1
2 n̄1n2  (Δ12) , (4.8.3)

Δ12 = f 11 − f
2
2 − Γ

12
12 , (4.8.4)

�1234 = Γ
12
34 n̄1n̄2n3n4  (Δ1234) , (4.8.5)

Δ1234 = f 11 + f
2
2 − f

3
3 − f

4
4 + Γ

12
12 + Γ

34
34 − Γ

13
13 − Γ

14
14 − Γ

23
23 − Γ

24
24 (4.8.6)

where the de�nition for the function  depends on the generator type. It is an interesting

observation that the argument to  clearly resembles the energy denominator found within

the analytical expression for the second-order energy correction from perturbation theory

employing an Epstein-Nesbet partitioning [BS09; SO96]. Furthermore, by omitting the two-

body matrix elements, we would obtain the energy denominator of the second-order energy

correction in a Møller-Plesset partitioning. All in all, the particular analytical expressions

for the generator matrix elements in the single-reference case demonstrate that there is a

connection between the IM-SRG and perturbation theory.

Once the o�-diagonal part of the Hamiltonian Ĥ od(s) is su�ciently suppressed, the reference

state becomes an eigenstate of Ĥ (s)where the corresponding eigenvalue is the zero-body part

of the evolved Hamiltonian

E0 ≡ ⟨ ref|Ĥ (s)| ref⟩ . (4.8.7)

As we are numerically solving a system of ODEs, we have to de�ne a particular convergence

criterion for the evolution of Ĥ (s). For that purpose, we are employing second-order pertur-

bation theory for a simple and computationally very cheap way for monitoring the progress

of the suppression of the o�-diagonal part. We are calculating the second-order energy cor-

rection E(2) at each integration step of the ODE and take its ratio with the current zero-body
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part of the Hamiltonian into consideration. Once this ratio becomes su�ciently small, i.e.,

E(2)

⟨ ref|Ĥ | ref⟩
< � ≪ 1 , (4.8.8)

we consider the evolution as converged. The convergence threshold � is usually chosen as

1 × 10−4 to 1 × 10−3 for obtaining reliable results.

Figure 4.5 shows a single-reference evolution for
4
He depicting E0 and E0+E(2) (left-hand side)

and the suppression of the norm of the one and two-body o�-diagonal part of the Hamilto-

nian (right-hand side). Evidently, the second-order correction is rapidly absorbed into the

zero-body part of the Hamiltonian such that, �nally, both lines lie on top each other and the

convergence criterion is ful�lled. Likewise, the norm of the two-body o�-diagonal part of

the Hamiltonian is suppressed by several orders of magnitude. The norm of the one-body

o�-diagonal part—initially zero as we are employing the Hartree-Fock basis for which the

Brillouin condition holds—slightly increases at the beginning of the evolution and begins to

decrease again at the end of the evolution.

A matrix plot of the initial and evolved Hamilton matrix in a particle-hole basis is shown in

�g. 4.6. We can observe that strong initial couplings of the reference state to two-particle

two-hole excitations are suppressed in the evolved Hamiltonian. Note that the are no ini-

tial couplings to one-particle one-hole excitations due to the use of the Hartree-Fock single-

particle basis and the associated Brillouin condition. Furthermore, it becomes apparent that

the transformation does not only a�ect the blocks corresponding to couplings of the refer-

ence state to npnh excitations, but also makes the Hamilton matrix more band-diagonal by

also suppressing, e.g., the block that is associated with a coupling of 1p1h excitations to 3p3h

excitations.
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Figure 4.5.: Results of a single-reference IM-SRG calculation for
4
He. The left-hand side shows

an evolution with regard to the �ow parameter s of both the IM-SRG energy E0 ≡
⟨ ref|Ĥ | ref⟩ and E0 + E(2). In this context E(2) refers to the second-order energy

correction obtained from perturbation theory. The right-hand side depicts the

evolution of the norm of the one and two-body o�-diagonal part. Considering the

one-body o�-diagonal part as an example, the norm is calculated through |f od| ≡√
∑pq (f

q
p nqn̄p)

2
. Calculations were performed at emax = 12 and are based on the

N
3
LOEM+N

2
LO400L interaction (see chapter 6 for more information on commonly

employed interactions).

55



Chapter 4. Multi-Reference IM-SRG—Basics
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Figure 4.6.: Matrix representations of the initial and �nal, i.e., transformed Hamiltonian on

the left and right-hand side, respectively. The basis chosen for the representation

consists of n-particle n-hole excitations of the reference state | ref⟩ (0p0ℎ) which

is a simple Slater determinant. Note that we include only a certain subset of de-

terminants in each set of n-particle n-hole excitations used for the representation

where the subset consists only of those excitations | ′⟩ with the largest absolute

values for the overlap with the reference state | ⟨ ref|Ĥ | ′⟩ |.
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Chapter 5.

Multi-Reference IM-SRG—Commutator

Evaluation

In this chapter we cover one of the central aspects of the IM-SRG framework: the evaluation

of commutators. The need for commutator evaluations appears in the following di�erent

contexts:

• the direct evolution of an observable Ô through

d
ds
Ô(s) = [�̂(s) , Ô(s)] , (5.0.1)

• the derivative for the Magnus operator Ω̂(s)

d
ds
Ω̂(s) =

∞
∑
k=0

Bk
k! [

Ω̂(s) , �̂(s)]k , (5.0.2)

• the construction of the Wegner generator

�̂(s) = [Ĥ
d(s) , Ĥ (s)] , (5.0.3)

• the unitary transformation of an observable Ô by means of the BCH series

Ô(s) = e+Ω̂(s) Ô(0) e−Ω̂(s) =
∞
∑
k=0

1
k! [

Ω̂(s) , Ô(0)]k
. (5.0.4)
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Taking all of these cases into account, this chapter is dedicated to the evaluation of the general

commutator

ĈL
M = [Â

0
0 , B̂

L
M] , (5.0.5)

where ĈL
M and B̂LM denote spherical tensor operators of rank L and projectionM and Â00 denotes

a scalar operator. We will be commonly referring to the resulting equations in terms of the

matrix elements of the operators as commutator equations. Note that, if not stated otherwise,

we will omit the tensor rank and projection information for Â00, B̂LM and ĈL
M and use Â, B̂,

and Ĉ , respectively, for brevity. Commutators with a non-scalar second argument arise in

the context of the consistent evolution of electromagnetic observables as, in general, those

observables are associated with non-scalar operators.

This chapter is outlined as follows: Firstly, we present the so-called m-scheme commutator

equations, which may be obtained by an application of Wick’s theorem and a subsequent

transformation into the so-called spherical natural orbitals. Secondly, we brie�y review the

theory of irreducible spherical tensor operators and the Wigner-Eckart theorem. Thirdly, we

use fundamental symmetry properties of the operators and of fermionic many-body states for

writing the m-scheme equations in a more compact form. Finally, we derive spherical com-

mutator equations in terms of reduced matrix elements by performing angular momentum

coupling.

5.1. Spherical Natural Orbitals and m-Scheme Equations

Spherical Natural Orbitals. A central aspect of the commutator equations is that they are

formulated in terms of the so-called spherical natural orbitals, which is the eigenbasis of the

one-body density matrix 
 [1]. Under the corresponding unitary single-particle transformation

the one-body density matrix transforms like


 pq → np�pq , (5.1.1)


̄ pq = �
p
q − 


p
q → � pq − np�

p
q = (1 − np)�

p
q ≡ n̄p� pq , (5.1.2)

where we introduced the fractional occupation numbers np with 0 ≤ np ≤ 1 as eigenvalues of


 [1] and de�ned n̄p ≡ 1−np . It is noteworthy that this single-particle transformation is unitary

and that it only mixes radial quantum numbers.

The main reason for using the natural orbital basis is simple: It reduces the computational

e�ort drastically due to the collapse of summation indices. In practical applications it has

proven useful to partition the natural-orbital single-particle basis into a core space , an active
space , and a virtual space  . For that purpose, let us express the reference state | ref⟩ as a

superposition of Slater determinants |�i⟩

| ref⟩ = ∑
i
ci |�i⟩ . (5.1.3)
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As the unique assignment of any single-particle state p to one of the aforementioned subspaces

is governed by the numerical value of its occupation number np , we obtain the de�nition:

p ∈  ⇔ np = 1 ⇔ p ∈ |�i⟩ for all i ⇒ âp | ref⟩ = 0 , (5.1.4)

p ∈  ⇔ 0 < np < 1 ⇔ p ∈ |�i⟩ for at least one but not all i , (5.1.5)

p ∈  ⇔ np = 0 ⇔ p ∉ |�i⟩ for all i ⇒ âp | ref⟩ = 0 . (5.1.6)

The usefulness of this classi�cation is rooted in the fact that particular occupation numbers

and two-body irreducible density matrix elements vanish for certain natural orbital single-

particle combinations.

For demonstration purposes let us consider a general n-body density matrix element 
 p1…pnq1…qn .

It is easy to verify that such a matrix element is only non-vanishing if none of its indices

is associated with a virtual state. As a consequence, the computational impact of particular

analytical expression may be further reduced by, e.g., letting speci�c summation indices only

run over core states. For more information see [Geb17].

m-Scheme Equations. In the following we are going to present the result of the evaluation

of the general commutator equation

Ĉ = [Â , B̂] , (5.1.7)

where each of the three operators is in reference-state representation w.r.t. | ref⟩, consistently

truncated at the NO2B level, and can, therefore, be written as

Â = A0 +∑
pq

Ap
q {â

p
q}| ref

⟩ +
1
4
∑
pqrs

Apq
rs {â

pq
rs }| ref

⟩ . (5.1.8)

For better readability, we split up the commutator evaluation w.r.t. the particle ranks of the

operators involved which yields

Ĉ = [Â , B̂] = [Â
[0] + Â[1] + Â[2] , B̂[0] + B̂[1] + B̂[2]] (5.1.9)

= [Â
[1] , B̂[1]] + [Â

[1] , B̂[2]] + [Â
[2] , B̂[1]] + [Â

[2] , B̂[2]] . (5.1.10)

For evaluating each of these commutators we employ Wick’s theorem (see chapter 3), which

naturally leads to terms involving one-body, irreducible two-body, and irreducible three-body

density matrices.

As an example, let us now evaluate the commutator between the two one-body parts Â[1] and

B̂[1] and denote the resulting operator of this operation as �̂

�̂ ≡
[
∑
pq

Ap
q {â

p
q} , ∑

pq
Bpq {â

p
q}]

(5.1.11)

= ∑
pqrs

Ap
q B

r
s {â

p
q}{â

r
s} − ∑

pqrs
Bpq A

r
s {â

p
q}{â

r
s} , (5.1.12)
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relabeling of summation indices gives

= ∑
pqrs

Ap
q B

r
s ({âpq}{â

r
s} − {â

r
s}{â

p
q}) , (5.1.13)

applying the generalized Wick’s theorem to both normal-ordered products yields

= ∑
pqrs

Ap
q B

r
s ( − 


p
s {â

r
q} + 
̄

r
q {â

p
s } + 


p
s 
̄

r
q + 


pr
qs (5.1.14)

+ 
 rq {â
p
s } − 
̄

p
s {â

r
q} − 


r
q 
̄

p
s − 


rp
sq ) , (5.1.15)

combining terms with the same normal-ordered product produces

= ∑
pqrs

Ap
q B

r
s ( − (


p
s + 
̄

p
s ){â

r
q} + (
̄

r
q + 


r
q ){â

p
s } (5.1.16)

+ 
 ps 
̄
r
q − 


r
q 
̄

p
s + 


pr
qs − 


rp
sq ) . (5.1.17)

By employing the relations


 12 + 
̄
1
2 = �

1
2 , 
 prqs − 


rp
sq = 
 prqs − 


pr
qs = 0 , (5.1.18)


 12 
̄
3
4 − 


3
4 
̄

1
2 = 


1
2 �

3
4 − 


3
4 �

1
2 , (5.1.19)

we further obtain

�̂ = ∑
pqrs

Ap
q B

r
s (−� ps {â

r
q} + �

r
q {â

p
s } + 


p
s �

r
q − 


r
q �

p
s ) (5.1.20)

= −∑
pqrs

Ap
q B

r
s �

p
s {â

r
q} + ∑

pqrs
Ap
q B

r
s �

r
q {â

p
s } (5.1.21)

+ ∑
pqrs

Ap
q B

r
s 


p
s �

r
q − ∑

pqrs
Ap
q B

r
s 


r
q �

p
s , (5.1.22)

evaluating delta terms and subsequently relabeling summation indices yields

= −∑
pqr

Ap
q B

r
p {â

r
q} +∑

pqs
Ap
q B

q
s {â

p
s } +∑

pqs
Ap
q B

q
s 


p
s −∑

pqr
Ap
q B

r
p 


r
q (5.1.23)

= −∑
p1p2

∑
q
Aq
p2 B

p1
q {â

p1
p2} +∑

p1p2
∑
q
Ap1
q Bqp2 {â

p1
p2} (5.1.24)

+∑
pqr

(Ap
q B

q
r 


p
r − A

q
r B

p
q 


p
r ) , (5.1.25)

combining the two one-body parts again gives

= ∑
p1p2

∑
q

(Ap1
q Bqp2 − B

p1
q Aq

p2 ) {â
p1
p2} +∑

pqr
(Ap

q B
q
r − B

p
q A

q
r ) 


p
r (5.1.26)

!= �0 +∑
pq

�pq {â
p
q} +

1
4
∑
pqrs

�pqrs {â
pq
sr } . (5.1.27)
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By comparing each particle rank of the result with the general form of �̂, we obtain the fol-

lowing expressions for the zero-body and one-body matrix elements of �̂, respectively,

�0 = ∑
pqr

(Ap
q B

q
r − B

p
q A

q
r ) 


p
r , (5.1.28)

�12 = ∑
q

(A1q B
q
2 − B

1
q A

q
2 ) . (5.1.29)

A subsequent single-particle basis transformation of the zero-body part into the spherical

natural orbitals yields

�0 = ∑
pqr

(Ap
q B

q
r − B

p
q A

q
r ) 


p
r → ∑

pq
(Ap

q B
q
p − Bpq A

q
p ) nq , (5.1.30)

Apparently, �12 is invariant under this transformation as it does not contain any density ma-

trices.

Applying this approach outlined through this exemplary evaluation of [Â[1] , B̂[1]] to the re-

maining terms [Â[1] , B̂[2]], [Â[2] , B̂[1]] and [Â[2] , B̂[2]], including the transformation of all terms

into the spherical natural orbital basis, we obtain the m-scheme equations

Zero-Body m-Scheme

C0 = +∑
pq

(np − nq)Ap
q B

q
p (5.1.31)

+
1
4

∑
pqrs

npnqn̄r n̄s (Apq
rs Brspq − [A ↔ B]) (5.1.32)

+
1
4

∑
pqrs

C pq
rs �

pq
rs +  (�[3]) (5.1.33)
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One-Body m-Scheme

C 1
2 = +∑

p
A1p Bp2 − [A ↔ B] (5.1.34)

+∑
pq

(np − nq) (A
p
q Bq1p2 − [A ↔ B]) (5.1.35)

+
1
2
∑
pqr

(npn̄qn̄r + n̄pnqnr) (A1pqr B
qr
2p − [A ↔ B]) (5.1.36)

+ ∑
rtvsw

(
1
4
A1tsw B

rv
2t − [A ↔ B]) �

rv
sw , (5.1.37)

+ ∑
rtvsw

(A1rts B
tv
2w − [A ↔ B]) �rvsw , (5.1.38)

+ ∑
rtvsw

(
1
2
A1r2t B

tv
sw −

1
2
A1t2s B

rv
tw − [A ↔ B]) �

rv
sw , (5.1.39)

Two-Body m-Scheme

C 12
34 = +∑

p ((A
1
p Bp234 − [1 ↔ 2]) − (A

p
3 B12p4 − [3 ↔ 4]))

− [A ↔ B] (5.1.40)

+
1
2

∑
pq

(1 − np − nq) (A12pq Bpq34 − [A ↔ B]) (5.1.41)

+∑
pq

(np − nq) ((A
1p
3q B2q4p − [A ↔ B]) − [1 ↔ 2]) . (5.1.42)

These equations are commonly referred to as m-scheme equations due to the fact that they

still depend on projection quantum numbers—in contrast to the so-called spherical equations,

which will be derived later on. It becomes evident that the zero-body part is the only part

which, in principle, contains an irreducible three-body density matrix, However, this term

will be neglected in this work as it has been shown that its impact is negligible [Geb17]. Fur-

thermore, it is noteworthy that the subset of the equations above not containing any two-body

irreducible density matrices �̂[2] is equal to the set of single-reference equations. Assuming the

reference state is a Slater determinant, all terms containing higher-order irreducible density

matrices �̂[2] vanish which shows that the multi-reference equations reduce to the single-

reference equations. Additionally, we would like to note that during the derivation of the

m-scheme equations presented here, no symmetries of the operators were exploited, in par-

ticular, we did not assume any symmetry under Hermitian conjugation. For more information
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and details on the derivation of the single-reference and multi-reference equations see [Vob14]

and [Geb17], respectively.

5.2. Angular Momentum Theory

Taking rotational symmetry into account is not only educationally valuable but is also an

essential cornerstone for the following derivation of the spherical commutator equations

which—compared to the m-scheme commutator equations—signi�cantly reduce the compu-

tational e�ort. Furthermore, it will allow us to write the m-scheme equations in a much more

compact manner, making them much easier to handle. To that end, we are going to brie�y dis-

cuss angular momentum theory, introduce spherical tensor operators and address the Wigner-

Eckart theorem in this section. For educationally highly valuable information on this topic

beyond our following considerations see [Suh07; VMK88].

Angular Momentum Coupling. A (vector) operator Ĵ is said to be an angular momentum

operator if its three Cartesian components Ĵx , Ĵy , and Ĵz are Hermitian and, additionally, satisfy

the commutation relations

[Ĵx , Ĵy] = iℏĴz , [Ĵy , Ĵz] = iℏĴx , [Ĵz , Ĵx] = iℏĴy . (5.2.1)

Starting from this abstract de�nition of an angular momentum operator Ĵ , it can be shown

that the orthonormal eigenstates of Ĵ ful�ll the following eigenvalue relations

Ĵ
2
|jm⟩ = j(j + 1)ℏ2 |jm⟩ , (5.2.2)

Ĵz |jm⟩ = mℏ |jm⟩ , (5.2.3)

where −j ≤ m ≤ j. We would like to note that the notion of angular momentum arises

naturally within the context of rotational symmetry. This is rooted in the fact that an angular

momentum operator is closely related to the rotation group—its components are the three

in�nitesimal generators of the rotation group.

Having de�ned the notion of an angular momentum operator, we are now prepared to address

the coupling of angular momenta. Generally, the sum Ĵ = Ĵ 1 + Ĵ 2 of two commuting angular

momentum operators Ĵ 1 and Ĵ 2 again forms an angular momentum operator, where Ĵ 1 and

Ĵ 2 may be, e.g., the angular momenta of two di�erent particles or those of the orbital and spin

angular momentum. The complete set of basis states {|j1m2, j2m2⟩} is called the uncoupled
basis w.r.t. the operator set {Ĵ

2
1, Ĵ1z , Ĵ

2
2, Ĵ2z}. However, as Ĵ = Ĵ 1 + Ĵ 2 is also an angular mo-

mentum operator the complete set of basis states {|(j1j2)jm⟩} is called the coupled basis w.r.t.

the operator set {Ĵ
2
1, Ĵ

2
2, Ĵ

2
, Ĵz}. The transformation between the coupled and uncoupled basis

is unitary and a basis state of the coupled basis can be expressed in terms of basis states of the
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uncoupled basis as follows

|(j1j2)jm⟩ = ∑
m1m2

|j1m2j2m2⟩ ⟨j1m2j2m2|(j1j2)jm⟩ (5.2.4)

≡ ∑
m1m2

(
j1 j2 j
m1m2 m) |j1m1j2m2⟩ , (5.2.5)

where we de�ned the overlap between a coupled and an uncoupled basis state as the Cleb-

sch Gordan coe�cient. Closely related to Clebsch-Gordan coe�cients are the so-called 3j
symbols

1
which can be expressed in terms of each other as follows

(
j1 j2 J
m1m2M) = (−)j1−j2−M Π−1J (

j1 j2 J
m1m2 −M) , (5.2.6)

(
j1 j2 J
m1m2 M) = (−)j1−j2+M ΠJ (

j1 j2 J
m1m2 −M) = (−)2j2 ΠJ (−)J−M (

J j2 j1
−M m2m1)

, (5.2.7)

where the so-called hatfactor is de�ned via

ΠJ ≡
√
2J + 1 , ΠJ1J2…Jx ≡ ΠJ1 ⋅ ΠJ2 ⋯ΠJx . (5.2.8)

We will usually employ 3j symbols instead of Clebsch-Gordan coe�cients as these are ac-

companied by very convenient symmetry properties: Firstly, a 3j symbol is invariant under

cyclic permutations of its columns, whereas an anti-cyclic permutation produces merely an

additional phase factor of (−)j1+j2+J . Secondly, an inversion of all of its projection quantum

numbers in the bottom row produces the same phase factor as in the context of anti-cyclic

permutation

(
j1 j2 j3
m1m2m3)

= (
j3 j1 j2
m3m1m2)

= (−)j1+j2+j3 (
j2 j1 j3
m2m1m3)

, (5.2.9)

(
j1 j2 j3
m1m2m3)

= (−)j1+j2+j3 (
j1 j2 j3
−m1 −m2 −m3)

. (5.2.10)

Another useful property of the 3j symbol involves the case where one of the angular momenta

vanishes

(
j1 j2 0
m1m2 0)

= (−)j1−m1 Π−1j1 �j1j2�m1,−m2 . (5.2.11)

Considering the case of coupling three angular momenta, there is, compared to the case of

two angular momenta, a slight complication as there are three possible coupling orders in

which the three angular momenta may be coupled and the coupled states associated with

each coupling scheme are di�erent from each other. However, each of the three sets forms a

1
Note that in the literature the object we are referring to as a 3j symbol it sometimes referred to as 3jm symbol.
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complete basis and the 6j symbol arises within the context of the unitary basis transformations

between two di�erent coupling schemes. Note that, formally, the 6j symbol may be written

in terms of 3j symbols as follows

{
j1 j2 j3
J1 J2 J3

}
= ∑
M1M2M3m1m2m3

(−)J1−M1+J2−M2+J3−M3

(
j1 j2 j3
m1m2m3)

(
j1 J2 J3
−m1 −M2M3)(

J1 j2 J3
M1m2 −M3)(

J1 J2 j3
−M1M2m3)

. (5.2.12)

The basic symmetry properties of the 6j symbol are: invariance under permutations of its

columns and invariance under simultaneous exchange of lower and upper arguments in any

two of its columns.

Similarly to the 6j symbol, the 9j symbol arises within the context of transformations between

coupling schemes w.r.t. four angular momenta and is denoted as

⎧⎪⎪
⎨⎪⎪⎩

j11 j12 j13
j21 j22 j23
j31 j32 j33

⎫⎪⎪
⎬⎪⎪⎭

. (5.2.13)

Again, there are several ways in which the four angular momenta may be coupled to a total

angular momentum, states associated with di�erent coupling schemes are not equal to each

other, and each set of basis states associated with each of the di�erent coupling schemes forms

a complete basis. Considering the basic symmetry properties, the 9j symbol is invariant under

re�ection w.r.t. to either of its two diagonals, it is invariant under even permutations of its rows

and columns, and for odd permutations of its rows or columns a phase factor of ∏3
x,y (−)

jxy

emerges.

Spherical Tensor Operators. Generally, a Cartesian tensor operator can be reduced to

spherical tensor operators of several spherical ranks. As the de�nition of spherical tensor op-

erators is closely connected to their behavior under rotations in coordinate space, let us brie�y

recapitulate the most important implications arising within the context of those rotations.

Under a rotation, represented by the rotation operator R̂ with matrix elements Rij , the three

components V i
of a Cartesian vector and the nine components T ij of a second-rank Cartesian

tensor are transforming as follows

V ′i =
3
∑
j=1

RijV
j ⟶ V ′ = RV , (5.2.14)

T ′ij =
3
∑
k,l=1

RikR
j
lT

kl ⟶ T ′ = RTR−1 , (5.2.15)

where both rotations were additionally written as matrix equations with the orthogonal ma-

trix R. A rotation R in three-dimensional Cartesian space leads to a unitary transformation Û
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of angular momentum eigenstates |jm⟩ in a (2j + 1)−dimensional Hilbert space. The so-called

Wigner D functions are the matrix representation of these unitary transformations in a basis

consisting of angular momentum eigenstates

Dj
m,m′ ≡ ⟨jm′ ||| Û

||| jm⟩ . (5.2.16)

Rewriting the previous de�nition to the form

Û |jm⟩ =
j

∑
m=−j

Dj
m,m′ |jm′⟩ , (5.2.17)

illustrates how an eigenstate |jm⟩ transforms under rotations induced by Û .

Employing the de�nition of the Wigner D functions, a spherical tensor operator T̂L with rank

L consists of (2L + 1) components

{
T̂ LM | − L ≤ M ≤ +L

}
which transform under rotations

as follows

Û T̂ LM Û
† =

L
∑
M ′=−L

DL
M,M ′ T̂ LM ′ . (5.2.18)

Put di�erently, the components T̂ LM of a spherical tensor operator are transforming just like

angular momentum eigenstates |jm⟩. Equivalently, spherical tensor operators can formally

be de�ned through the following commutation relations

[Ĵz , T̂
L
M] = MℏT̂ LM , (5.2.19)

[Ĵ± , T̂
L
M] = ℏ

√
(J ± M + 1)(J ∓ M) T̂ LM±1 , (5.2.20)

where Ĵ± = Ĵx ±iĴy are the ladder operators. These commutation relations are especially useful

for testing whether or not a set of objects forms a spherical tensor operator.

As noted previously, Cartesian tensor operators of a speci�c Cartesian rank can be reduced to

spherical tensors of several spherical ranks. A special case are Cartesian scalars and vectors as

their spherical counterparts have the same rank, i.e., a Cartesian scalar is a spherical scalar and

a Cartesian vector is a spherical vector. However, a rank-two Cartesian tensor can be decom-

posed into spherical tensors of rank zero, one, and two. In other words, Cartesian tensors are

reducible whereas spherical tensors are irreducible. This is why they are commonly referred to

as irreducible spherical tensor operators.
2

As an example for the decomposition of Cartesian

tensors into spherical tensors, let us consider a vector V̂ with the Cartesian components V̂x ,

V̂y and V̂z . The associated spherical components can now be written as follows

V̂± = ∓
1
√
2 (V̂x ± iV̂y) , V̂0 = V̂z . (5.2.21)

2
Mathematically speaking, an irreducible spherical tensor operator corresponds to an irreducible representation

of the rotation group, i.e., a group representation with no further invariant subspaces.
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Note that, if not stated otherwise, we will assume to deal with Hermitian tensor operators in

this work, which obey

(T̂ LM)
† = (−)M T̂ L−M , (5.2.22)

where the M = 0 component of such tensor operators ful�lls the well-known criterion for

being Hermitian (T̂ L0 )
† = T̂ L0 .

Wigner-Eckart Theorem. We are now ready to discuss the Wigner-Eckart theorem

[Wig31; Eck30]. It simpli�es the calculation of matrix elements of nuclear observables by ex-

panding observables in terms of spherical tensor operators which then allows to exploit their

special transformation properties. Using the notation | ; JM⟩ for referring to states with an-

gular momentum J and projection M the Wigner-Eckart theorem can be stated as follows.

Theorem 5.2.1: Wigner-Eckart Theorem

A matrix element of a component T̂ LML
of a spherical tensor operator T̂L can be rewritten

as

⟨ ; JM|T̂ LML
| ′; J ′M ′⟩ = (−)J−M (

J L J ′

−M MLM ′)⟨ ; J ||T̂L|| ′; J ′⟩ , (5.2.23)

where ⟨ ; J ||T̂L|| ′; J ′⟩ denotes the so-called reduced matrix element which does not de-

pend on any projection quantum numbers anymore.

Therefore, the Wigner-Eckart theorem states that it is possible to separate matrix elements of

spherical tensor operators into a part that still contains projection quantum numbers from the

rest, i.e., the reduced matrix element. This reduced matrix element is rotationally invariant

and contains the “physics” of the initial and �nal state and that of the tensor operator. The

inverse relation of the Wigner-Eckart theorem will prove very useful and can be written as

⟨ ; J ||T̂L|| ′; J ′⟩ = ∑
MM ′ML

(−)J−M (
J L J ′
−M MLM ′)⟨ ; JM|T̂ LML

| ′; J ′M ′⟩ . (5.2.24)

From the Wigner-Eckart theorem given through eq. (5.2.23) and the general properties of 3j
symbols it becomes evident that the matrix element of a spherical tensor operator vanishes

if either the triangular condition or the projection quantum number conservation is violated.

Formally, this can be expressed as

⟨ ; JM|T̂ LML
| ′; J ′M ′⟩ = 0 if !Δ(JLJ ′) or (−M + ML + M ′) ≠ 0 , (5.2.25)

where Δ(JLJ ′) indicates the triangular condition.
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Let us consider a matrix element and its complex conjugate counterpart

⟨ ; JM|T̂ LML
| ′; J ′M ′⟩ = ⟨ ′; J ′M ′|(T̂ LML)

†| ; JM⟩
∗

, (5.2.26)

where we used the de�nition of the Hermitian conjugation of operators. Assuming from now

on that we are dealing with Hermitian spherical tensor operators, we apply the Wigner-Eckart

theorem to both sides of the previous equation and obtain

⟨ ; J ||T̂L|| ′; J ′⟩ = (−)J−J
′
⟨ ′; J ′||T̂L|| ; J ⟩

∗
, (5.2.27)

which is an important symmetry property of reduced matrix elements.

An interesting special case is the Wigner-Eckart theorem for scalar operators: As both L and

ML are vanishing in this case we obtain the simpli�ed equation

⟨ ; JM|T̂ 00 | 
′; J ′M ′⟩ = Π−1J ⟨ ; J ||T̂ 0|| ′; J ′⟩ �J J ′�MM ′ . (5.2.28)

Two things become evident here: Firstly, coupled matrix elements of scalar operators are

only non-zero if both the total angular momentum and its projection are equal in bra and

ket, respectively. Secondly, the matrix element is independent of the speci�c value of the

projection. Therefore, we may replace reduced with coupled matrix elements with each other,

even though one has to take the hatfactor both are di�ering by into account.

Tensor Product. The tensor product of rank L and projection M of two spherical tensor

operators X̂LX
and Ŷ LY

of rank LX and LY , respectively, is de�ned through

[X̂LX ⊗ Ŷ LY ]
L
M ≡ ∑

M1M2
(
LX LY L
M1M2 M) X̂ LX

M1
Ŷ LY
M2

. (5.2.29)

Considering the special case where one of the two spherical tensor operators involved in the

tensor product is a scalar, we obtain the relation

[X̂LX ⊗ Ŷ 0]
L
M = ∑

M1
(
LX 0 L
M10 M) X̂ LX

M1
Ŷ 00 = �LXL�M1M X̂

LX
M1
Ŷ 00 , (5.2.30)

from which it follows that any product of a spherical tensor operator of rank L and projection

M with a scalar operator is equivalent to a tensor product of rank L and projection M . As a

consequence, also the commutator of a non-scalar operator with a scalar operator is again a

tensor operator with rank and projection equal to the ones of the non-scalar operator which

in turn justi�es our previous assumption given through eq. (5.0.5).

During the following process of angular momentum coupling, matrix elements of two types

of tensor products will appear naturally. Therefore, let us consider these two cases such that

we may directly identify speci�c terms as tensor products.
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Matrix Elements of Tensor Products I. In the �rst case we assume that X̂LX
and Ŷ LZ

are two spherical tensor operators, where each depends exclusively on variables of its own

subsystem. The matrix elements of such a tensor product, which can be written as

Ẑ LZ
MZ

= [X̂LX ⊗ Ŷ LY ]
LZ
MZ

, (5.2.31)

are then given through [VMK88]

⟨(j1j2)J
‖‖‖ Ẑ

LZ ‖‖‖ (j3j4)J
′⟩ = ΠLZΠJ ′ΠJ

⎧⎪⎪
⎨⎪⎪⎩

j1 j2 J
j3 j4 J ′
LX LY LZ

⎫⎪⎪
⎬⎪⎪⎭
⟨j1

‖‖‖ X̂
LX ‖‖‖ j3⟩⟨j2

‖‖‖ Ŷ
LY ‖‖‖ j4⟩ . (5.2.32)

There are two important special cases:

1. LY = 0 which leads to the following matrix elements

⟨(j1j2)J
‖‖‖ Ẑ

L ‖‖‖ (j3j4)J
′⟩ =ΠLΠJ ′ΠJ (−)j1+j4+J

′+L
{
j1 J j2
J ′ j3 L

}

⟨j1
‖‖‖ X̂

L ‖‖‖ j3⟩⟨j2
‖‖‖ Ŷ

0 ‖‖‖ j4⟩ , (5.2.33)

2. LX = LY = 0 which gives

⟨(j1j2)J
‖‖‖ Ẑ

0 ‖‖‖ (j3j4)J
′⟩ =

ΠJ
Πj2j1

⟨j1
‖‖‖ X̂

0 ‖‖‖ j3⟩⟨j2
‖‖‖ Ŷ

0 ‖‖‖ j4⟩ . (5.2.34)

Matrix Elements of Tensor Products II. Another possibility for coupling two tensor op-

erators deals with the case, where both are acting on the same Hilbert space [Suh07, p. 34].

This leads to

⟨J1
‖‖‖ Ẑ

LZ ‖‖‖ J2⟩ = (−)J1+L+J2 ΠLZ ∑
Jp

{
LX LY LZ
J2 J1 Jp

}

⟨J1
‖‖‖ X̂

LX ‖‖‖ Jp⟩⟨Jp
‖‖‖ Ŷ

LY ‖‖‖ J2⟩ , (5.2.35)

where Ji refers to the total angular momentum of the “spherical” many-body state  i . We will

commonly face a special case of this relation, where one of the two operators involved in the

tensor product is a scalar which leads to

⟨J1
‖‖‖ Ẑ

L ‖‖‖ J2⟩ =ΠJ2 ∑
Jp

⟨J1
‖‖‖ X̂

L ‖‖‖ Jp⟩⟨Jp
‖‖‖ Ŷ

0 ‖‖‖ J2⟩ . (5.2.36)
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5.3. m-Scheme Equations—Revisited

The m-scheme commutator eqs. (5.1.31) to (5.1.42) are overly complicated. This is due to

the fact that they are mixing up the general symmetries of each matrix element of a spheri-

cal tensor operator with the structure inherent to the commutator equations. In this section

we will separate these general symmetries of matrix elements and the inherent structure of

the commutator equations from each other. Apart from gaining aesthetically more attractive

equations, the practical advantage of this approach is that we obtain equations that exhibit

fewer terms and are easier to handle. As a consequence, the subsequent angular momentum

coupling procedure will be signi�cantly simpli�ed and less error-prone.

We will employ a short-hand notation for index transpositions via an index transposition

operator

�̂ 12 1,2 ≡ 2,1 , (5.3.1)

where  is an arbitrary object with two indices. Furthermore, we assume that all involved op-

erators have a de�nite symmetry under Hermitian conjugation of 1 or -1, where the symmetry

of Ĉ is determined through the symmetry of Â and B̂ and denoted as �C = ±1

(Ĉ
L
M)

†
= �C (−)M ĈL

−M = ± (−)M ĈL
−M . (5.3.2)

Choosing the matrix elements to be real it follows that
3

⟨ |ĈL
M | ′⟩ = ± (−)M ⟨ ′|ĈL

−M | ⟩ . (5.3.3)

Symmetrizer. The resulting one-body matrix elements (CL
M)

1
2 should be invariant under

the action of the symmetrizer

Ξ̂±
12M ≡

1
2(
1 ± (−)M �̂M−M �̂

1
2) . (5.3.4)

Furthermore, two-body matrix elements (CL
M)

12
34 shall be invariant under the action of

−�̂ 12 , − �̂ 34 , ± (−)M �̂M−M �̂
1
3�̂
2
4 , (5.3.5)

giving 8 distinct permutations. Consequently, the symmetrizer for the two-body matrix ele-

ments may be written as

Ξ̂±
1234M ≡

1
8 (1 − �̂ 12) (1 − �̂

3
4) (1 ± (−)

M �̂M−M �̂
1
3�̂
2
4) . (5.3.6)

3
Note that in the context of the symmetrizer we will from now on employ ± for referring to �C .
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As an example, let us consider the �rst term of the two-body equations (see eq. (5.1.40)), which

can be rewritten as

∑
p (((A

1
p Bp234 − B

1
p Ap2

34 ) − [1 ↔ 2]) − ((A
p
3 B12p4 − B

p
3 A12p4 ) − [3 ↔ 4]))

=∑
p

(1 − �̂ 12 ± �̂
1
3�̂
2
4 ∓ �̂

4
3�̂
1
3�̂
2
4) (A

1
p Bp234 − B

1
p Ap2

34 ) (5.3.7)

=∑
p

(1 − �̂ 12 ± �̂
1
3�̂
2
4 ∓ �̂

4
3�̂
1
3�̂
2
4)
1 − �̂ 34
2 (A

1
p Bp234 − B

1
p Ap2

34 ) (5.3.8)

= Ξ̂±
1234M 4∑

p
(A

1
p Bp234 − B

1
p Ap2

34 ) (5.3.9)

Evidently, the equation takes on a much simpler form as any two terms that merely di�er

by an exchange of particles such that basic matrix elements symmetries are satis�ed are now

broken down to one as any of those redundant “exchange” terms is now recovered through

the action of the symmetrizer.

Result. Applying this approach to all the remaining terms is straightforward and results in

the following set of equations.

Zero-Body m-Scheme Enhanced

C0 = +∑
pq

(np − nq)Ap
q B

q
p (5.3.10)

+
1
4

∑
pqrs

npnqn̄r n̄s (Apq
rs Brspq − [A ↔ B]) (5.3.11)

+
1
4

∑
pqrs

C pq
rs �

pq
rs (5.3.12)
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One-Body m-Scheme Enhanced

(CL
M)

1
2 = + Ξ̂

±
12M ∑

p
2 A1p Bp2 (5.3.13)

+ Ξ̂±
12M ∑

pq
(np − nq) (A

p
q Bq1p2 ) (5.3.14)

− Ξ̂±
12M ∑

pq
(np − nq) (B

p
q Aq1

p2 ) (5.3.15)

+ Ξ̂±
1 ∑

pqr
A1pqr B

qr
2p (npn̄qn̄r + n̄pnqnr) (5.3.16)

+ Ξ̂±
12M ∑

rtvsw

1
2
A1tsw �swrv Brv2t (5.3.17)

+ Ξ̂±
12M ∑

rtvsw
(−2) A1rst �swvr Bvt2w (5.3.18)

+ Ξ̂±
12M ∑

rtvsw
A1rt2 B tvsw �swvr (5.3.19)

− Ξ̂±
12M ∑

rtvsw
(BLM)

1r
t2 (A00)

tv
sw (�00)

sw
vr (5.3.20)

Two-Body m-Scheme Enhanced

(CL
M)

12
34 = + Ξ̂

±
1234M ∑

p
4 A1p Bp234 (5.3.21)

− Ξ̂±
1234M ∑

p
4 B1p Ap2

34 (5.3.22)

+ Ξ̂±
1234M ∑

pq
(1 − np − nq)A12pq Bpq34 (5.3.23)

+ Ξ̂±
1234M ∑

pq
4 (np − nq)A

1p
3q B2q4p (5.3.24)

Comparing these equations with the previous set of equations given through eqs. (5.1.31)

to (5.1.42) demonstrates that they exhibit a simpler structure. As a consequence, they are the

ideal starting point of the derivation of the spherical commutator equations.
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5.4. Diagrammatic Approach

In the context of angular momentum coupling of the m-scheme commutator equations, we

will face expressions containing sums over products of many Clebsch-Gordan coe�cient and

3j symbols symbols. Such expressions can get extremely complicated and performing ma-

nipulations is a very time-consuming process. The reason for this is simple: The expressions

contain many arguments and it is very di�cult to grasp all of the interrelations and to under-

stand symmetries and invariances of speci�c terms.

For facilitating the process of angular momentum transformations, we will resort to a graph-

ical representation of those analytical expressions. Such a graphical representation is a much

clearer and more compact way for representing the structure inherent to the expressions.

There has to be a unique relationship between any analytic expression and its associated

graphical representation. Any transformation of an analytic expression may be translated

into an unique transformation of the associated diagrams [VMK88].

Let us brie�y recapitulate the basics of a diagrammatic treatment of angular momentum cou-

pling. As we are only using the diagrammatic representation of 3j symbols and its associated

transformation rules, we are merely employing a subset of the rules presented in [VMK88] on

which this section is based on.

As a starting point, bra and ket states with a de�nite angular momentum j and projection m
are represented as follows

Π−1j |jm⟩ = jm
, Π−1j ⟨jm| = jm

, (5.4.1)

where the lines coming into or out of a node are referred to as j-lines and the variable above

them indicates the state they are associated with.

A 3j symbol is represented by a dot which connects three j-lines, where each of the line

corresponds to one of the three angular momenta within the 3j symbol. The cyclic order

of the arguments of the 3j symbol is determined through the sign of the node which may

either be positive or negative determining if the j-lines around the node have to be interpreted

anticlockwise or a clockwise, respectively. Note that the sign of a node is indicated through a

solid edge (positive sign, anticlockwise) or a dashed edge (negative sign, clockwise).
45

(
j1 j2 j3
m1m2m3)

=

j3m3j2m2

j1m1

=

j1m1j2m2

j3m3

, (5.4.2)

4
Note that the introduction of solid or dashed edges instead of simply noting “+” or “-” next to each node is the

only deviation from the original notation given in [VMK88].

5
This re�ects the invariance of the 3j under cyclic permutations of its columns as only the order in its diagram-

matic representation counts.

73



Chapter 5. Multi-Reference IM-SRG—Commutator Evaluation

Furthermore, a j-line associated with ⟨jm| may come into a node in which case the 3j symbol

carries an additional phase factor of (−)j−m and its projection quantum numberm is inverted

j3m3j2m2

j1m1

= (−)j1−m1

(
j1 j2 j3
−m1m2m3)

. (5.4.3)

In the following, we will summarize the most important rules for the transformation of dia-

grams, however, this treatment is far from exhaustive and for further reading and background

information we refer to [VMK88] .

1. Invariant summation over projection quantum numbers: Two j-lines with com-

patible direction, i.e., one is going into its node and the other out of its node may be

linked together producing an internal j-line

∑
mxmy

jxmx

jymy jymy

jxmx

j2m2j1m1

jy

jx
j2m2j1m1= , (5.4.4)

where the linked j-line has the same direction as the two original ones. Such an internal

j-line implies the summation over the associated projection quantum number. Note that

each internal line is corresponding to a scalar product of the two irreducible tensors the

line is linking and, as a consequence, internal variables are invariant under rotations.

Another type of lines are external lines: Those lines are linked to a node only at one

end and the other one is free, i.e., their associated external variables are parameters of

the expression under consideration and not involved in any summations.

2. Summation over angular momentum: A summation not only of the projection but

also over the angular momentum j itself is indicated through a thick j-line

∑
J
Π2J J

j1m1

j3m3

j4m4

j2m2

J
j1m1

j3m3

j4m4

j2m2

= , (5.4.5)

where one has to keep in mind the additional hatfactor involved in the summation.

3. Change of node sign: It is very often convenient to exchange two j-lines with each

other for example if they are crossing each other. Such an exchange of j-lines corre-

sponds to a change of the momentum coupling order and has to be taken into account

either by an inversion of the sign of the associated node or by a phase factor of the form

(−)j1+j2+j3 as already discussed previously (see eq. (5.4.2)).
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4. Change of direction of internal lines: Inverting the direction of an internal j-line

produces a phase factor of (−)2j in the associated analytic expression

= (−)2jx

jy

jx

j2m2j1m1

jy

jx

j2m2j1m1

jy

jx

j2m2j1m1 . (5.4.6)

It becomes evident that changing the direction of internal j-lines for integer angular

momenta (as opposed to half-integer angular momenta) does not change the associated

analytical expression. As a consequence, we will usually omit the direction of integer

angular momentum internal lines.

5. Linking subdiagrams: Two subdiagrams A and B which have at least one identical

node may be linked together by means of the rule

=A

j1

j3

j2

j3

j1
j2 B A

j1

j3
j2 B . (5.4.7)

Note that a necessary condition for the validity of this rule is that at least one of the

subdiagrams does not have an external line.

6. Cu�ing into subdiagrams: In this work we will only be dealing with cutting one or

two lines connecting two subdiagrams A and B and the two corresponding rules may

be diagrammatically written as follows

=
j1

A B A B , (5.4.8)

=
j1

A B
j2

j1
A B

j2

�j1j2
Π2j1

. (5.4.9)

Note that a condition for the validity of these rules is that at least one of the two subdi-

agrams does not exhibit any external lines.

7. Hermitian conjugation: Very often is is necessary to invert the direction of all exter-

nal lines of the diagrammatic representation of the 3j symbol. Such a transformation

produces a phase factor of (−)2j1 , where j1 corresponds to the j-line whose direction is

di�ering from the other two j-lines. If, however, the directions are all the same, i.e.,

either out or ingoing, then the diagram is invariant under such an inversion.

8. Orthonormality relation: The graphical representation of the orthonormality rela-

tion of 3j symbols reads

j3m3 j′3m′
3

j2

j1

=
�j3j′3�m3m′

3

Π2j3
. (5.4.10)
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9. Completeness relation: Diagramatically, the completeness relation for 3j symbols is

given through

j3 j1m′
1

j2m2

j1m1

j2m′
2

= �m1m′
1
�m2m′

2
. (5.4.11)

10. Eliminitation of vanishing j-lines: A vanishing j-line, de�ned as a line with j = 0,
may be removed from the diagram along with its corresponding node

j = 0

j1m1 j2m2
=
�j1j2�m1m2

Πj1
. (5.4.12)

Note that the remaining two j-lines keep their original direction and are involved in a

delta term. This rule can be applied to any diagram exhibiting vanishing j-line by means

of a reduction to the diagram shown above.

As already noted previously, we will also face the emergence of 6j and 9j symbols. Diagram-

matically, these symbols may be represented via

{
j1 j2 j3
J1 J2 J3

}
=

J2

J3

J1
j1 j2

j3
, (5.4.13)

⎧⎪⎪
⎨⎪⎪⎩

j11 j12 j13
j21 j22 j23
j31 j32 j33

⎫⎪⎪
⎬⎪⎪⎭
=

j11
j12

j13

j21
j22

j23j31

j32

j33 . (5.4.14)

Note that the diagramatic representation of the 6j (9j) symbol elucidates that it may be written

in terms of four (six) 3j symbols and the aforementioned symmetry properties of both the 6j
and 9j symbol appear naturally within their diagramatic representation.

Note that diagrams that only di�er by some kind of deformation but still respresent the same

analytical expression will be called identical. Furthermore, diagrams that only di�er by their

node signs or directions of lines are called topologically similar as they usually only di�er by

a phase factor.
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5.5. Coupled and Reduced Matrix Elements—Conventions and

Formulas

Up to now, a collective index like, e.g., p denoted a full m-scheme collective index, i.e., it fully

speci�ed a single-particle state, which could then be written as |p⟩. Instead, from now on p
shall denote a spherical collective single-particle index that does not depend on the projection

quantum number anymore. As a consequence, a single-particle state may now be written

as |pmp⟩ where mp is the corresponding projection. For expressing all previous m-scheme

equations in terms of this new convention, the following transformation with regard to single-

particle indices has to be conducted

p → pmp , X p
q → X pmp

qmq , X pq
rs → X pmpqmq

rmr sms . (5.5.1)

Note that this step is necessary for resolving ambiguities within the context of the transforma-

tion from m-scheme equations to spherical equations, where we will encounter expressions

in which both m-scheme and reduced matrix elements are occurring.

Two-Body Matrix Elements. Using spherical collective single-particle indices, a general

m-scheme two-body matrix element is now written as

(X L
ML)

1m12m2

3m34m4
= ⟨1m1, 2m2|X̂ L

ML
|3m3, 4m4⟩ . (5.5.2)

Our general approach is to couple the two angular momenta in bra and ket to a total angular

momentum Ĵ = ĵ1 + ĵ2 and Ĵ
′
= ĵ3 + ĵ4, respectively, which gives

(X L
ML)

1m12m2

3m34m4
= ⟨1m12m2|X̂ L

ML
|3m34m4⟩ (5.5.3)

= ∑
JMJ J ′MJ ′

(
j1 j2 J
m1m2 MJ)(

j3 j4 J ′

m3m4 MJ ′)
⟨12; JMJ |T̂ LML

|34; J ′MJ ′⟩ (5.5.4)

≡ ∑
J J ′MJMJ ′

(
j1 j2 J
m1m2 MJ)(

j3 j4 J ′

m3m4 MJ ′)(X L
ML)

(12)JMJ

(34)J ′MJ ′
, (5.5.5)

where we introduced a short-hand notation for a coupled two-body matrix element

(X L
ML)

(12)JMJ

(34)J ′MJ ′
≡ ⟨12; JMJ |X̂ L

ML
|34; J ′MJ ′⟩ (5.5.6)

Additionally, we apply the Wigner-Eckart theorem for obtaining reduced matrix elements

(X L
ML)

(12)JMJ

(34)J ′MJ ′
= ⟨12; JM|X̂ L

ML
|34; J ′M ′⟩ (5.5.7)

= (−)J−MJ

(
J L J ′

−MJ MLMJ ′)
⟨12; J ||X̂ L||34; J ′⟩ (5.5.8)

= (−)J−MJ

(
J L J ′

−MJ MLMJ ′)(XL)
(12)J
(34)J ′ , (5.5.9)
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Again, we introduced a new short-hand notation only this time for reduced matrix elements

of two-body operators

(XL)
(12)J
(34)J ′ ≡ ⟨12; J ||X̂L||34; J ′⟩ , (5.5.10)

which are, compared to coupled matrix elements, not depending on projection quantum num-

bers anymore. Plugging both relations into each other and expressing Clebsch Gordan coef-

�cients in terms of 3j symbols yields

(X L
ML)

1m12m2

3m34m4
=∑

J J ′
(XL)

(12)J
(34)J ′ (−)

J+j1+j3−j2−j4 ΠJΠJ ′

× ∑
MJMJ ′

(−)MJ ′

(
J L J ′

−MJ MLMJ ′)(
j1 j2 J
m1m2 −MJ)(

j3 j4 J ′
m3m4 −MJ ′)

, (5.5.11)

whereas the inverse relation is given through

(XL)
(12)J
(34)J ′ =ΠJΠJ ′ ∑

MMJMJ ′
m1m2m3m4

(−)j1−m1+j2−m2+j3−m3+j4−m4+J ′−MJ ′+L−M

× (
L J ′ J

−ML −MJ ′ MJ)(
j1 j2 J
m1m2 −MJ)(

j3 j4 J ′

m3m4 −MJ ′)(X L
M)

1m12m2

3m34m4
. (5.5.12)

Note that for a scalar (L = 0) there is a simple relation between a reduced and a coupled matrix

elements

(X 0
0 )

(12)JMJ

(34)J ′MJ ′
= �J J ′�MJMJ ′

Π−1J (X 0)
(12)J
(34)J ′ , (5.5.13)

which is a direct consequence of the Wigner-Eckart theorem. During the course of the fol-

lowing angular momentum coupling, we will commonly switch between reduced and coupled

matrix elements like

(X 0)
(12)J
(34)J ↔ ΠJ (X 0

0 )
(12)J 0
(34)J 0 ≡ ΠJ (X 0

0 )
(12)J
(34)J , (5.5.14)

where we usually omit the indication of the projection quantum number for the bra and ket

state for brevity. Diagrammatically expressing the relations giving m-scheme in terms of

reduced matrix elements and vice versa leads to

(X L
ML)

1m12m2

3m34m4
= ∑

J J ′
(XL)

(12)J
(34)J ′ ΠJΠJ ′ J ′

L

J
j1

j3

j4

j2

,

(XL)
(12)J
(34)J ′ = ΠJΠJ ′ ∑

Mm1m2m3m4

(X L
M)

1m12m2

3m34m4
J ′

L

J
j1

j3

j4

j2

.

(5.5.15)

(5.5.16)
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One-Body Matrix Elements. Considering one-body matrix elements, the angular mo-

mentum coupling step is not required, thus, we only apply the Wigner Eckart theorem for

obtaining reduced matrix elements from m-scheme matrix elements

(T LM)
pmp

qmq
= (−)jp−mp

(
jp L jq
−mp M mq)(TL)

p
q . (5.5.17)

Similarly to the two-body case, there is a simple relation between coupled and reduced matrix

elements for scalars, which can be written as

(X 0
0 )

1m1

2m2
= �j1j2�m1m2Π

−1
j1 (X 0)

1
2 , (5.5.18)

and which allows us to simply replace one with the other. Diagrammatically expressing the

relations giving m-scheme in terms of reduced matrix elements and vice versa leads to

(T LM)
1m1

2m2
= (TL)

1
2

LML
j1m1 j2m2 ,

(TL)
1
2 = ∑

Mm1m2

(T LM)
1m1

2m2

LML
j1m1 j2m2 .

(5.5.19)

(5.5.20)

Pandya Transformation. An important, but rather technical aspect of the spherical com-

mutator equations is the Pandya transformation [Suh07]. Formally, the Pandya transforma-

tion may be de�ned for scalar spherical tensor operators as

(A
0
0)

(12)J̄

(34)J̄
= −∑

J̄

{
j1 j2 J̄
j3 j4 J

}

(A00)
(14)J
(32)J , (5.5.21)

where the inverse of the relation above is of the exact same form and we usually suppress any

indication of the projection quantum number of the bra and ket state for brevity. In this work,

the Pandya transformation—closely related to cross-coupled matrix elements [Kuo+81]—is

employed for coupling single-particle states in bra and ket with each other. More speci�cally,

it enables us to couple the �rst single-particle state of the bra with the �rst single-particle

state of the ket. The motivation for this procedure are algebraic terms in which summation

indices are distributed over the bra and ket states. Such terms may be transformed by means

of the Pandya transformation resulting in an expression in which the summation indices are

not scattered across the bra and ket anymore

∑
pq

(X 0
0 )

(1q)J
(p2)J (Y 00 )

(p4)J
(3q)J  ∑

pq
(X

0
0)

(12)J̄

(pq)J̄ (Y
0
0)

(pq)J̄

(34)J̄
. (5.5.22)

The reason why we prefer the form which exhibits Pandya-transformed matrix elements is

simple: It can be formulated as matrix-matrix product implying a massive increase of com-

putational e�ciency even if taking the computational cost of the Pandya transformation into

account.
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For non-scalar operators we have to rede�ne the Pandya transformation as follows

(X
L
)
(12)J̄

(34)J̄ ′
= −∑

J J ′
ΠJ̄ΠJ̄ ′ΠJΠJ ′

⎧⎪⎪
⎨⎪⎪⎩

j1 j2 J̄
j4 j3 J̄ ′
J J ′ L

⎫⎪⎪
⎬⎪⎪⎭
(−)j2+j4+J̄

′+J ′ (XL)
(14)J
(32)J ′ . (5.5.23)

This generalization of the Pandya transformation to non-scalar spherical tensor operators

with arbitrary rank L was guided by two principles: Firstly, form invariance under inversion,

and secondly, compatibility with the de�nition for scalar operators. However, it is important

to note that the de�nition for non-scalar operators is not equal to the scalar de�nition for

vanishing tensor ranks, but Pandya-transformed matrix elements based on either one or the

other de�nition are related by

(X
0
)
(12)J̄

(34)J̄ ′
= �J̄ J̄ ′ΠJ̄ (X

0
0)

(12)J̄

(34)J̄
. (5.5.24)

Evidently, this relation is similar to the relation between reduced and coupled matrix elements

for scalars. Therefore, Pandya-transformed matrix elements of non-scalar operators may be

considered as “reduced”.

The following relation which diagrammatically gives an m-scheme matrix element in terms

of Pandya-transformed matrix elements will prove very useful

(X 0
0 )

1m12m2

3m34m4
= ∑

J̄
Π2J̄ (X

0
0)

(14)J̄

(32)J̄

J̄ j1, m1

j3, m3

j2, m2

j4, m4

,

(X L
M)

1m12m2

3m34m4
= ∑

J̄ J̄ ′
ΠJ̄ΠJ̄ ′ (X

L
)
(14)J̄

(32)J̄ ′

J̄

L

J̄ ′

j1m1 j3m3j4m4 j2m2

.

(5.5.25)

(5.5.26)

In the context of angular momentum coupling, this relation will facilitate the treatment of

several terms by directly inserting Pandya-transformed matrix elements if necessary.

Another relation deals with the case where one of the total angular momenta of the Pandya-

transformed matrix element vanishes

(X
L
)
(12)J̄

(34)0
= −∑

J J ′
ΠJ̄Π0ΠJΠJ ′

⎧⎪⎪
⎨⎪⎪⎩

j1 j2 J̄
j4 j3 0
J J ′ L

⎫⎪⎪
⎬⎪⎪⎭
(−)j2+j4+0+J

′
(XL)

(14)J
(32)J ′ (5.5.27)

= −∑
J J ′

�j3j4�J̄ LΠJ , J ′Π
−1
j3 (−)

j1+j2+L
{
j1 j2 L
J ′ J j3

}

(XL)
(14)J
(32)J ′ . (5.5.28)

This relation will prove its usefulness during the following derivation of the spherical com-

mutator evaluation equations where we will encounter terms resembling the right-hand side

of the relation above which can then be directly identi�ed as Pandya-transformed matrix el-

ements. Note that we employed the following relation, whose diagrammatic derivation is
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straightforward, for rewriting a 9j symbol with a single vanishing angular momentum in

terms of a 6j symbol

⎧⎪⎪
⎨⎪⎪⎩

j1 j2 J̄
j4 j3 0
J J ′ L

⎫⎪⎪
⎬⎪⎪⎭
= �j3j4�J̄ LΠ

−1
L Π

−1
j3 (−)

j1+j3+L+J ′
{
j1 j2 L
J ′ J j3

}
. (5.5.29)

5.6. Spherical Equations

Let us now employ the symmetry-optimized m-scheme equations eqs. (5.3.10) to (5.3.24) as

a starting point for angular momentum coupling. In this context this means that we get rid

of any projection quantum numbers and express our equation in terms of reduced matrix

elements. The motivation for this endeavor is clear: It greatly reduces the computational

e�ort as all sums that run over single-particle states produce considerably less terms.

5.6.1. Derivation Zero-Body Part

Zero-Body Part, Term 1. Starting from the expression

C0 = ∑
pqmpmq

(npmp − nqmq) (A
0
0)

pmp

qmq (BLM)
qmq

pmp
, (5.6.1)

we may express the m-scheme matrix elements in terms of spherical matrix elements

=∑
pq

(np − nq) (A0)
p
q (BL)

q
p ∑
mpmq

0
jp jq

LM
jq jp , (5.6.2)

merging the two diagrams yields

=∑
pq

(np − nq) (A0)
p
q (BL)

q
p

jp

jq
LM0 , (5.6.3)

as the diagram evaluates to a delta expression we obtain

=∑
pq

(np − nq) (A0)
p
q (BL)

q
p (−)

2jp (−)jp+jq+L
�L,0�M,0�jp jq

Π2L
. (5.6.4)

This equation may then be written as
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Zero-Body Part, Term 1

C0 = ∑
pq

(np − nq) (A0)
p
q (B0)

q
p �L,0�M,0 . (5.6.5)

Zero-Body Part, Term 2. Starting from the m-scheme expression

C0 =
1
4
∑
pqrs

∑
mpmqmrms

npmpnqmq n̄rmr n̄sms

((A
LA
MA)

pmpqmq

rmr sms
(BLBMB)

rmr sms

pmpqmq
− [A ↔ B]) , (5.6.6)

we express the matrix elements in terms of their reduced counterpart, which produces

=
1
4
∑
pqrs

npnqn̄r n̄s ∑
JAJ ′AJBJ

′
B

ΠJAJ ′AJBJ ′B (A
LA)

(pq)JA
(rs)J ′A (BLB)

(rs)JB
(pq)J ′B

∑
mpmqmrms J ′B

LBMB

JB

jrmr

jsms

jqmq

jpmp

J ′A

LAMA

JA

jpmp

jqmq

jsms

jrmr

− [A ↔ B] ,

(5.6.7)

putting together the two diagrams results in

=
1
4
∑
pqrs

npnqn̄r n̄s ∑
JAJ ′AJBJ

′
B

ΠJAJ ′AJBJ ′B (A
LA)

(pq)JA
(rs)J ′A (BLB)

(rs)JB
(pq)J ′B

jp

jq
JA

LAMA

J ′A
js

jr

JB

LBMB

J ′B
− [A ↔ B] , (5.6.8)

the diagram evaluates to several delta terms giving the expression

=
1
4
∑
pqrs

npnqn̄r n̄s ∑
JAJ ′AJBJ

′
B

ΠJAJ ′AJBJ ′B (A
LA)

(pq)JA
(rs)J ′A (BLB)

(rs)JB
(pq)J ′B

�JAJ ′B
Π2JA

�J ′AJB
Π2J ′A

�LBLA�MB ,−MA

Π2LA
− [A ↔ B] (5.6.9)

=
1
4
∑
pqrs

npnqn̄r n̄s ∑
J J ′

(ALA)
(pq)J
(rs)J ′ (BLB)

(rs)J ′

(pq)J
�LBLA�MB ,−MA

Π2LA
− [A ↔ B] . (5.6.10)
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Finally, we obtain the result

Zero-Body Part, Term 2

C0 =
1
4
∑
pqrs

npnqn̄r n̄s ∑
J

((A
0)
(pq)J
(rs)J (BLB)

(rs)J
(pq)J − [A ↔ B]) �LB ,0 . (5.6.11)

Zero-Body Part, Term 3. Starting from

C0 =
1
4
∑
pqrs

∑
mpmqmrms

(CL
M)

pmpqmq

rmr sms (�00)
pmqqmq

rmr sms
(5.6.12)

=
1
4
∑
pqrs

∑
mpmqmrms

(CL
M)

pmpqmq

rmr sms (�00)
rmr sms

pmqqmq
, (5.6.13)

we obtain similar diagrams as for the previous term, which leads to

Zero-Body Part, Term 3

C0 =
1
4
∑
pqrs

∑
J

(CL)
(pq)J
(rs)J (�0)

(rs)J
(pq)J �L,0 . (5.6.14)

5.6.2. Derivation One-Body Part

All terms contributing to the one-body part can be written as

(CL
M)

1m1

2m2
= Ξ̂±

12M f (1, m1, 2, m2, L, M) (5.6.15)

=
1 ± (−)M �̂M−M �̂

1
2

2
f (1, m1, 2, m2, L, M) . (5.6.16)

This way all the general symmetry properties of one-body matrix elements are absorbed into

the symmetrizer Ξ̂±
12M . However, our goal is to obtain equations in terms of reduced matrix

elements such that all our equations exhibit the form

(CL)
1
2 = Ξ̂±

12 f̃ (1, 2, L) , (5.6.17)

where we introduced the spherical symmetrizer Ξ̂±
12 and the function f̃ as the spherical coun-

terpart of f . Similarly to the them-scheme symmetrizer Ξ̂±
12M , the spherical symmetrizer Ξ̂±

12
shall, once acting on a reduced one-body matrix element, restore all basic symmetry proper-

ties common to those one-body matrix elements. Note that the right-hand side of the equation

above does not exhibit any dependence on projection quantum numbers anymore.
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Let us now start with deriving the spherical symmetrizer by expressing a reduced one-body

matrix element in terms of an m-scheme element

(CL)
1
2 = ∑

Mm1m2
(

j1 L j2
−m1M m2)

(−)j1−m1 (CL
M)

1m1

2m2
, (5.6.18)

employing eq. (5.6.16) yields

= ∑
Mm1m2

(
j1 L j2
−m1M m2)

(−)j1−m1
1 + �C (−)M �̂M−M �̂

1
2

2

f (1, m1, 2, m2, L, M) , (5.6.19)

pulling the symmetrizer to the front of the expression and taking into account eventually

arising phase factors due to the non-commutativeness of this action yields

=
1 + �C (−)j1−j2 �̂ 12

2
∑

Mm1m2
(

j1 L j2
−m1M m2)

(−)j1−m1

f (1, m1, 2, m2, L, M) . (5.6.20)

By comparison, we obtain the following result for the spherical one-body symmetrizer and

the spherical function f̃

Ξ̂±
12 =

1
2 (1 ± (−)j1−j2 �̂ 12) , (5.6.21)

f̃ (1, 2, L) = ∑
Mm1m2

(
j1 L j2
−m1M m2)

(−)j1−m1 f (1, m1, 2, m2, L, M) . (5.6.22)

Summarizing, spherical equations may be conveniently obtained through the following dia-

grammatically formulated formula

(CL)
1
2 = Ξ̂±

12 f̃ (1, 2, L) = Ξ̂±
12 ∑

Mm1m2

LM
j1m1 j2m2 f (1, m1, 2, m2, L, M) . (5.6.23)

Evidently, transforming the m-scheme equations into a spherical form breaks down to the

calculation of f̃ .

One-Body Part, Term 1. Starting from the term

(CLC
MC)

1m1

2m2
= Ξ̂±

12M ∑
pmp

2 (ALAMA)
1m1

pmp
(BLBMB)

pmp

2m2
, (5.6.24)

the spherical counterpart of this equation is given through

(CL)
1
2 = Ξ̂±

12 ∑
MCm1m2

LCMC
j1m1 j2m2 ∑

pmp

2 (ALAMA)
1m1

pmp
(BLBMB)

pmp

2m2
. (5.6.25)
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Expressing the occurring matrix elements of Â and B̂ in terms of reduced matrix elements

yields

(CL)
1
2 = Ξ̂±

12 ∑
p
2 (ALA)

1
p (BLB)

p
2

∑
MCmp
m1m2

LAMA
j1m2 jpmp

LBMB
jpmp j2m2

LCMC
j1m1 j2m2 . (5.6.26)

The three 3j symbols may be put together to one big diagram

(CL)
1
2 = Ξ̂±

12 ∑
p
2 (ALA)

1
p (BLB)

p
2 ∑

MC

(−)

LBMB

LCMCLAMA

j2jp

j1

, (5.6.27)

by exploiting that the spherical tensor rank LA vanishes, we obtain

= Ξ̂±
12 ∑

p
2 (A0)

1
p (BLB)

p
2 ∑

MC

�j1jpΠ
−1
j1

j2

j1

LBMB LCMC
, (5.6.28)

which can be simpli�ed to the following �nal expression

One-Body Part, Term 1

(CL)
1
2 = Ξ̂±

12 ∑
p
2 (A0)

1
p (BL)

p
2 Π

−1
j1 . (5.6.29)

One-Body Part, Term 2.1. Starting from

C 1m1
2m2

= Ξ̂±
12M ∑

pq
∑
mpmq

(npmp − nqmq ) (A
0
0)

pmp

qmq (BLM)
qmq1m1

pmp2m2
, (5.6.30)

the spherical equations are obtained from

(CL)
1
2 = Ξ̂±

12 ∑
Mj1j2

LM
j1m1 j2m2 ∑

pq
∑
mpmq

(npmp − nqmq ) (A
0
0)

pmp

qmq (BLM)
qmq1m1

pmp2m2
, (5.6.31)
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expressing the matrix elements in terms of their reduced counterparts gives

= Ξ̂±
12 ∑

pq
(np − nq)∑

JBJ ′B

ΠJBΠJ ′B (A
0)

p
q (BL)

(q1)JB
(p2)J ′B

∑
Mj1j2

∑
mpmq

J ′B

LM

JB

jqmq

j1m1

j2m2

jpmp

LM
j1m1 j2m2

0
jpmp jqmq

, (5.6.32)

putting together all occurring 3j symbols produces

= Ξ̂±
12 ∑

pq
(np − nq)∑

JBJ ′B

(A0)
p
q (BL)

(q1)JB
(p2)J ′B

ΠJBΠJ ′BΠ
−1
jp (−1)

JB

j1

L

jp j2
J ′B

. (5.6.33)

The occurring diagram may be interpreted as a 6j symbol, which leads to the intermediate

result

(CL)
1
2 = Ξ̂±

12 ∑
pq
(np − nq)∑

JBJ ′B

(A0)
p
q (BL)

(q1)JB
(p2)J ′B

ΠJBΠJ ′BΠ
−1
jp (−)

JB+L+jp+j2
{
jp j2 J ′B
L JB j1

}
. (5.6.34)

Examining this term closely, reveals that it may be simpli�ed by rewriting the 6j symbol in

terms of a 9j symbol, which then allows us to introduce the Pandya transformation of the

operator B̂

(CL)
1
2 = Ξ̂±

12 ∑
pq
(np − nq) (A0)

p
q

∑
JBJ ′B

(BL)
(1q)JB
(p2)J ′B

ΠJBΠJ ′BΠL (−)
jq+j2+J ′B+1

⎧⎪⎪
⎨⎪⎪⎩

j1 j2 L
jp jp 0
JB J ′B L

⎫⎪⎪
⎬⎪⎪⎭

, (5.6.35)

and, �nally, we obtain

One-Body Part, Term 2.1

(CL)
1
2 = Ξ̂±

12 ∑
pq
(np − nq) (B

L
)
(12)L

(pq)0
(A0)

p
q . (5.6.36)
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One-Body Part, Term 2.2. Starting from

(CL
M)

1m1

2m2
= − Ξ̂±

12M ∑
pq

∑
mpmq

(npmp − nqmq ) (B
L
M)

pmp

qmq (A00)
qmq1m1

pmp2m2
, (5.6.37)

the spherical equation can be derived by evaluating

(CL)
1
2 = − Ξ̂±

12 ∑
pq

∑
mpmq

(npmp − nqmq )

∑
Mj1j2

LM
j1m1 j2m2 (BLM)

pmp

qmq (A00)
qmq1m1

pmp2m2
. (5.6.38)

Expressing the matrix elements on the right-hand side in terms of reduced matrix elements

produces

(CL)
1
2 = − Ξ̂±

12 ∑
pq
(np − nq)∑

JAJ ′A

ΠJAΠJ ′A (B
L)

p
q (A0)

(q1)JA
(p2)J ′A

∑
Mj1j2

∑
mpmq

J ′A

0

JA

jqmq

j1m1

j2m2

jpmp

LM
j1m1 j2m2

LM
jpmp jqmq

. (5.6.39)

Merging all diagrams into one yields

(CL)
1
2 = − Ξ̂±

12 ∑
pq
(np − nq)∑

JAJ ′A

ΠJAΠJ ′A (B
L)

p
q (A0)

(q1)JA
(p2)J ′A

(−1)�JAJ ′AΠ
−1
JA

JA

j1

j2
jq

L

jp
(5.6.40)

= − Ξ̂±
12 ∑

pq
(np − nq)∑

JA
ΠJA (B

L)
p
q (A0)

(q1)JA
(p2)JA

(−)jq+j1+JA

× JA

j1

j2
jq

L

jp
. (5.6.41)
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Expressing the diagram in terms of a 6j symbol gives

(CL)
1
2 = − Ξ̂±

12 ∑
pq
(np − nq)∑

JA
ΠJA (B

L)
p
q (A0)

(q1)JA
(p2)JA

(−)jq+j1+JA
{
jq L jp
j2 JA j1

}
(5.6.42)

= − Ξ̂±
12 ∑

pq
(np − nq) (BL)

p
q ∑

JA
ΠJA (A

0)
(1q)JA
(p2)JA

(−1)
{
j1 j2 L
jp jq JA

}
(5.6.43)

= − Ξ̂±
12 ∑

pq
(np − nq) (BL)

p
q ∑

JA
Π2JA (A

0
0)
(1q)JA0
(p2)JA0

(−1)
{
j1 j2 L
jp jq JA

}
. (5.6.44)

By exploiting that the rear part of this expression matches the very de�nition of the Pandya

transformation for scalar operators, we obtain

One-Body Part, Term 2.2

(CL)
1
2 = − Ξ̂±

12 ∑
pq
(np − nq) (BL)

p
q (A

0
0)

(12)L

(pq)L
. (5.6.45)

One-Body Part, Term 3. Starting point is the term

(CLC
MC)

1m1

2m2
= Ξ̂±

12M ∑
pqr

∑
mpmqmr

(npmp n̄qmq n̄rmr + n̄pmqnqmqnrmr )

(ALAMA)
1m1pmp

qmqrmr
(BLBMB)

qmqrmr

2m2pmp
, (5.6.46)

and the associated spherical term is given through

(CLC)
1
2 = Ξ̂±

12 ∑
MCm1m2

LCMC
j1m1 j2m2 ∑

pqr
∑

mpmqmr

(npmp n̄qmq n̄rmr + n̄pmqnqmqnrmr ) (A
LA
MA)

1m1pmp

qmqrmr
(BLBMB)

qmqrmr

2m2pmp
. (5.6.47)

Expressing all matrix elements on the right-hand side in terms of their reduced counterpart

and merging all emerging diagrams yields

(CLC)
1
2 = Ξ̂±

12 ∑
pqr

(npn̄qn̄r + n̄pnqnr) ∑
JAJ ′AJBJ

′
B

A(1p)JA
(qr)J ′A

B(qr)JB(2p)J ′B

ΠJAJ ′AJBJ ′B (−1)∑
MLC

jq

j1

jp

j2
LC

J ′B

LBMB

JBjrJ ′A
LAMA

JA
, (5.6.48)
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the diagram simpli�es to

= Ξ̂±
12 ∑

pqr
(npn̄qn̄r + n̄pnqnr) ∑

JAJ ′AJBJ
′
B

A(1p)JA
(qr)J ′A

B(qr)JB(2p)J ′B

ΠJAJ ′AJBJ ′B (−1)�JAJ ′A�J ′AJBΠ
−2
JB �LCLB JA

j1

LB
jp

j2

J ′B . (5.6.49)

Finally, we obtain the result

(CL)
1
2 = Ξ̂±

12 ∑
pqr

(npn̄qn̄r + n̄pnqnr)∑
JAJB

(A0)
(1p)JA
(qr)JA (BL)

(qr)JA
(2p)JB

ΠJB (−)
j1+jp+JB+LB

{
j2 j1 L
JA JB jp

}
. (5.6.50)

In principle, we could stop at this point as any dependence on projection quantum numbers

has been integrated out. However, the 6j symbol occurring in this term resembles the de�ni-

tion of the Pandya transformation and, in fact, we can express this term in terms of a Pandya

transformation, which is not only analytically more concise but also advantageous regarding

the implementation of this term.

One-Body Part, Term 3

(CL)
1
2 = Ξ̂±

12 ∑
p
Πjp (np (


L
)
(12)L

(pp)0
+ n̄p (


′L
)
(12)L

(pp)0 )
, (5.6.51)

(
L)
(12)J
(34)J ′ =∑

pq

n̄pn̄q
ΠJ

(A0)
(12)J
(pq)J (BL)

(pq)J
(34)J ′ , (5.6.52)

(

′L
)
(12)J

(34)J ′
=∑

pq

npnq
ΠJ

(A0)
(12)J
(pq)J (BL)

(pq)J
(34)J ′ . (5.6.53)

One-Body Part, Term 4. Starting from the m-scheme term

(CL
ML)

1m1

2m2
=
Ξ̂±
12M
2

∑
rtvsw

∑
mrmtmvmsmw

(A00)
1m1tmt

smswmw (�00)
smswmw

rmrvmv (BLM)
rmrvmv

2m2tmt
, (5.6.54)
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we are expressing all matrix elements in terms of reduced matrix elements which yields

(CL)
1
2 =

Ξ̂±
12
2

∑
rtvsw

∑
JAJ�JBJ ′B

(A0)
(1t)JA
(sw)JA (�0)

(sw)J�
(rv)J� (BL)

(rv)JB
(2t)J ′B

(−1)ΠJAJ�JBJ ′B j2
J ′B JΛ

jr

jv

js

jw

jt

j1L

JB JA (5.6.55)

=
Ξ̂±
12
2

∑
rtvsw

∑
JBJ ′B

(A0)
(1t)JB
(sw)JB (�0)

(sw)JB
(rv)JB (BL)

(rv)JB
(2t)J ′B

(−1)Π−1JB ΠJ ′B j2

j1

jt
L

JB

J ′B . (5.6.56)

Interpreting the last diagram as a 6j symbol, we obtain

(CL)
1
2 =

Ξ̂±
12
2

∑
rtvsw

∑
J J ′

(A0)
(1t)J
(sw)J (�0)

(sw)J
(rv)J (BL)

(rv)J
(2t)J ′

(−)L+J
′+j1+jt Π−1J ΠJ ′

{
L J J ′

jt j2 j1

}
.

(5.6.57)

A more compact result is obtained by de�ning

(
L)
(1t)J
(2t)J ′ ≡ ∑

swrv
(A00)

(1t)J
(sw)J (�00)

(sw)J
(rv)J (BL)

(rv)J
(2t)J ′ , (5.6.58)

through which the previous result can be written as

(CL)
1
2 =

Ξ̂±
12
2

∑
t

∑
J J ′

(
L)
(1t)J
(2t)J ′ (−)

L+J ′+j1+jt ΠJΠJ ′
{
L J J ′

jt j2 j1

}
. (5.6.59)

Expressing the 6j symbol via a 9j symbol by employing eq. (5.5.29), interchanging the two

single-particle states in the bra of 
 (which leads to the emergence of a phase factor) pro-

duces an expression, which contains a term that exactly matches the de�nition of a Pandya

transformed matrix element and, �nally, we obtain
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One-Body Part, Term 4

(CL)
1
2 =

Ξ̂±
12
2

∑
t

(

L
)
(12)L

(tt)0
, (5.6.60)

(
L)
(12)J
(34)J ′ = ∑

pqrs
(A00)

(12)J
(pq)J (�00)

(pq)J
(rs)J (BL)

(rs)J
(34)J ′ �2,4 . (5.6.61)

One-Body Part, Term 5. Starting from

(CL
M)

1m1

2m2
= Ξ̂±

12M (−2) ∑
rtvsw

∑
mrmtmvmsmw

(A00)
1m1rmr

sms tmt (�00)
smswmw

vmvrmr (BLM)
vmv tmt

2m2wmw
, (5.6.62)

we are now deviating from the usual procedure and express the m-scheme matrix elements

on the right-hand side directly in terms of Pandya-transformed matrix elements

(CL)
1
2 = Ξ̂±

12 (−2) ∑
m1m2
M

∑
rtvsw

∑
mrmtmvmsmw

∑
J̄A

Π2J̄A (A
0
0)

(1t)J̄A

(sr)J̄A

∑
J̄�

Π2J̄� (�
0
0)

(sr)J̄�

(vw)J̄�
∑
J̄B J̄ ′B

ΠJ̄BΠJ̄ ′B (B
L
)
(vw)J̄B

(2t)J̄ ′B

LML
j1m1 j2m2

J̄Λ jsms

jvmv

jwmw

jrmr

J̄A j1m1

jsms

jrmr

jtmt

J̄B

L

J̄ ′B

jvmv j2m2jwmw jtmt

. (5.6.63)

Merging all diagrams yields

(CL)
1
2 = Ξ̂±

12 (+2) ∑
rtvsw

∑
J̄A,J̄� ,J̄B J̄ ′B

Π2J̄A J̄�ΠJ̄B J̄ ′B (A
0
0)

(1t)J̄A

(sr)J̄A

(�
0
0)

(sr)J̄�

(vw)J̄� (B
L
)
(vw)J̄B

(2t)J̄ ′B

J̄ ′B
J̄B

jv
J̄Λ

jr

js jw
j2j1J̄A

jt

L
, (5.6.64)
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which may be simpli�ed to the expression

= Ξ̂±
12 (+2)∑

t
∑
J̄B J̄ ′B

∑
rvsw

(A
0
0)

(1t)J̄B

(sr)J̄B (�
0
0)

(sr)J̄B

(vw)J̄B (B
L
)
(vw)J̄B

(2t)J̄ ′B
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≡(

L
)
(1t)J̄B

(2t)J̄ ′B

ΠJ̄B J̄ ′B
J̄B

j1

L
jt

j2

J̄ ′B . (5.6.65)

The last diagram is the diagrammatic representation of a 6j symbol and we obtain the re-

sult

One-Body Part, Term 5

(CL)
1
2 = Ξ̂±

12 (+2)∑
t

∑
J̄B J̄ ′B

ΠJ̄B J̄ ′B (

L
)
(1t)J̄B

(2t)J̄ ′B
(−)j1+jt+L+J̄

′
B

{
jt j2 J̄ ′B
L J̄B j1

}
, (5.6.66)

(

L
)
(1t)J̄B

(2t)J̄ ′B
≡ ∑
rvsw

(A
0
0)

(1t)J̄B

(sr)J̄B (�
0
0)

(sr)J̄B

(vw)J̄B (B
L
)
(vw)J̄B

(2t)J̄ ′B
. (5.6.67)

One-Body Part, Term 6.1. Starting from

(CL
M)

1m1

2m2
= Ξ̂±

12M ∑
rtvsw

∑
mrmtmvmsmw

(A00)
1m1rmr

tmt2m2 (BLM)
tmtvmv

smswmw (�00)
smswmw

vmvrmr
, (5.6.68)

the spherical equation is given through

(CL)
1
2 = Ξ̂±

12 ∑
rtvsw

∑
m1m2M

∑
mrmtmvmsmw

∑
J̄A

Π2J̄A (A
0
0)

(12)J̄A

(tr)J̄A
∑
JBJ ′B

ΠJBJ ′B (B
L)
(tv)JB
(sw)J ′B

∑
J�

ΠJ� (�
0)
(sw)J�
(rv)J�

J ′
L

J
jtmt

jsms

jwmw

jvmv

LM
j1m1 j2m2

J̄A j1m1

jtmt

jrmr

j2m2

JΛ jrmr

jsms

jwmw

jvmv

, (5.6.69)
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putting all diagrams together produces

= Ξ̂±
12 ∑

rtvsw
∑

J̄AJBJ ′BJ�
(A

0
0)

(12)J̄A

(tr)J̄A
(BL)

(tv)JB
(sw)J ′B (�0)

(sw)J�
(rv)J�

Π2J̄AΠJBJ ′BΠJ�

JB
J ′BL

j2j1
jv

jt

jr
JΛ

jsjw

J̄A

, (5.6.70)

the diagram may be simpli�ed to the expression

= Ξ̂±
12 ∑

rtvsw
∑

J̄AJBJ ′BJ�
(A

0
0)

(12)J̄A

(tr)J̄A
(BL)

(tv)JB
(sw)J ′B (�0)

(sw)J�
(rv)J�

Π2J̄AΠJBJ ′BΠJ�
jv

L

J ′BJB

jrjt

J̄A L

J ′B JΛ
. (5.6.71)

Evaluating all diagrammatic delta terms and recognizing the diagrammatic representation of

the 6j symbol within the equation above yields

(CL)
1
2 = Ξ̂±

12 ∑
rtvsw

∑
JBJ ′B

(A
0
0)

(12)L

(tr)L
(BL)

(tv)JB
(sw)J ′B (�00)

(sw)J ′B
(rv)J ′B

ΠJBJ ′B (−)
jt+jv+L+J ′B

{
L jt jr
jv J ′B JB

}
, (5.6.72)

interchanging the two single-particle states in the ket of �̂ and taking into account the emerg-

ing phase factor gives

= Ξ̂±
12 ∑

rtv
∑
JBJ ′B

(A
0
0)

(12)L

(tr)L
∑
sw

(BL)
(tv)JB
(sw)J ′B (�00)

(sw)J ′B
(vr)J ′B

ΠJBJ ′B (−)
jt+jr+L

{
L jt jr
jv J ′B JB

}
, (5.6.73)

de�ning 
̂ as the tensor product of B̂ and �̂ results in

= Ξ̂±
12 ∑

rtv
(A

0
0)

(12)L

(tr)L
∑
JBJ ′B

(
L)
(tv)JB
(vr)J ′B

ΠJBJ ′B (−)
jt+jr+L

{
L jt jr
jv J ′B JB

}
. (5.6.74)

Identifying the rear part of the expression above as a Pandya-transformed matrix element, we

obtain the result
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One-Body Part, Term 6.1

(CL)
1
2 = Ξ̂±

12 ∑
v
Πjv ∑

tr
(A

0
0)

(12)L

(tr)L (

L
)
(tr)L

(vv)0
, (5.6.75)

(
L)
(12)J
(34)J ′ =∑

pq
(BL)

(12)J
(pq)J ′ (�00)

(pq)J ′

(34)J ′ . (5.6.76)

One-Body Part, Term 6.2. Starting from

(CL
M)

1m1

2m2
= − Ξ̂±

12M ∑
rtvsw

∑
mrmtmvmsmw

(BLM)
1m1rmr

tmt2m2 (A00)
tmtvmv

smswmw (�00)
smswmw

vmvrmr
, (5.6.77)

we obtain the spherical analogue from

(CL)
1
2 = Ξ̂±

12 (−1)∑
rtv
sw

∑
mrmtmvmsmw

∑
m1m2
M

∑
J̄B J̄ ′B

ΠJ̄B J̄ ′B (B
L
)
(12)J̄B

(tr)J̄ ′B

∑
JA
Π2JA (A

0
0)
(tv)JA
(sw)JA

∑
J�

Π2J� (�
0
0)
(sw)J�
(vr)J�

J̄ ′B

L

J̄B
j1m1

jtmt

jrmr

j2m2

LM
j1m1 j2m2

JA jsms

jtmt

jvmv

jwmw

JΛ jvmv

jsms

jwmw

jrmr

. (5.6.78)

Putting the diagrams together produces

(CL)
1
2 = Ξ̂±

12 ∑
rtv
sw

∑
J̄B J̄ ′BJAJ�

(B
L
)
(12)J̄B

(tr)J̄ ′B
(A00)

(tv)JA
(sw)JA (�00)

(sw)J�
(vr)J�

ΠJ̄B J̄ ′BΠ
2
JAΠ

2
J� j1j2

L

J̄B
J̄ ′B

jr

jt

JΛ

JA

jsjw , (5.6.79)
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cutting the J̄ ′B line gives

= Ξ̂±
12 (−1)∑

rtv
sw

∑
J̄B J̄ ′BJAJ�

(B
L
)
(12)J̄B

(tr)J̄ ′B
(A00)

(tv)JA
(sw)JA (�00)

(sw)J�
(vr)J�

ΠJ̄B J̄ ′BΠ
2
JAΠ

2
J�

J̄ ′B

jr

jt

JΛ

JA

jsjwj1j2
L

J̄B
J̄ ′B = 0 (5.6.80)

= Ξ̂±
12 (−1)∑

rtv
∑
JA
ΠLΠ4JA (B

L
)
(12)L

(tr)0

≡(
 00 )(tv)JA(vr)JA⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∑
sw

(A00)
(tv)JA
(sw)JA (�00)

(sw)JA
(vr)JA

(−)jr+jv+JA+jr+jt �jr jtΠ
−1
jt Π

−2
JAΠ

−1
L (5.6.81)

= Ξ̂±
12 ∑

rtv
∑
JA

(B
L
)
(12)L

(tr)0
(
 00 )

(tv)JA
(vr)JA

(−)jt+jv+JA �jr jtΠ
−1
jt Π

2
JA . (5.6.82)

The �nal results may now be written as

One-Body Part, Term 6.2

(CL)
1
2 = Ξ̂±

12 (−1)∑
v
Πjv ∑

rt
(B

L
)
(12)L

(tr)0 (

0
0)

(tr)0

(vv)0
, (5.6.83)

(
 00 )
(12)J
(34)J =∑

pq
(A00)

(12)J
(pq)J (�00)

(pq)J
(34)J . (5.6.84)

5.6.3. Derivation Two-Body Part

Analogously to the one-body part, we can write all terms contributing to the two-body part

in the form

(CL
M)

1m12m2

3m34m4
= Ξ̂±

1234M f (1m1, 2m2, 3m3, 4m4, LM) , (5.6.85)

from which we are now trying to obtain the corresponding spherical equations, i.e., equa-

tions in terms of reduced matrix elements and a spherical two-body symmetrizer without any

dependencies on the m quantum numbers left

(CL)
(12)J
(34)J ′ = Ξ̂±

1234J J ′ f̃ (1, 2, 3, 4, L, J , J
′) . (5.6.86)
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Following similar steps as taken for the one-body part, the spherical two-body symmetrizer

is given through

Ξ̂±
1234J J ′ =

1
8 (1 + (−)j1+j2+J+1 �̂ 12) (1 + (−)

j3+j4+J ′+1 �̂ 34)

× (1 ± (−)
J+J ′ �̂ 13�̂

2
4�̂

J
J ′) , (5.6.87)

whereas the spherical analogue to the function f may be written as

f̃ (1, 2, 3, 4, L, J , J ′)

= ∑
MLm1m2m3m4

ΠJ J ′ (−)J
′−MJ ′+j2−m2+j1−m1+J−MJ

(
j4 j3 J ′
m4m3 −MJ ′)

(
j2 j1 J
−m2 −m1MJ)(

J L J ′
−MJ MLMJ ′)

f (1m1, 2m2, 3m3, 4m4, LM) (5.6.88)

= ∑
MLm1m2m3m4

J ′

LM

J

j1m1

j2m2

j4m4

j3m3

ΠJΠJ ′ f (1m1, 2m2, 3m3, 4m4, LM) . (5.6.89)

Two-Body Part, Term 1.1. Starting from the equation

(CLC
MC)

1m12m2

3m34m4
= Ξ̂±

1234M 4∑
pmp

(ALAMA)
1m1

pmp
(BLBMB)

pmp2mp

3m34m4
, (5.6.90)

the spherical equation is given through

(CLC)
(12)J
(34)J ′ = Ξ̂

±
1234J J ′ 4∑

p
∑
JBJ ′B

(ALA)
1
p (BLB)

(p2)JB
(34)J ′B

ΠJ J ′JBJ ′B

∑
MC

(−1)

LAMB
LBMBLCMC

J

J ′
j3

j4

J ′B

JB

jpj1

j2 . (5.6.91)

Employing that the tensor rank LA vanishes in this case, the diagram above completely col-

lapses producing only phasefactors, Kronecker delta functions, and hatfactors, which leads

to

(CLC)
(12)J
(34)J ′ = Ξ̂

±
1234J J ′ 4∑

p
(BL)

(p2)J
(34)J ′ (A0)

1
p Π

−1
j1 . (5.6.92)
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Employing that f (y) = ∑x f (x)�y,x , we may rewrite the previous equation as

(CLC)
(12)J
(34)J ′ = Ξ̂

±
1234J J ′ 4∑

px
(BL)

(px)J
(34)J ′ Π

−1
j1 (A00)

1
p �2,x

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≡(�00 )(12)J(px)J

Π+1j1 . (5.6.93)

Finally, we obtain

Two-Body Part, Term 1.1

(CLC)
(12)J
(34)J ′ = Ξ̂

±
1234J J ′ 4∑

px
Π+1j1 (BL)

(px)J
(34)J ′ (�00)

(12)J
(px)J , (5.6.94)

(�00)
(12)J
(px)J =Π−1j1 (A00)

1
p �2,x . (5.6.95)

Note that, formally, �̂ may be interpreted as a tensor product

�̂00 ∼ [Â
0 ⊗ �̂0]

0

0
, (5.6.96)

where the delta function itself is a spherical tensor operator of rank zero. The motivation

for the de�nition of � is that an implementation of the resulting equations is computation-

ally much more e�cient as they may be expressed as regular matrix-matrix products. (see

appendix B for more information).

Two-Body Part, Term 1.2. Starting from

(CLC
MC)

1m12m2

3m34m4
= Ξ̂±

1234M (−4)∑
pmp

(BLBMB)
1m1

pmp
(ALAMA)

pmp2mp

3m34m4
, (5.6.97)

as this term is similar to the previous term 2B-1.1 but with an interchangeA⇔ B and a minus

sign, we may reuse the intermediate diagram from there by simply replacing A with B and

vice versa. As a consequence we obtain the diagram

(CLC)
(12)J
(34)J ′ = Ξ̂

±
1234J J ′ (−4)∑

p
∑
JAJ ′A

(BLB)
1
p (ALA)

(p2)JA
(34)J ′A

ΠJ J ′JAJ ′A

∑
MC

(−1)

LBMB
LAMALCMC

J

J ′
j3

j4

J ′A

JA

jpj1

j2 . (5.6.98)
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The diagram above simpli�es to a diagram, which may be interpreted as a 6j symbol giving

the result

(CL)
(12)J
(34)J ′ = Ξ̂

±
1234J J ′ (−4)∑

p
ΠJ (A0)

(p2)J
(34)J ′ (BLC)

1
p (−)

L+J ′+j1+j2
{
j1 J j2
J ′ jp L

}
, (5.6.99)

which may be further simpli�ed as

(CL)
(12)J
(34)J ′ = Ξ̂

±
1234J J ′ (−4)∑

p
ΠJ (A0)

(p2)J
(34)J ′ (BL)

1
p (−)

L+J ′+j1+j2
{
j1 J j2
J ′ jp L

}
(5.6.100)

= Ξ̂±
1234J J ′ (−4)∑

px
(A0)

(px)J
(34)J ′ (BL)

1
p �2,xΠJ (−)L+J

′+j1+jx
{
j1 J jx
J ′ jp L

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≡Π−1J ′ Πj2(�L)

(12)J
(px)J ′

(5.6.101)

= Ξ̂±
1234J J ′ (−4)∑

px
(A0)

(px)J
(34)J ′ Π

−1
J ′ Πj2 (�

L)
(12)J
(px)J ′ . (5.6.102)

Finally, the optimized result may be written as

Two-Body Part, Term 1.2

(CL)
(12)J
(34)J ′ = Ξ̂

±
1234J J ′ (−4)∑

px
Π−1J ′ Πj2 (A

0)
(px)J
(34)J ′ (�L)

(12)J
(px)J ′ , (5.6.103)

(�L)
(12)J
(px)J ′ = (BL)

1
p �2,x (−)L+J

′+j1+jx Π1J ′Π
−1
j2 ΠJ

{
j1 J jx
J ′ jp L

}
. (5.6.104)

Note that, formally, �̂ may be interpreted as a tensor product

�̂LM ∼ [B̂
L ⊗ �̂0]

L

M
, (5.6.105)

where the delta function itself is a scalar spherical tensor operator. Again, The motivation

for the de�nition of � is that an implementation of the resulting equations is computation-

ally much more e�cient as they may be expressed as regular matrix-matrix products. (see

appendix B for more information).

Two-Body Part, Term 2. Starting from

(CLC
MC)

1m12m2

3m34m4
= Ξ̂±

1234M ∑
mpmq
pq

(1 − npmp − nqmq) (A
LA
MA)

1m12m2

pmpqmq
(BLM)

pmpqmq

3m34m4
, (5.6.106)
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we are obtaining the spherical equation by evaluating the expression

(CLC)
(12)J
(34)J ′ = Ξ̂

±
1234J J ′ ∑

pq
(1 − np − nq) ∑

MCmj1mj2mj3mj4mpmq

(ALAMA)
1m12m2

pmpqmq
(BLBMB)

pmpqmq

3m34m4

ΠJΠJ ′
J ′

LCMC

J

j1m1

j2m2

j4m4

j3m3

. (5.6.107)

Expressing the right-hand side matrix elements in terms of reduced matrix elements yields

= Ξ̂±
1234J J ′ ∑

pq
(1 − np − nq) ∑

MCmj1mj2mj3mj4mpmq

∑
JAJ ′A
JBJ ′B

(ALA)
(12)JA
(34)J ′A (BLB)

(pq)JB
(34)J ′B

ΠJAJ ′AΠJBJ ′BΠJC J ′C J ′A

LAMA

JA

j1m1

j2m2

jqmq

jpmp

J ′C

LCMC

JC

j1m1

j2m2

j4m4

j3m3

J ′B

LBMB

JB

jpmp

jqmq

j4m4

j3m3
, (5.6.108)

merging all diagrams into one gives

= Ξ̂±
1234J J ′ ∑

pq
(1 − np − nq)ΠJCΠJ ′C ∑

JAJ ′A

ΠJAJ ′A (A
LA)

(12)JA
(34)J ′A

∑
JBJ ′B

ΠJBJ ′B (B
LB)

(pq)JB
(34)J ′B

JC
j2

JA
LA

J ′A

jp jq

JB

LB

J ′B

j3

j4

J ′C

LC
j1

, (5.6.109)

the diagram simpli�es to

= Ξ̂±
1234J J ′ ∑

pq
(1 − np − nq)Π−1JC (ALA)

(12)JC
(34)JC (BLB)

(pq)JC
(34)J ′C

�LCLB�MLCMLB
. (5.6.110)

Finally, we obtain

99



Chapter 5. Multi-Reference IM-SRG—Commutator Evaluation

Two-Body Part, Term 2

(CL)
(12)J
(34)J ′ = Ξ̂±

1234J J ′ ∑
pq

(1 − np − nq)Π−1J (A0)
(12)J
(pq)J (BL)

(pq)J
(34)J ′ . (5.6.111)

Two-Body Part, Term 3. Starting from

(CL
M)

1m12m2

3m34m4
= Ξ̂±

1234M ∑
pq

∑
mpmq

4(npmp − nqmq ) (A
0
0)
1m1pmp

3m3qmq (BLM)
2m2qmq

4m4pmp
(5.6.112)

= Ξ̂±
1234M ∑

pq
∑
mpmq

4(npmp − nqmq ) (A
0
0)
1m1pmp

qmq3m3 (BLM)
qmq2m2

4m4pmp
, (5.6.113)

we are following the usual steps and express the matrix elements of Â and B̂ in terms of their

Pandya-transformed analogues

(CL)
(12)J
(34)J ′ = Ξ̂

±
1234J J ′ ∑

pq
4(np − nq)∑

JA
Π2JA (A

0
0)

(13)JA

(qp)JA
∑
JBJ ′B

ΠJBJ ′B (B
L
)
(qp)JB

(42)J ′B

∑
mpmq
Mm1m2m3m4

ΠJ J ′
JA

j1m1

j3m3

jpmp

jqmq

J ′B

LM

JB

jqmq

jpmp

j2m2

j4m4

J ′

LM

J

j1m1

j2m2

j4m4

j3m3

. (5.6.114)

Merging the diagrams into one diagram yields

(CL)
(12)J
(34)J ′ = Ξ̂

±
1234J J ′ ∑

pq
4(np − nq) ∑

JAJBJ ′B

Π2JAΠJBJ ′BJ J ′ (A
0
0)

(13)JA

(qp)JA (B
L
)
(qp)JB

(42)J ′B

(−)2j2+2j1 (−)j2+j4+J
′
B j3

J ′ L

J ′B

j2j1
j4

Jjp

jq
JBJA , (5.6.115)
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simplifying the diagram produces

= Ξ̂±
1234J J ′ 4 ∑

JAJBJ ′B

Π2JAΠJBJ ′BJ J ′(−1)∑
pq
(nq − np) (A

0
0)

(13)JB

(qp)JB (B
L
)
(qp)JB

(42)J ′B
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≡(

L
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(13)JB
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′
B (−)2jp �JAJBΠ

−2
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j1
J

j2
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L

j′Bj3

j′

j4 , (5.6.116)

writing the diagram as a 9j symbol gives

= Ξ̂±
1234J J ′ 4∑

JBJ ′B

ΠJBJ ′BJ J ′ (

L
)
(13)JB
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L)(12)J(43)J ′

,

(5.6.118)

where we exploited that the previous expression contains a part that matches the de�nition

of the (reversed) Pandya transformation. We obtain the �nal result

Two-Body Part, Term 3)

(CL)
(12)J
(34)J ′ = Ξ̂

±
1234J J ′ 4 (


L)
(12)J
(34)J ′ , (5.6.119)

(

L
)
(13)JA

(42)J ′B
=∑

pq
(np − nq) (A

0
0)

(13)JA

(pq)JA (B
L
)
(pq)JB

(42)J ′B
. (5.6.120)

5.6.4. Remarks

Let us complete this section with a few remarks and observations regarding the general struc-

ture of the spherical commutator equations for non-scalar operators. The right-hand side of

these equations is given in terms of sums over one and two-body matrix elements—including
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Pandya transformed matrix elements—of the �rst and second argument Â0 and B̂L, respec-

tively, of the commutator. Accounting for the eventual non-zero tensor rank of B̂L leads to

much more involved equations compared to the scalar case, which is shown in [Geb17]. As

a matter of fact, these equations ar not only analytically but also computationally more in-

volved: Since the matrix elements of B̂L are not diagonal in the total angular momentum

anymore the computational e�ort increases substantially. As a consequence, we only employ

a Magnus evolution for non-scalar observables since a direct evolution is computationally not

feasible.

During the derivation of the spherical equations we were aiming for an analytic form that is

not only concise but also computationally easy to handle and e�cient. Considering an im-

plementation of the commutator equations, we do not directly implement theses equations

via simple loops over single-particle indices, but the building blocks of our implementation

are matrix-matrix products—allowing an implementation that is employing basic linear alge-

brea subprograms (BLAS) [BLA17]—and the Pandya transformation. For more information

on aspects of our implementation, see appendix B.
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In-Medium No-Core Shell Model

The IM-NCSM is a hybrid method that combines the NCSM with the IM-SRG. While both

of these methods are already very successful on their own, the IM-NCSM aims to overcome

each of their individual shortcomings while preserving their bene�ts. We want to emphasize

at this point that we are employing a multi-reference version of the IM-SRG: The reference

state | ref⟩ is multi-determinantal and higher-order irreducible density matrices are explic-

itly included. In this chapter, we cover the foundations of the IM-NCSM as well as most of

the new developments within this research project: generator improvements, the particle-

attached/particle-removed framework, studies of the N ref

max
impact, alternative reference-state

constructions, and the calculation of electromagnetic observables. Note that each of these

discussions consists not only of a theoretical consideration, but also includes a numerical in-

vestigation for studying the behavior and validity of our developments.

6.1. Complementarity and Correlations

Before we go into the speci�c details of this novel many-body method, let us discuss the

general idea that the IM-NCSM is built upon: The separation of correlations into two types,

which are successively accounted for during the di�erent stages of the IM-NCSM. A striking

aspect of the IM-NCSM is the complementarity of the involved inherent truncation schemes

such that each stage is able to handle di�erent kind of correlations.

On the one hand, the NCSM is employed for the construction of a reference state | ref⟩, which

already governs the correlations that are stringently required for reproducing fundamental

properties and structure of an eigenstate like, e.g., the total angular momentum. The NCSM

employs an Nmax-truncation scheme which limits the unperturbed excitation energy of each

determinant contained within the model space. As a consequence, up to ApAh excitations of

the NCSM base determinant, i.e., many particles, may eventually contribute to the reference

state, which captures this �rst type of correlations. However, as we are usually employing
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rather small values of N ref

max
due to computational limitations of the NCSM, high-lying single-

particle orbitals are not accounted for.

On the other hand, the IM-SRG is employed for targeting residual correlations that are neces-

sary for an accurate description of the nucleus and not captured through the reference state

| ref⟩. These correlations are manifesting themselves through generalized particle-hole exci-

tations on top of the reference state, which are then absorbed into the Hamiltonian during

the IM-SRG evolution. The IM-SRG is naturally employing a single-particle energy quantum

number truncation such that it takes correlations into account that are represented by deter-

minants with high-lying single-particle state contributions—in contrast to the NCSM. How-

ever, the analytical and computational e�ort increases signi�cantly when considering more

than 2p2h excitations of the reference state. This is rooted in the fact that the consideration

of higher-order excitations implies an increase of the particle rank of the irreducible density

matrices we have to take into account.

Note that a similar picture may be applied to the MR-IM-SRG with HFB reference states, where

the reference state is obtained from a symmetry-broken mean-�eld calculation. However,

there is a clear di�erence between the IM-NCSM and the HFB-based MR-IM-SRG: While the

distinction between the two aforementioned types of correlations is clearly de�ned within the

context of the HFB-based MR-IM-SRG, the IM-NCSM allows for a conversion of one into the

other through a variation ofN ref

max
. As a consequence, the IM-NCSM allows for an investigation

of the impact of the reference state on our numerical results.

The decoupling of the reference state from its particle-hole excitations by means of the IM-

SRG is nicely demonstrated through �g. 6.1: It depicts a representation of the initial (left) and

transformed (right) Hamiltonian matrix. It is evident that the IM-SRG transformation leads to

the formation of a block-like structure, where the decoupled block in the upper left corner of

the matrix representation corresponds to the Nmax = 0 space.
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Figure 6.1.: Depiction of the initial (left) and IM-SRG-transformed (right) Hamilton matrix for

12
C. Note that the absolute value of each matrix elements is correlated with both

the area of its corresponding plot marker and the color. It is strikingly illustrated

that the IM-SRG transformation leads to the shaping of a block-diagonal structure,

where the block in the upper left corner of the transformed Hamilton matrix refers

to the Nmax = 0 subspace. For more information see �g. 6.4.

6.2. Remarks on Hamiltonians

For all calculations throughout this work, we are employing a chiral interaction as a starting

point. In this chapter we employ, if not stated otherwise, an NN interaction by Entem and

Machleidt [EM03] with a cuto� of ΛNN = 500MeV together with a local 3N interaction with

a reduced cuto� of Λ3N = 400MeV [Rot+12; Nav07]. Employing a short-hand notation, this

interaction is now indicated through N
3
LOEM,500 + N

2
LO400,Local or, even shorter, N

3
LOEM +

N
2
LO400,L. This interaction is then prediagonalized via the free-space SRG transformation at

the three-body level with a �ow parameter � = 0.08 fm4
[Rot+11; JNF09; Rot+14; BFP07;

Heb12].

The single-particle basis is truncated at emax = 12, i.e., 13 major shells are included, which is

su�cient for the mass range we are considering throughout this work.

For controlling the memory requirements of the initial three-body matrix elements, we are

employing E3max = 14, where e1 + e2 + e3 ≤ E3max and ei refers to one of the three single-

particle principal quantum numbers of the bra (ket) [Bin+14; Bin+13a; Her+13b; Her+13a;

Rot+12]. Furthermore, the initial harmonic oscillator frequency is �xed to ℏΩ = 24MeV.
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IM-NCSM

| ref⟩

Ĥ , Ô

Ĥ

ĤNO2B, ÔNO2B,

�[1], �[2]

ĤNO2B(s),
ÔNO2B(s)

E0, E⋆i , ⟨ i |Ô| j⟩

Ĥ , Ô

IM-SRG

NCSM

NCSM

Nat.Orb.

NO2B

Figure 6.2.: This �gure graphically illustrates the IM-

NCSM framework. Starting with an initial Hamilto-

nian and observables, the associated operators are trans-

formed into the single-particle natural orbital basis. The

Hamiltonian is then entering the NCSM which gives the

reference state | ref⟩. Based on this reference state the

NO2B approximation of Ĥ and Ô is performed such that

all operators are truncated at the normal-ordered two-

body level and, additionally, the one and two-body den-

sity matrices �̂[1] and �̂[2] are constructed. Next, the

NO2B-approximated operators and irreducible density

matrices are entering the IM-SRG framework which ap-

plies a particularly constructed unitary transformation

to all operators. Those IM-SRG-transformed operators

ĤNO2B(s) and ÔNO2B(s) are then used as input for a sub-

sequent NCSM calculation.

6.3. Stages of the IM-NCSM

Let us now discuss the di�erent stages of IM-NCSM calculations and, if necessary, address

important details. Note that the following discussion is accompanied by the illustration given

in �g. 6.2

Natural Orbitals. The initial stage of the IM-NCSM consists of a single-particle basis

transformation that aims for optimizing the reference state. Especially the dependence on the

harmonic oscillator frequency was a problem we were facing in earlier applications of the

IM-NCSM and which is a well-known issue within the context of the IM-SRG [Her+16]. The

frequency dependence is largely lifted by switching to the Hartree-Fock basis. For applications
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of the single-reference IM-SRG, the Hartree-Fock basis is already su�cient for the construction

of an optimized reference state. However, as we are employing the multi-reference IM-SRG the

reference state is constructed from an initial NCSM calculation. Therefore, we are employing

the natural orbital basis. Starting with an initial Hartree-Fock approximation, we obtain a

Slater determinant |Φ⟩ as a �rst approximation for the ground state. Due to the fact that we

are usually aiming for the description of open-shell systems the original formulation of the

Hartree-Fock approximation has to be extended: We are employing the so-called equal-�lling

approximation (see, e.g., [PR08] for more information), which employs fractional occupation

numbers such that all single-particle states within an open shell are equally (fractionally)

�lled. The Hartree-Fock ground state then serves as starting point for the construction of a

second-order corrected one-body density matrix 
 [1] derived from many-body perturbation

theory. Finally, the natural orbitals are de�ned as the eigenbasis of 
 [1].

NCSM and NO2B. Next, we perform an NCSM calculation in a small model space, typi-

cally N ref

max
= 0 or 2, for the construction of a reference state | ref⟩. Employing this reference

state | ref⟩, we perform an NO2B approximation of the initial three-body interaction. Further-

more, the one and two-body density matrices, 
 [1] and 
 [2], respectively, are constructed from

| ref⟩.

In-Medium SRG. The reference state | ref⟩ is then entering the IM-SRG calculation through

its associated one-body and two-body density matrices. These densities encode higher-order

correlations of our reference state and are essential for a successful description of open-shell

nuclei. Our implementation of the IM-SRG is designed such that a large portion of the N ref

max

space, to which | ref⟩ belongs, gets decoupled. If not stated otherwise, we are using the Mag-

nus evolution of observables. Thus, we are, �rstly, solving the ODE for the Magnus operator

Ω̂(s). Secondly, any observable Ô(s) is transformed via the Baker-Campbell-Hausdor� series

employing Ω̂(s). It is a vital aspect that the IM-SRG transformation implies a particular trans-

formation of the single-particle basis. As a consequence, the single-particle basis associated

with the IM-SRG-evolved Hamiltonian—denoted as the IM-SRG basis—is di�erent from the

initial natural-orbital basis.

Post-NCSM & Observables. Subsequently to the IM-SRG transformation, we use the IM-

SRG-evolved Hamiltonian Ĥ (s) and observables Ô(s) as input of an NCSM calculation. In the

limit s → ∞ the N ref

max
space is decoupled and a post-diagonalization at Nmax ≥ N ref

max
yields

converged results not only for the ground state but also for the lowest lying excited eigenstates

that are structurally similar to the reference state. The IM-SRG acts as a convergence booster

for the NCSM, making the treatment of nuclei possible that are out of reach for the large-scale

IT-NCSM.

For removing eigenstates that are dominated by center-of-mass degrees of freedom from the

low-lying parts of the spectrum, we add a (transformed) center-of-mass Hamiltonian Ĥcm(s)
and eventually solve the eigenvalue problem for Ĥtot ≡ Ĥint + �cmĤcm. However, an important

issue within the context of the IM-NCSM or, more generally, the NCSM with other single-

particle bases than the harmonic oscillator, is that eigenstates do not factorize into an intrinsic

and a center-of-mass part anymore and may be center-of-mass contaminated or even spurious
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eigenstates. As the IM-SRG-evolved operators are given in terms of the IM-SRG basis, we have

to confront this issue. As the factorization is only approximate we have to be careful with the

choice for �cm: It has to be large enough such that center-of-mass dominated eigenstates get

su�ciently shifted upwards and small enough such that the e�ect on intrinsically dominated

eigenstates is kept at a minimum. We have found in practical applications that �cm = 0.2 ful�lls

these two aforementioned requirement and is, therefore, most commonly used throughout our

applications of the IM-NCSM.

6.4. The IM-NCSM: An Illustration

This section gives an introduction of most of the protocols that are employed for a concise

presentation of numerical results. For this purpose, we performed calculations for
20

O em-

ploying an N ref

max
= 0 reference state. For each value of the IM-SRG �ow parameter s contained

in a set {s, s1, s2, … sN } we calculated the intrinsic Hamiltonian and center-of-mass Hamilto-

nian Ĥint(si) and Ĥcm(si), respectively, which where then used as input for a subsequent NCSM

calculation at several Nmax.

Evolution Plots. Figure 6.3 represents an “evolution plot” and shows the IM-SRG �ow of the

ground-state energy, low-lying excited states, and the expectation value of the center-of-mass

Hamiltonian Ĥcm. Looking at the upper panel of �g. 6.3, we can study how the IM-SRG energy

E0(s) = ⟨ ref|Ĥ (s)| ref⟩ and the energy of the 0+1 state obtained from an NCSM calculation at

Nmax = 0, 2 are evolving w.r.t the �ow parameter s. Two things become evident here: Firstly,

the IM-SRG energy and the energy of the ground state at Nmax = 0 have the same value

throughout the evolution. Regarding the �ow parameter s = 0, this observation should not

come as a surprise as we were choosing the reference state | ref⟩ as the ground state of the

Nmax = 0 space denoted by | Nmax=0
g.s.

⟩, which is a 0+ state. However, since the energy of | Nmax=0
g.s.

⟩
and E(s) are also equal for s ≥ 0 it follows that the reference state | ref⟩ remains the lowest

eigenstate of the Nmax = 0 space even for the evolved Hamiltonian. Secondly, the energy gap

between the associated energies of | Nmax=0
g.s.

⟩ and | Nmax>0
g.s.

⟩ is vanishing throughout the �ow

and we eventually obtain converged results at Nmax = 0, which demonstrates that | Nmax=0
g.s.

⟩
gets decoupled from all basis states |�N>0i ⟩. Taking a look at the middle panel of �g. 6.3, the

previous statement can even be generalized: Remarkably, it is not only the ground state that

gets decoupled from higher lying basis states, but also the Nmax convergence of excited states

gets signi�cantly enhanced such that they are practically converged at Nmax = N ref

max
= 0

for �nal values of s. The reason for this behavior lies in the decoupling pattern of the IM-

SRG: We are decoupling all 1p1h and 2p2h excitations of the reference, i.e., matrix elements

that mediate these couplings of the reference state | ref⟩ to higher lying basis |�N=2,4,…i ⟩ are

suppressed. However, other eigenstates are also decoupled along with the reference state as

long as they are structurally similar. This demonstrates one of the crucial advantages of the

IM-NCSM framework, namely ground and excited-state properties may be accessed on equal

footing.
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Figure 6.3.: Demonstration of the ef-

fects of the IM-SRG evolution on the

Nmax convergence for the ground

state energy (upper row), energies

of excited states (middle row), and

center-of-mass Hamiltonian expec-

tation values (lower row) for
20

O.

Note that each symbol refers to a

speci�c Nmax and, additionally, we

are employing a speci�c color for

each state depending on the total

angular momentum J . For assessing

the impact of induced interactions

beyond the NO2B level during the

IM-SRG evolution, a horizontal line

within a shaded band indicates the

Nmax-extrapolated result and corre-

sponding error, respectively, of a

large-scale NCSM calculation em-

ploying an initial NO2B Hamilto-

nian. Calculations have been per-

formed at N ref

max
= 0.

As shown in Figure 6.3, we are tracking the expectation value of the center-of-mass Hamil-

tonian Ĥcm(s) of each eigenstate to distinguish intrinsically and center-of-mass dominated

eigenstates. For all eigenstates considered here we observe that the expectation value de-

creases w.r.t. Nmax. This observation is in line with the assumption that the factorization into

intrinsic and center-of-mass component is restored for Nmax → ∞. However, whenever an

eigenstate exhibits a center-of-mass expectation value of more than ∼20MeV—corresponding

to approximately one harmonic oscillator excitation quantum—this state has an excited center-

of-mass component and should be discarded. The fact that all eigenstates shown here exhibit

a rather small center-of-mass expectation value indicates that they are intrinsically dominated

eigenstates.

Matrix Representation. The decoupling of the whole N ref

max
space is also demonstrated by

�g. 6.4. It depicts a matrix representation of the Hamiltonian at s = 0 (left) and at s ∼ 120
(right). Initially, the Nmax = 0 space exhibits a sizeable coupling to the Nmax = 2 space and,

�nally, this coupling is greatly reduced. Another noticeable observation is that, along with
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s = 0 s 120

Figure 6.4.: Hamilton matrix representation for
20

O at N ref

max
= 0 w.r.t. a many-body basis con-

sisting of Slater determinants |�Ni ⟩ employing the initial Hamiltonian at s = 0 (left)

and the evolved Hamiltonian at s ∼ 120 (right). The basis used for this representa-

tion is sorted such that the excitation quantaN associated with each basis state are

ascending. In this case, we are using a basis consisting of Slater determinants with

up to N = 2. Furthermore, we are only including those basis states |�N=0,2i ⟩ whose

importance measure �i is above the importance threshold of �min = 3 × 10−5. There

is a linear relation between the absolute size of each matrix element and the area

of each plot marker used for its representation. However, note that we were limit-

ing the area for each matrix element to the area associated with a matrix element

with a value of 1. Otherwise, the perception of our representation would be dom-

inated by huge matrix element of the order 100 which are located on the diagonal

of the matrix. For further facilitating the interpretation of this matrix representa-

tion, the color and the area of each marker are also correlated with each other. An

interpretation of this �gure can be found in the text.
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Figure 6.5.: Comparison of the Nmax convergence for the the IM-NCSM at s ∼ 120 (left panel)

and the regular NCSM (right panel) for
20

O. The �gure depicts both ground state

energies (upper panel) and the lowest-lying excited states (lower panel). Both

methods are employing a NO2B Hamiltonian as input such that eventual discrep-

ancies are purely related to induced interactions of the IM-SRG. The IM-NCSM

calculations shown here have been performed at N ref

max
= 0. We introduced several

graphical representations of theoretical uncertainties (for details see text).

the suppression of the o�-diagonal couplings, also the Nmax = 0 and Nmax = 2 blocks itself are

changing.

NCSM Model-Space Convergence. Another point of view on the e�ects of the IM-SRG

evolution is given through �g. 6.5, which is an “Nmax-convergence plot”. It shows a comparison

of the Nmax convergence of the IM-NCSM (left panels) and the regular NCSM (right panels),

for the ground-state energy (upper panels) and excited-state energies (lower panels). Note

that this �gure introduces several graphical representations of theoretical uncertainties that

will be employed in these kind of �gures from now on.

• In the context of the IM-NCSM, we are using little shaded boxes directly attached to a

plot marker for indicating the associated value at s/2 as can be seen, e.g., for the second
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2+ state at Nmax = 0.

• Shaded horizontal rectangles with a vertically centered solid line that both are covering

the full horizontal width of plot are employed for indicating a speci�c value and its

corresponding uncertainty, respectively. Most commonly, this kind of representation

is employed for depicting the Nmax-extrapolated value and the associated uncertainty

with regard to a speci�c observable.

• We are employing “usual” error bars, i.e., vertical lines with small horizontal caps for

indicating uncertainties w.r.t. the �min extrapolation. Such an error bar can be, e.g.,

clearly seen for the ground state at Nmax = 10 obtained from an NCSM calculation.

The improved convergence of IM-NCSM calculations is clearly demonstrated: AtNmax = 0 the

IM-NCSM yields converged results that are compatible with NCSM calculations at Nmax = 10.
Possible di�erences between converged results of the IM-NCSM and the NCSM are solely

due to neglected operators beyond the NO2B rank that are induced throughout the IM-SRG

evolution. Another interesting observation can be deduced from the lower panel, where the

Nmax convergence of excited states is shown. In the NCSM the 2+1 state is slowly moving into

a direction that is compatible with the Nmax-converged results given of the IM-NCSM. In the

IM-NCSM also the the 4+1 is practically converged at Nmax = 0, however, the 2+2 state shows a

very slow Nmax convergence indicating that its structure is dominated by basis states beyond

the reference space.

6.5. Generator Optimizations

In this section we want to address a generator modi�cation that is speci�cally tailored to

the IM-NCSM framework—and eventually resolves the issue of non-convergent IM-SRG evo-

lutions. In this context, we will discuss the general decoupling pattern we used previously

[Geb17] and alter this pattern. After discussing the construction of generator matrix elements,

we will perform a numerical investigation.

6.5.1. Generalized Particle-Hole Excitations

A central aspect for this discussion are generalized kpkh excitations w.r.t. the reference state

| ref⟩ denoted as {âp1…pkq1…qk } | ref⟩. First, we discuss the question: What makes a generalized

particle-hole excitation w.r.t. a correlated reference state special, i.e., what sets it apart from

particle-hole excitations with regard to Slater determinants? For the single-reference case

things are rather simple: Arbitrary particle-hole excitations on top of the reference state are

orthogonal to each other, which is a direct consequence of the single-reference version of the

generalized Wick’s theorem. Considering the multi-reference case, only the reference state
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| ref⟩ itself—by means of the very de�nition of multi-reference normal order—is orthogonal

to any rank-k excitation

⟨ ref|{âp1…pkq1…qk }| ref⟩ = 0 . (6.5.1)

In contrast to the single-reference case, two di�erent particle-hole excitations may have an

overlap with each other as can easily be seen by the overlap between the following two 1p1h

excitations

⟨ ref|{â12}{â
3
4}| ref⟩ = −n1n̄2�14�

2
3 + �

13
24 , (6.5.2)

which is a direct consequence of the generalized Wick’s theorem for correlated reference

states. Note that under certain circumstances the basis consisting of all generalized particle-

hole excitations of the reference state is overcomplete [Geb17], which, fortunately, is not a

problem for the IM-SRG—in stark contrast to other many-body methods, where this poses a

major challenge [Her17].

For our considerations, the two most important cases are generalized 1p1h and 2p2h excita-

tions de�ned as

{âpq} | ref⟩ =âpq | ref⟩ − �pq np | ref⟩ (6.5.3)

{âp1p2q1q2} | ref⟩ =âp1p2q1q2 | ref⟩ −(�p1q1 {â
p2
q2}) | ref⟩

−(�p1q1 �
p2
q2 ) | ref⟩ −(�p1p2q1q2 ) | ref⟩

=âp1p2q1q2 | ref⟩ −(�p1q1 â
p2
q2 ) | ref⟩ −(�p1p2q1q2 ) | ref⟩ (6.5.4)

where we directly applied the inverse Wick’s theorem for rewriting the normal-ordered op-

erators acting on the reference state.

6.5.2. Decoupling pa�ern—Conventional

Conventionally, e.g., in the context of the MR-IM-SRG with HFB reference states [Her+13a],

the transformation is aiming at decoupling the reference state | ref⟩ from its generalized

particle-hole excitations

⟨ ref|Ĥ {âpq}| ref⟩
!= 0 , (6.5.5)

⟨ ref|Ĥ {âpqrs }| ref⟩
!= 0 , (6.5.6)

⋮

⟨ ref|Ĥ {âp1…pAq1…qA}| ref⟩
!= 0 . (6.5.7)
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These decoupling conditions implicitly de�ne the o�-diagonal part of the Hamiltonian, re-

ferred to via Ĥ od(s), which shall be suppressed in the limit s → ∞. This traditional MR-IM-

SRG decoupling pattern is rather strict, as it aims at a full decoupling of the reference state

| ref⟩, which then becomes a true eigenstate of the fully evolved Hamiltonian Ĥ (∞).

Usually, we are aiming for a decoupling of the reference state from all 1p1h and 2p2h ex-

citations, i.e., only the many-body states contained within the following set are taken into

consideration

E1p1h =
{
{âpq} | ref⟩

}
, E2p2h =

{
{âpqrs } | ref⟩

}
. (6.5.8)

Therefore, let us now evaluate the decoupling conditions w.r.t. rank-1 and rank-2 excitations

of the reference state via Wick’s theorem. The results of this evaluation for a 1p1h excitation

reads [Her17; Geb17]

0 != 1(1, 2) ≡ ⟨ ref|Ĥ {â12}| ref⟩

=n1n̄2f 12 +∑
pq

f pq �
p1
q2

+
1
2
∑
pqr

(n̄1�
qr
2p Γ

qr
1p − n2Γ

2p
qr �

1p
qr ) + (�[3]) , (6.5.9)

whereas the result for 2p2h excitations is given through

0 != 2(1, 2, 3, 4) ≡ ⟨ ref|Ĥ {â1234}| ref⟩

= + n̄1n̄2n3n4Γ3412

+ (1 − �̂ 34)n4∑
p
f 4p �

12
p3 − (1 − �̂

1
2)n̄2∑

p
f p2 �

p1
34

+
1
2
n̄1n̄2∑

pq
Γpq12 �

pq
34 +

1
2
n3n4∑

pq
Γ34pq �

12
pq

− (1 − �̂ 12)(1 − �̂
3
4)n3n̄1∑

pq
Γp31q �

p2
q4 + (...) . (6.5.10)

Note that, for convenience, we de�ned the functions 1 and 2 giving the Hamilton matrix

element that couples the reference state and a particular particle-hole excitation. It is impor-

tant to note that we neglected all contributions of n-body irreducible density matrices beyond

two-body rank as well as higher-order, e.g., quadratic contributions of the two-body irre-

ducible density matrix. Through the emergence of higher-order contributions of irreducible

density matrix it becomes obvious that the reference state is coupled to excitations in a highly

non-trivial way.
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6.5.3. Decoupling pa�ern—IM-NCSM

Considering the IM-NCSM framework, we can relax the rather strict decoupling condition

described in section 6.5.2. For that purpose, let us brie�y summarize the model-space con-

struction of the NCSM. The Nmax-truncated model space  of the NCSM is spanned by all

Slater determinants with up to Nmax excitation quanta and may, therefore, be written as

Nmax = span ({|�Ni ⟩ | N ≤ Nmax}) . (6.5.11)

The model space in which the reference state lives may now be de�ned as ref ≡ N ref

max .

Furthermore, it will prove useful to employ ref
for indicating the complement of ref

in

a.s.
A . Lastly, The reference state can be written as a superposition of Slater determinants

| ref⟩ =
N ref

max

∑
N

∑
i
cNi |�Ni ⟩ , (6.5.12)

where cNi is a real coe�cient.

Relaxation of the Decoupling Pa�ern. It is not necessary that the reference state | ref⟩
gets decoupled from all excitations, but it is already su�cient if | ref⟩ gets decoupled from

basis states lying within ref
, since the �nal NCSM calculation in the IM-NCSM framework

is always performed at Nmax ≥ N ref

max
. Therefore, we do not care whether the reference state is

coupling to other basis states within ref
or not—the diagonalization within this model space

is performed anyway. As a consequence, we may alter the decoupling pattern such that we

allow a coupling of | ref⟩ to basis states contained in ref
, which eventually implies that the

reference state may not be an eigenstate of ref
anymore.

This relaxation of the decoupling pattern may be achieved by only decoupling those particle

hole excitations in which the sum of the single-particle energy quantum numbers e of the

created and annihilated states is not equal. Formally, these 1p1h and 2p2h excitations are

then contained in either of the two sets

E′
1p1h

≡
{
{âpq} | ref⟩

||| e(p) ≠ e(q)
}
⊂ E1p1h , (6.5.13)

E′
2p2h

≡
{
{âp1p2q1q2} | ref⟩

||| e(p1) + e(p2) ≠ e(q1) + e(q2)
}
⊂ E2p2h , (6.5.14)

However, the excitations contained in

E′
1p1h

≡ E1p1h ⧵ E′1p1h
=
{
{âpq} | ref⟩

||| e(p) = e(q)
}

, (6.5.15)

E′
2p2h

≡ E2p2h ⧵ E′2p2h
=
{
{âp1p2q1q2} | ref⟩

||| e(p1) + e(p2) = e(q1) + e(q2)
}

, (6.5.16)

are excluded and not decoupled from the reference state.
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For proving that it is su�cient to only decouple particle-hole excitations contained in E′
1p1h

and E′
2p2h

, let us examine the overlap of particle-hole excitations contained within the corre-

sponding complements E′
1p1h

and E′
2p2h

with an arbitrary determinant |�N ′
j ⟩. If this overlap

vanishes for N ′ > N ref

max
, it is clear that such excitations are contained within the model space

ref
and, therefore, do not have to be accounted for when setting up the decoupling pattern.

It is important to note that we will employ the spherical natural orbital basis for our following

considerations, i.e., �12 = �12n1 holds.

Let us begin with the overlap of an 1p1h excitation {âpq} | ref⟩ ∈ E1p1h with any Slater deter-

minant |�N ′
j ⟩

⟨�N
′

j |{âpq}| ref⟩ = ⟨�N
′

j |
N ref

max

∑
N

∑
i
cNi {â

p
q} |�

N
i ⟩ , (6.5.17)

rewriting the normal-ordered product gives

= ⟨�N
′

j |
N ref

max

∑
N

∑
i
cNi (âpq − �

p
q ) |�

N
i ⟩ (6.5.18)

=
N ref

max

∑
N

∑
i
cNi ⟨�N

′

j |âpq |�
N
i ⟩ −

N ref

max

∑
N

∑
i
cNi �

p
q ⟨�N

′

j |�Ni ⟩ , (6.5.19)

employing the orthonormality of Slater determinants yields

=
N ref

max

∑
N

∑
i
cNi ⟨�N

′

j |âpq |�
N
i ⟩ − cN

′

j �pq . (6.5.20)

Assuming now that {âpq} | ref⟩ ∈ E′
1p1h

and N ′ > N ref

max
, we obtain

⟨�N
′

j |{âpq}| ref⟩ =
N ref

max

∑
N

∑
i
cNi ⟨�N

′

j |âpq |�
N
i ⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∼�NN′

−cN
′

j �pq (6.5.21)

= ∑
i
cN

′

i ⟨�N
′

j |âpq |�
N ′

i ⟩ − cN
′

j �pq = 0 (6.5.22)

where we used that cNi = 0 for all N ′ > N ref

max
.

Analogously, the overlap of a general 2p2h excitation with an arbitrary basis state |�N ′
j ⟩ may
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be rewritten as

⟨�N
′

j |{âp1p2q1q2}| ref⟩ = ⟨�N
′

j |
Nmax

∑
N

∑
i
cNi {â

p1p2
q1q2} |�

N
i ⟩ (6.5.23)

= ⟨�N
′

j |
Nmax

∑
N

∑
i
cNi (âp1p2q1q2 −(�

p1
q1 â

p2
q2 ) −(�

p1p2
q1q2 )) |�

N
i ⟩ (6.5.24)

=
Nmax

∑
N

∑
i
cNi ⟨�N

′

j |âp1p2q1q2 |�
N
i ⟩ −

Nmax

∑
N

∑
i
cNi ⟨�N

′

j |(�p1q1 â
p2
q2 )|�

N
i ⟩

−
Nmax

∑
N

∑
i
cNi (�p1p2q1q2 ) ⟨�

N ′

j |�Ni ⟩ = 0 , (6.5.25)

where we assumed in the last step that {âpqrs } | ref⟩ ∈ E′
2p2h

and N ′ > N ref

max
holds.

Employing 1 and 2 given through eqs. (6.5.9) and (6.5.10) as a starting point, we now obtain

the following slightly altered decoupling conditions

0 !=̃1(p1, p2) =

{
1(p1, p2) if e(p1) ≠ e(p2)
0 else

, (6.5.26)

0 !=̃1(p1, p2, p3, p4) =

{
1(p1, p2, p3, p4) if e(p1) + e(p2) ≠ e(p3) + e(p4)
0 else

, (6.5.27)

where we de�ned ̃1(p1, p2) and ̃2(p1, p2, p3, p4) for convenience and later reference.

6.5.4. Construction of Generator Matrix Elements

As discussed in section 4.7 the White and imaginary-time generator matrix elements can be

constructed via

�p1q1 = (1 − �̂ p1q1) ⟨ ref|Ĥ {âp1q1}| ref⟩ (Δp1q1) , (6.5.28)

�p1p2q1q2 = (1 − �̂ p1q1 �̂
p2
q2) ⟨ ref|Ĥ {âp1p2q1q2}| ref⟩ (Δp1p2q1q2) . (6.5.29)

One ingredient for the construction of these matrix elements are Hamiltonian matrix elements

between the reference state and 1p1h or 2p2h excitations. We may either employ 1 and 2
given through eqs. (6.5.9) and (6.5.10) or, alternatively, we use the modi�ed decoupling pattern

and employ ̃1 and ̃2 given by eqs. (6.5.26) and (6.5.27). Another ingredient are di�erences
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between expectation values w.r.t. the reference state and excitations

Δ12 ≡ ⟨ ref|{â12}
†Ĥ {â12}| ref⟩ − ⟨ ref|Ĥ | ref⟩ (6.5.30)

= − n̄21n
2
2Γ

12
12 + n̄

2
1n2f

1
1 − n̄1n

2
2f

2
2 + (n̄1n2 − 1)E0 + (�[2]) (6.5.31)

Δ1234 ≡ ⟨ ref|{â1234}
†Ĥ {â1234}| ref⟩ − ⟨ ref|Ĥ | ref⟩ , (6.5.32)

= (1 + �̂ 12�̂
3
4) (n̄1n̄2n3n4(

1
2 n̄1n̄2Γ

12
12 + 1

2n3n4Γ
34
34 − n̄1n4Γ

14
14 − n̄1n3Γ

13
13 ) (6.5.33)

+ n̄1n̄2n3n4(n̄1f 11 − n3f
3
3 ) + 1

2 (n̄1n̄2n3n4 − 1)E0 + (�
[2])) . (6.5.34)

At this point we have several choices for the construction of speci�c generator matrix ele-

ments. Firstly, we can choose the generator type through the function  . Secondly, we can

choose the decoupling pattern, i.e., we can either aim to decouple all 1p1h and 2p2h excita-

tions from the reference state and employ1 and2, or we can choose a simpli�ed decoupling

pattern and use ̃1 and ̃2. Finally, we may truncate the resulting expressions for a generator

matrix element at a speci�c order in the irreducible density matrices.

We set up the following naming scheme to identify di�erent combinations of generator types,

decoupling patterns, and truncation schemes:

1. “White” employs the White generator type and aims for a decoupling of all 1p1h and

2p2h excitations. All terms involving �[2,3,...] are neglected.

2. “White-NCSM” is equal to “White” but excitations that purely lie within the N ref

max
-space

are left out.

3. “Imaginary-time” employs the Imaginary-time generator type and aims for a decoupling

of all 1p1h and 2p2h excitations. All terms involving �[2,3,...] are neglected.

4. “Imaginary-time-NCSM” is equal to “Imaginary-time” but excitations that purely lie

within the N ref

max
-space are left out.

6.5.5. Numerical Applications

In �g. 6.6a we see the IM-SRG evolution of the energies of the ground and low-lying excited

states employing the traditional White and imaginary-time generator. Obviously, the energies

seem to converge w.r.t. the �ow parameter s and we do not observe any instabilities. Further-

more, both generators are giving compatible results, even though on di�erent scales of the

�ow parameter s.

However, while a large portion of the nuclear systems we were treating so far is behaving

very similar to
20

O, there are few systems that show a di�erent behavior. A prime example

for such a di�erently behaving system is
12

C whose associated IM-SRG �ow of the ground
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Figure 6.6.: Evolution for
20

O and
12

C employing either the generator White (left panels) or the

imaginary-time (right panels). Di�erent symbols indicate di�erentNmax values for

the IM-NCSM and horizontal lines and shaded bands indicate Nmax-extrapolated

results and uncertainties, respectively, obtained from the NCSM. In order to reduce

cluttering, only for a subset of the available data points plot markers are shown.
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state is shown in �g. 6.6b. Here, for both generators White and imaginary-time the ground-

state energy drops below the energy obtained from an IT-NCSM calculation and does not

seem to stabilize. Another problem is raised by the energy of the �rst excited state, i.e., the 2+1
state: Compared with the NCSM result, which lies at about 4MeV, the IM-NCSM lies much

too high. Furthermore, the IM-SRG energy E(s) and the energy of | Nmax=0
g.s.

⟩ are drifting apart

throughout the evolution. This behavior is a clear indication that the reference state | ref⟩ is

not an eigenstate of the Nmax = 0 space anymore, i.e., | ref⟩ begins to couple to other basis

states |�N=0i ⟩. All in all, these observations leads us to the conclusion that the IM-SRG evolu-

tion for
12

C is su�ering from a signi�cant amount of induced interactions beyond the NO2B

level. In previous publications [Geb+16] we have tackled this problem by employing a rather

complicated protocol: We identi�ed a �ow parameter range at intermediate values for s in

which the Nmax convergence of the ground-state energy is already su�ciently enhanced, but

the induced interactions were supposedly still under control. For the imaginary-time gener-

ator such a “plateau” is observed approximately between s = 0.1 and s = 0.2. Once we move

beyond this plateau, the energy begins to drop again. For the White generator, however, there

is no plateau at all.

A solution to this problem are the modi�ed generators White-NCSM and imaginary-time-

NCSM, whose numerical applications for
12

C are shown in �g. 6.7b. We observe that the �ow

stabilizes and the converged ground-state energy is now much closer to the NCSM result.

Additionally, the IM-NCSM energy we obtain through these modi�ed generators is much more

consistent with the result obtained from an MR-IM-SRG calculation with a Hartree-Fock-

Bogoliubov reference state as can be seen in [Geb+16]. A similar picture emerges for excited

states: the �ow stabilizes very early and the energies obtained from our IM-NCSM calculation

is now compatible with the NCSM results. Furthermore, we do not see the �rst 0+ excitation

at lower energies around 7.7 MeV but at much higher energies (which we do not show here)

showing that the IM-NCSM framework does not adequately describe the Hoyle state—as to

be expected.

Thus, by relaxing the decoupling condition, i.e, allowing the reference state | ref⟩ to couple

with other basis states of its own reference space, we stabilize the IM-SRG evolution and

resolve the issue of substantial amounts of induced interactions beyond the NO2B level.
1

Fig-

ure 6.7a shows that the evolution for
20

O and both generators White-NCSM and imaginary-

time-NCSM is approximately the same as for White and imaginary-time depicted in �g. 6.6a.

This demonstrates that our modi�ed generators do not introduce any complications.

Comparing White-NCSM and imaginary-time-NCSM with each other, both generators yield

similar results once the evolution is converged. However, White-NCSM is numerically much

more e�cient and needs fewer integration steps for obtaining converged results, which re-

duces the computational e�ort of the IM-SRG calculation. Therefore, we will use the White-

NCSM generator by default except noted otherwise. In the rare event of a numerically unstable

IM-SRG evolution, however, we employ the more stable imaginary-time generator.

1
This solution is by far much more simple than the eventual alternative, where higher irreducible density matrices

for the generator construction are included.
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Figure 6.7.: IM-SRG evolution for
20

O and
12

C employing the updated generators White-NCSM

(left panels) and imaginary-time-NCSM (right panels). Di�erent symbols indicate

di�erent Nmax values for the IM-NCSM and horizontal lines and shaded bands

again indicate Nmax-extrapolated results and uncertainties, respectively, obtained

from the NCSM.
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6.6. Oxygen Chain and Impact of Reference Space

Let us now turn to the investigation of the impact of the size of the reference space, which is

governed by the choice for N ref

max
. Since it is not only the reference state that gets decoupled,

but also a large portion of the reference space, the parameter N ref

max
speci�es the size of the

“box” in which we are forcing the part of the Hamiltonian governing the lowest eigenstates

into. In any case, the reference-space size should be large enough such that fundamental

properties and symmetries of a speci�c eigenstate are captured by the reference state | ref⟩.

The structure of the reference state has an impact at two di�erent stages: Firstly, the initial

NO2B approximation of the three-body interaction and the normal ordering. Secondly, it en-

ters the IM-SRG through its associated one and two-body irreducible density matrices. As the

IM-SRG also employs a NO2B throughout the evolution, it will eventually su�er from induced

many-body interactions beyond the two-body rank. Through a variation of the model-space

size, i.e., N ref

max
, we are able to control which correlations are already captured at the level of

the reference state and which are left for the IM-SRG to deal with.

In the limit N ref

max
→∞ the di�erence between the exact result and a result obtained from the

IM-NCSM is only governed by the quality of the (initial) NO2B approximation. Assuming that

the NO2B approximation itself improves with increasing N ref

max
this shows that we expect the

IM-NCSM framework to yield more precise results with increasing N ref

max
.

Oxygen Isotopic Chain. The question that arises at this point is whether and to which

extent the reference space size N ref

max
is a�ecting our numerical results. We performed calcu-

lations for nuclei within the oxygen chain at several N ref

max
and compared the results to NCSM

calculations and experimental values as shown by �g. 6.8 and �g. 6.9, where the former shows

ground-state energies and the latter energies of the lowest-lying excited states. The in�u-

ence of N ref

max
on ground-state energies depicted by �g. 6.8 is manifesting itself in two di�erent

ways. Firstly, it leads to di�erent Nmax-convergence behaviors, while still converging to ap-

proximately the same value for large Nmax values. Such a behavior can, e.g., be seen for the

2+2 state in
18

O. Secondly, calculations at di�erent N ref

max
lead to di�erent results for su�ciently

large values forNmax—a signal for di�erent amounts of induced interactions beyond the NO2B

rank. Take, for example, the ground-state energy of
20

O shown in �g. 6.8: the result atNmax = 6
deviates between N ref

max
= 0 and N ref

max
= 4 by about 1.5MeV or 1 %. However, a comparison of

the di�erent N ref

max
shows that the largest deviation appears between N ref

max
= 0 and N ref

max
= 2

whereas the di�erence between N ref

max
= 2 and N ref

max
= 4 is negligible, which indicates that it is

su�cient to employ N ref

max
= 2 for oxygen chain isotopes.

Another representation of the data contained in the previous �gures is given through �g. 6.10a

which exclusively addresses the e�ects of an increase of N ref

max
from 0 to 2 by showing relative

changes of the corresponding results. It becomes evident that for all oxygen isotopes consid-

ered here the relative di�erence of calculation with N ref

max
= 0 and N ref

max
= 2, respectively, are

below 1 %, where
20

O is showing the most pronounced di�erences of about 0.7 %.
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Figure 6.8.: Depiction of ground-state energies. Each column refers to IM-NCSM calculations

at N ref

max
=0, 2, and 4 (column 1-3), NCSM calculations employing an initial NO2B

Hamiltonian (fourth column) and associated experimental values (�fth column)

and each row refers to one of the even oxygen isotopes between
14

O and
22

O. Ad-

ditionally, Nmax-extrapolated NCSM results are shown as shaded bands (within the

column depicting NCSM results). For details on experimental data see appendix C.
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Figure 6.9.: Similarly to �g. 6.8, this �gure shows excitation energies of the lowest lying states.

Dominant Source of Impact. Looking at �g. 6.11, we are able to inspect the source of

the N ref

max
dependence, which is either the initial NO2B approximation or the IM-SRG evolu-

tion. For that purpose, we were deviating from the standard procedure and allowed the N ref

max

employed within the NO2B approximation and the IM-SRG evolution denoted via N ref,no

max
and

N ref,ims

max
, respectively, to be di�erent. It becomes obvious that: An increase of N ref,no

max
has a

slight repulsive e�ect, an increase of N ref,ims

max
has an attractive e�ect, and, comparing the abso-

lute size of both e�ects with each other, the impact of the N ref,ims

max
parameter seems to be the

more dominant one. Note that the behavior for increasing N ref,no

max
may be intuitively expected:

We know that the NO2B approximation has the tendency to lead to a slight overbinding of

about 1% in medium-mass systems [Rot+12; GCR16] and, assuming that the quality of this

approximation improves with N ref

max
, we expect less binding for higher N ref

max
.

Beyond the Oxygen Chain. Up to now, we were only considering oxygen isotopes. For

completing the picture, let us consider
22

Ne. Depicted in �g. 6.12a is the evolution of the

ground and low-lying excited states energies and �g. 6.12b illustrates the Nmax convergence

w.r.t. di�erent N ref

max
and a comparison with experimental values. Through this exemplary

study of the fully open-shell nucleus
22

Ne, it becomes evident that the IM-NCSM framework

works equally well and has a similar characteristics for isotopes beyond the oxygen chain: The
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(b) Similarly to �g. 6.10a, this �gure depicts the relative

impact of di�erent values for N ref

max
on results obtained

from the IM-NCSM for selected �uorine, neon, and

magnesium isotopes. Note that the results shown in

this �gure are based on the chiral interaction N
4
LOEMN

+ N
2
LO500,NL (see chapter 7 for more information).

Note that, in contrast to �g. 6.10a, no error bars indicat-

ing uncertainties in regard to di�erent Nmax are shown

here.

Figure 6.10.: Depiction of relative N ref

max
impact on IM-NCSM ground-state energies.
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Figure 6.11.: Depiction of ground-state energies obtained

from the IM-NCSM employing N ref,no

max
= 0 and N ref,no

max
=

2 for the NO2B approximation and N ref,ims

max
= 2 and

N ref,ims

max
= 2 for the IM-SRG evolution. Note that, in con-

trast to the usual procedure, we allowed the two speci�c

N ref

max
employed within these two stages of the IM-NCSM

to be di�erent such that we may study the individual

N ref

max
impact on our numerical results. Additionally, er-

ror bars indicate the di�erence between the results ob-

tained from Nmax = 0 and 2.
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(b) Nmax convergence of IM-NCSM calculations at

N ref

max
= 0 and 2 and experimental values for

22
Ne. For details on experimental data see ap-

pendix C.

Figure 6.12.: Evolution and Nmax convergence for
22

Ne.

Nmax convergence is signi�cantly enhanced such that we practically obtain converged results

for Nmax ≈ N ref

max
. Regarding the N ref

max
dependence, it seems that there is a less pronounced

dependency. This is con�rmed by �g. 6.10b, which shows the relative di�erence of results

at N ref

max
= 0 and 2 for selected �uorine, neon, and magnesium isotopes. All values lie in the

region of 0.2 % to 0.4 %, where
20

Ne shows the largest deviation with 0.4 %. Note that the

calculations shown in �g. 6.10b employed the N
4
LOEMN+N

2
LO500,NL interaction. However,

we do not expect the interaction to have a signi�cant impact on the behavior of the IM-NCSM

under N ref

max
variation and, therefore, conclusions drawn with regard to the N ref

max
behavior

should be largely interaction independent.

Employing this interaction, �g. 6.13 shows calculations for
32

Mg and
34

Mg. While for both

isotopes the ground-state energy di�ers noticeably from experiment—due to de�ciencies of

the chiral interaction employed in this case—the excited states show only a slight dependence

on N ref

max
and Nmax and are in agreement with experimental values.

IM-NCSM, NCSM, Experiment. Let us now look a bit closer at di�erences between results

obtained from the IM-NCSM and the NCSM. As shown in �g. 6.8, it becomes evident that IM-

NCSM results—which are already converged at small values for Nmax—are compatible with
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Figure 6.13.: Ground and lowest-lying excited states of
32

Mg (left) and
34

Mg (right) from the

IM-NCSM. Calculations are based on the chiral interaction N
4
LOEMN+N

2
LO500,NL

(see chapter 7 for more information). For details on experimental data see ap-

pendix C.

Nmax-extrapolated NCSM results. The fact that huge Nmax are necessary for getting close to

the region of convergence again demonstrates the bene�t of the IM-NCSM.

Considering di�erences with experimental ground-state energies, we observe an overall good

agreement, where the largest deviation can be found for
16

O by about 4MeV. Furthermore,

�g. 6.9 illustrates that also the low-lying excited states obtained from the IM-NCSM and NCSM

are in good agreement with each other. A comparison with experimental values remarkably

shows that the IM-NCSM yields a good prediction of the lowest-lying states, which can also

be observed in �g. 6.12b.

Recommendation. Considering the choice for N ref

max
for nuclei within the oxygen chain,

we come to the conclusion that it is su�cient to use N ref

max
= 2. It is worth noting that oxygen

chain isotopes might be a special case: Employing a N ref

max
= 0 reference space, the proton shell

is closed and there are no correlations contained by the associated reference state.

This assumption is further supported by investigations of fully open-shell nuclei which ex-

hibit a much smaller dependency on N ref

max
and for which we, therefore, consider N ref

max
= 0 as

su�cient.
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6.7. Particle-A�ached/Particle-Removed

In this section we are going to address the basic concepts of one of the major advance-

ments of the IM-NCSM framework that allows for a treatment of odd nuclei: the particle-

attached/particle-removed (PA/PR) extension.

6.7.1. Outline of Approach

A problem that emerges for odd mass numbers like, e.g.,
21

O is that the eigenstates exhibit

half-integer total angular momenta. As a consequence, the angular momentum coupled IM-

SRG equations that rely on scalar density matrices do not apply. Note that an inclusion of

non-scalar density matrices would imply that the spherical tensor rank of operators would

not be conserved anymore leading not only to analytically but also computationally severe

implications.

The general approach of the PA/PR extension to overcome the restriction of the IM-NCSM

framework to even-A nuclei is simple: We di�erentiate between the odd-A target nucleus we

want to treat eventually and an even-A parent nucleus lying in the close vicinity of the target

nucleus. The reference state construction and IM-SRG evolution is carried out for the parent

nucleus, whereas the post-diagonalization is performed for the target nucleus.

Ultimately, the IM-SRG transformation aims for decoupling a speci�c eigenstate of the parent

nucleus—the reference state—from its excitations or, equivalently, higher-lying NCSM basis

states. This decoupling is achieved through a suppression of particular matrix elements and,

as a consequence, also excited states or even complete model spaces get decoupled in this pro-

cess. Similarly, also eigenstates of the target nucleus get partially decoupled as long as these

eigenstates are structurally similar to the reference state such that similar matrix elements are

mediating the coupling to higher-lying determinants. In this case, we also expect a signi�cant

acceleration of the Nmax convergence of an NCSM calculation w.r.t. the target nucleus—not

unlike the acceleration of the Nmax convergence we previously observed for excited states of

the parent nucleus.

The extensions relies on the speci�cation of a parent nucleus with Zparent protons, Nparent

neutrons, and Aparent nucleons and a target nucleus with Atarget nucleons, Ztarget protons, and

Ntarget neutrons, where |Ztarget − Zparent| + |Ntarget − Nparent| ≈ 1 shall hold. Particle-attachment

in regards to a speci�c nucleon species may now be de�ned as either Ztarget > Zparent or

Ntarget > Nparent and particle removal refers to either Ztarget < Zparent or Ntarget < Nparent.

In a nutshell, the even parent nucleus de�nes the system w.r.t. which any transformation or

approximation is performed: the unitary transformation into the natural orbitals, the refer-

ence state, the NO2B approximation, and the IM-SRG transformation. The �nal NCSM cal-

culation, however, is performed with regard to the target nucleus. Thus, the target nucleus

and its associated Ztarget, Ntarget and Atarget come into play whenever an initial operator that is

plugged into the IM-NCSM framework explicitly carries information on the proton, neutron
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or total nucleon number. Therefore, let us consider the initial intrinsic Hamiltonian, which

generally consists of the kinetic energy, a NN interaction and a 3N interaction part

Ĥint = T̂int + V̂NN + V̂3N . (6.7.1)

The kinetic energy operator can be written as [HR09]

T̂int = ∑
i<j

(p̂ i − p̂ j)2

2mAtarget

. (6.7.2)

As, ultimately, we are aiming for calculating nuclear structure observables in an Hilbert space

Atarget
, the kinetic energy part has to employ the total nucleon number of the target nucleus.

The initial NN and 3N interaction, however, do not have any explicit dependence on the nu-

cleon number and are, therefore, independent. Note that the kinetic energy is embedded into

the Hamiltonian at the very beginning of the IM-NCSM framework and, therefore, cannot be

rescaled after the transformation, but has to carry the information for which nucleus the �nal

NCSM calculation is performed from the start.

6.7.2. Numerical Applications—A simple Example

Let us now discuss numerical applications of the PA/PR extension. To begin with, we present

calculations targeting
21

O from the parent nuclei
20

O and
22

O in �g. 6.14. Considering the

evolution depicted in �g. 6.14a, we observe that, �rstly, the ground-state energy is rapidly

stabilizing in the �ow parameter s, secondly, we obtain results that are converged at Nmax = 2
already at an early stage of the evolution, and lastly, both parent nuclei yield similar results

for large values of s. This demonstrates that calculations employing the PA/PR extension

of the IM-NCSM are behaving very similar to “regular” IM-NCSM calculations: The IM-SRG

substantially boosts the Nmax convergence of the subsequent NCSM calculation and we obtain

converged results at small values for Nmax.

We investigate the Nmax convergence and the dependence on N ref

max
of the PA/PR extension

in more detail in �g. 6.14b. For all N ref

max
and both parents the Nmax convergence patterns are

fairly compatible with each other—for both ground and excited states. However, similar to

previous investigations of even nuclei, we observe that there is an e�ect of N ref

max
on the Nmax

convergence, especially when comparing the convergence of excitation energies at N ref

max
=

0 and N ref

max
= 2 with each other. Considering the ground-state energy obtained from the

IM-NCSM, it is compatible with the Nmax-extrapolated result from the NCSM as well as the

experimental value. However, the �rst 1/2+ state obtained from the IM-NCSM is closer to

the experimental value than to the NCSM result. Note that we only show NCSM results for

Nmax ≤ 6 for the 2+1 as the �min threshold extrapolation becomes unreliable for higher Nmax.
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Figure 6.14.: Evolution and Nmax convergence for
21

O.
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6.7.3. Numerical Applications—Shell-Closure E�ects

Now that we have studied a case where the PA/PR extension works very well, let us pro-

ceed to a more interesting case, which, at least at �rst glance, seems to be problematic and

raises questions about the adequateness of certain nuclei as parent nuclei. However, we will

see that there is a reason why calculations w.r.t. speci�c parent nuclei behave fundamentally

di�erent than others and we will be able to establish a rule which parent and target nucleus

combinations are reasonable and which are not.

Neutron Shell Closure. Figure 6.15a shows the evolution of ground and excited-states

energies of
17

O employing the two parents
16

O and
18

O, respectively. Unlike to the case for

21
O, we observe that the two parent nuclei lead to signi�cantly di�erent Nmax convergence

rates even at large values for the �ow parameter s. Calculations based on
16

O as parent nucleus

exhibit a much slower convergence. This is especially clear in �g. 6.15b, where we show IM-

NCSM calculations for severalN ref

max
. While calculations based on

18
O are practically converged

forNmax ≥ N ref

max
, there is a substantialNmax dependence for calculations based on

16
O and large

Nmax are necessary such that both parent nuclei yield similar results for all N ref

max
.

The reason for this di�erence between the two parent nuclei lies in their shell structure. In

the context of the NCSM, the notion of a closed or open-shell nucleus refers to a one or multi-

dimensional Nmax = 0 space, respectively. Additionally, it may be further speci�ed whether an

open-shell nucleus exhibits a closed shell w.r.t. either of the two particle species. Considering

N ref

max
= 0 space, all three nuclei have closed proton shells, but the parent nucleus

16
O also

has a closed neutron shell while
18

O and
17

O do not. As a consequence, the Nmax = 0 spaces

of
16

O and
17

O have a fundamentally di�erent structure while the associated spaces for
18

O

and
17

O are very similar. This di�erence is relevant during the IM-SRG transformation, which

aims at decoupling a speci�c reference state | ref⟩ from particle-hole excitations. This decou-

pling is governed by the partitioning of the single-particle basis into a core (n = 1), active

(0 < n < 1) and virtual space (n = 0), where n refers to the corresponding occupation number.

Considering
16

O and
17

O at Nmax = 0, they may have the same core states, but di�er w.r.t.

their active states. Thus, the decoupling patterns of these two nuclei are—already at a single-

particle level—not compatible with each other as all determinants within the N ref

max
space of

17
O with a dominant contribution of single-particle states belonging to the active space are

not accounted for by an IM-SRG transformation w.r.t.
16

O and, therefore, not decoupled from

higher-lying determinants. Thus, we do not expect a signi�cant Nmax-convergence accelera-

tion when performing an IM-NCSM calculation w.r.t. the parent nucleus
16

O and the target

nucleus
17

O—a fact that is strikingly demonstrated by �g. 6.15.

Comparing the IM-NCSM with the NCSM in �g. 6.15b, we observe that for both the ground

state as well as the �rst excited 1/2+ state the two methods agree very well with each other.

Furthermore, the IM-NCSM calculations employing
18

O as parent nucleus yield converged re-

sults for the ground state and the �rst excited state 1/2+ at Nmax = 0 to 2 which again demon-

strates the greatly improved Nmax convergence. The convergence of the 3/2+ state w.r.t. Nmax,

however, is rather slow such that it is necessary to perform calculations at Nmax = 4 to 6 for
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O (left panel) and
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O (right panel).
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(b) Similarly to �g. 6.14b, this �gure depicts IM-NCSM, NCSM and experimental values for
17

O, where

we employed the parent nuclei
16

O (triangle up) and
18

O (triangle down). For details on experi-

mental data see appendix C.

Figure 6.15.: Evolution and Nmax convergence for
17

O.
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obtaining reliable results. Taking experimental values into our considerations, the experimen-

tally observed ground-state energy is overestimated by about 2.5MeV and the theoretically

predicted and experimentally observed energy of the 1/2+ are in good agreement with each

other. The 3/2+ state, however, lies too high by about 2MeV at Nmax = 6, but may still move

down at higher Nmax due to an incomplete convergence.

Proton Shell Closure. Up to now, we were only applying the PA/PR for adding or removing

neutrons to oxygen isotopes, i.e., we stay within the oxygen chain. Figure 6.16 depicts calcu-

lations where we employed the PA/PR scheme for targeting
21

F by attaching or removing a

proton from the parent nuclei
20

O or
22

Ne, respectively.

The evolution depicted in �g. 6.16a shows the well-known convergence pattern w.r.t. the �ow

parameter s. The energies obtained from both parents are similar to each other, but they

exhibit a di�erent Nmax-convergence behavior. The order of the two lowest-lying and nearly

degenerate states, a 5/2+ and 1/2+ state, di�ers between the two parent nuclei.

Considering �g. 6.16b, it is once more clearly demonstrated that the Nmax convergence is

di�erent for both parent nuclei, especially for the ground-state energies shown in the upper

panel. However, the behavior observed here is to be expected: Targeting
21

F from
20

O is similar

to the previous case with
17

O from
16

O, respectively, as
20

O has a closed proton shell while
21

F

does not.

The ground-state energy obtained from the IM-NCSM is about 3MeV below the experimental

value. The two lowest-lying states obtained from the IM-NCSM are nearly degenerate and

only the calculation based on the parent nucleus
20

O yields the experimentally observed 5/2+

as ground state, while
22

Ne predicts a 1/2+ state. However, as the IM-NCSM results obtained

from calculation based on
20

O as parent nucleus are not fully converged, also here the 1/2+

state may turn out to be the ground state. Note that also experimentally the two 5/2+ and 1/2+

states are energetically very close to each other and the incorrect theoretical prediction of the

ground-state may very well be a de�ciency of the interaction.

Similarly to the ground-state and the �rst excited state, also the second pair of states, i.e.,

the 3/2+ and 9/2+ states are nearly degenerate—both theoretically and experimentally— and

di�erent orders are obtained for the two parent nuclei. However, the excitation energies of

these two states are in good agreement with the experimental values and the state that lies

experimentally slightly above the 3/2+ is predicted to be a 9/2+ state.

Calculations at N ref

max
= 2 and Nmax = 6 with

20
O as parent nucleus are not shown in �g. 6.16b

as several eigenstates becomes degenerate here leading to problems with the �min threshold

extrapolation—which is eventually due to the fact that the Hamiltonian and the total angular

momentum operator do not commute within an importance-truncated model space. However,

we veri�ed that the energies are well converged.
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Figure 6.16.: Evolution and Nmax convergence for
21

F.
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6.7.4. Conclusion

The PA/PR extension works very well and leads to similar e�ects than for the regular case in

which parent and target nucleus are equal: The Nmax convergence is substantially accelerated

and we basically obtain converged results for Nmax ≳ N ref

max
. However, as we saw through

the calculations targeting
17

O and
21

F it is not advisable to perform a particle attachment

if the parent nucleus exhibits a closed shell w.r.t. the particle species that is attached. Note

that a similar observation can be made for a particle removal for nuclei that exhibit a closed

shell w.r.t. the particle species that shall be removed. Both of these cases are problematic

since the structure of the reference state—which is an eigenstate of the parent nucleus—is

fundamentally di�erent from the structure of the lowest lying eigenstates of the target nucleus

and, as a consequence, couplings of these eigenstates of the target nucleus to higher-lying

NCSM basis states are not suppressed through the IM-SRG transformation.

Apart from the fact that a closed-shell nucleus is not an adequate choice for a parent nucleus

within the context of the PA/PR extension, we observed that a particle removal is usually the

more robust choice. Thus, in cases of doubt the particle removal is our favored scheme.

6.8. Importance Truncation and Reference States

Let us now discuss an extension of the scheme for the construction of reference states, where

the necessity is motivated through �g. 6.17: Employing a nuclear-chart-like representation, it

shows the model-space dimensions of NCSM calculations. For each isotope, speci�ed through

its associated neutron and proton numbers, the corresponding model-space dimension D is

given through its logarithm log(D). In our current implementation the NO2B approxima-

tion is the computational bottleneck of the IM-NCSM framework. Here, the computational

e�ort scales drastically with the number of con�gurations such that we are restricted to ap-

proximately D ≤ Dmax ≡ 5 × 106.2 Considering isotopes in the sd shell and lower pf shell,

calculations with N ref

max
= 0 are still feasible, however, performing calculations at N ref

max
= 2 is

only possible for nuclei lying either directly on or in the vicinity of shell-closure lines. Cal-

culations far away from shell closures, however, are out of the question due to model-space

dimensions of up to 1 × 108 or even beyond. Going to N ref

max
= 4, it becomes evident that there

are no sd-shell nuclei left that we could treat employing the IM-NCSM framework.

As simple and straightforward approach for extending the reach of the IM-NCSM is an im-

portance truncation within the context of the IT-NCSM (see chapter 2). The initial NCSM

calculation is replaced by an IT-NCSM calculation employing a speci�c value for the impor-

tance threshold �min. As a consequence, the associated importance-truncated model space,

which contains the reference state as one of its eigenstates, has a greatly reduced dimension.

Other than that, the details of the IM-NCSM framework remain unchanged. In the following,

2
Note that this is not a hard limit and there may be future improvements of our implementation that eventually

increase Dmax.
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Figure 6.17.: Illustration of the NCSM model-space dimension D for Nmax = 0 (see �g. 6.18

for Nmax = 0 and 2). We choose a nuclear-chart-like format such that proton

and neutron numbers vary vertically and horizontally, respectively. Model-space

dimensions are depicted for all even isotopes of hydrogen up to titan that do not

lie beyond either the proton or neutron drip line (indicated through solid black

lines). There are three ways in which we indicated the model-space dimensions:

Firstly, a number indicating log(D), where, if non-existent, D ≳ 1 × 109, which

lies far beyond the computational capacities of the IM-NCSM. Secondly, the area

of each plot marker linearly correlates with log(D), where the maximum area is

capped atDmax ≡ 5 × 106, which corresponds to the maximally feasible dimension

of our current implementation (with reasonable computational e�ort). Lastly, we

employ two di�erent colors for indicating if D ≤ Dmax (green) or D > Dmax (red).

Furthermore, shaded gray bands indicate shell closures.
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Figure 6.18.: Illustration of NCSM model-space dimensions (see �g. 6.17 for details).
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let us investigate an eigenstate of an importance-truncated model space as a reference state.

Additionally, such an importance-truncated reference state will be denoted as | Nmax

ref
(�min)⟩,

where �min refers to the importance threshold of the corresponding importance-truncated

model space.

For investigating the properties of an importance-truncated reference state, let us consider

�g. 6.19. Starting from an initial Hamiltonian including 3N interactions, we perform an initial

IT-NCSM calculations at Nmax = 4 using several values for �min from which we obtain individ-

ual reference states | Nmax=4
ref

(�min)⟩. The corresponding eigenenergies are shown by the curve

labeled “Nmax = 4” in the upper panel. Additionally, the results of Nmax = 2 and Nmax = 4
calculations without importance truncation are shown as horizontal lines. We observe that

the result of a full Nmax = 4 calculation is reproduced for �min → 0, and that the curve is

approaching the Nmax = 2 result for increasing values of �min.

The bottom panel in �g. 6.19 depicts the corresponding model-space sizes: A full Nmax = 4 cal-
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culation needs roughly 1 × 106 con�gurations whereas the Nmax = 2model-space dimension is

reduced by several orders of magnitude. As the model-space size varies signi�cantly with the

choice for �min we might ask: Can we choose a �min such that the importance-truncated model

space is of signi�cantly reduced size and, simultaneously, obtain a proper approximation for

the full reference state?

For that purpose, let us proceed by looking at the steps which follow the initial IT-NCSM cal-

culation for the construction of the reference state. The operator Ĥ and its corresponding ref-

erence state | Nmax=4
ref

(�min)⟩ are used to construct the NO2B-approximated Hamiltonian ĤNO2B

together with the scalar one and two-body density matrices. We emphasize that the non-scalar

parts of the density matrices due to J ≠ 0 contributions are discarded. As shown by the third

row of �g. 6.19, the total angular momentum J of the reference state is degraded—a behav-

ior which is to be expected and well-known as the eigenstates of the importance-truncated

model space are not necessarily eigenstates of Ĵ
2

anymore. As a consequence, the non-scalar

admixtures to the density matrices are increasing. The e�ect of this projection of the density

matrices is evident from the curve labeled as “IM-SRG Energy” in the upper row of �g. 6.19.

It depicts the expectation value of the NO2B-approximated Hamiltonian ĤNO2B, where the

expectation value is calculated by employing the projected density matrices 
 [1,2].

Lastly, there is another curve labeled “Nmax = 4” in the top panel: It depicts a subsequent

NCSM calculation at Nmax = 4 employing ĤNO2B as input. The source for the discrepancies

between the IT-NCSM based on Ĥ and the NCSM calculation based on ĤNO2B is two-fold:

Firstly, the reference state | Nmax=4
ref

(�min)⟩ does not necessarily have to be an eigenstate of

ĤNO2B. Secondly, even while we are not performing an IM-SRG evolution per se, ĤNO2B goes

once through the complete IM-SRG machinery implying an eventual single-particle transfor-

mation into the natural orbitals.
3

Note that we veri�ed that the dominant contribution here

is the single-particle transformation into the natural orbitals, while | ref⟩ being not an eigen-

state of ĤNO2B is numerically negligible. Furthermore, we observe that this curve is mostly

independent of �min, which implies that the e�ect of �min on the NO2B approximation is neg-

ligible.

The impact of �min on IM-NCSM calculations is shown in the second row of �g. 6.19: It includes

a curve labeled as “Nmax = 4” showing the results of IM-NCSM calculations at Nmax = 4
employing a reference state | Nmax=4

ref
(�min)⟩. Additionally, there are two horizontally lines

which depict the result of IM-NCSM calculations at Nmax = 4 employing N ref

max
= 2 and 4

reference states without any importance truncation. It becomes evident that, as long as �min

is chosen within reasonable limits �min ≤ 0.001, the result of an IM-NCSM calculation with

an importance-truncated reference state lies in between the results for regular N ref

max
= 2, 4

IM-NCSM calculations. Thus, through a speci�c choice of �min for an IM-NCSM calculation

at N ref

max
we may control the amount of correlations we are additionally including with regard

to an IM-NCSM calculation at (N ref

max
− 2) while keeping the model-space sizes under control.

3
Note that this kind of natural orbitals refer to the eigenbasis of the one-body density matrix constructed from

the reference state—in contrast to the natural orbitals which are constructed at the very beginning of the

IM-NCSM framework and are based on perturbation theory.
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We could, e.g., halve the model-space size of an N ref

max
= 4 calculation by using �min = 4 × 10−4

while still retaining the regular N ref

max
= 4 result to a large extent.

We have found that �min = 2 × 10−4 is a good compromise between model-space size reduction

and precision. In this context, the impact of �min on the IM-NCSM result and the energy of

the corresponding reference-state w.r.t. the untransformed Hamiltonian are correlated with

each other: As long as the energy of the importance-truncated and full reference state w.r.t.

the initial Hamiltonian are close to each other, also the two associated IM-NCSM calculations

lie close to each other.

6.9. Evolution of Observables—Concepts

The IM-NCSM not only allows for the treatment of energies but also the full range of nuclear

structure observables. This capability is founded in the fact that we directly obtain ground

and excited states from the IM-NCSM and, therefore, the calculation of expectation values or

transition matrix elements of an arbitrary observable is straightforward. However, the unitary

transformation applied to the Hamiltonian through the IM-SRG framework is associated with

a basis transformation and, as a consequence, observables have to be consistently transformed

employing the same unitary transformation as for the Hamiltonian. For the consistent evolu-

tion of an observable ÔL
M there are two possible approaches within the IM-SRG framework:

1. the direct evolution of an observable through simultaneously solving the operator dif-

ferential equations for the operator and the Hamiltonian

d
ds
Ĥ (s) = [�̂(s) , Ĥ (s)] ,

d
ds
ÔL
M (s) = [�̂(s) , Ô

L
M (s)] , (6.9.1)

2. the Magnus evolution through a previous solution of the di�erential equation for Ω̂(s)
and an evaluation of the Baker-Campbell-Hausdor� series for the observable

ÔL
M (s) =

∞
∑
i=0

[Ω̂(s) , Ô
L
M (s)]k

. (6.9.2)

Two scalar operators, whose transformation employing either of these two approaches is

straightforward, are the intrinsic and center-of-mass Hamiltonian Ĥint and Ĥcm, respectively.

Apart from these operators, we discuss the treatment of the (scalar) radius operator as well as

general electromagnetic observables associated with non-scalar operators.
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6.9.1. Theoretical Foundation of the Radius Operator

The translationally invariant (point-mass) mean-square radius is de�ned as

r̂ms ≡
1
A

A
∑
i=1

(x̂ i − R̂)
2

, (6.9.3)

where x̂ i refers to the position operator of the i-th particle and R̂ denotes the center-of-mass

position operator. Applying several elementary transformations to the right-hand side of this

expression gives

r̂ms =
1
2A2

A
∑
i,j=1

r̂ 2ij =
1
A2

A
∑
i<j
r̂ 2ij , (6.9.4)

which only depends on relative distances r̂ ij ≡ x̂ i−x̂ j . In second quantization the mean-square

radius operator may then be written as

r̂ms =
1
A2

1
4
∑
q1q2
q3q4

⟨q1q2|r̂ 212|q3q4⟩ â
q1q2
q3q4 . (6.9.5)

For de�ning the point-proton and point-neutron mean-square radii, let us introduce the pro-

ton and neutron projectors Π̂p

i and Π̂n

i , respectively. The point-proton mean-square radius,

i.e., the mean-square radius, which exclusively considers the protons within the nucleus, can

be de�ned as

r̂pms ≡
1
Z

A
∑
i=1

(x̂ i − R̂)
2
Π̂p

i . (6.9.6)

Following similar steps as before, we obtain

r̂pms =
1
ZA

A
∑
i<j
r̂ 2ij (2Π̂

p

i Π̂
p

j + Π̂
p

i Π̂
n

j + Π̂
n

i Π̂
p

j ) − r̂ms , (6.9.7)

which may be written in second quantization as

r̂pms =
1
4A2

2A
Z

∑
q1q2
q3q4

⟨q1q2
||| r̂

2
12Π̂

p

1Π̂
p

2
||| q3q4⟩ â

q1q2
q3q4

+
1
4A2

A
Z

∑
q1q2
q3q4

⟨q1q2
||| r̂

2
12 (Π̂

p

1Π̂
n

2 + Π̂
p

2Π̂
n

1)
||| q3q4⟩ â

q1q2
q3q4 − r̂ms (6.9.8)
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The point-neutron mean-square radius operator r̂nms may now be easily obtained by an inter-

change Π̂p

i ↔ Π̂n

i and Z ↔ N within the analytical expression for r̂pms. Furthermore, it can

easily be veri�ed that the three operators r̂ms, r̂pms, and r̂nms are related through

r̂nms =
A
N
r̂ms −

Z
N
r̂pms . (6.9.9)

It is important to note that the projections from which we obtain the individual operator struc-

tures within the expressions for r̂pms and r̂nms and the unitary transformation induced by the

IM-SRG transformation for obtaining r̂pms(s) and r̂nms(s), respectively, are not commuting with

each other. As a consequence, it is not possible to insert the IM-SRG-evolved mean-square

radius operator r̂ms(s) into eq. (6.9.8) for obtaining the evolved proton mean-square radius op-

erator r̂pms(s). Instead, we have to construct r̂pms(0) and evolve it for obtaining r̂pms(s). This

is further elucidated by taking into account that the IM-SRG generally produces an induced

one-body part for r̂pms(s) which would be missing when simply employing eq. (6.9.8) for the

calculation of r̂pms(s) from r̂ms(0).4

Employing the mean-square radius operators, we can de�ne the point-mass, point-proton,

and point-neutron root-mean-square radii

Rrms ≡
√
⟨ i |r̂ms| i⟩ , Rprms ≡

√
⟨ i |r̂pms| i⟩ , Rnrms ≡

√
⟨ i |r̂nms| i⟩ , (6.9.10)

respectively, where | i⟩ refes to an eigenstate of the Hamiltonian. The experimentally com-

monly measured charge radius is obtained through [Lu+13]

R2
ch
≡ R2

prms
+ (r

2
p
+

3
4m2

p)
+
N
Z
r2
n

, (6.9.11)

which takes the charge radius of the proton r2p = 0.770 fm2
, the charge radius of the neutron

r2n = −0.1161 fm2
, and the so-called Darwin-Foldy term

3
4m2

p
= 0.033 fm2

into account.

6.9.2. Theoretical foundation of Electromagnetic Observables

Let us now introduce the basics for the treatment of electromagnetic observables. These ob-

servables probe the structure of the wave functions involved through multipole moments and

gamma decays. Furthermore, compared to, e.g., the Hamiltonian, they are sensitive to di�er-

ent aspects of the wave functions and are thus an excellent test for our nuclear models. For

more information see, e.g., [Suh07; RS80].

The electromagnetic decay process has its roots in the interaction of the nucleus with an

external electromagnetic �eld where this �eld consists of an electric E⃗ and magnetic B⃗ con-

tribution. The interaction between the nucleus and the �eld is mediated by the four-potential

4
Strictly speaking, such an approach is possible but the projection operators themselves would have to be trans-

formed.
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(�, A⃗) where � is the scalar potential that interacts with the nuclear charge density � and the

vector potential interacts with the nuclear current density j⃗. The complete system consisting

of nucleus and �eld, where the �eld is quantized in terms of photons, interacts weakly such

that it can be treated perturbatively. The electromagnetic �eld can be expanded in multipoles

giving the following result for the electric and magnetic tensor operators
5

Q̂�
� =

A
∑
j=1

ejr�j Y
�
� (Ωj) , (6.9.12)

M̂�
� =

�N
ℏc

A
∑
j=1

(
2

� + 1
gl,j l̂ j + gs,j ŝ j)∇j (r

�
j Y

�
� (Ωj)) , (6.9.13)

where ej , l̂ j , and ŝ j indicate the charge, orbital, and spin angular momentum, respectively, of

the j-th particle. The spin gyromagnetic factor gs is either 5.586 (protons) or −3.826 (neutrons).

The orbital gyromagnetic factor gl is 1 (protons) or 0 (neutrons). The nuclear magneton is

de�ned as �N = eℏ
2mp

, where mp is the proton mass [Suh07].

Electromagnetic Transitions and Reduced Transition Probability. Let us consider

an electromagnetic decay of an excited nucleus mediated by one of the multipole terms of

the radiation �eld. The initial state is an excited state of the nucleus | i⟩ and the �nal state

consists of a photon and another eigenstate | f ⟩ of the underlying Hamiltonian. The transition

probability of this decay is denoted as Tf i and the corresponding half life is t1/2 = ln(2)/Tf i .
The ��� transition probability T ���f i describes the decay mediated by one of the multipole

terms �� of the electromagnetic �eld and is either of electric (�=E) or magnetic (�=M) nature.

Through the “golden rule” of time-dependent perturbation theory, we obtain the transition

probability

T ���f i =
2
�0ℏ

� + 1
�((2� + 1)!!)2 (

E

ℏc)

2�+1
|||⟨ f ; JfMf |(̂�)

�
� | i ; JiMi⟩

|||
2

, (6.9.14)

where E
 is the energy of the photon and (̂�)
�
� denotes the electric or magnetic multipole

�eld operator, i.e.,

(̂E)
�
� ≡ Q̂

�
� , (̂M)

�
� ≡ M̂

�
� . (6.9.15)

As magnetic substates are not observed experimentally, we may average over the initial sub-

statesMi and sum over the �nal substatesMf and all projections � of the operator which yields

the transition probability

T ��f i =
1

2Ji + 1
∑
Mi

∑
Mf �

T ���f i (6.9.16)

=
2
�0ℏ

� + 1
�((2� + 1)!!)2 (

E

ℏc)

2�+1

B(��;  i →  f ) , (6.9.17)

5
These expressions are derived by employing the long-wavelength approximation, i.e., the wavelength of the

photon is assumed to be large compared to the extension of the nucleus.
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where we have introduced the reduced transition probability

B(��;  i →  f ) ≡
1

2Ji + 1
|||⟨ f ; JfMf ||(̂� )

� || i ; JiMi⟩
|||
2

. (6.9.18)

Note that there are no M0 transitions since the magnetic multipole operator vanishes in this

case, which is the result of the fundamental absence of magnetic monopoles in nature.

Selection Rules. Classifying electromagnetic transitions according to their multipoles is

achieved by inspecting the general structure of the electric and magnetic multipole operators

for each particle. Under parity the involved terms exhibit the behavior

r� → r� , Y �
� → (−1)�Y �

� , l̂ → l̂ , ŝ → ŝ , ∇ → −∇ . (6.9.19)

Hence, we obtain

Q̂�
� → (−1)�Q̂�

� , M̂�
� → (−1)�+1M̂�

� . (6.9.20)

Consequently, we obtain the parity conservation selection rule for the parities of the initial

and �nal state �i and �f , respectively,

�i�f
!=

{
(−1)� for E�
(−1)�+1 for M�

. (6.9.21)

Furthermore, there is the angular momentum selection rule which states that for a transition

associated with a multipole operator of rank � from an initial state to a �nal state with angular

momenta Ji and Jf , respectively, the triangular condition Δ(Jf �Ji) has to be ful�lled. Note

that the transition probabilities decrease signi�cantly with increasing rank � of the involved

operator. Therefore, the transition with the greatest probability is the one with the lowest

multipolarity which is allowed by the parity and angular momentum selection rules.

Multipole Moments. The general form of multipole moments can be written as

(��) ≡ ⟨Ψ; JΨMJΨ = 0|(̂�)
�
0 |Ψ; JΨMJΨ = 0⟩ (6.9.22)

= (
J � J
−J 0 J) ⟨Ψ; JΨ||(̂�)

� ||Ψ; JΨ⟩ . (6.9.23)

The magnetic dipole moment � and electric quadrupole moment Q are now de�ned such that

they coincide with their classical analogues which yields

�
c
=
√
4�
3
(M1) =

√
4�
3

√
J

(J + 1)(2J + 1)
⟨Ψ; JΨ||M̂1||Ψ; JΨ⟩ , (6.9.24)

eQ =
√
16�
5

(E2) =
√
16�
5

√
J (2J − 1)

(J + 1)(2J + 1)(2J + 3)
⟨Ψ; JΨ||Q̂2||Ψ; JΨ⟩ , (6.9.25)

where we inserted analytical expressions for the corresponding 3j symbols. It becomes evident

from the properties of the 3j symbol that a necessary condition for non-vanishing M1 and E2

moments is J ≥
1
2

and J ≥ 1, respectively.
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6.10. Evolution of Observables—Applications

Now that we have discussed the theoretical foundation of the, for this work, most relevant

observables, let us incorporate them into the IM-NCSM framework and compare the results

to those of the NCSM and experiment. Note that this section mainly focuses on investi-

gating methodological developments of the IM-NCSM. Especially comparisons with NCSM

are—due to its exact nature—very useful for assessing the methodological uncertainties of the

IM-NCSM. When comparing results obtained from the IM-NCSM with experimental values,

however, it should always be kept in mind that the interaction we are employing throughout

this chapter has a de�ciency when it comes to the reproduction of particular observables like,

e.g., radii [Bin+14; Her+13b; Her+14; Bin+13a]. This de�ciency is well-known and one of the

motivations for the construction and application of new generations of chiral interactions (see

next chapter).

Carbon-12. Let us begin with a study of
12

C. Figure 6.20 depicts the evolution of various ob-

servables including the charge radius Rch, electric and magnetic transitions B(E2) and B(M1),
respectively, and the electric quadrupole moment Q. Similarly to the well-known behavior of

ground and excited-state energies, also these new observables are changing throughout the

IM-SRG evolution until, for large values of the �ow parameter s, they stabilize. Considering

the Nmax convergence, however, things become slightly more complicated: Unlike the eigen-

states of the Hamiltonian, other observables like, e.g., radii and electromagnetic transitions

are not bound by the variational principle. This leads to a non-monotonic Nmax convergence,

making it di�cult to obtain a reliable estimate for the observable with regard to Nmax → ∞.

This observation is closely related to the fact that some observables are corresponding to

operator structures that probe a di�erent part of the wave function than the Hamiltonian.

This becomes evident when considering the radius and the quadrupole operator: Both probe

the long-range part of the wave function which manifests itself through a high sensitivity to

higher-Nmax contributions. These small contributions of higher-Nmax basis states to the eigen-

states obtained from the IM-NCSM arise due to residual couplings of the reference state | ref⟩
to some of its particle-hole excitations i.e., a partially incomplete decoupling.

Through �g. 6.21 we are able to inspect theNmax convergence and theN ref

max
dependence of nu-

merical results obtained from the IM-NCSM and compare to results obtained from the NCSM

and with experimental values. Compared to the NCSM, the ground-state energy obtained

from the IM-NCSM is slightly overbound. Furthermore, the ground-state energy exhibits an

N ref

max
dependence that is slightly more pronounced than for oxygen isotopes and for all N ref

max

the energies are converged w.r.t. Nmax. The excitation energy of the �rst 2+ state obtained

from the IM-NCSM is above the corresponding NCSM energy by about 1MeV, but di�ers

only slightly from the experimental value. The experimentally observed 0+2 state—known as

the Hoyle state—lying at about 7.7MeV is not adequately described by the IM-NCSM, where

it lies much too high at about 15MeV, i.e., beyond the limits of our plot.
6

For the charge radius

6
The theoretical description of this state through shell-model-like approaches is a long-standing problem, which

is eventually due to the fact that this state may be associated with an � cluster.
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Figure 6.20.: Evolution of the ground-state energy, the lowest-lying excitation energies, the

charge radius, the quadrupole moment, the B(E2) transition, and the B(M1) tran-

sition for
12

C. IM-NCSM calculations have been performed at N ref

max
= 2.
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Figure 6.21.: Depiction of the Nmax convergence of various observables for
12

C employing the

IM-NCSM at N ref

max
= 0 to 4. Additionally, results obtained from the NCSM and

experimental values are shown. For details on experimental data see appendix C.
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we observe that the results are increasing w.r.t. N ref

max
, which is a somewhat counterintuitive

behavior as the ground-state energy is decreasing w.r.t. N ref

max
and hints at the e�ects of cor-

relations. For each N ref

max
, however, the charge radii are practically converged w.r.t. Nmax. The

radius obtained at N ref

max
= 4 is compatible with the experimentally observed value, while the

radius obtained from the NCSM is slowly increasing with Nmax and even at Nmax = 8, i.e.,

the largest Nmax available here, the radius is not fully converged. The B(E2; 2+1 → 0+1 ) transi-

tion shows an N ref

max
dependency that is very similar to the radius. Likewise, also the NCSM

exhibits a very similar behavior w.r.t. Nmax: The B(E2) transition shows no clear sign of con-

vergence and is still increasing at Nmax = 8. However, the result obtained from the IM-NCSM

at N ref

max
= 4 is compatible with the NCSM result. Additionally, the B(E2; 2+1 → 0+1 ) transition

strength obtained from the IM-NCSM is within reach of the experimentally observed value.

The quadrupole moments of the �rst 2+ state obtained from the IM-NCSM, NCSM and exper-

iment are in agreement.

In summary, this study for
12

C serves as a prime example for the advantages of the IM-NCSM

and demonstrates its capabilities: We obtain converged results at very small Nmax, which are

consistent with NCSM calculations, even though the NCSM calculations require much higher

Nmax for getting close to convergence.

Oxygen-20. However, we found that speci�c nuclei show large discrepancies between the-

oretically predicted and experimentally measured electromagnetic observables. As we made

the observation that usually nuclei with closed proton shells seem to be a�ected here, let us

consider
20

O in the following. Figure 6.22 shows the evolution of various observables includ-

ing radii, quadrupole moments, the B(E2), and the B(M1) transition. Figure 6.23 depicts the

Nmax convergence and N ref

max
dependence of IM-NCSM calculations as well as NCSM results

and experimental values.

Figure 6.22 demonstrates that all observables shown are stabilizing w.r.t. to the �ow parameter.

By comparing the Nmax convergence of the ground and excited states in �g. 6.23 with the

Nmax convergence of the B(E2; 2+ → 0+) transition, di�erences are evident: While the energies

of the 2+ and 0+ states are practically converged, there is still a dependence on Nmax of the

corresponding B(E2; 2+ → 0+) transition, where a similar pattern emerges for the quadrupole

moment Q(2+).

Figure 6.24 further illustrates this observation: There are small residual contributions of |�N=4i ⟩
NCSM basis states to the eigenstate | Nmax=2

g.s.
⟩ for an N ref

max
= 2 calculation. Those contribution

seem to be irrelevant for the eigenvalues of the Hamiltonian, but have an impact on other

observables probing the long-range properties of eigenstates. For the charge radius Rch, the

B(E2) transition, and the quadrupole moment Q there is a slight N ref

max
dependency which,

however, seems to saturate such that the di�erence between N ref

max
= 2 and N ref

max
= 4 is only

marginal. The charge radius and electromagnetic transition obtained from the IM-NCSM for

the largest N ref

max
lie above the corresponding values from the NCSM and the quadrupole mo-

ment lies below such that the IM-NCSM results are compatible with estimated extrapolated

NCSM results—assuming that the trend with regard to Nmax is maintained.

148



6.10. Evolution of Observables—Applications

150

140

130

E 
[M

eV
]

20O

0+
1

IM-SRG
Nmax = 2

Nmax = 4
Nmax = 6

0

1

2

3

E*  
[M

eV
]

0+
1

4+
1

2+
1

2.44
2.46
2.48
2.50

R c
h 

[fm
]

0+
1

2

1

0

1

Q
 [e

fm
2 ]

4+
1

2+
1

0 50 100 150
s

0.0
0.2
0.4
0.6
0.8

B(
E

2)
 [e

2 f
m

4 ] 2+
1 0+

1

4+
1 2+

1

Figure 6.22.: Depiction of the evolu-

tion of the ground-state energy, the

excitation energies of the lowest-

lying states, the charge radius, the

quadrupole moment, and the B(E2)
transition. IM-NCSM calculations

have been performed for
20

O and at

N ref

max
= 2.

All things considered, the results obtained from the IM-NCSM are compatible with those from

the NCSM even though the NCSM results are not yet converged at the largest Nmax avail-

able and there may still be some changes at even larger Nmax. There is, however, a striking

disagreement between the theoretically predicted transition B(E2; 2+ → 0+) and the experi-

mentally measured one: The experimentally measured B(E2; 2+ → 0+) transition amounts to

5.6(4) e2fm4
, which lies beyond the range of our �gure. Therefore, the theoretical and experi-

mental value are di�ering from each other by about a factor of 5.

We would like to remark that the observation that there is still a sizeable dependence of

electromagnetic B(E2) on N ref

max
and Nmax raises questions about the adequateness of valence-

space shell model calculations employing single-shell e�ective valence-space interactions de-

rived from the IM-SRG [Par+17]—since such shell model calculations are largely equivalent

to N ref

max
= Nmax = 0.

Further Examples. The calculations for
6
He in �g. 6.25 show that there is a sizable depen-
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Figure 6.23.: Depiction of the Nmax convergence of various observables for
20

O employing

the IM-NCSM at N ref

max
= 0, 2 and 4 and the NCSM. Additionally, associated

experimental values are shown. The experimental transition B(E2; 2+ → 0+) =
5.6(4) e2fm4

is too high for showing it within the plot and still being able to in-

spect the Nmax behavior and perform a comparison of IM-NCSM and NCSM cal-

culations. For details on experimental data see appendix C.
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dence onN ref

max
. This may be rooted in the fact that

6
He is a halo nucleus and, as a consequence,

larger Nmax are necessary such that the reference state captures the structure of the ground

state. Furthermore, the experimental ground-state energy is underestimated by about 1MeV,

however, this behavior is commonly known within the context of shell-model-like approaches

and hints at the relevance of neglected continuum degrees of freedom [Qua+18; NO03]. Tak-

ing excitation energies into account, we observe that the �rst 2+ lies slightly too high, and

that we predict the second excitation to be a 2+ state. The B(E2; 2+ → 0+) transition obtained

from the IM-NCSM lies, compared to the experimental value, much too low by about a factor

of 10—where the neglected continuum might again play a dominant role here.

The calculations for
22

O in �g. 6.26 show that also here the IM-NCSM is largely consistent

with the NCSM and properly predicts the experimental ground-state energy and the excitation

energies of the �rst lowest-lying states. The B(E2; 2+ → 0+) transitions from the IM-NCSM

and the NCSM are in agreement with each other, however, we observe a large di�erence with

regard to the experimental value—similarly to
20

O. In contrast to
20

O, there is a low lying 3+
state in the spectrum of

22
O which allows us to calculate the B(M1; 3+ → 2+) transition. The

IM-NCSM and the NCSM di�er from each other by about 20 %, however, the NCSM is still not

converged at Nmax = 8.

Figure 6.26 depicts IM-NCSM calculations at N ref

max
= 0 and 2 and experimental values for

22
Ne,

i.e., besides the previous study of
12

C, another fully open-shell nucleus. The ground-state en-

ergy and excitation energies obtained from the IM-NCSM show a slight but negligible N ref

max

dependence, are well converged w.r.t. Nmax, and are in good agreement with experimental val-

ues. The experimental radius, however, is underestimated by about 0.3 fm. The B(E2; 2+ → 0+)
transition from the IM-NCSM underestimates the experimental value by about a factor of 2—

which is much less pronounced than for
20

O. Similarly to the B(E2; 2+ → 0+) transition, the
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Figure 6.25.: Depiction of IM-NCSM calculations at N ref

max
= 0 to 4 and experimental values for

6
He. For details on experimental data see appendix C.

absolute value of the (negative) quadrupole moment is underestimated by about a factor of 2.
Taking the underestimated radius and dependence of the quadrupole operator on the radius

operator into account, it can be argued that the discrepancy observed here is an interaction

issue.
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Figure 6.26.: Left: IM-NCSM calculations at N ref

max
= 0 and 2 and experimental values for

22
Ne.

Right: IM-NCSM calculations at N ref

max
= 2, NCSM calculations, and experimental values for

22
O. For details on experimental data see appendix C.

Interpretation & Conclusion. Being concerned with electromagnetic observables and

having now studied their theoretical prediction for several di�erent nuclei, there seems to be

a speci�c pattern emerging: While calculations for fully open-shell nuclei like
12

C and
22

Ne

are already close to experimental values or at least close enough such that de�ciencies of the

interaction might explain the observed discrepancies, calculations for nuclei with a closed

proton shell, i.e.,
20

O,
22

O, and
6
He are giving B(E2) transition strengths that are much too

small with regard to their corresponding experimental ones.
7

At the moment, the main source for these discrepancies is not entirely clear and several

sources may be possible:

1. the interaction employed here may not adequately describe electromagnetic transition;

7
Regarding the halo nucleus

6
He, also the continuum might play a special role.
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2. free-space SRG induced electromagnetic operators of higher-particle rank may become

of importance;

3. errors due to intrinsic truncations of our many-body methods become sizeably large .

The �rst issue will be further addressed in chapter 7 by employing new generations of chiral

interactions. Nevertheless, we would like to remark that an increase of the B(E2) by a fac-

tor of 5, as it would be necessary for
20

O, through the employment of another interaction is

unlikely—an expectation that is con�rmed by the studies of the following chapter.

Considering the second possible source, we have found that free-space SRG induced operators

for these kind of observables are of minor importance [Sch+14; Sch+15]. This is also consistent

with the naïve picture that the free-space SRG removes the “hard-core”, i.e., acts on the short-

range part while preserving the physics of the long-range part of the wavefunction. The

underlying operator Q̂2
of the B(E2) transition exhibits a long-range character such that we

may not expect a signi�cant impact of the free-space SRG. However, we would like to note

that this simple picture for assessing the e�ects of the free-space SRG on the Q̂2
operator

may oversimplify things too much, as this operator also consists of tensor components the

free-space SRG may have a sizeable impact after all.

Lastly, there is the possibility that the IM-SRG evolution of the Q̂2
operator induces a substan-

tial amount of three or higher-body operators. As we are consistently truncating all our oper-

ators at the NO2B level throughout the evolution, these induced contributions are neglected

which—assuming that these induced contributions are of major importance–could explain the

large discrepancies with regard to experimental values. However, even if the transformation

of electromagnetic observables is su�ering from a massive amount of induced interaction

whose inclusion would bring us closer to the experiment, there is still the question why the

results obtained from the NCSM are also di�ering that much from the experiment even for

relatively large values for Nmax. Put di�erently, the possible explanation that the IM-SRG in-

duces a substantial amount of three or higher-body parts goes hand in hand with the fact that,

even at relatively highNmax, the eigenstates obtained from a regular NCSM calculation are not

adequately describing electromagnetic observables.

6.10.1. Hierarchy Inversion

Similarly to other observables like, e.g., the Hamiltonian, also the non-scalar operators as-

sociated with electromagnetic observables are truncated at the NO2B level. An important

question that always has to be kept in mind is to which extent the IM-SRG induces contribu-

tions beyond the NO2B level. It is the NO2B approximation which separates the IM-NCSM

from an exact treatment—which would have to be carried out in A-body space—and, there-

fore, the amount of induced contributions directly governs the uncertainty of the calculated

observables.
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In the context of the transformation of electromagnetic observables, the corresponding un-

transformed, i.e., initial operators X̂ L
M (0) are usually consisting of a one-body part only.

8
The

IM-SRG transforms this initial one-body operator such that for s > 0 we naturally obtain

a non-zero two-body contribution together with a transformed one-body part. The interre-

lation between the one and two-body and the manner in which they are feeding into each

other during the solution of the operator di�erential equation for X̂ L
M (s) is highly non-trivial

as can be seen by inspecting the commutator evaluation equations (see chapter 5). For ex-

amining the relative contribution of the transformed one-body and two-body operators to a

speci�c observable of interest, we calculate these observables in two di�erent ways. On the

one hand, we applied the regular approach: Starting from an initial one-body operator, we

obtain a transformed one and two-body part from the IM-SRG, which is then passed on to

the subsequent NCSM calculation. On the other hand, only the transformed one-body part

is taken into account for the subsequent NCSM calculation while the transformed two-body

part is neglected. Comparing both results, we are able to assess the impact of the transformed

two-body part on observables.

Oxygen-20. Figure 6.27 shows this analysis for the B(E2; 2+ → 0+) transition and the

quadrupole moment Q(2+) in
20

O. Regarding the B(E2) transitions an unsettling observation

can be made: The contribution of the one-body part to the B(E2) transition is completely

removed and entirely shifted into the induced two-body part—a behavior that we are referring

to as hierarchy inversion. As the complete operator structure is shifting from the one-body

to the two-body part this hierarchy inversion raises the question about the importance of

induced but neglected three-body terms. Furthermore, it might explain the rather signi�cant

discrepancies of the B(E2) transition obtained from the IM-NCSM with experimental values.

At this point one might wonder why the relative contribution of the transformed one-body

of the B(E2) transition is suppressed to such an extent. The answer to this question is simple:

Throughout the IM-SRG evolution the Hamiltonian is transformed such that its eigenstates are

forced into an “N ref

max
-sized box”, i.e., in a basis consisting of NCSM basis states the eigenstates

are purely built from basis states contained within {|�Ni ⟩ | N ≤ N ref

max
}. Due to a de�ciency of

the IM-SRG generator each eigenstate is, in fact, only consisting of basis states {|�Ni ⟩} with

one speci�c N with N ≤ N ref

max
. However, usually the eigenstates are transformed such that

they end up being contained within the Nmax = 0 space which is also illustrated by �g. 6.24.

The one-body part of Q̂2
, however, is only sensitive to protons

9
and, therefore, only “sees” the

closed proton shells of the Nmax = 0 eigenstates of
20

O based on which it may not contribute

anything to the B(E2) anymore. As the observable B(E2; 2+ → 0+) is supposed to be invariant

under the unitary transformation imposed by the IM-SRG, the entire physics has to be shifted

into the two-body part of Q̂2
. This may also be illustrated as follows: Initially, the B(E2)

transition obtains its value through eigenstates, which consists of NCSM basis states up to

large Nmax. The IM-SRG, however, transforms the Hamiltonian such that its eigenstates are

8
Throughout this consideration we neglect the two-body part induced by the free-space SRG as well as the

two-body part arising due to a center-of-mass subtraction.

9
The transformed one-body part may contain induced neutron-neutron matrix elements, however, these are

numerically not observed.
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Figure 6.27.: Starting with an initial quadrupole operator Q̂2
consisting only of a one-body

part, the IM-SRG evolution of this operator produces an evolved one and two-

body part. This �gure depicts the transition B(E2; 2+ → 2+) and the quadrupole

moment Q(2+) we obtain from an IM-NCSM calculation when only the evolved

one-body part (open symbols) or both the evolved one and two-body (solid sym-

bols) are taken into account within the �nal NCSM calculation. In both cases,

however, the one and two-body part are kept throughout the MR-IM-SRG evolu-

tion. The calculations shown here were performed for
20

O at N ref

max
= 0 to 4.
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Figure 6.28.: Similarly to �g. 6.27, this �gure shows calculations for
12

C.

built up from basis states with Nmax = 0 only and—as the observable has to be invariant—the

transformation of the operator Q̂L
M (0) is seeking to conserve the transition matrix element

⟨ (0)| Q̂L
M (0) | 

′(0)⟩
Û
←←←←←←←←←←←→ ⟨ (s)| Q̂L

M (s) | 
′(s)⟩ . (6.10.1)

However, this is only possible through inducing two-body operators—or even higher particle

ranks—acting in an Nmax = 0 space.

Carbon-12. Figure 6.28 is similar to �g. 6.27 only that it shows a study for
12

C. Obviously, we

have a reduction of the importance of the one-body part, i.e., a partial shift of contributions

into the induced two-body part, but this shift is much less pronounced than for
20

O. The

contribution of the one-body part is not vanishing throughout the evolution but stabilizes at

a value that corresponds to about half of its initial contribution at s = 0.

At �rst glance, this might seem surprising especially when compared to
20

O, but can be ex-

plained by considering the structure of the Nmax = 0 space for
12

C: Looking only at protons,

it consists of all basis states in which 2 protons are �lling up the 1s shell and 4 protons are

partially occupying the 1p shell, i.e, the 1p shell is open in this case. As the 1p shell itself

consists of 1p1/2 and 1p3/2 single-particle states the contribution of the one-body part is not
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forced to be zero even for eigenstates that purely live within the Nmax = 0 space. The same

picture applies for the quadrupole moment: The relative contribution of the one-body part is

approximately halved but not completely removed as it is the case for
20

O.

6.10.2. Observables and Particle-A�ached/Particle-Removed

The calculation of observables within the context of the IM-NCSM may also be combined with

particle-attached/particle-removed extension.

Figure 6.29 depicts the fully open-shell nucleus
21

F. While energetic observables are only dif-

fering slightly from experimental values, the B(E2; 5/2+ → 1/2+) obtained from the IM-NCSM

is about a factor of 2 too low. The magnetic dipole moment � of the 5/2+ state, however, di�ers

only slightly from the experimental value.

Figure 6.30 shows IM-NCSM calculations and experimental values for
19

O and
21

O. The cal-

culations for
19

O show that the ground-state energy is overestimated by about 2MeV and the

two lowest-lying nearly degenerate 3/2+ and 5/2+ states are reversed compared to experiment.

Surprisingly, the B(E2; 1/2+ → 5/2+) transition is much closer to experiment compared to
20

O,

however, they are still di�ering by about a factor of 2. The B(M1; 5/2+ → 3/2+) transition is

also in reach of the experimental value, even though it still seems to increase w.r.t. Nmax. The

theoretically predicted magnetic dipole moment � for the 3/2+ state lies within the experi-

mental error range and also �(5/2+) is close to the experimental value. Compared to
19

O,
21

O

exhibits a very similar behavior: The ground-state energy is slightly overbound, the excited

states are compatible with their experimental counterpart—where the second excitation is pre-

dicted to be a 3/2+ state—and the observed discrepancy for the B(E2; 1/2+ → 5/2+) transition

is by far less pronounced than for
20

O.

Why is the situation so much di�erent for
19

O and
21

O than for
20

O and
22

O? It might be the

case that the excitations involved in the B(E2) transitions are of a di�erent nature within the

even and the odd oxygen isotopes. This di�erent nature is also hinted at by the large gap

between the experimental transitions in those even and odd nuclei.

On the one hand, the relevant excitations in
20

O and
22

O might have larger contributions

of highly collective multi-particle multi-hole excitations beyond the N ref

max
reference space.

Due to di�erent operator structures, these collective contributions might have no substantial

impact on energetic observables, but may critically govern the B(E2) transition. If this is true,

then it follows that the IM-SRG transformation—which aims to decouple simple two-particle

two-hole excitations—is forced to induce operators beyond the NO2B rank and, therefore,

relevant physical information that is essential for an adequate description of electromagnetic

transitions is cut away. A possible solution for this problem is to choose a larger N ref

max
such

that correlations due to multi-particle multi-hole excitations are already captured at the level

of the reference state. This might also yield an explanation why
19

O and
21

O do not su�er

from the same amount of induced operators and discrepancies w.r.t. experimental values: The
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Figure 6.29.: IM-NCSM calculations for
21

F

performed at N ref

max
= 0 and employing

22
Ne

as parent nucleus. Furthermore, the corre-

sponding experimental values are depicted.

For details on experimental data see ap-

pendix C.

N ref

max
chosen here might already be su�cient such that the residual correlations are purely

associated with simple one-particle one-hole and two-particle two-hole excitations.

However, even if we chose an even larger N ref

max
, we are limited by the current implementation

of the generator construction and the underlying decoupling pattern. In particular, our current

decoupling pattern su�ers from a partial decoupling of determinants with di�erent excitation

quanta N from each other—even for N ≤ N ref

max
. As a consequence, the eigenstates are even-

tually dominated by determinants with a speci�c number of excitation quanta only—which

is usually N = 0—as can be seen in �g. 6.24. Therefore, we have to modify our decoupling

pattern such that, e.g., an N ref

max
= 2 calculation meets our naïve expectations: A decoupling of

N = 0 and N = 2 determinants from N > 2 determinants, but leaving the coupling of N = 0
and N = 2 determinants with each other intact.

Note that such a modi�cation is part of future developments and is unfortunately not part of

this work anymore. However, we would like to note that there are already several ideas how

to optimize the decoupling pattern.
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Figure 6.30.: IM-NCSM calculations at N ref

max
= 2 and experimental values for

19
O (left) and

21
O (right), where

20
O and

22
O were employed as parent nuclei, respectively. For

details on experimental data see appendix C.
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Chapter 7.

In-Medium No-Core Shell

Model—Applications and Outlook

Throughout the previous chapters we have thoroughly discussed the concept of the IM-NCSM

as well as methodical improvements and comparisons with exact methods like the NCSM.

This chapter is mainly focused on applications of the IM-NCSM. We will study various observ-

ables in the oxygen and �uorine chain employing the N
3
LOEM+N

2
LO400,L interaction. How-

ever, this interaction exhibits several de�ciencies, namely, the underestimation of radii, the

overbinding the oxygen chain, and an inconsistency regarding the determination of the low-

energy constant cD in the three-body sector, which has only recently been discovered [GQN19;

Mar+18]. As a consequence, we will study the properties and characteristics of new gener-

ations of chiral interactions and the impact of some of its parameters on nuclear structure

observables—some of which are surprising. Finally, we will employ such a new chiral inter-

action and explore its properties in the oxygen and neon chain.

7.1. Oxygen and Fluorine Chain

Oxygen Chain. Employing the N
3
LOEM+N

2
LO400,L interaction at � = 0.08 fm4

, we study

ground-states energies obtained from the IM-NCSM and the NCSM for oxygen isotopes from

14
O up to

26
O in �g. 7.1. The NCSM calculations have been performed employing either a full

or an NO2B-approximated 3N interaction.

By comparing the NCSM calculations employing a full 3N interaction with those employing

an NO2B-approximated 3N interaction, it becomes evident that for medium-mass nuclei the

NO2B approximation leads to an overbinding of about 1 − 2%, which is consistent with pre-

vious �ndings [GCR16; Rot+12]. As both the IM-NCSM and the NCSM(NO2B) calculations

are starting from the same NO2B-approximated initial Hamiltonian, we may assess the error
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Figure 7.1.: Ground-state energies for oxygen chain isotopes. On the one hand, error bars

with regard to NCSM calculations (either with full or NO2B-approximated 3N in-

teractions) indicate Nmax → ∞ extrapolation uncertainties. On the other hand,

error bars for IM-NCSM calculations, which were performed at N ref

max
= 2, in-

dicate the di�erence between two subsequent NCSM calculations performed at

Nmax = 2, 4—which eventually is smaller than the plot marker itself. We employed

the N
3
LOEM+N

2
LO400,L interaction at � = 0.08 fm4

. For details on experimental

data see appendix C.

introduced by the IM-NCSM, which solely originates from induced many-body pieces beyond

the NO2B rank during the IM-SRG evolution. We observe that the IM-NCSM results lie slightly

below the NCSM(NO2B) results but still within, or at least very close to, the corresponding

error bars. Thus, the IM-NCSM introduces an additional error at the level of approximately

1% for ground-state energies. Furthermore, we can examine the dependence of the PA/PR ex-

tension on the parent nucleus for the IM-NCSM results for odd isotopes, where two di�erent

plot markers are employed for the speci�cation of the speci�c parent nucleus. Obviously, this

choice has practically no impact for the odd oxygen isotopes shown here. Lastly, we may

compare our theoretical results to experimental values, showing that the general trend of the

experimental ground-state energies is very well reproduced. Also the position of the neutron

drip line is correctly predicted—with
24

O being the last stable neutron-rich isotope within the

oxygen chain.

Note that �g. 7.1 introduces a new kind of theoretical uncertainty estimation: In these kind of

plots, error bars of IM-NCSM calculation solely indicate di�erences between the largest two

Nmax spaces. Uncertainties of experimental values, however, are shown as shaded bands.
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Figure 7.2.: Charge radii for oxygen chain isotopes from the IM-NCSM. Error bars indicate

the di�erence between two subsequent NCSM calculations performed at Nmax =
2, 4—which eventually is smaller than the plot marker itself. We employed the

N
3
LOEM+N

2
LO400,L interaction at � = 0.08 fm4

. IM-NCSM calculations have been

performed at N ref

max
= 2. For details on experimental data see appendix C.

Figure 7.2 depicts charge radii obtained from IM-NCSM calculations for oxygen chain isotopes

and compares them to experimental values. Evidently, radii are underestimated by about

0.2 fm. Also the experimentally large increase of almost 0.1 fm from
17

O to
18

O is practically

not reproduced. This is a de�ciency of the chiral interaction we are employing and is also

observed in other many-body methods.

Having discussed scalar ground-state observables of oxygen chain isotopes, let us now con-

sider excitation energies, electromagnetic transitions and moments. Figure 7.3 depicts IM-

NCSM calculations for various observables for the oxygen isotopes
17

O to
22

O and also shows

corresponding experimental values.

Considering excitation spectra, the IM-NCSM reproduces the experimentally observed order

of states and the excitation energies are mostly in good agreement. The B(E2) transitions

for the odd isotopes
19

O and
21

O lie—compared to the other nuclei shown here—close to the

experimental values. However, for all even isotopes and
17

O we observe large discrepancies

and, as already mentioned, we assume that these di�erences are rooted in de�ciencies of the

interaction employed here and the limitations of the IM-NCSM model space. The assumption

that the B(E2) transitions for
19

O and
21

O are, compared to the other nuclei shown here, of dif-

ferent nature is also hinted at by the fact that the absolute values for their transitions is rather

small. The quadrupole moments Q(5/2+) of
17

O and Q(2+) of
18

O di�er from the experimental

163



Chapter 7. In-Medium No-Core Shell Model—Applications and Outlook

0

2

4

6

8

E*  
[M

eV
]

5/2+
1

1/2+
1

3/2+
1

0+
1

4+
1

2+
1

5/2+
1

1/2+
1

3/2+
1 0+

1

4+
1

2+
1

5/2+
1

1/2+
1

3/2+
1

3+
1

0+
1

2+
1

0
2
4
6
8

10

B(
E

2)
 [e

2 f
m

4 ]

1/2+
1 5/2+

1 2+
1 0+

1

5/2+
1 3/2+

1

1/2+
1 3/2+

1

1/2+
1 5/2+

1 2+
1 0+

1 1/2+
1 5/2+

1 2+
1 0+

1

4

2

0

2

Q
 [e

fm
2 ]

5/2+
1

2+
1

5/2+
1

3/2+
1

2+
1

5/2+
1 2+

1

17O 18O 19O 20O 21O 22O
3.0
2.5
2.0
1.5
1.0
0.5
0.0

 [
N
]

5/2+
1

1/2+
1 4+

1

2+
1

5/2+
1

3/2+
1

4+
1

2+
1

5/2+
1

1/2+
1

3+
1

2+
1

Figure 7.3.: IM-NCSM calculation for oxygen isotopes from
17

O to
22

O. Calculations were per-

formed at N ref

max
= 2 and error bars indicate the di�erence between Nmax = 4 and

Nmax = 2. Bars and shaded areas indicate experimental values and errors, re-

spectively. Note that the sign of the dipole moments �(4+) in
18

O and �(5/2+) in

19
O and of the quadrupole moment Q(5/2+) in

19
O are experimentally unknown

and theoretically predicted. We employed the N
3
LOEM+N

2
LO400,L interaction at

� = 0.08 fm4
. For details on experimental data see appendix C.
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Figure 7.4.: IM-NCSM calculations at N ref

max
= 0 and Nmax = 2 for the ground-state energies of

various �uorine chain isotopes. Error bars indicate the di�erence between Nmax =
2 and Nmax = 0. We employed the N

3
LOEM+N

2
LO400,L interaction at � = 0.08 fm4

.

For details on experimental data see appendix C.

value by about 50 %, while Q(5/2+) of
18

O di�ers by about a factor of 10. However, both, the

experimental and theoretical value are very small. The magnetic dipole moments � for
17

O to

20
O agree surprisingly well with experimental values.

Fluorine chain. Let us now proceed with fully open-shell nuclei. Figure 7.4 depicts ground-

state energies obtained from the IM-NCSM as well as experimental values for the isotopes

throughout the �uorine chain. The uncertainties of the IM-NCSM calculations are more pro-

nounced than for the oxygen isotopes discussed previously and the experimental values lie

either within or very close to the error range of IM-NCSM results. Thus, also for these mostly

fully open-shell nuclei w.r.t. both protons and neutrons the IM-NCSM results for the ground-

state energies are in good agreement with experimental values. Note that �g. 7.4 does not

include the isotopes
29

F and
30

F since the associated IM-SRG evolutions become very sti� and

we are not able to obtain converged results—in contrast to calculations based on other chiral

interactions.

Furthermore, �g. 7.5 shows the excitation energies of the �rst excited states for �uorine iso-

topes. Compared to the rather simple behavior of the oxygen isotopes, things are more com-

plicated here: Experimentally, the excitation energies are rather small and the theoretically

obtained absolute values or even the order of the ground and excited state are not always in

accord with experiment. While the excitation energies show a sizeable dependence on Nmax

for some isotopes, for others it is practically converged at Nmax = 0. Except for
24

F and
25

F, the

IM-NCSM and the experiment are largely agreeing with each other and eventually only the

order of states is reversed. For
25

F, however, only the quantum numbers of the ground state

are correctly predicted and for
24

F the 3+ shows a sizeable dependence on Nmax and probably
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Figure 7.5.: Excitation energies for the �uorine isotopes
19

F up to
28

F from the IM-NCSM. Cal-

culations have been performed at N ref

max
= 0. For details on experimental data see

appendix C.
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crosses the 1+ and 0+ state for higher Nmax such that the IM-NCSM and experiment would

agree.

7.2. New Generations of Chiral Interactions

The dependence of observables on the interaction is illustrated in �g. 7.6, which depicts IM-

NCSM calculations for
21

O employing three di�erent chiral interactions.
1

Firstly, we em-

ployed the N
3
LOEM+N

2
LO400,L interaction at � = 0.08 fm4

, which includes the NN interaction

by Entem and Machleidt [EM03] with a cuto� ΛNN = 500MeV and an 3N interaction with

local regulator and reduced cuto� Λ3N = 400MeV [Nav07; Rot+12]. Secondly, we used the

N
3
LOEM+N

2
LO500,NL interaction at � = 0.12 fm4

, which is an update of the N
3
LOEM+N

2
LO400,L

interaction, but employs a non-local regulator for the 3N interaction, Λ3N = 500MeV, and

a corrected cD value [GQN19; Mar+18]. Thirdly, we use the N
2
LOSAT+N

2
LOSAT interaction

[Eks+15] by Ekström et al., which uses NN and 3N interactions at N
2
LO, non-local regulators,

cuto�s ΛNN = Λ3N = 450MeV, and includes many-body observables for the determination of

its low-energy constants—in contrast to all other interactions employed throughout this work

that only employ few-body data.

Considering the �rst two interactions, the ground-state energy and the excitation energies

are in good agreement with experiment. Furthermore, we predict the third state as a 3/2+

state. The B(E2) transitions di�er drastically between the two �rst interactions by almost a

factor of 2, where the result for the B(E2; 1/2+ → 5/2+) transition obtained from the interac-

tion N
3
LOEM+N

2
LO500,NL agrees well with the corresponding experimental value. The B(M1)

transitions, however, di�er only slightly between these two interactions. Looking at the third

interaction N
2
LOSAT+N

2
LOSAT, a di�erent picture emerges: The binding energy is substan-

tially overestimated and the excitation energies lie much too high compared to experimental

values. While the B(E2) transitions are mostly similar between the second and third interac-

tion, the B(M1; 3/2+ → 1/2+) transition is much lower compared to the other two interactions.

Due to the fact that already the excitation energies obtained from the N
2
LOSAT+N

2
LOSAT in-

teraction di�er signi�cantly from experimental values, questions about the trustworthiness

of the other results are raised.

This study of
21

O demonstrates that the speci�c choice for the chiral interaction has a sub-

stantial impact on observables. Therefore, we will explore other, newer generations of chiral

interactions in the following, which eventually lead to a better agreement with experimental

values.

1
Note that the calculations presented here were performed in the context of a collaboration with experimentalists

that measured electromagnetic transitions among the lowest-lying states in
21

O. A publication is currently in

preparation.
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Figure 7.6.: IM-NCSM calculations at N ref

max
= 2 for

21
O employing several chiral interaction

(see text for details). Calculations were performed employing
22

O as parent nu-

cleus. For details on experimental data see appendix C.
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Figure 7.7.: IM-NCSM calculations at N ref

max
= 2 and Nmax = 2 for several carbon, oxygen,

and calcium isotopes. We employed a local and a non-local regulator and three

di�erent values for the free-space SRG �ow parameter � . Experimental values are

indicated through black bars (for details see appendix C).

7.2.1. Regulator E�ects: Local vs. Non-Local Regulators

For avoiding in�nities, interaction terms V̂ obtained from �EFT have to be regularized, i.e.,

high momenta have to be cut o�, which is consistent with �EFT being only valid for momenta

Q ≪ Λ� ≈ 1GeV [EM03; ME11]. While various regularization schemes are available, they fall

in either of two classes or anything in between: local and non-local. For more information

see, e.g., [EM03; EMN17; EKM15; ME11; EM09]

Figure 7.7 shows a comparison of IM-NCSM calculations employing local and non-local three-

body regulators for the two interactions N
3
LOEM+N

2
LO500,L and N

3
LOEM+N

2
LO500,NL, respec-

tively. Both of these interactions are updates of the commonly used N
3
LOEM+N

2
LO400,L inter-

action with a cuto� of Λ3N = 500MeV and a corrected cD value.

There is a signi�cant di�erence between the local and non-local regularization scheme. While

the non-locally regularized interaction yields binding energies that are consistent with exper-

imental values, the locally regularized interaction gives too much binding—in oxygen iso-

topes up to 50MeV, in calcium more than 400MeV. Except for the heavier calcium isotopes,

the dependence on � is negligible. Looking at charge radii, a similar picture emerges: The
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Figure 7.8.: Ground-state energies and radii obtained from the single-reference IM-SRG for

16
O and

40
Ca employing several chiral interactions. All interaction were soft-

ened through a free-space SRG transformation up to � = 0.04 fm4
(open sym-

bols) and � = 0.08 fm4
(solid symbols). Furthermore, we employed a circle, a

square, and a diamond-shaped symbol for indicating cD = −1.0, −2.0 and −3.0
(N

2
LOEMN+N

2
LO500,NL); cD = 1.0, 2.0 and 3.0 (N

3
LOEMN+N

3
LO500,NL); cD = 2.0, 3.0

and 4.0 (N
4
LOEMN+N

3+
LO500,NL); and cD = 2.0, 3.0 and 4.0 (N

4
LOEMN+N

3+
LO450,NL),

respectively. Experimental values are indicated through horizontal and vertical

lines (for details see appendix C).

N
3
LOEM+N

2
LO500,NL interaction over or underestimates the charge radius in

12
C and

16
O, re-

spectively, by about 0.1 fm, whereas the di�erence in calcium gets larger. However, the dis-

crepancies of the local interaction with the experimental values are much larger.

In summary, we observe that the regularization scheme has a sizeable impact on observables.

As a consequence, it might be necessary to reevaluate regulator e�ects in future investigations.

For the time being, however, we decided to employ non-local regulators for our following

calculations.

7.2.2. Study of Energy-Radius Correlations

Next, we conducted a survey, where we investigated ground-state energies and radii for
16

O

and
40

Ca as shown in �g. 7.8. Besides the already discussed interactions N
3
LOEM+N

2
LO400,L

and N
2
LOSAT+N

2
LOSAT, this �gure also shows results for the family of interactions referred to

170



7.2. New Generations of Chiral Interactions

via N
�2

LOEMN+N
�3

LO500/450,NL, which employ an NN interaction [EMN17] by Entem, Mach-

leidt, and Nosyk (EMN) together with a non-local 3N interaction [Heb+15]. As these interac-

tions are available for several chiral orders �2 and �3 for the NN and 3N interaction, respec-

tively, we may investigate the convergence of the chiral expansion. Note that the notation

N
4
LOEMN+N

3+
LO500,NL indicates that selected 3N terms from N

4
LO are included.

Note that all interactions have been free-space SRG transformed up to either � = 0.04 fm4
or

� = 0.08 fm4
. Furthermore, we employed three di�erent values for cD for each interaction by

EMN for investigating the dependence of observables on cD , where cD is obtained from a �t

to the
4
He binding energy (the employed values for cD are given in the caption of �g. 7.8).

The “old” N
3
LOEM+N

2
LO400,L interaction yields results that lie farthest away from the intersec-

tion of the experimental ground-state energy and charge radius. Even though the interaction

N
2
LOSAT+N

2
LOSAT yields results that are closer to experimental values, especially through an

improved prediction of radii, some interactions from EMN yield even better results—and in-

clude only few-body data for the determination of the LECs. Note that the N
2
LOSAT+N

2
LOSAT

interaction is originally designed to match the charge radius and binding energy of
16

O, where

the LECs are determined via a coupled cluster singles and doubles (CCSD) calculation employ-

ing bare interactions. In contrast, we are are employing free-space SRG evolved interactions

since bare interactions usually imply larger uncertainties due to an increased role of inher-

ent truncations—raising questions about the trustworthiness of CCSD calculations with bare

interactions after all. Furthermore, we made the observation that spectra obtained from the

N
2
LOSAT+N

2
LOSAT interaction do not agree very well with experimental data, which can also

be seen in �g. 7.6.

Considering the family of interactions from EMN, we observe that there is not only a sizeable

dependence on the chiral order, but also on cD and Λ3N for both
16

O and
40

Ca. While the local

interaction yields radii that are much too small, all non-local interaction give much larger radii.

Looking at all non-local interactions, energies and radii seem to be approximately linearly

correlated, however, the estimated line describing the correlation still lies too low, i.e., radii

are still too small. Future investigations have to sort out the dependence on cD and Λ3N such

that, eventually, an interaction that minimizes the di�erence to experimental values may be

constructed.

For the time being, however, we decided to employ the N
4
LOEMN+N

3+
LO500,NL interaction

with cD = 3.0 for our following studies. This interaction contains NN and 3N interactions

at the highest order currently available and, compared to the N
3
LOEM+N

2
LO400,L interaction,

yields better radii in both
16

O and
40

Ca and better binding energies in
40

Ca.

We would like to note at this point that there is another family of interactions under develop-

ment within the LENPIC collaboration. For the construction of these interactions, semi-local

regulators are employed and one of the goals is to study the convergence of the chiral ex-

pansion and to quantify theoretical uncertainties due to truncations of the chiral expansion

[Bin+16; Bin+18; Epe+19]. However, in this work none of these interactions are employed.
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Figure 7.9.: Ground-state energies and charge radii from the IM-NCSM atN ref

max
= 2 andNmax =

4 for oxygen isotopes employing the N
4
LOEMN+N

3+
LO500,NL interaction at � =

0.08 fm4
. For details on experimental data see appendix C.

7.3. Oxygen Chain—Revisited

Let us now reconsider oxygen isotopes by employing the N
4
LOEMN+N

3+
LO500,NL interaction

at � = 0.08 fm4
. Figure 7.9 shows ground-state energies and charge radii for all isotopes of the

oxygen chain up to
26

O.

Similarly to applications employing the N
3
LOEM+N

2
LO400,L interaction, also here the ground-

state energies are in good agreement with experimental data and the neutron drip line is

correctly predicted at
24

O.
2

Looking at charge radii, we observe a similar pattern as in �g. 7.2, however, the radii obtained

with the N
4
LOEMN+N

3+
LO500,NL interaction are increased by about 0.1 fm—reducing the dis-

crepancies with experiment. However, also calculations employing this newer interaction do

not show the experimentally observed increase of the charge radius from
17

O to
18

O.

Nevertheless, the obtained radii are signi�cantly larger and closer to experimental values,

while—which is somewhat surprising—the ground-state energies are approximately invariant.

Therefore, future investigations and developments of new generations of chiral interactions

might eventually resolve the issue of too small radii.

2
The correct prediction of the neutron drip line is insofar noteworthy as we also employed interactions that

were in good agreement with experimental values up to approximately
20

O, but for heavier nuclei than that

we observed a rapid decrease of the binding energy.
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Figure 7.10.: Excitation energies, B(E2) transitions, and quadrupole moments for oxygen chain

isotopes obtained from the IM-NCSM at N ref

max
= 2 and Nmax = 4 employing the

N
4
LOEMN+N

3+
LO500,NL interaction at � = 0.08 fm4

. Error bars indicate di�erences

between Nmax = 2 and 4. For details on experimental data see appendix C.

Let us now move on to the discussion of spectra, transitions and moments of oxygen iso-

topes as depicted in �g. 7.10. Comparing the results shown here with �g. 7.3, a similar pic-

ture is drawn. There are slight discrepancies between theoretical and experimental values for

the excitation energies, however, the order of states and their quantum numbers are in good

agreement. Looking at B(E2) transitions, we observe that, similarly to the N
3
LOEM+N

2
LO400,L

interaction, also this interaction yields results for
19

O and
21

O that are close to the experimen-

tally observed values, however, for the other nuclei presented here there are again signi�cant

discrepancies. Naturally, also the quadrupole moments still not agree with experimental val-

ues.

A detailed comparison of B(E2) transitions obtained from either the N
4
LOEMN+N

3+
LO500,NL

or the N
3
LOEM+N

2
LO400,L interaction is shown in �g. 7.11. Evidently, the B(E2) transition

depend only slightly on the interaction and most results are approximately lying within the

error bars of each other.

Thus, there are still open questions regarding the source for the rather large discrepancies
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Figure 7.11.: This �gure depicts a direct comparison of B(E2) transitions for oxygen chain iso-

topes employing either the N
4
LOEMN+N

3+
LO500,NL interaction (left symbols) or

the N
3
LOEM+N

2
LO400,L interaction (right symbols). Both interactions have been

free-space SRG transformed up to � = 0.08 fm4
and IM-NCSM calculations have

been performed at N ref

max
= 2 and Nmax = 4. Error bars indicate di�erences be-

tween Nmax = 2 and 4.

between theoretically predicted and experimentally measured B(E2) transition strenghts for

oxygen isotopes. Future investigations have to address these question and investigate if these

di�erences are rooted within the interaction, the inherent truncations of the IM-NCSM, or

both.

7.4. Neutron-Rich Fluorine Isotopes

We performed IM-NCSM calculations for the two neutron-rich �uorine isotopes
29

F and
30

F

as shown in Figure 7.12. Both nuclei are in the direct vicinity of the neutron drip line and

recently gained interest from experimentalists.

The calculations for
30

F show that the theoretically predicted ground state is a 2− state lying

at about −177MeV, where we would like to note that the interaction that we were employing

in this case has the tendency to underestimate the binding energy in neutron rich systems.

The �rst two excitations are a 6− and a 4− state, which are nearly degenerate at Nmax = 6, and

lie at about 0.5MeV—but show an inverse trend w.r.t. Nmax. The next two states, however, are

energetically clearly separated. Even though the Nmax convergence is not as enhanced as for

the oxygen isotopes, there are only slight changes from Nmax = 4 to Nmax = 6.

Figure 7.12 also shows results for
29

F obtained from IM-NCSM calculations employing
30

Ne

as parent nucleus. We predict a 5/2+ ground-state lying at about −178.5MeV. The �rst two
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Figure 7.12.: IM-NCSM calculation at N ref

max
= 2 for

29
F employing

30
Ne as parent nucleus (left)
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excitations are a 1/2+1 and a 3/2+1 state, which both are reasonably well converged at the largest

Nmax available. For higher-lying excitations, however, things get interesting: There is a whole

bunch of energetically close states that is coming down from high excitation energies. Com-

pared to the three lowest-lying states, their energies still show a pronounced dependence on

Nmax and s. The lowest-lying states in this bunch of states are a 5/2+2 state, followed by two

nearly degenerate 9/2+1 and 3/2+2 states. As the 5/2+2 state is nearly degenerate with the 3/2+1
state and still moves to lower energies w.r.t. Nmax and s, it is likely that it turns out as the

second excitation by moving past the 3/2+1 state. However, we can not give a de�nite answer

on the order of the excited states as these high-lying states are not fully converged.

We would like to remark that the behavior of those high-lying states resembles the behavior

of spurious eigenstates. However, we performed calculations at several values for �cm and

veri�ed that—even though they show a larger dependence on �cm than the �rst two excited

states—those higher-lying eigenstates are no spurious center-of-mass excitations.

7.5. Neon Chain

Let us now move on to the fully open-shell nuclei of the neon chain, whose ground-state

energies and charge radii are shown in �g. 7.13.

Overall, the ground-state energies agree well with experimental values and reproduce the

general trend for the binding energies. A prediction of the neutron drip line is di�cult, as also

experimentally the binding energies are almost constant between
30

Ne and
34

Ne, whereas

there are small variations of the results obtained from the IM-NCSM. However, starting from

35
Ne, we see a signi�cant decrease of the binding energy.

Looking at the charge radii shown in �g. 7.13, we observe the by now well-known pattern

that theoretically obtained charge radii underestimate experimental values. The largest dis-

crepancy is found for
20

Ne, where the di�erence amounts to approximately 0.2 fm. Taking

error bars into account
3
, the discrepancy for

23
Ne to

26
Ne is much lower and in the region of

0.05 fm to 0.1 fm.

Interestingly, we observe that the experimental radius for
24

Ne lies within a local minimum—

hinting at sub-shell closure e�ects of the 1d5/2 neutron shell. Furthermore, the IM-NCSM

calculations for
23

Ne to
26

Ne are showing a slower Nmax convergence than the other neon iso-

topes. Both of these observations are consistent with previous �ndings that also oxygen chain

isotopes—which have a closed proton shell—are showing a slowed down Nmax convergence

for N ref

max
= 0.

Excited states, B(E2) transitions, and quadrupole moments for
20

Ne up to
34

Ne are shown

in �g. 7.14. All in all, the spectra obtained from the IM-NCSM are compatible with the ex-

perimentally observed ones with regard to both excitation energies and quantum numbers.

3
While the error bars are depicting a symmetric error, the radius is usually increasing w.r.t. Nmax.
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Figure 7.13.: Ground-state energies and charge radii obtained from the IM-NCSM at N ref

max
=

0 and Nmax = 2 for
20

Ne up to
36

Ne. We employed the N
4
LOEMN+N

3+
LO500,NL

interaction at � = 0.08 fm4
. IM-NCSM error bars indicate di�erences between

Nmax = 0 and 2. For details on experimental data see appendix C.

Surprisingly, the B(E2) transition strengths are in much better agreement with experiment

than for oxygen isotopes. The largest discrepancies are observed for
20

Ne,
21

Ne, and
22

Ne,

where the di�erence amounts to a factor of 2 to 3—which is still much smaller than the huge

di�erences we found for the even oxygen isotopes. Furthermore, it is noteworthy that the or-

der of the transitions in
22

Ne is correct: While both the B(E2; 2+ → 0+) and the B(E2; 4+ → 2+)
transition are too small, also experimentally the latter is bigger than the former. For the

more neutron-rich neon isotopes
24

Ne and
26

Ne, we obtain IM-NCSM results that are very

close to the corresponding experimental values. Going even further, however, we see that the

B(E2; 2+ → 0+) for
28

Ne di�ers by about a factor of 2. Regarding quadrupole moments, there

is only experimental data for
20−22

Ne available, where we obtain IM-NCSM results that di�er

by about a factor of 2.

In summary, there are still di�erences between theoretical and experimental values regarding

electromagnetic transitions and moments, however, those di�erence are less pronounced than

in previous studies of oxygen isotopes and may very well be resolved by an optimization of

the interaction. Regarding the di�erent behavior of neon isotopes compared to oxygen iso-

topes, we believe that the open proton shell found in neon isotopes partially accounts for this

di�erent behavior. The IM-NCSM su�ers much less from inherent truncations and de�cien-
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Figure 7.14.: Excited states, B(E2) transitions, and quadrupole moments obtained from the IM-

NCSM atN ref

max
= 0 andNmax = 2 for

20
Ne up to

36
Ne. IM-NCSM error bars indicate

di�erences between Nmax = 0 and 2. We employed the N
4
LOEMN+N

3+
LO500,NL

interaction at � = 0.08 fm4
. For details on experimental data see appendix C.
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cies in fully open-shell nuclei as the reference state | ref⟩ captures the main structure of the

relevant eigenstates already at N ref

max
= 0. In contrast, it might be essential in oxygen isotopes

to perform calculations at N ref

max
= 2, i.e., include Nmax = 2 determinants in the expansion

of eigenstates, for adequately describing electromagnetic observables and, as a consequence,

oxygen isotopes are much more sensitive to eventual de�ciencies of the IM-SRG decoupling

pattern.

Thus, one of the main goals of future investigations towards extensions of the IM-NCSM is

the optimization of decoupling patters and generators such that we may eventually isolate the

source for the observed discrepancies w.r.t. electromagnetic transitions and overcome it.
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Chapter 8.

Summary and Outlook

Throughout this work, we discussed the foundations, extension, and applications of the IM-

NCSM, which is a combination of two succesful ab initio many methods: the IM-SRG and the

NCSM.

On the one hand, the NCSM is an exact con�guration interaction approach. It represents and

diagonalizes the Hamiltonian w.r.t. a truncated many-body model space and gives direct access

to ground and excited-state observables. However, due to the growth of the basis dimension

it is limited to the description of p-shell nuclei—or lower sd-shell nuclei if an importance-

truncation scheme is applied.

On the other hand, the IM-SRG is a medium-mass method that performs an unitary transfor-

mation of observables. This transformation is designed such that a reference state—usually

chosen as the ground-state of the A-body system under consideration—is decoupled from

particle-hole excitations. In this work, we employ the multi-reference IM-SRG that uses corre-

lated reference states and, therefore, makes open-shell nuclei accessible. As the IM-SRG trans-

formation is not carried out in A-body space, but all operators are truncated at the normal-

ordered two-body rank, the transformation is not exactly unitary. It is solely this truncation

that separates the IM-SRG from being an exact method and introduces an uncertainty.

The IM-NCSM consists of an initial NCSM calculation for the determination of the reference

state. Based on this reference state, the IM-SRG performs a unitary transformation of ob-

servables, which is constructed such that the reference state gets decoupled. Subsequently,

the IM-SRG-transformed observables enter a �nal NCSM calculation, whose convergence is

substantially improved compared to a regular NCSM calculation—demonstrating the power

of the IM-SRG decoupling scheme. As a consequence, the IM-NCSM may treat nuclei that

are out of reach for traditional NCSM calculations. An essential aspect of the IM-NCSM is the

complementarity of the two ab initio many-body methods it is built upon: Each stage employs

its inherent truncations scheme and may capture di�erent kinds of correlations such that, in

total, a large portion of correlations is accounted for.
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The initial formulation of the IM-NCSM had several restrictions that we eliminated in this

work. One problem concerns the total angular momentum of the reference state, which is

required to vanish due to the spherical formulation of the IM-SRG equations. The particle-

attached/particle-removed extension overcomes this restriction and makes odd nuclei acces-

sible by di�erentiating between a “parent” and a “target” nucleus. The parent nucleus de�nes

the reference state that is decoupled from particle-hole excitations via the IM-SRG, while the

target nucleus speci�es the many-body system w.r.t. which the �nal NCSM calculation is per-

formed. Similarly to the regular IM-NCSM approach, the NCSM calculation for the target

nucleus greatly bene�ts from the IM-SRG transformation of observables, i.e., the convergence

is substantially enhanced.

Furthermore, the spherical formulation of the IM-SRG equations—which is mandatory from

a computational point of view—did not account for non-scalar operators and, therefore, the

consistent transformation of electromagnetic observables was not possible. For overcoming

this limitation, we derived analytical expressions for the spherical IM-SRG equations in which

the spherical tensor rank of the observable may be chosen freely. In practical applications,

however, directly solving the ordinary di�erential equations for non-scalar observables is not

feasible due to a signi�cantly increased computational e�ort. Fortunately, we can make use

of the Magnus formulation of the IM-SRG that had been implemented at the beginning of this

research project. Broadly speaking, the Magnus formulation determines the generator for the

IM-SRG transformation and the computational e�ort for the subsequent transformation of

observables is greatly reduced.

Considering numerical applications, we employ the IM-NCSM for the calculation of ground-

state energies, excitation energies, radii, magnetic dipole moments, electric quadrupole mo-

ments, B(M1) transitions, and B(E2) transitions, where we study various medium-mass nu-

clei up to calcium isotopes. These calculations are already converged at very small model-

space sizes—showing the great advantage of the IM-NCSM—and the results are compatible

with large-scale NCSM calculations. While ground-state and excitation energies are mostly

in agreement with the experiment for nuclei up to neon isotopes, radii are usually too small—

a well-known de�ciency of currently employed chiral interactions. In the context of elec-

tromagnetic observables the emerging picture is more diverse: Numerical applications for,

e.g.,
12

C show that B(E2) transition strengths, and quadrupole moments are largely in agree-

ment with the experiment, however, there are also cases where B(E2) transition strengths and

quadrupole moments su�er from large discrepancies with experimental values. On the one

hand, the observed discrepancies might be an issue of the interaction and, in fact, we see

a sizeable dependence of electromagnetic observables on the interaction. Employing newer

generations of chiral interactions might, therefore, eventually lead to a better agreement with

experimental values. On the other hand, there might be a substantial amount of induced

many-body pieces beyond the NO2B rank, which is eventually rooted in de�ciencies of the

IM-SRG generator. In future applications, we will investigate whether a generator optimiza-

tion resolves this issue and, thus, leads to a better agreement of the IM-NCSM with the exper-

iment.
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In this work, we were only looking at B(E2) and B(M1) transitions strengths. However, we laid

the groundwork to employ the IM-NCSM for studying other non-scalar observables like, e.g.,

B(E1) and Gamow-Teller transitions in future applications. An ongoing project deals with the

estimation of induced many-body contributions beyond the normal-ordered three-body rank,

which are neglected throughout the IM-SRG evolution. The Magnus formulation of the IM-

SRG o�ers an opportunity to approximate these e�ects of induced three-body contributions.

As a consequence, we would be able to give a quantitative assessment of the uncertainty of

IM-NCSM calculations.

In summary, the IM-NCSM is now capable of addressing the full range of nuclear structure

observables—including spectroscopic and electromagnetic observables—in fully open-shell

nuclei and future developments will mostly treat optimizations of this framework. Further-

more, we obtain results that are largely compatible with NCSM calculations—at a fraction of

the computational cost. The new possibility to calculate electromagnetic observables from

the IM-NCSM is ideal for validating theoretical models and opens up new opportunities for

fruitful collaborations with experimentalists. Assuming that the reference state captures the

most relevant correlations already at small model-space sizes, the IM-NCSM is ready to be

utilized for exploring the complete medium-mass range of the nuclear chart. Therefore, the

IM-NCSM o�ers an ab initio framework that can be used to study, e.g., the structure of nuclei

in the vicinity of the neutron drip line and island-of-inversion physics. Finally, the IM-NCSM

will be a valuable tool for investigating new generations of chiral interactions and eventually

may contribute to establish a new era of high-precision theoretical nuclear physics.
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Appendix A.

E�ective Valence-Space Interactions from

the In-Medium SRG

Formally, the valence-space shell model (VSSM) [KB66; Cau+05; Cor+14] belongs to the class

of con�guration interaction approaches as already discussed in chapter 2 in the context of the

NCSM. However, in contrast to the NCSM the shell-model usually employs another truncation

of its model space such that not all nucleons are active degrees of freedom. Pictorially, there is

a “frozen core” of single-particle states that are all contributing equally to all many-body basis

states contained within the model space. On top of this frozen core, there are a few nucleons

that may move freely within a so-called valence space and which eventually account for the

degrees of freedom of the basis states within the model space of the VSSM.

While, traditionally, e�ective valence-space interactions are constructed phenomenologically

[KB66; Cau+05; Cor+09], the IM-SRG opens up the possibility to construct such interactions

within an ab-initio framework and has already been successfully employed for the construc-

tion of single-shell valence space interactions [TBS12; Bog+14; Str+16; Str+17]. In the follow-

ing, we will outline the principles of the construction of e�ective valence-space interactions.

Model Space of the Valence-Space Shell Model. The VSSM partitions the (truncated) set

of single-particle basis states into a core (ℂ), valence (V) and excluded (ℚ) space. Additionally,

let us de�ne the so-called particle space ℙ as the union of V and ℚ

ℂ = {c1, c2…} , V = {v1, v2…} , ℚ = {q1, q2…} , ℙ = V ∪ ℚ = {p1, p2…} . (A.0.1)

Note that we use speci�c labels c, v, q and p for referring to certain subsets throughout this

chapter.

For the construction of the model space, the notion of a “core” is essential: It is a Slater deter-

minant |Φ⟩ = |c1…cAc⟩ whose Ac occupied single-particle states de�ne the core space. Fur-

thermore, those core states are also occupied in all other many-body basis states contained in
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the model space  which can then be formally written as

 = span(
{
âv1v2…vAv |Φ⟩ ∶ v1, v2, … vAv ∈ V

}
) . (A.0.2)

Evidently, the many-body basis of  consists of all Slater determinants in which—on top

of the Ac core-space states—exactly Av valence space states are occupied. Consequently, the

model space  is a subspace of the antisymmetric A-body Hilbert space A
a

with A = Ac +Av
particles. The complement of  in A

a
is notated via

 = A
a
⧵ . (A.0.3)

IM-SRG Decoupling Pa�ern. For employing the IM-SRG framework for the construction

of e�ective valence-space interactions that can be used as input for the VSSM, we �rst have

to set up the corresponding decoupling pattern that the IM-SRG is aiming for during the

transformation of operators.

The idea for the construction of e�ective valence-space interactions via the IM-SRG frame-

work can be described as follows: We are aiming at unitarily transforming an initial Hamil-

tonian Ĥ (0) such that Ĥ (∞) does not couple the model space  with its complement .

Assuming that such a decoupling succeeds, a representation of Ĥ (∞) in  contains a sub-

set of the exact eigenstates and eigenvalues. Formally, this decoupling condition can now be

formulated as

⟨ |Ĥ | ⟩ = 0 , ∀ | ⟩ ∈, | ⟩ ∈ . (A.0.4)

Similarly to previous considerations, this decoupling scheme—formulated with regard to a

decoupling of elements of an A-body model space—has to be translated into a decoupling

pattern that is compatible with the formulation of the IM-SRG. That is why we have to identify

the one and two-body matrix elements which are involved in the coupling of  and  with

each other and include them in the o�-diagonal Hamiltonian that we wish to suppress.

For that purpose, let us assume that all operators are in reference-state representation w.r.t.

to the core state |Φ⟩ and contain up to two-body pieces

Ĥ (s) = E0 +∑
pq

f pq {â
p
q}|Φ⟩ +

1
4
∑
pqrs

Γpqrs {â
pq
rs }|Φ⟩ . (A.0.5)
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As a consequence, we only have to consider those states in | ⟩ ∈  that may be associ-

ated with 1p1h or 2p2h excitations w.r.t. any element | ⟩ ∈ . This is due to the fact that

a two-body Hamiltonian cannot connect higher-order excitations. It is easy to verify that

the following set E contains all excitation operators Ê that eventually have to be taken into

account

E =
{
âvc , â

c
q , â

v
q , â

vv′
cc′ , â

vq
cc′ , â

qq′
cc′ , â

v′v′′
cv , âv

′q
cv , â

qq′
cv , â

qq′
vv′

}
. (A.0.6)

It contains all excitation operators that, once acting on an element | ⟩ ∈ , produce an

element | ⟩ ∈ . The original decoupling condition given through eq. (A.0.4) can now be

reformulated to

⟨Φ|âv1...vAv Ĥ Êâ
v′1...v′Av |Φ⟩ != 0 , ∀Ê ∈ E, ∀v1, … , vAv ∈ V . (A.0.7)

Employing once more that we are dealing with a two-body Hamiltonian, we can even further

simplify our decoupling condition to

⟨Φ|âv1v2Ĥ Êâ
v′1v′2 |Φ⟩ != 0 , ∀Ê ∈ E, ∀v1, v2 ∈ V . (A.0.8)

As the core |Φ⟩ is a single Slater determinant we can employ the single-reference version

of the generalized Wick’s theorem for evaluating ⟨Φ|âv1...vAv Ĥ Ê|Φ⟩ yielding fully-contracted

terms of âv1...vAv Ĥ Ê only. We performed this rather tedious task programatically, where we

evaluated

ℎod( |Φv1v2⟩ , Ê) ≡ ⟨Φv1v2 |Ĥ Ê|Φv1v2⟩ , (A.0.9)

Δ( |Φv1v2⟩ , Ê) ≡ ⟨Φv1v2 |Ĥ |Φv1v2⟩ − ⟨Φv1v2 |Ê†Ĥ Ê|Φv1v2⟩ , (A.0.10)

for all possible Ê ∈ E and with the de�nition |Φv1v2⟩ ≡ âv1v2 |Φ⟩. Note that the evaluation of

ℎod( |Φv1v2⟩ , Ê) sometimes yields not one single matrix elements but superpositions of several

types of one and two-body matrix elements. In such cases, we are requiring each matrix

element to vanish individually.

• Class I : single excitation from h-space into p-space

ℎod( |Φv1v2⟩ , âpc ) = −Γ
v1c
pv1 − Γ

v2c
pv2 + f

c
p , (A.0.11)

Δ( |Φv1v2⟩ , âpc ) = f
c
c − f

p
p . (A.0.12)

• Class II : single excitation from v-space into q-space

ℎod( |Φv1v2⟩ , âvq ) = −Γ
v2v1
v1q + f v2q , (A.0.13)

Δ( |Φv1v2⟩ , âvq ) = −f
q
q + f

v2
v2 . (A.0.14)
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• Class III : double excitation from v-space into q-space

ℎod( |Φv1v2⟩ , âq1q2v1v2) = Γ
v1v2
q1q2 , (A.0.15)

Δ( |Φv1v2⟩ , âq1q2v1v2) = −f
q1
q1 − f

q2
q2 + f

v1
v1 + f

v2
v2 . (A.0.16)

• Class IV : double excitation from h-space into p-space

ℎod( |Φv1v2⟩ , âp1p2c1c2 ) = Γ
c1c2
p1p2 , (A.0.17)

Δ( |Φv1v2⟩ , âp1p2c1c2 ) = f
c1
c1 + f

c2
c2 − f

p1
p1 − f

p2
p2 . (A.0.18)

• Class V : double excitation from h-space into p-space and v-space into p-space

ℎod( |Φv1v2⟩ , âp1p2cv2 ) = Γv2cp1p2 , (A.0.19)

Δ( |Φv1v2⟩ , âp1p2cv2 ) = f cc + f
v2
v2 − f

p1
p1 − f

p2
p2 . (A.0.20)

The generator matrix elements may now be constructed by applying de�nition 4.7.1. For ex-

ample, a White generator matrix element belonging to the class V may be constructed through

�v2c1p1p2 =
Γv2c1p1p2

f c1c1 + f
v2
v2 − f

p1
p1 − f

p2
p2

. (A.0.21)

We would like to remark that we did not include any two-body matrix elements within our

expression for Δ, i.e., we were constructing a Møller-Plesset-like generator.

Applications and Limitations. In the recent past, e�ective valence-space interactions

derived from the IM-SRG have been applied in the context of nuclear structure theory [TBS12;

Bog+14; Str+16; Str+17]. However, all of these applications aim for the construction of an

single-shell valence-space interaction such that, e.g, the valence space for a calculation of
18

O

based on an
16

O core only consists of single-particle states within the sd-shell. In contrast, a

multi-shell valence-space interaction would employ the sdpf -shell as valence space, i.e, two

major shells. It is a vital aspect of any ab initio methods to explore the impact of its inherent

truncations schemes. In the context of the VSSM and e�ective valence-space interactions from

the IM-SRG, one of the inherent truncations is governed by the size of the valence space and

it is important to assess the impact of an increase of this valence space in both directions since

the exact result is only recovered in the limit of a vanishing core and a vanishing excluded

space.

In a collaborative e�ort we tried to generalize the construction of e�ective interactions to

multi-shell valence-space interactions, where the numerical results of our studies and appli-

cations of the VSSM are presented in [Stu18, p. 76]. However, we found out that an increase of

the valence space to two major shells is not possible and already at the level of the IM-SRG the

evolution of the Hamiltonian is not stable and eventually we su�er from a substantial amount
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of induced many-body contributions beyond the NO2B rank. This instability is manifesting

itself via a massive increase of the o�-diagonal matrix elements belonging to class V, which

hints at e�ects of intruder states—a long-standing problem in the context of VSSM. While we

tried many approaches to solve this problem, to this day it remains unsolved.

This de�ciency contributes to our preference of the IM-NCSM, i.e., a multi-reference approach.

In contrast to VSSM calculations based on interactions derived from the IM-SRG, the IM-

NCSM allows for an investigation of the impact of the model space by varying Nmax and

N ref

max
, which gives us an estimate of the uncertainties of this method. Furthermore, the NO2B

approximation within the IM-NCSM framework, which employs multi-reference normal or-

dering, might be preferable since the normal-ordering is performed w.r.t. a particular target

nucleus—in contrast to the targeted normal ordering in the context of e�ective interactions

for the VSSM [Str+17].
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Appendix B.

Details on the Implementation of the

In-Medium SRG

The necessary steps that have to be taken for the consistent transformation of observables via

the IM-SRG may be summarized as follows:

1. read matrix elements of operators w.r.t vacuum normal order and a speci�c single-

particle basis;

2. read density matrices 
 [1] and 
 [2];

3. construct the natural orbitals from the one-body density matrix;

4. perform a representation change from vacuum to reference-state representation;

5. perform transformation into natural orbitals;

6. solve the ODE for Ω̂(s) and transform observables subsequently via the BCH series;

7. solve the ODE for the Hamiltonian directly and eventually evolve observables simulta-

neously;

8. evaluate occurring commutators e�ciently;

9. perform representation change from reference-state to vacuum representation;

10. save the matrix elements of the transformed operators to hard disk.

Throughout this chapter, we are going to brie�y address the most important details of our

implementation of the IM-SRG, i.e., some selected items of the previous enumeration will be

adressed.
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B.1. Spherical Equations for Representation Change

The equation for changing the representation from vacuum to reference-state representation

and vice versa given in eqs. (3.4.3) to (3.4.5) and eqs. (3.4.7) to (3.4.9) are m-scheme equations,

i.e., they explicitly resolve the projection quantum numbers. Similarly to the transformation

of them-scheme commutator equations to spherical equations in chapter 5, also the equations

for the representation change may be transformed such that they are expressed in terms of

reduced matrix elements only. Note that the derivation was performed by employing the

graphical technique of angular momentum coupling as presented in section 5.4. We can write

the two operators in vacuum and reference-state representation as

R̂LM = ∑
pq

(RLM)
p
q +

1
4
∑
pqrs

(RLM)
pq
rs , (B.1.1)

V̂ L
M = ∑

pq
(V L

M)
p
q +

1
4
∑
pqrs

(V L
M)

pq
rs , (B.1.2)

where we assumed that L ≠ 0 and, therefore, the zero-body part naturally vanishes. The

spherical matrix elements of R̂LM may now be expressed in terms of spherical matrix elements

of V̂ L
M

(RL)
p
q = (V L)

p
q +∑

r
Πjrnr (V

L
)
(pq)L

(rr)0
, (B.1.3)

(RL)
(pq)J
(rs)J ′ = (V L)

(pq)J
(rs)J ′ . (B.1.4)

The inverse relations may be written as

(V L)
p
q = (RL)

p
q −∑

r
Πjrnr (R

L
)
(pq)L

(rr)0
, (B.1.5)

(V L)
(pq)J
(rs)J ′ = (RL)

(pq)J
(rs)J ′ . (B.1.6)

B.2. Numerical Solution of ODEs

ODE for Observables. The ODE system for the Hamiltonian Ĥ can be schematically

written as

d
ds
ℎ⃗(s) = ⃗�(ℎ⃗(s), �⃗(s)) , (B.2.1)

where ℎ⃗(s) and �⃗(s) denote the entirety of all matrix elements of the Hamiltonian and the gen-

erator, respectively. In practical applications this ODE system, which reaches dimensions of
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up to 6 × 107, is solved numerically by employing an ODE solver from the GNU scienti�c li-

brary (GSL) together with the explicit Runge-Kutta-Fehlberg (RKF45) algorithm. The stepsize

ℎ is adaptive, i.e., controlled dynamically such that at each ODE integration step it is ensured

that the numerical error is below a certain error threshold, where an absolute error threshold

of �abs = 1 × 10−3 is used. The initial stepsize ℎ—chosen in such a way that the numerical er-

ror during the �rst integration is not exceeding the threshold—is strongly depending on the

speci�c generator and ranges from 1 × 10−6 to 1 × 10−1. Generally, the ODE system is inte-

grated until some kind of convergence criterion is ful�lled. Considering the single-reference

IM-SRG as an example, such a convergence criterion may be constructed from second-order

perturbation theory.

ODE for Magnus operator. Similarly to the ODE for observables, the ODE for the Magnus

operator can be schematically written as

d
ds
Ω⃗(s) = ⃗�(Ω⃗(s), �⃗(s)) . (B.2.2)

As Ω̂(s) always corresponds to a unitary transformation, unitarity is always formally con-

served and, eventually, this leads to the fact that we could even solve the ODE for Ω̂(s) via

a simple Euler method at a �xed stepsize leading to reduced computational memory require-

ments. However, for the solution of the ODE for Ω̂(s) we are employing—similarly to the IM-

SRG(2)—an ODE solver from GSL and the RKF45 algorithm with automatically adjusted step-

sizes. Having speci�ed a numerical error threshold, the automatic stepsize control readjusts

the stepsize at each integration step of the ODE accordingly, where the absolute and relative

errors are �abs = �rel = 1 × 10−3. We are choosing this approach as the memory requirement

of this implementation of the Magnus expansions is not too high and may, therefore, bene�t

from the enhanced stepsize control. Note that the generator �̂(s) depends on Ĥ (s) such that

Ĥ (s) has to be calculated at each integration step of the ODE for Ω̂(s). For reducing the mem-

ory requirements of our implementation, we are applying the BCH series for the calculation

of Ĥ (s) at each integration step. However, in future applications one might as well prefer to

simultaneously evolve Ĥ (s)with Ω̂(s)—implying an increase of memory requirements but also

a decrease of computing time.

B.3. Commutator Equations and Matrix Products

The evaluation of the right-hand side of the ODE for observables as well as for the Magnus

operator requires the repeated evaluation of commutators and, as a matter of fact, the evalua-

tion of commutators is the computationally most expensive part. The evaluation of commuta-

tors is carried out through calculating the spherical commutator equations. However, instead

of directly implementing the spherical commutator equations derived in chapter 5 via simple

loops, we employ a computationally more e�cient approach by expressing the right-hand side

of these equations in terms of linear algebra operations, i.e., matrix-matrix and matrix-vector

193



Appendix B. Details on the Implementation of the In-Medium SRG

products. This allows an implementation that relies on Basic Linear Algebra Subprograms

(BLAS), which are highly optimized library functions [BLA17].

One-Body Matrix. Regarding the one-body part, there is no need to exploit additional

symmetries since the computational e�ort is basically determined by terms involving the two-

body part. As a consequence, we are usually employing the single-particle index set

B1B =
{
p | ep ≤ emax

}
, (B.3.1)

for representing one-body operators as matrices.

Two-Body Matrices. Regarding two-body matrix elements, we construct sets of collective

two-particle indices

BJΠMT
2B

≡
{
(p, q) ||| Δ(jpjqJ ) and (−)lp+lq = Π and mtp + mtq = MT

}
, (B.3.2)

such that each two-particle index contained in a particular index set BJ ,Π,MT
2B

may be associated

with a two-particle state that is coupled to a total angular momentum J , has parity P and

isospin projection MT .

Then, we may construct matrices (X
JΠMT
J ′Π′M ′

T
) containing two-body matrix elements, where

rows and columns of such a matrix refer to two-particle indices contained exclusively inBJΠMT
2B

and BJ ′Π′M ′
T

2B
, respectively.

Due to the symmetry properties of the operator X̂ , there are certain restrictions on which two

index sets BJ ,Π,MT
2B

and BJ ′,Π′,M ′
T

2B
lead to non-zero matrices. Assuming that the operator X̂ is a

spherical tensor operator of rank LX , has parity ΠX , and is a spherical tensor in isospin space

of rank �X , these restrictions read

|J − J ′| ≤ LX , ΠΠ′ = ΠX , |MT − M ′
T | = �X . (B.3.3)

As a consequence, there are only very speci�c non-zero matricesX JΠMT
J ′Π′M ′

T
that have to be taken

into account.

The advantage of such an approach becomes obvious by considering the expression

(CL)
(12)J
(34)J ′ = ∑

pqJ ′′
(A0)

(12)J
(pq)J (BL)

(pq)J
(34)J ′ , (B.3.4)

which, assuming that all operators are iso-scalars and have positive parity, may be translated

to

C JΠMT
J ′ΠMT

= A JΠMT
JΠMT

⋅ B JΠMT
J ′ΠMT

, (B.3.5)

where the expression on the right-hand side refers to a matrix-matrix product. In fact, most

of the terms that are occurring in the context of the commutator equations can be expressed

in terms of such matrix-matrix products.
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Note that Pandya-transformed matrix elements may also be represented as matrices, however,

a slightly di�erent de�nition of the collective two-particle index has to be employed in this

case since, e.g., Pandya transformed matrix elements of iso-scalars conserve the di�erence of

the single-particle isospin projection quantum numbers—instead of the sum.

For more information on the subject of an e�cient implementation of the spherical IM-SRG

equations see [Geb17], where the scalar multi-reference case is treated.
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Appendix C.

Experimental Data

Ground-state energies are taken from [Wan+12; Wan+17] and charge radii are taken from

[AM13]. For converting charge radii and point-proton radii into each other, eq. (6.9.11) may

be employed. Electric quadrupole and magnetic dipole moments are taken from [Sto05]. Ex-

perimental B(M1) transition strengths are taken from [Til+95; Fir15] Experimental B(E2) tran-

sition strengths for various helium, carbon, oxygen, �uorine, and neon isotopes are taken from

[Pri+16; TWC93; Til+95; Ram+87; Thi+00; Fir15; Fir07] Values for B(E2) transitions are also

listed in table C.1. In the literature, these transitions are sometimes given in Weisskopf units

(W.u.) and have to be converted to SI units for our purposes (see [Suh07, p. 131]). If not con-

tained within the aforementioned references, excitation energies are taken from [NND19].

nucleus  i  f B(E2) [e2fm4]
6
He 0+1 2+1 5.4(7)
12

C 0+1 2+1 39.7(33)
17

O 1/2+1 5/2+1 7.60(8)
18

O 2+1 0+1 9.30(25)
18

O 4+1 2+1 3.33(17)
18

O 2+2 0+1 3.64(56)
19

O 1/2+1 5/2+1 1.75(36)
20

O 0+1 2+1 28(2)
21

O 1/2+1 5/2+1 0.71(7)
22

O 0+1 2+1 21(8)
21

F 1/2+1 5/2+1 54

nucleus  i  f B(E2) [e2fm4]
20

Ne 2+1 0+1 65.46(322)
20

Ne 4+1 2+1 70.94(644)
21

Ne 5/2+1 3/2+1 83.63(688)
21

Ne 7/2+1 3/2+1 32.00(275)
21

Ne 7/2+1 5/2+1 37.85(1376)
22

Ne 2+1 0+1 46.72(65)
22

Ne 4+1 2+1 64.08(146)
23

Ne 1/2+1 5/2+1 2.91(19)
24

Ne 2+1 0+1 27.96(657)
26

Ne 0+1 2+1 141(18)
28

Ne 0+1 2+1 132(23)

Table C.1.: Experimental B(E2;  i →  f ) transition strengths for various helium, carbon, oxy-

gen, �uorine, and neon isotopes.
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