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Abstract The neon isotopic chain displays a rich phe-

nomenology, ranging from clustering in the ground-state

of the self-conjugate doubly open-shell stable 20Ne iso-

tope to the physics of the island of inversion around the
neutron-rich 30Ne isotope. This second (i.e. Paper II) of

the present series proposes an extensive ab initio study

of neon isotopes based on two complementary many-

body methods, i.e. the quasi-exact in-medium no-core

shell model (IM-NCSM) and the projected generator

coordinate method (PGCM) that is ideally suited to cap-
turing strong static correlations associated with shape

deformation and fluctuations. Calculations employ a

state-of-the-art generation of chiral effective field theory

Hamiltonians and evaluate the associated systematic
uncertainties. In spite of missing so-called dynamical

correlations, which can be added via the multi-reference

perturbation theory proposed in the first paper (i.e. Pa-

per I) of the present series [1], the PGCM is shown to be

a suitable method to tackle the low-lying spectroscopy

of complex nuclei. Still, describing the physics of the

island of inversion constitutes a challenge that seems

to require the inclusion of dynamical correlations. This

is addressed in the third paper (i.e. Paper III) of the

present series [2].
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1 Introduction

The projected generator coordinate method (PGCM)

based on the mixing of Bogoliubov vacua generated

by solving constrained Hartree-Fock-Bogoliubov (HFB)

mean-field equations has been traditionally employed

with empirical effective interactions [3,4,5]. In spite of

being ill-defined and affected by potentially dangerous

spurious contaminations [6,7,8,9] in this particular con-

text, such PGCM calculations have been successfully

applied to describe numerous nuclear phenomena over

the last few decades.

The PGCM has also been employed in the context of so-

called valence-space calculations based on appropriate

effective interactions [10,11,12], although less often. Em-

ploying sophisticated realizations of the PGCM ansatz,

solutions obtained from an exact diagonalization for

pf-shell Ca isotopes [13] or the complete set of sd-shell

nuclei [14] have recently been shown to be accurately

reproduced. These works demonstrate the capacity of

the PGCM to efficiently capture strong static correla-

tions emerging within a small energy window around

the Fermi energy.

In the present work, the PGCM is employed in the

context of ab initio calculations that aim at approx-

imating exact solutions of Schrödinger’s equation in

the complete A-body Hilbert space based on realis-

tic nuclear Hamiltonians rooted into quantum chro-

modynamics. PGCM calculations have already been

performed recently on the basis of realistic Hamilto-

nians that were pre-processed via unitary similarity

renormalization group (SRG) transformations [15] and

possibly further pre-processed via unitary in-medium
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SRG (IMSRG) transformations [16,17]. However, and

independently of the pre-processing of the Hamiltonian,

the PGCM is not amenable to an exact solution of A-

body Schrödinger’s equation. Indeed, while very efficient

at grasping strong static (collective) correlations, the

PGCM is not suited to capture weak, so-called dynami-

cal, correlations1. The key novelty of the present work

relates to the formulation of a multi-reference perturba-

tion theory (PGCM-PT) formalism [1] embedding, for

the first time, the PGCM into a genuine ab initio expan-

sion method capable of grasping dynamical correlations
in a systematic fashion.

While the PGCM-PT formalism was explained in detail

in Ref. [1], hereafter coined as Paper I, the present paper

(Paper II) is devoted to presenting numerical results ob-

tained through its leading order, i.e. PGCM, reduction.

Specifically focusing on even-even neon isotopes, the

objectives of this work are to

1. benchmark PGCM calculations against quasi-exact
results obtained via the so-called in-medium no core

shell model (IM-NCSM),

2. deliver ab initio predictions of spectroscopic proper-

ties of even-even Ne isotopes,

3. gauge uncertainties and convergence of the many-

body results associated with the order-by-order chi-

ral effective field theory (χEFT) expansion of the

Hamiltonian.

Based on the above results, the following paper [2], i.e.

Paper III, will present the first PGCM-PT calculations

beyond zeroth order and characterize the way absolute

and relative PGCM energies are amended by the inclu-

sion of dynamical correlations.

The present paper is organized as follows. All the in-

gredients of the calculations (Hamiltonians, many-body

formalisms, numerical settings, uncertainty evaluations)

are detailed in Sec. 2 whereas a large body of results

is presented in Sec. 3. The conclusions of the present

work are then given in Sec. 4. Eventually, four technical

appendices complement the body of the paper.

1In valence space calculations, dynamical correlations are
essentially accounted for, at least in principle, through the
effective Hamiltonian. This is the reason why PGCM can
well reproduce exact solutions in this particular context. See
Sec. 3.3.4 for an illustration of this feature.

2 Many-body calculations

2.1 Nuclear Hamiltonian

The present calculations employ the family of χEFT

Hamiltonians H introduced in Ref. [18] and constructed

at next-to-leading (NLO), next-to-next-to-leading (N2LO)

and next-to-next-to-next-to-leading (N3LO) orders ac-

cording to Weinberg’s power counting [19,20,21]. The
same non-local regulators and cut-off values (Λ = 500 MeV)

are employed in the two-nucleon and three-nucleon sec-

tors; see Refs. [18,22] for the details of the fitting proto-

col. This family of interactions was shown to robustly

reproduce selected experimental energies and radii from

p-shell nuclei to nickel isotopes and to resolve several

deficiencies of the previous generations of χEFT Hamil-

tonians.

To be employed in the many-body calculations, the

χEFT Hamiltonians are evolved to a lower resolution

scale λsrg via vacuum SRG transformations [23,24,25]

while discarding induced operators beyond three-body
terms. The values of λsrg employed in the many-body cal-

culations presented below are specified later on.

2.2 PGCM

The PGCM presently employed has been described in Pa-

per I [1] and the reader is referred to it for details.

2.2.1 Choice of collective coordinates

The PGCM state relies on a set Bq ≡ {|Φ(q)〉; q ∈ set} of

Bogoliubov states differing by the value of the (typically

multi-dimensional) collective deformation parameter q
and obtained by repeatedly solving constrained Hartree-

Fock-Bogoliubov equations. As an intermediate step,

the calculation thus delivers a HFB total energy surface

(TES) as a function of q.

Typically, q presently collects quadrupole (q2µ) and axial

octupole (q30) moments, i.e.

Qλµ ≡ rλY λµ (θ, ϕ) , (1a)

qλµ ≡
1

2
〈Φ(q)|Qλµ + (−1)µQλ−µ|Φ(q)〉 , (1b)

where Y λµ (θ, ϕ) is a spherical harmonic of degree λ and

order µ, such that

q20 ≡ 〈Φ(q)|Q20|Φ(q)〉 , (2a)

q21 ≡
1

2
〈Φ(q)|Q21 −Q2−1|Φ(q)〉 , (2b)

q22 ≡
1

2
〈Φ(q)|Q22 +Q2−2|Φ(q)〉 , (2c)

q30 ≡ 〈Φ(q)|Q30|Φ(q)〉 . (2d)



3

In the present calculations, q10 and q11 are set to zero to

avoid the spurious motion of the nucleus center of mass.

Similarly, q21 is set to zero to fix the orientation of the

nucleus. From the moments, one introduces deformation

parameters according to

β2 ≡
4π

(3R2A)

√
q220 + 2q222 , (3a)

γ2 ≡ arctan

(√
2q22
q20

)
, (3b)

β3 ≡
4π

(3R3A)
q30 , (3c)

with R ≡ 1.2A1/3 and A ≡ N + Z the mass number.

Whenever the deformation is purely axial, β2 reduces

to the traditional axial quadrupole deformation param-

eter.

Each Bogoliubov state |Φ(q)〉 is further projected, when-

ever necessary, onto good symmetry quantum numbers

σ ≡ (JMΠNZ) ≡ (σ̃M) [26], i.e. onto total angular

momentum J and projection M , parity Π = ±1 as well

as neutron N and proton Z numbers. This procedure

generates a set PBqσ̃ of projected Bogoliubov states for

each realization σ̃ of the symmetry quantum numbers

and an associated projected HFB (PHFB) TES.

Eventually, the PGCM ansatz mixes all the states be-

longing to PBqσ̃. The unknown coefficients {f σ̃µ (q); q ∈
set} of the linear combination are determined via the

application of Ritz’ variational principle. This leads to

solving Hill-Wheeler-Griffin’s (HWG) equation2 [27,28]

that is nothing but a generalized eigenvalue problem

represented in the set PBqσ̃ of non-orthogonal PHFB

states. The practical aspect of dealing with the linear

redundancies associated with the non-orthogonality of

the PHFB states when solving HWG’s equation are

briefly discussed in App. A.

2.2.2 Numerical setting

In the present paper, two sets of HFB [29,30] and

HWG [31,32] solvers are used. While the first set [29,

31] offers more flexibility regarding the enforced/relaxed
symmetries in the computation of the HFB states and

operator kernels entering HWG’s equation, the second

set [30,32] can exactly handle three-nucleon interac-

tions.

Based on these solvers, the calculations performed in

the present study involve

1. the potential breaking of

2The diagonalization is performed separately for each value
of σ̃.

(a) global neutron and proton gauge symmetries,

(b) rotational symmetry,

(c) parity,

2. the associated restoration of

(a) N and Z,

(b) J and M ,

(c) Π,

3. constraints associated with

(a) axial quadrupole (q20),

(b) non-axial quadrupole (q2±2),

(c) axial octupole (q30),

operators.

Calculations are performed using a spherical harmonic

oscillator (HO) basis of the one-body Hilbert space H1.

The basis is characterized by the value of the oscillator

frequency ~ω and by the number of oscillator shells kept

in the calculations. The latter is parameterized by the

quantity emax = max(2n+ l), where n and l respectively

denote the principal quantum number and the orbital
angular momentum of the basis states.

When representing n-body operators, the natural trun-

cation of the tensor-product basis of the n-body Hilbert

space Hn is set by enmax ≡ nemax. One and two-body

operators are thus represented using e1max = emax and

e2max = 2emax, respectively. However, the fixed value

e3max = 14 (� 3emax) is used to represent the three-

nucleon interaction given that employing 3emax for work-

able values of emax is largely beyond today’s capaci-

ties3.

2.2.3 Uncertainties

The uncertainties of PGCM calculations are of several

origins and nature4

– Numerical representation

3A novel framework capable of handling values up to e3max =
28 in the normal-ordered two-body approximation was pro-
posed very recently [33]. However, as discussed later, the
present truncation of e3max = 14 is sufficient to produce con-
verged results for the light nuclei under present consideration
.
4When adding two uncertainties σ1 and σ2, presently sup-
posed to be uncorrelated, the total one is computed as σtot ≡√
σ2
1 + σ2

2 . When considering an observable O = O1 −O2, e.g.
an excitation energy, its uncertainty is computed under the
hypothesis that the uncertainties associated with O1 and O2

are fully correlated, i.e. using σO ≡ |σO1
− σO2

|.
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– Model-space truncation. Results depend on the

choice of the one-body basis parameters (~ω, emax)

and the truncation of three-body operators e3max.

While the nominal results discussed in the follow-

ing are obtained for (~ω, emax, e3max) = (12, 10, 14),

the associated uncertainty is evaluated in each

nucleus according to a procedure described in

Sec. 3.1 and typically included in the error bars

displayed in several of the figures below.

– Approximate three-body interaction. While three-

body interaction terms can be handled exactly,

doing so typically increases the runtime of PGCM

calculations by three orders of magnitude com-

pared to using a two-nucleon interaction only [30,

32]. In order to avoid this significant cost, a novel

operator rank-reduction method that generalizes

the so-called normal-ordered two-body (NO2B)

approximation was recently introduced [15]. The

approximation was shown to induce errors be-

low 2 − 3% across a large range of nuclei, ob-

servables and many-body methods when employ-

ing low-resolution Hamiltonians as done in the

present work. Specifically, the PGCM errors on

the ground-state charge radius and the low-lying

excitation energies of 20Ne (30Ne) were shown to

be of 0.7% (2.5%) and 1.5% (2.6%), respectively.

While not included in the error bars appearing in

some of the figures below, a conservative 2− 3%

error is to be appropriately attributed.

– Discretization errors. PGCM results depend on

the discretization of the employed generator co-

ordinate(s) and on the procedure described in

App. A to handle linear redundancies when solv-

ing HWG equation. The dependence of our PGCM

results on these two numerical parameters have

been checked and found to be negligible com-

pared to the other sources of uncertainty.

– Many-body expansion

– Generator coordinates. PGCM results depend on

the choice of generator coordinates employed in

the calculation. While it is hard to envision a sys-

tematic way to evaluate an associated uncertainty,

the dependence of the results on the generator

coordinates that are expected to be dominant is

gauged by generating results (a) with or without

the octupole degree of freedom and (b) with or

without the triaxial degree of freedom.

– Many-body truncation. Given a PGCM ansatz,

the PGCM-PT formalism developed in Paper I

allows one to embed it into a systematic many-

body expansion that, at least in principle, con-

verge towards the exact solution. Constituting

the leading order contribution to the expansion,

PGCM results carry an uncertainty associated

with the corresponding truncation. Because it is

the goal of Paper III to present the first compu-

tation of the next correction, i.e. PGCM-PT(2),

the associated uncertainty is not evaluated in

the present paper but simply commented on at

various points below.

– Hamiltonian

– χEFT truncation. The hierarchy of terms in the

chiral expansion allows us to increase the preci-

sion at each order and coherently assess trunca-

tion errors. These errors are consistently propa-

gated to many-body calculations and are to be

added to the errors coming from the many-body

method itself. The uncertainty of a many-body

observable X at N2LO and N3LO reads [18,34,

35]

δXN2LO ≡ Q|XN2LO −XNLO| , (4a)

δXN3LO ≡ max [Q|XN3LO −XN2LO|,
Q2|XN2LO −XNLO|

]
, (4b)

where the expansion parameter Q denotes the

ratio of a typical momentum scale characterizing

medium-mass nuclei over the χEFT breakdown

scale. The value Q = 1/3 is presently employed;

see Ref. [18,34,35] for details.

– SRG dependence. The vacuum SRG transforma-

tion induces an intrinsic error associated with the

violation of unitarity due to neglected induced

operators beyond three-body terms. Furthermore,

the uncertainty associated with the truncation

of the many-body expansion itself depends on

the transformation, which is typically minimized

by working with low-resolution Hamiltonians as

done in the present work. Overall, this induces a

dependence of the results on the SRG parameter

λsrg. While the nominal results are systematically
provided for λsrg = 1.88 fm−1, the variation of

the results obtained for λsrg = 2.23 fm−1 will be

quoted to provide an idea of the sensitivity of

selected observables.

Eventually, only model-space (inner error bars) and

interaction (total error bars) uncertainties are reported

in the figures containing PGCM calculations.
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2.3 IM-NCSM

As a complement and a benchmark of the PGCM calcu-

lations, the IM-NCSM approach [36] is used to describe

even-even neon isotopes.

2.3.1 Methodology

The IM-NCSM starts by pre-processing (already SRG-

evolved) operators O through a nucleus-dependent uni-

tary MR-IMSRG transformation U(s) parameterized by

the real variable s. The lowest eigenstate with appropri-

ate symmetry quantum numbers obtained from a prior

NCSM calculation in a small reference space includ-

ing all basis Slater determinants with up to N ref
max HO

excitation quanta above the lowest-energy basis states

serves as a multi-configurational reference state. The

transformed operator O(s) expressed in normal-ordered

form [37,38] with respect to the NCSM reference state

is truncated beyond two-body operators, i.e. at the MR-

IMSRG(2) level, which induces a breaking of unitarity

that needs to be monitored.

The transformation U(s) is tailored to suppress the

terms of the pre-processed Hamiltonian H(s) that cou-

ple the NCSM reference space to the rest of the Hilbert

space. This decoupling corresponds to the incorporation

of dynamical correlations into the transformed Hamilto-

nian. This leads to an extremely fast convergence of a

subsequent NCSM calculation as a function of the trun-

cation parameter Nmax for appropriate values of the flow

parameter s. This final NCSM calculation, performed

with H(s), directly yields the ground and excited-state

energies as eigenvalues. Using the NCSM eigenvectors

and the consistently evolved operators O(s) the other

relevant observables are computed, including non-scalar

quantities like magnetic dipole or electric quadrupole

moments and transition strengths [39,40].

2.3.2 Numerical setting

All IM-NCSM calculations are performed with a natural

orbital basis constructed from a perturbatively corrected

density matrix for the isotope of choice [41]. This leads to

a fast and frequency-independent convergence of NCSM

calculations, as shown in [41], and, thus, improves the
reference state for the IM-NCSM and allows us to limit

all calculations to a single frequency ~ω = 20 MeV of

the underlying oscillator basis. While the initial NCSM

calculation is performed for N ref
max = 0 or 2, the final

NCSM calculation goes up to Nmax = 4, being fully

converged.

In the MR-IMSRG part of the calculation, emax = 12

and e3max = 14 are employed. The flow equations rely

on a modified version of the so-called White genera-

tor [42,39,40] adapted to the Nmax-truncated reference

space and the value of the flow-parameter is chosen

large enough to warrant convergence of the evolved

Hamiltonian, i.e. typically around s = 80.

A HO Hamiltonian for the center of mass is consistently

evolved through MR-IMSRG added to the initial Hamil-

tonian with a small pre-factor λcm = 0.2 to identify spu-

rious center-of-mass excitations in the spectrum.

2.3.3 Uncertainties

The nominal IM-NCSM results quoted below are ob-

tained for the largest NCSM model spaces N ref
max = 2,

Nmax = 4 and s ∼ 80. The uncertainties quoted for all

results are constructed in the following way:

– Many-body. Many-body uncertainties are estimated

from explicit variations of the relevant truncation

parameters, i.e., we repeat the IM-NCSM calculation

using N ref
max = 0, Nmax = 2 or s ∼ 40, varying only

one parameter at a time and using the maximum

deviation from the nominal calculation to estimate

the uncertainty. These errors are typically dominated

by the effect of N ref
max although the dependence on

the flow parameter is sometimes not negligible5.

– Hamiltonian. The chiral order-by-order uncertainties

are extracted from a pointwise Bayesian model [43,

44] and we quote 68% degree-of-believe intervals.

The resulting error bars are comparable to the ones

obtained from the simpler difference scheme used for

the PGCM calculations. The uncertainty associated
with the initial SRG parameter λsrg in not show

explicitly, for the ground-state energies, e.g., the

dependence on this flow parameter is smaller than

the other uncertainties.

The IM-NCSM results reported in the following figures

show the many-body uncertainties as inner error-bars

and the total uncertainties, obtained as a simple sum

of many-body and interaction uncertainties, as shaded

bands.

3 Results

3.1 Model-space convergence

The convergence of PHFB results with respect to the

employed HO model space has been checked for all Ne

5For Nmax-converged calculations, the dependence of the end
results on s probes the effects of truncating the transformed
Hamiltonian to the normal-ordered two-body level throughout
the MR-IMSRG evolution based on the reference NCSM state.
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Fig. 1: Dependence of PHFB results in 20Ne (left column)

and 28Ne (right column) on the employed HO model

space. Results are plotted as a function of ~ω for various

values of emax. The dashed lines denote extrapolated

values whereas the grey band provides the associated

uncertainty. The first row (panels (a) and (b)) focuses

on the first 2+ absolute energy whereas the second

(panels (c) and (d)) and third (panels (e) and (f)) rows

provide the ground-state energy and associated rms

charge radius. Calculations employ the N3LO χEFT

Hamiltonian with λsrg = 1.88 fm−1.

isotopes. In this test, the HFB minimum in the (q20, q30)

plane, systematically obtained at β3 = 0 (see Sec. 3.2.1

below), is projected on good neutron and proton num-

bers as well as on the desired angular momentum J .

Results for two representative examples, 20Ne and 28Ne,

are displayed in Fig. 1 for the ground-state energy and
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76MeV

Fig. 2: (Color online) Constrained HFB TES of 20Ne in

the axial (β2, β3) plane. The (red) full line indicates the

lowest-energy path, with the arrow positioned at the
minimum of the TES. The (red) dots characterize the set

of HFB states used in the subsequent PGCM calculation.

Calculations employ the N3LO χEFT Hamiltonian with

λsrg = 1.88 fm−1.

the root-mean-square (rms) charge radius, as well as for

the absolute energy of the first 2+ state.

The three observables show a typical convergence pat-

tern consisting of curves that gradually become inde-

pendent of ~ω and closer to each others as the basis

size increases. At each step of the way, the HO fre-

quency delivering the least sensitive results to emax,

i.e. the results that are closest to the converged value,

is given by ~ω = 12 MeV. Taking the least favorable

case, i.e. 28Ne, the energy of the first 0+ (2+) changes

by 70 keV (72 keV) when going from emax = 10 to

emax = 12 whereas the ground-state charge radius in-

creases by 10−4 fm. Taking the results displayed in Fig. 1

for ~ω ≥ 12 MeV, their infra-red extrapolation towards

the infinite basis limit is performed according to the

procedure described in Ref. [45] for both energies and

radii. The result of the extrapolation is also displayed,

along with its uncertainty, in Fig. 1.

All PGCM results presented in the following have been

obtained for (~ω, emax, e3max) = (12, 10, 14). In most

of the figures shown below, these nominal values are

displayed with an error bar associated with the model

space convergence obtained by adding, in the sense ex-

plained in footnote 5, the distance to the extrapolated

result and the uncertainty on the latter. Focusing again

on the least favorable case, i.e. 28Ne, model-space un-

certainties on the nominal energy of the first 0+ and
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Fig. 3: (Color online) Projected HFB TES of 20Ne in the axial (β2, β3) plane for spin-parity values Jπ =

0+, 1−, 2+, . . . , 7−. In each case, the minimum of the TES is indicated by a (red) star. Calculations employ the

N3LO χEFT Hamiltonian with λsrg = 1.88 fm−1.

2+ states are 830 keV (0.7%) and 810 keV (0.7%), re-

spectively, whereas the uncertainty on the ground-state

charge radius is 0.02 fm (0.7%).

Furthermore, the impact of e3max has been studied by

varying the truncation parameter in the range e3max =

8− 14 for selected observables. Overall, both energies

and radii are found to be well converged with respect to

e3max, with changes between e3max = 12 and 14 amount-

ing in the least favorable cases to 2-300 keV for total

binding energies and 10−3 fm for charge radii. These

uncertainties can be thus effectively incorporated in the

larger ones resulting from the infinite-basis extrapolation

discussed above.

Given that model-space uncertainties tend to cancel out

in excitation spectra, the errors on the latter are typi-

cally smaller than for absolute energies. One must note

that model-space uncertainties of the nominal calcula-

tions are sub-leading compared to the error associated

with the rank-reduction of the three-nucleon interaction

whose maximal value along the Ne chain has been eval-

uated to be respectively 2.5% and 2.6% for the ground-

state charge radius and low-lying excitation energies of
30Ne [15].

3.2 20Ne

The present study focuses first on the stable 20Ne isotope.

This nucleus has been extensively studied experimentally

and theoretically in the past [46,47], in part because it

is one of the few nuclei displaying a strong admixture of

cluster configurations in the ground state. The ab initio

description of this doubly open-shell nucleus is thus
a challenge given that it is necessary to appropriately

capture both dynamical and static correlations.

3.2.1 Total energy surfaces

Figure 2 displays the HFB TES of 20Ne in the axial

(β2, β3) plane. The energy minimum is found for the

reflection-symmetric prolate shape characterized by de-

formation parameters (β2 = 0.57, β3 = 0). Still, the

TES is more shallow in the octupole direction than

in the quadrupole direction such that one may antic-

ipate octupole shape fluctuations in the ground-state

and an octupole vibration at an energy lower than the
quadrupole one.

Figure 3 shows the PHFB TES in the axial (β2, β3)

plane for spin-parity Jπ = 0+, 1−, 2+, . . . , 7−. Each

HFB state is projected onto neutron and proton num-

bers (N,Z) = (10, 10) using Nϕn
= Nϕp

= 7 mesh

points in the interval ϕn,p ∈ [0, π]. The projection on

good angular momentum involves Nβ = 20 Euler angles

in the interval ϕβ ∈ [0, π]. Static correlations associated
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with symmetry restorations favor deformed configura-

tions in both β2 and β3 directions for both positive- and

negative-parity states. The minimum of the 0+ TES is

thus located at (β2 = 0.75, β3 = 0.53) and the TES

is softer along both β2 and β3 directions than at the

HFB level. With increasing J , the energy minimum of

positive-parity states becomes more stable but drifts

to configurations with smaller multipole moments. The

minimum of the 1− TES is located at larger deforma-

tions (β2 = 0.93, β3 = 1.0) in the 0+ one. While the

minimum also becomes more stable with increasing J ,
it however remains at the same deformations.

The above results are qualitatively very similar to those

obtained through relativistic multi-reference energy den-
sity functional (MR-EDF) calculations [46,48]. While

being also quantitatively close, the present ab initio cal-

culation produces more rigid TES than the EDF ones,

especially on the oblate side.

3.2.2 Low-lying spectroscopy

Based on the PHFB states associated with the grid

displayed in Fig. 2, a PGCM calculation of 20Ne is

performed.

Figure 4 displays the collective wave functions {f̆ σ̃µ (q); q ∈
set} (see App. A) of low-lying yrast states with positive

and negative parities. Along the positive-parity band,
collective wave-functions are peaked around a reflection-

symmetric prolate configuration located at (β2 = 0.55,

β3 = 0). While displaying significant shape fluctuations,

in particular along the octupole degree of freedom as

expected from the TES, the collective wave functions

become more concentrated with increasing angular mo-
mentum, thus indicating a stabilization of the nuclear

shape under rotation. The behavior is different along

the negative-parity band given that the wave-functions

extend over a larger range of deformations that does

not decrease with J . Overall, one observes a significant

contribution of reflection-asymmetric shapes along the

positive-parity and the presence of a negative-parity

band at low energy built on an octupole vibration as

was anticipated from the HFB TES.

The low-lying spectrum corresponding to the collective

wave-functions displayed in Fig. 4, labeled PGCM-2D,

is compared in Fig. 5 (panel (c)) to experimental data

(panel (e)) and to IM-NCSM results (panel (d)). Exper-

imental excitation energies are consistently reproduced

by PGCM and IM-NCSM results. IM-NCSM results,

which act as quasi-exact solutions for the employed

Hamiltonian, are thus reproduced by the 2D axial GCM

within their respective uncertainties. As explained ear-

lier, the rank-reduction of the three-nucleon force (see

Sec. 2.2.3) and missing dynamical correlations (see Pa-

per III) would add several percents of uncertainties to

the PGCM results, making both sets of results fully

compatible. One notices that the χEFT uncertainty at

N3LO is estimated to be sub-leading compared to many-

body uncertainties in both sets of calculations. The

agreement between both theoretical spectra is remark-

able given that individual PGCM energies are about

60 MeV away from the converged values due to missing

dynamical correlations (see Sec. 3.3.2 along with Paper

III for a detailed discussion). This proves that dynamical
correlations contribute (essentially) identically to the

energy of all low-lying states whereas static correlations

are essential to describe their (mostly) collective nature.

While constituting the mere first order of the PGCM-PT

expansion, the PGCM is thus, at least in the present

example, well suited in itself to describe the low-lying

spectrum. Still, one expects dynamical correlations to

provide sub-leading corrections.

Electric quadrupole transition strengths within each

band are decently accounted for by the PGCM calcula-

tion, although being too large by a factor 1.1-1.6 com-

pared to experimental data and by a factor 2.9 compared

to the reference IM-NCSM B(E2 : 2+
1 → 0+

1 ) value6.

One expects missing dynamical correlations to reduce

the collective character of the states and thus to decrease

the B(E2) transitions. One also notes that relativistic

MR-EDF calculations [46] produced smaller B(E2) tran-

sitions by spreading the collective wave-functions onto

the oblate side7, which does not happen here due to the

stiffer TES.

Interestingly, limiting the PGCM mixing to reflection-

symmetric HFB states (panel (a)) compresses too much

the positive-parity band in addition to forbidding the

access to the negative-parity one. Contrarily, reducing

the approach to a PHFB calculation based on the sole

reflection-asymmetric HFB state located at the min-

imum of the 0+ PHFB TES (β2 = 0.75, β3 = 0.53)

spreads out the positive-parity band too much and re-

duces too significantly the collectivity in the negative-

parity band compared to experiment (panel (b)). The

2D PGCM calculation of reference is optimal and situ-

ated in between these two limiting cases, which indicates

not only the need for octupole configurations but also

for their fluctuations.
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Fig. 4: (Color online) Collective PGCM wave-functions in the axial (β2, β3) plane of low-lying positive- and

negative-parity states. Calculations employ the N3LO χEFT Hamiltonian with λsrg = 1.88 fm−1.
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Fig. 5: (Color online) Low-lying positive- and negative-parity bands in 20Ne. The intra-band E2 transition strengths

(in e2fm4) are indicated along vertical arrows whereas a selection of E3 transition strengths (in e3fm6) are indicated

along oblique lines. Panel (a): PGCM results obtained by restricting the mixing to the quadrupole axial degree of

freedom. Panel (b): PHFB results based on the HFB configuration corresponding to the minimum of the 0+ TES

located at (β2 = 0.75, β3 = 0.53) (see Fig. 3). Panel (c): PGCM results obtained using the set of points in the axial

(β2, β3) plane displayed in Fig. 2. Panel (d): IM-NCSM results. Panel (e): experimental data. PGCM results in

panel (c) display model-space (black box) plus χEFT (pink band) uncertainties. IM-NCSM results in panel (d)

display total many-body (black box) plus χEFT (pink band) uncertainties. The N3LO χEFT Hamiltonian with

λsrg = 1.88 fm−1 is employed in PGCM and IM-NCSM calculations.

3.2.3 Density distributions

Point matter densities of 20Ne associated with three

different HFB configurations are displayed in the x-y

6While IM-NCSM energies and radii are very robust, it is
less clear for B(E2) values at this point in time such that the
reference should be taken with a grain of salt.
7Excitation energies of the positive parity band were however
slightly worse than in the present calculation.
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(β2, β3) plane. Calculations employ the N3LO χEFT Hamiltonian with λsrg = 1.88 fm−1.
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Fig. 7: (Color online) Spherical HFB, PGCM and experi-

mental 20Ne ground-state charge density distributions in

linear (upper panel) and logarithmic (lower panel) scales.

Calculations employ the N3LO χEFT Hamiltonian with

λsrg = 1.88 fm−1.

plane in Fig. 6. The three chosen configurations cor-

respond to (i) the maximum of the 0+ ground-state

collective wave-function (β2 = 0.7, β3 = 0), (ii) the

half-maximum of the 0+ ground-state collective wave-

function with the largest octupole deformation (β2 = 0.7,

β3 = 0.9) and (iii) the maximum of the 1− state collec-

tive wave-function (β2 = 1.2, β3 = 1.2). Panels (i) and

(ii) demonstrate that the ground-state not only displays

clustering but actually mixes configurations ranging

from a dominant compact α +12 C + α structure to a

sub-leading quasi-16C + α structure. Panel (iii) proves

that the low-lying negative parity band is built out of a

proper 16C + α cluster structure.

Of course, intrinsic cluster structures are not observ-

able per se and can only be probed indirectly. Still, the

observable charge density distribution displays finger-

prints of many-body correlations among which are the

strong static correlations associated with intrinsic shape

deformation and fluctuation. In order to illustrate this

feature, the radial PGCM charge density distribution of

the 0+ ground-state is compared to experimental data

and to the charge density computed from the spherical

HFB (sHFB) configuration in Fig. 7. Charge density

distributions with respect to the center of mass are

obtained from point-proton and point-neutron density

distributions according to the procedure described in

App. D. As visible from the upper panel of Fig. 7, the

PGCM charge density reproduces very satisfactorily the

experimental data. While it is too low in the center of

the nucleus, many-body correlations partly fill up the

artificial depletion displayed at the nuclear center by

the sHFB density and suppress the latter accordingly

in the interval r ∈ [1, 2] fm. Furthermore, static correla-

tions associated with shape deformation and fluctuation

increase the charge density distribution in the interval

r ∈ [4, 5] fm to improve the agreement with experimental

data. However, and as visible in the lower panel of Fig. 7,

the long tail part of the PGCM density overshoots the

experimental density. This is consistent with both the

too low two-neutron separation energy and the too high

rms charge radius rch discussed later on.

3.3 Isotopic chain

The PGCM spectroscopic results obtained in the non-

trivial 20Ne isotope are very encouraging. In order to
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with λsrg = 1.88 fm−1.

deepen the analysis, the study is now extended to other

Ne isotopes and to additional observables.

3.3.1 Total energy surfaces

Figure 8 shows the evolution of the HFB TES in the axial

(β2, β3) plane along the Neon chain. The already studied
20Ne nucleus (Fig. 2) appears to be transitional between
18Ne, whose TES is very soft in both β2 and β3 direc-
tions, and heavier Ne isotopes that become increasingly

rigid against octupole deformation8. The quadrupole de-

8Octupole collectivity typically builds from strong correlations
between nucleons near the Fermi surface sitting on orbitals
of opposite parity and differing by three units of angular
momentum ∆l = 3. While such conditions are fulfilled for
proton and neutron numbers Z,N ≈ 34, 56, 88, 134 [49], one
also expects a large softness against octupole deformation in
light self-conjugate nuclei featuring an asymmetric di-nucleus
clustering, such as the 16O + α configuration of 20Ne [50,
51]. The fragmentation of the nucleus in two symmetric or
asymmetric clusters can be understood from the dynamical
symmetries of the anisotropic harmonic oscillator potential
with frequencies in rational ratios [52]. Super-deformed sys-
tems are susceptible to cluster into two asymmetric (sym-
metric) spherical fragments for proton and neutron numbers
Z,N ≈ 2, 10, 28, 60, 110, 182 (Z,N ≈ 4, 16, 40, 80, 140). Con-
sequently, Ne isotopes with neutron numbers close to 8 are
expected to be soft against octupole deformation, while a
competition between the development of octupole collectivity
(due to protons) and the restoring force towards a reflection-
symmetric configuration (due to neutrons) makes neutron-rich

formation of the prolate minimum decreases gradually

to reach the spherical 30Ne isotope before increasing

again in 32Ne. At the same time, the softness against

quadrupole deformation fluctuates, as the absolute pro-

late minimum becomes connected to a local oblate min-

imum in 24−28Ne before spreading again on the prolate

side in 30Ne to generate a non-zero prolate deformation

in 32Ne.

3.3.2 Ground-state energies

The upper panel of Fig. 9 displays the absolute ground-

state energy along the Ne isotopic chain. Experimental

data are well reproduced by IM-NCSM calculations

within uncertainties, with a slight anomaly at 30Ne,

which seems to be less bound than 28Ne based on

the central value. Overall, the results are similar, and

even better, than coupled cluster calculations in the

SDT-1 approximation (CCSDT-1) performed with the

∆NNLOGO(394) Hamiltonian [53]. Strikingly, PGCM

binding energies miss between 60 and 90 MeVs, an un-

derbinding that increases with neutron number. The

gain compared to HFB energies is small on that scale

(i.e. ∼ 5 − 7 MeV) and could never compensate, even

with a more elaborate PGCM ansatz, for the difference

Ne isotopes stiffer against octupole deformations. The interpre-
tation of these features in terms of molecular covalent bonds
is developed in Ref. [48].
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Fig. 9: (Color online) Absolute ground-state ener-

gies (upper panel) and two-neutron separation ener-

gies (lower panel) along the Ne isotopic chain. Re-

sults from HFB, PGCM, BMBPT and IM-NCSM cal-

culations are compared to experimental data. The

N3LO χEFT Hamiltonian with λsrg = 1.88 fm−1 is

employed in HFB/PGCM/BMBPT/IM-NCSM calcula-
tions. BMBPT calculations are performed with emax =

10.

that is obviously due to missing dynamical correlations.
While the goal is to bring in these correlations within a

symmetry-conserving scheme, i.e. on top of the PGCM

unperturbed state via PGCM-PT [1], their effect can

already be appreciated through the results of single-

reference Bogoliubov many-body perturbation theory

(BMBPT) [54,55,56,57,58] calculations performed on

top of a deformed HFB reference state9 that are dis-

played in Fig. 9. The bulk of correlations is indeed recov-

ered at the BMBPT(3) level, and we note that the gain

in energy increases with neutron number and therefore

corrects the overall trend at the same time. BMBPT(3)

energies are still about 7−15 MeV away from IM-NCSM

and experimental values, which is similar in magnitude

to the static correlations gained via symmetry restora-

9First results of this kind were presented in Ref. [15].

tions and shape fluctuations within the PGCM10. Thus

the consistent “sum” of static and dynamical correla-

tions accessible via PGCM-PT can be expected to bring

the absolute values very close to IM-NCSM results; see

Paper III for a related discussion.

The lower panel of Fig. 9 displays two-neutron sepa-

ration energies S2n to appreciate the stability of Ne

isotopes against two-neutron emission. The IM-NCSM

results reproduce experimental data well within uncer-

tainties, with the exception of 30Ne, which shows the

aforementioned anomaly leading to a slightly negative

central value with a sizable error bar that almost over-

laps with experiment. Consistently with the too flat

curve in the upper panel, PGCM S2n are too low across

the chain such that the drip-line is wrongly predicted

to be located at 30Ne instead of 34Ne [59]. While static

collective correlations captured through PGCM have no

impact on the S2n, the comparison with IM-NCSM (or

CCSDT-1) results underlines the importance of dynam-

ical correlations to reproduce the evolution of binding

energies with neutron number. As a matter of fact, dy-

namical correlations brought in at the BMBPT(3) level
correct for the wrong trend of HFB binding energies

such that the S2ns become perfectly consistent with

IM-NCSM results and experimental data. Once again,

there is no obvious reason to believe that consistently

correcting PGCM results for dynamical correlations will

not bring the same benefit.

To further put the binding energy evolution in per-

spective within our theoretical scheme, Fig. 10 displays

the evolution of neutron and proton (non-observable)
Baranger’s spherical shell structure [60,61] along the

Neon chain for both spherical HFB and PGCM 0+

ground states11. The last occupied orbit associated with

a naive filling of the shells is indicated with a black dot

for each isotope. One first observes that static corre-

lations do tend to compress the spectrum around the

Fermi energy but without changing it qualitatively here.

The most important feature for the present discussion

relates to the very large gap between neutron sd and

10In 20Ne, one has EBMBPT = 152.6 MeV, EIM-NCSM =
162.6 MeV and EPGCM − EHFB = 7.4 MeV, knowing that
EEXP = 160.6 MeV. It must be noted that, just as BMBPT,
CCSDT-1 calculations relying on a purely ”vertical” expansion
on top of a deformed mean-field state also provides slightly
underbound Ne isotopes with the ∆NNLOGO(394) Hamilto-
nian [53] and thus require the addition of 3-5 MeVs of static
correlations associated with symmetry restoration and shape
fluctuations.
11Baranger’s single-particle energies embody the genuine one-
body shell structure that can be extracted from any many-
body calculation [60,61], i.e. their definition is not associated
with a mean-field approximation as the HF single-particle
energies are for example.
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spectra of the 0+ ground-state in 18−32Ne. Results from spherical HFB (left column) and PGCM (right column)

calculations in the axial (β2, β3) plane are shown. Black dots denote the last occupied orbital associated with a

naive filling of the shells. Calculations employ the N3LO χEFT Hamiltonian with λsrg = 1.88 fm−1.

pf shells. The fact that this gap is barely compressed

going from sHFB to PGCM such that the neutron 2p3/2

remains unbound demonstrates that cross-shell correla-

tions in the PGCM state are insufficient to bind 32,34Ne

and probably too weak already in 28,30Ne to properly

describe the physics of the island of inversion.

3.3.3 Ground-state rms charge radii

Figure 11 displays the ground-state charge rms radius

of 18−32Ne. One first observes that IM-NCSM results

are systematically too low compared to experimental

data by about 0.08 − 0.13 fm whereas the trend with

neutron number is consistent up to 28Ne, which is the

most neutron-rich isotope for which rch is known ex-

perimentally. The known sub-shell closure at N = 14

is nicely captured, as via CCSDT-1 calculations per-

formed with the ∆NNLOGO(394) Hamiltonian [53]. We

note that the IM-NCSM results for the radius show

a sensitivity to λsrg, i.e., going from λsrg = 1.88 fm−1

to λsrg = 2.23 fm−1 (not shown) the charge radius in-

creases by about 0.05 fm. The radius operator for these

calculation has been SRG transformed consistently at

the two-body level, and we do not expect induced multi-

particle contributions to the radius operator to cause

this difference. We will further explore this behavior,

which is also evident in other nuclei [18], in a forthcom-

ing publication.
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Fig. 11: (Color online) Theoretical (HFB, PGCM,

BMBPT, IM-NCSM) and experimental ground-state

rms charge radius along the Neon isotopic chain. HFB

and BMBPT results correspond to the HFB minimum

in the axial (β2, β3) plane. PGCM calculations are per-

formed over the axial (β2, β3) plane. The N3LO χEFT

Hamiltonian with λsrg = 1.88 fm−1 is employed in

PGCM and IM-NCSM calculations. BMBPT calcula-
tions are performed with emax = 10.

Except in 18−22Ne where octupole fluctuations are im-

portant and in 24Ne, radii associated with the HFB min-

imum in the axial (β2, β3) plane roughly follow the trend

of IM-NCSM predictions but are about 0.1 fm larger.

From a phenomenological standpoint, it seems consistent

that the deficit of binding at the HFB level correlates

with too large radii. However, this correlation is not

effective when adding static correlations via PGCM. In-

deed, while increasing the binding energy by few MeVs

and leaving S2n essentially untouched, PGCM system-

atically increases rms charge radii compared to HFB by

mixing in more deformed configurations than the HFB

minimum (see Figs. 2 and 4). Eventually, PGCM results

overestimate experiment (IM-NCSM) by about 0.1 fm

(0.3 fm) all throughout the isotopic chain even though

the isotopic dependence is closer to IM-NCSM than

HFB. Thus, static collective correlations make PGCM

largely exaggerate rms charge radii and must be com-

pensated for by missing dynamical correlations. Given

that dynamical correlations directly brought on top of

the deformed mean-field increase charge radii [62], it

will be of interest to see how and why they decrease

charge radii when brought on top of the PGCM state

via PGCM-PT.
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Fig. 12: (Color online) Low-lying spectroscopy in
18−32Ne. First ∆E2+

1 and ∆E4+

1 excitation energies (up-

per panel) and their ratio ∆E4+

1 /∆E2+

1 (lower panel).
PGCM results with model-space (black box) plus χEFT

(pink band) uncertainties and IM-NCSM results with

total many-body (black box) plus χEFT (pink band)

uncertainties are compared to experimental data. The

N3LO χEFT Hamiltonian with λsrg = 1.88 fm−1 is em-

ployed in PGCM and IM-NCSM calculations.

3.3.4 Low-lying spectroscopy

Figure 12 displays the systematic of the first 2+ and 4+

excitation energies in 18−32Ne. Except for the rotational

character of the ground-state band in 30Ne, experimen-

tal data are well reproduced by IM-NSCM calculations

all along the isotopic chain. As for PGCM calculations,

the excellent results obtained in 20Ne do extend to 22Ne.

Starting with 24Ne, the trend of PGCM results is how-

ever at odds with IM-NCSM and experimental values.

In particular, the steep decrease of the first 2+ (4+)

energy beyond 26Ne (24Ne), well captured by IM-NCSM

calculations, is absent from the PGCM results. Further-

more, the experimental ∆E4+

1 /∆E2+

1 ratio displayed in

the lower panel of Fig. 12 demonstrates that the nature
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1 excitation energies (upper panel) and their ra-
tio ∆E4+

1 /∆E2+

1 (lower panel). PGCM results obtained

by mixing states along the axial quadrupole coordinate

are compared to experimental data and to full configura-

tion interaction (FCI) results as well as to PGCM results

obtained by adding the triaxial quadrupole coordinate.

of the ground-state band changes brutally beyond 26Ne

as one enters the island of inversion to approach the

rotational value in 30Ne. As could have been anticipated

from the evolution of the HFB TES in Fig. 8, this qual-

itative change is not captured by PGCM calculations

that predict 30Ne ground-state to be spherical.

The above discussion underlines that the ability of the

PGCM to nicely reproduce the low-lying spectroscopy

of 20−22Ne cannot be naively and automatically general-

ized to all nuclei. It is however unclear whether what is

observed along the Ne isotopic chain constitutes an in-

trinsic limitation of the PGCM ansatz, in which case all

defects must be corrected by the addition of dynamical

correlations, or whether a richer PGCM ansatz could

already change the situation at play.

To investigate this question, the results of sd valence-

space calculations performed with the USDB interac-

tion [63] are reported on in Fig. 13. The restriction to a

valence space is meant to effectively remove, or largely

suppress, the explicit role of dynamical correlations and

see if enriching the PGCM ansatz is sufficient to reach

full configuration interaction (FCI) results [14]. To do

so, the PGCM on purely axial states discussed above is

enriched via the explicit addition of triaxially-deformed

HFB states. When restricted to a small valence space

around the Fermi level, the PGCM based on axial states
is able to track the exact FCI 2+1 excitation energy very

closely all the way to the border of the sd shell, i.e. up

to 30Ne. However, the reproduction of the 4+
1 excita-

tion energy is already quite off in the middle of the

shell such that the ∆E4+

1 /∆E2+

1 ratio does not track

the steep decrease visible in both the data and the FCI

results. Enlarging the PGCM ansatz to include triaxial

states significantly improves the situation up to 24Ne,

in particular by capturing the drop of the ratio that is

not described correctly in the PGCM ab initio calcula-

tions (see Fig. 12). Thus, enriching the PGCM ansatz

itself help significantly when accounting implicitly for

dynamical correlations via an effective valence-space

Hamiltonian. It however remains to see if this remains

true in ab initio calculations where dynamical correla-

tions are only added a posteriori, e.g., in perturbation.

Beyond 26Ne both sets of PGCM calculations reproduce

FCI results very well, which is somewhat anecdotal given

the smallness of the configuration space as one reaches

the end the sd shell and given that sd-shell valence space

calculations based on traditional empirical interactions

do not reproduce the physics of the island of inversion
anyway.

Having learnt that adding triaxiality can improve the

low-lying spectroscopy of certain isotopes, ab initio

PGCM calculations of 20,24,30Ne have been extended to

include this degree of freedom into the PGCM ansatz.

Corresponding results are shown in Fig. 1412.

Starting with 20Ne, one observes that the already well

reproduced spectroscopy is not spoiled by the addition

of triaxial configurations. More specifically, excitation

energies are barely modified whereas B(E2) transition

strengths within both bands are decreased, in a way

that is more consistent with experimental data for the

ground-state band.

12Because triaxial PGCM calculations are much more compu-
tationally intensive than axial ones, due to the two additional
integrals appearing in the angular-momentum projection, as-
sociated error bars have not been computed in the present
work.
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Fig. 14: (Color online) First two positive-parity bands in 20,24,30Ne. The E2 transition strengths (in e2fm4) are

indicated along vertical arrows. Panel (a): PGCM results obtained using HFB configurations in the axial (β2, β3)

plane. Panel (b): PGCM results obtained adding triaxially deformed HFB configurations. Panel (c): IM-NCSM

results. Panel (d): experimental data. PGCM results in panel (a) display model-space (black box) plus χEFT
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calculations.
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Fig. 15: (Color online) Average neutron natural orbital

occupations (including the 2j + 1 degeneracy factor)

for the first two PGCM 0+ states of 18−32Ne. Cal-

culations employ the N3LO χEFT Hamiltonian with

λsrg = 1.88 fm−1.

In the valence-space results presented in Fig. 13, the ad-

dition of triaxial configurations were mostly useful to im-

prove the behavior of the ∆E4+

1 /∆E2+

1 ratio around mid

shell. In the ab initio calculation, the ground-state band

is marginally compressed in 24Ne, moving it slightly

away from IM-NCSM results and experimental data.

Correspondingly, the∆E4+

1 /∆E2+

1 ratio is only marginally

lowered from 2.78 in the axial calculation to 2.67 in the
trixial one, i.e the inclusion of the trixial degree of free-

dom does not bring the improvement that could be

expected from valence-space calculations.

Let us now come to the most challenging 30Ne isotope

located in the island of inversion. As for the axial PGCM

calculation, one first notices that the rotational behavior

of the experimental ground-state band is not reproduced

by the IM-NCSM calculation. Thus, one cannot exclude

that the computed band is not the correct one, espe-

cially given that the trend of IM-NCSM ground-state

binding energies precisely presents a glitch in 30Ne as

observed earlier in Fig. 9. As a matter of fact, the prob-

lem of the PGCM calculation relates to the fact that

the excited intruder positive-parity band is probably the

right candidate for the ground-state band, only that it

is wrongly positioned above the spherical one. Indeed,

both excitation energies with respect to the band-head

and intra-band B(E2) transitions are consistent with ex-

perimental data. This failure is consistent with the large

gap between sd and pf shells observed in the PGCM

Baranger neutron spectrum (Fig. 10) that is a fingerprint

of the lack of cross-shell correlations in the computed

ground-state. While incorporating full dynamical cor-

relations must correct for this defect, a more efficient

strategy could consist in enriching the PGCM ansatz.
As seen from the lower panel of Fig. 14, the triaxial

PGCM does compress the intruder band and lower it

slightly, but not nearly enough. At this point in time,

one is thus left with two scenarios (i) the account of

missing dynamical correlations inverses the order of the

two bands or (ii) further enriching the PGCM ansatz

brings it down13, decreasing or even cancelling the need

for dynamical correlations to operate the inversion. Still,

given that the IM-NCSM ground-state band is not rota-

tional (even within estimated uncertainties) and that the

∆E4+

1 /∆E2+

1 ratio is in fact close to the PGCM value,

one must contemplate the fact that the Hamiltonian is

to be blamed, i.e. that the associated uncertainties are

underestimated.

Overall, the conclusion is that the further inclusion of the

trixial degree of freedom does not change the situation

in any decisive way in the present examples. Correspond-

ingly, the island of inversion presents a challenging test

case for ab initio calculations.

3.3.5 Natural orbitals average occupation

To further analyze the results displayed above, the (non-

observable) average occupation of neutron natural or-

bitals, i.e. the eigenvalues of the PGCM one-body den-

sity matrix, are displayed in Fig. 15 for the first two

0+ states in 18−32Ne. The 28−30Ne data confirm that,

within the present theoretical calculation, the band built

on the excited 0+2 state is the intruder band benefiting,

although not enough at the strict PGCM level, from

correlations built out of particle-hole excitations into

the pf shell. Contrarily, the pf natural orbitals display

zero occupation for the 0+1 ground-state in these two iso-

topes belonging to the island of inversion. Again, while

enriching the PGCM ansatz can improve the situation,

adding dynamical correlations associated with explicit

particle-hole excitations into the pf shell is likely to

13A preliminary study indicates that generating the Bogoli-
ubov states via a variation after projection on particle number
(VAPPN) calculation [29] does go in the right direction but it
is not sufficient to invert the two bands per se.
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be necessary to make the intruder band become the

ground-state one.

3.3.6 SRG dependence

The above PGCM results have been obtained from the

Hamiltonian characterized by λsrg = 1.88 fm−1. Fig-

ure 16 illustrates the variation of the PGCM low-lying

spectroscopy in 30Ne when using λsrg = 2.23 fm−1.

Softening the Hamiltonian from λsrg = 2.23 fm−1 to

λsrg = 1.88 fm−1, the PGCM spectrum is compressed,

and the intruder band lowered, by as much as what

was produced by the addition of triaxial configura-

tions.

As visible from Tab. 1, 30Ne is one of the two isotopes in

which the sensitivity of the spectrum is the largest, i.e.

of the order of 10− 20%. This significant dependence on

λsrg is consistent with the fact that decisive correlations

associated with the island of inversion are missing in
the PGCM (and IM-NCSM) calculation of this nucleus.

Contrarily, the first 2+ and 4+ states in 20Ne only vary

by about 1% under the same modification of λsrg. Among

the selected quantities, the spectroscopic quadrupole

moment appears to be the most sensitive one, with

variations of the order of 20% throughout the isotopic
chain. It will be of interest to investigate how much

these variations are tamed down by the inclusion of

dynamical correlations on top of PGCM.

3.3.7 Spectroscopic observables

A last set of spectroscopic quantities are displayed in

Fig. 17. As visible from the upper panel, IM-NCSM

B(E2 : 2+1 → 0+1 ) transition probabilities are generally

too small, particularly below 24Ne and at 30Ne even

though the experimental error bars are large for this

case. Contrarily, the collective character of the PGCM

makes the B(E2 : 2+
1 → 0+

1 ) to be well reproduced

below 24Ne and overestimated between 24Ne and 28Ne.

In 30Ne, the E2 transition is again too small because

the first band does not correspond to the experimental

one. As visible from the added point on the figure, the
B(E2 : 2+

2 → 0+
2 ) of the intruder band is in better

agreement with experiment.

In the middle panel, the PGCM spectroscopic quadrupole

moment of the first 2+ state reproduces well experimen-

tal data in 20,22Ne. The IM-NCSM results, however, are

systematically too small in magnitude. We have observed

this type of deviation also in other cases and identified a

possible explanation for this deficiency [40], which is re-

lated to an enhancement of multi-particle contributions

to the IMSRG-transformed quadrupole operator, which

have not been included here. In other words, capturing

the full collectivity in electric quadrupole observables

might in some cases require multi-particle contributions

to the transformed operator.

In the lower panel, PGCM and IM-NCSM spectroscopic

dipole moments of the first 2+ and 4+ states are consis-

tent throughout the isotopic chain and nicely account

for the available experimental data in 20,22Ne.

Accessing experimental electromagnetic moments in

more neutron-rich Ne isotopes would allow one to better
investigate the consistency of the picture that emerges

from our theoretical study and would thus be welcome

in the future.

4 Conclusions

The second paper of the present series proposed an exten-

sive ab initio study of neon isotopes based on in-medium
no-core shell model and projected generator coordinate

method calculations. The main conclusion of the present

work is that, in spite of missing so-called dynamical cor-

relations, the PGCM is shown to be a suitable ab initio

method to address the low-lying spectroscopy of com-

plex nuclei within theoretical uncertainties. For instance,

the energy spectrum and electric multipole transition

strengths of the low-lying parity-doublet bands in 20Ne

are reproduced by taking into account the effect of oc-

tupole collective fluctuations.

Still, describing absolute binding energies, accounting

consistently for a wide range of spectroscopic observ-

ables, tackling many nuclei displaying different charac-

teristics and achieving high accuracy, eventually requires
the inclusion of dynamical correlations on top of the

PGCM. In fact, certain salient features, such as the

physics of the island of inversion around 30Ne, require

this inclusion from the outset to achieve a qualitatively

correct description. This incorporation is now possible

thanks to the novel multi-reference perturbation the-

ory (PGCM-PT) formulated in the first paper of the

present series [1] and that embeds the PGCM within a

systematic expansion.

The first PGCM-PT results are presented in the third

paper of the present series [2]. The key question be-

hind the present work and the associated many-body

developments regards the optimal way to consistently

incorporate static and dynamical correlations in view of

describing complex nuclei. This is only the beginning

of the journey, hence finding this optimal strategy will

require time and a significant amount of trial-and-error.

The third paper of the series represents a first step in

this direction.
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Fig. 16: (Color online) Adaptation of the lower panel of Fig. 14 via the addition of the axial PGCM results obtained

from the N3LO χEFT Hamiltonian λsrg = 2.23 fm−1.

18Ne 20Ne 22Ne 24Ne 26Ne 28Ne 30Ne 32Ne

∆EJ+

1 2+ 21.6 0.5 1.4 6.1 5.6 12.0 16.1 5.6

4+ 23.5 1.5 0.6 5.3 1.6 3.2 8.6 0.4

M1 2+ 13.6 0.1 5.9 1.2 4.2 0.5 7.2 1.6

4+ 11.3 0.0 4.5 4.5 3.2 5.0 3.7 0.3

Q2 2+ 32.6 20.2 16.6 21.5 17.8 19.0 26.8 16.4

4+ 32.9 22.9 17.5 21.2 18.3 21.1 10.0 16.6

rch 0+ 7.1 6.1 5.6 5.9 5.7 5.6 5.4 5.3

Table 1: Percentage of variation of selected PGCM results along the Neon isotopic chain for λsrg ∈ [1.88, 2.23] fm−1.

Evolving the interaction systematically reduces values for radii and EM transitions.
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A Linear redundancies in HWG

The linear redundancies due to the non-orthogonality

of the HFB states mixed into the PGCM state must

be dealt with when solving HWG’s equation. Because

of the manageable number of such HFB states, it can

be done by diagonalizing the norm matrix Nσ̃ and by

removing the eigenvectors associated with eigenvalues

smaller than a given threshold εth. The threshold must
be chosen such that the end results do not depend on

its particular value.

In the second step, the Hamiltonian H can be safely

diagonalized in the orthonormal basis generated in the

first step. Since Nσ̃ is a Hermitian positive-definite ma-

trix, the basis transformation can be written as

Nσ̃ = Sσ̃†N̆σ̃Sσ̃ , (5)

where Sσ̃ is a unitary matrix and where N̆σ̃ is diagonal

with strictly positive eigenvalues. Defining

Gσ̃ ≡ Sσ̃†
(
N̆σ̃
)−1/2

Sσ̃ , (6)

and only keeping the rows of Sσ̃ corresponding to eigen-

values of N̆σ̃ larger than εth, HWG’s equation (Eq. 31 of

Paper I) is transformed into the associated orthonormal
basis and becomes∑
q

H̆ σ̃
p0q0 f̆

σ̃
µ (q) = E σ̃µ f̆ σ̃µ (p) , (7)



20

0
20
40
60
80

B(
E2

,2
+ 1

0+ 1
)[

e2 fm
4 ]

20
10

0
10
20

Q
2(

2+
)[

ef
m

2 ] Exp
IM-NCSM
PGCM

18 20 22 24 26 28 30 32
ANe

0

2

4

M
1

[n
m

]

2 +

4 +

Fig. 17: (Color online) Theoretical (PGCM, IM-NCSM)

and experimental electromagnetic moments along the

Neon isotopic chain. Upper panel: reduced electric

quadrupole transition B(E2 : 2+
1 → 0+

1 ) to which is

added the PGCM B(E2 : 2+2 → 0+2 ) value in 30Ne. Mid-

dle panel: spectroscopic electric quadrupole moment of

the first 2+ state. Lower panel: spectroscopic magnetic

dipole moment of the first 2+ and 4+ states. PGCM

calculations are performed in the axial (β2, β3) plane.

The N3LO χEFT Hamiltonian with λsrg = 1.88 fm−1 is

employed in PGCM and IM-NCSM calculations.

with

H̆σ̃ ≡ Gσ̃†Hσ̃Gσ̃ , (8a)

f σ̃ ≡ Gσ̃ f̆ σ̃ . (8b)

The solutions {f̆ σ̃µ (q); q ∈ set} play the role of orthonor-

mal collective wave functions as a function of q that can

be interpreted as probability amplitudes. Left-multiplying

Eq. 7 by f̆ σ̃∗µ (q), one can thus decompose the PGCM

energy in terms of contributions associated with each

deformation q

E σ̃µ =
∑
q

h̆σ̃∗µ (q) f̆ σ̃µ (q) ≡
∑
q

e
(0+1)
0 (q) , (9)

with

h̆σ̃µ(q) ≡
∑
p

H̆ σ̃
q0p0 f̆

σ̃
µ (p) . (10)

Note that, as done in Paper I, a similar decomposition of

the PGCM energy can be achieved prior to diagonalizing

the norm kernel.

B Memory optimization

The storage of the interaction matrix elements necessary

to perform ab initio calculations in large computational

bases is challenging. Several methods exist to reduce

this memory burden. For example, one most commonly

takes advantage of the rotational symmetry to store

matrix elements in J-coupled form. However, this stor-

age is not well adapted to PGCM calculations based on

symmetry breaking HFB states where the contraction

of the interaction with rotated density matrices need

to be performed in m-scheme. In the present Appendix,

the workflow to calculate a Hamiltonian kernel while

optimizing memory and runtime is detailed.

B.1 J-coupling scheme

In the present calculations, the one-body Hilbert space

is spanned by spherical harmonic oscillator eigenstates

that are labelled by 5 quantum numbers

k ≡ (nk, lk, jk,mk, tk) , (11)

where nk denotes the radial quantum number, lk the

orbital angular momentum, jk the total angular mo-

mentum, mk its projection and tk the isospin projec-

tion.

Introducing the reduced index

k̃ ≡ (nk, lk, jk, tk) , (12)

and building the m-scheme, i.e. tensor-product, basis of

the two-body Hilbert space according to

|k1k2〉 ≡ |k1〉 ⊗ |k2〉 , (13)

the J-coupled two-body basis is obtained through

|k̃1k̃2JM〉 ≡
1

1 + δk̃1k̃2

∑
m1m2

CJMjk1
mk1

jk2
mk2
|k1k2〉 , (14)
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where Clebsch-Gordan coefficients have been introduced.

Conversely, uncoupled basis states can be expanded on

J-coupled ones via

|k1k2〉 ≡ (1 + δk̃1k̃2)
∑
JM

CJMjk1
mk1

jk2
mk2
|k̃1k̃2JM〉 . (15)

The two-body interaction being invariant under rotation,

Wigner-Eckart theorem implies that its matrix elements

are diagonal in (J,M) when expressed in the J-coupled

basis. Furthermore, matrix elements can be factorized

in terms of a geometrical factor and a reduced tensor

independent of M . Therefore, only the reduced tensor

is stored in memory.

B.2 Contractions with one-body density

matrices

When the PGCM solely involves spherically invariant

HFB states, all necessary contractions of the two-body

interaction with off-diagonal one-body density matrices

associated with pairs of HFB vacua can be conveniently

worked out in the J-coupled two-body basis in a way

that only involves the reduced tensor. When employing
deformed HFB states and projecting onto good angular

momentum, interaction matrix elements must however

be expressed in the uncoupled basis prior to performing

the contractions. Two strategies are then possible

– Uncouple J-coupled matrix elements prior to the

calculation and work with the corresponding set of

uncoupled matrix elements. This however induces a

large memory requirement.

– Decouple interaction matrix elements on the fly, thus

reducing the storage workload while substantially

increasing the runtime.

In order to tackle this problem efficiently, a workflow

that decouples each matrix element only once has been

devised, thus reducing drastically both memory and

runtime requirements in a way that is easily parallelized.

The workflow is as follows

1. Pre-compute all off-diagonal one-body density ma-

trices.

2. Split the initial one-body basis into subsets of states

carrying the same quantum numbers (m,π).

3. Select [((m1, π1), (m2, π2), (m3, π3), (m4, π4)].

(a) Decouple the sub-part of the interaction charac-

terized by this combination of quantum numbers

and store it contiguously in memory.
(b) Perform the contraction of the interaction sub-

part with the corresponding sub-blocks of the

off-diagonal one-body density matrices. This part

can be completely vectorized since the decoupled

interaction is stored contiguously in memory.

4. Go back to 3. until all combinations of quantum

numbers have been exhausted.

The loop in step 3 can be easily parallelized. Except

for the overhead associated with the storage of all off-

diagonal one-body density matrices, the memory con-

sumption scales linearly with the number of cores.

C Evaluation of the norm overlap

As discussed in Paper I, the overlap between a left Bo-

goliubov vacuum and a rotated right Bogoliubov vacuum

can be evaluated according to [64]

〈Φ(p)|Φ(q; θ)〉 = (−1)n
det(C∗(p)) det(C(q))∏n

k vk(p)vk(q)
pf

[(
V (p)TU(p) V T (p)rT (θ)V ∗(q)

−V (q)†r(θ)V (p) U†(q)V ∗(q)

)]
, (16)

where the pfaffian of a symplectic matrix and Bloch-Messiah-Zumino’s decompositions [65] of the Bogoliubov

transformations of the left and (unrotated) right states have been invoked. In Eq. (16), 2n denotes the dimension of

H1. This expression is however not numerically stable as it amounts to taking the ratio of two vanishing quantities.

A way to circumvent this difficulty has been proposed in Ref. [66], but a simpler alternative consists of rescaling

the matrix before evaluating the pfaffian. For any 2n× 2n skew-symmetric matrix A and real scalar λ, one has

pf(λA) = λnpf(A). (17)

Therefore, Eq. (16) can be rewritten as

〈Φ(p)|Φ(q; θ)〉 = (−1)n det(C∗(p)) det(C(q))pf

[
1

n
√∏n

k vk(p)vk(q)

(
V (p)TU(p) V T (p)rT (θ)V ∗(q)

−V (q)†r(θ)V (p) U†(q)V ∗(q)

)]
, (18)
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which is well-behaved numerically. The numerical li-

brary Pfapack [67] is used to compute the pfaffian.

D Charge density distribution

Generically speaking, the electromagnetic charge den-

sity operator is expressed as an expansion in many-body

operators acting on nucleonic degrees of freedom. These

operators not only account for the point distribution

of protons but also for their own charge distribution,

along with the one of neutrons, and for charge distri-

butions associated with the light charged mesons they

exchange.

In practice, the charge density distribution14 is usually

computed as [68,69,70]

ρch(r) = ρpch(r) + ρnch(r), (19)

where ρpch (ρnch) is determined by folding the point-proton

(point-neutron) density with the finite charge distribu-

tion of the proton (neutron). Following Ref. [69], the

latter are included by parameterizing proton and neu-

tron charge form factors as a linear superposition of

Gaussians

Gp/n(r) =
∑
i

θ
p/n
i

[π(r
p/n
i )2]3/2

e−(r/r
p/n
i )2 , (20)

whose widths r
p/n
i and relative weights θ

p/n
i are adjusted

to reproduce electron scattering data. Three and two

Gaussians are sufficient to reproduce proton and neutron

form factors, respectively, with parameters15 given in

Tab. 2. Convoluting Eq. (20) with point-proton and

point-neutron distributions ρp and ρn yields the two

contributions to the nuclear charge density [70]

ρpch(r) =

3∑
i=1

θpi
rpi
√
π

+∞∫
0

dr′
r′

r
ρp(r′)

[
e
−
(

r−r′

r
p
i

)2

− e
−
(

r+r′

r
p
i

)2]
,

14An additional relativistic correction that depends on spin-
orbit terms, ρlsch, is sometimes considered. Given that proton
and neutron spin-orbit contributions largely cancel out in
N = Z nuclei, this term is omitted in the present calculation
of 20Ne.
15The proton r.m.s. radius resulting from this parameter-
ization is 〈R2

p〉1/2 = 0.88 fm. This is consistent with the
values reported in the older CODATA evaluations (e.g. the
2010 evaluation [71], 〈R2

p〉1/2 = 0.8775(51) fm), but overesti-

mates the value found in more recent evaluations (〈R2
p〉1/2 =

0.8414(19) fm, adopted from the 2014 evaluation [72] on). A
smaller value of the proton r.m.s. charge radius would lead
to less smoothing of the point-proton distribution. Given the
small difference between the possible values of 〈R2

p〉1/2, how-
ever, this would be hardly noticeable in the final charge density
curves.

proton neutron

θ
p/n
1 0.506 1

θ
p/n
2 0.328 -1

θ
p/n
3 0.166 -

(r
p/n
1 )2 [fm2] 0.432 0.469

(r
p/n
2 )2 [fm2] 0.139 0.546

(r
p/n
3 )2 [fm2] 1.526 -

〈R2
p/n
〉 [fm2] 0.775 -0.116

Table 2: Proton and neutron parameters entering the

Gaussian expansion (20). Taken from Ref. [69]. The

resulting mean-square charge radii are also reported.

(21a)

ρnch(r) =

2∑
i=1

θni
rni
√
π

+∞∫
0

dr′
r′

r
ρn(r′)

[
e
−
(

r−r′
rn
i

)2

− e
−
(

r+r′
rn
i

)2]
.

(21b)

Finally, one needs to correct for spurious center-of-mass

contamination and include the Darwin-Foldy relativis-

tic correction. Assuming that the center-of-mass wave

function factorizes in the ground-state of a harmonic

oscillator Hamiltonian characterized by the frequency ω̃,

the inclusion of these two corrections can be performed

at the price of proceeding to the replacement [73,69]

r2i −→ r2i −
b2

A
+

1

2

(
~
m

)2

(22)

in Eqs. (21), where m is the nucleon mass, hence ~/m =

0.21 fm, and b2 = (m ~ ω̃)−1. Employing Bethe’s for-

mula [73], the latter term can be approximated with

b2 ≈ A1/3 fm2. Let us note that, for 16O, such an ap-

proximation is consistent with the value of ~ω̃ found in
Ref. [74] and is thus safe to use in present calculations

of 20Ne.
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18. T. Hüther, K. Vobig, K. Hebeler, R. Machleidt, R. Roth,
Family of chiral two- plus three-nucleon interactions for
accurate nuclear structure studies, Physics Letters B 808
(2020) 135651. doi:10.1016/j.physletb.2020.135651.
URL http://dx.doi.org/10.1016/j.physletb.2020.

135651

19. E. Epelbaum, H.-W. Hammer, U.-G. Meissner, Modern
Theory of Nuclear Forces, Rev. Mod. Phys. 81 (2009) 1773–
1825. arXiv:0811.1338, doi:10.1103/RevModPhys.81.1773.

20. E. Epelbaum, Towards high-precision nuclear forces from
chiral effective field theory, in: 6th International Confer-
ence Nuclear Theory in the Supercomputing Era, 2019.
arXiv:1908.09349.

21. R. Machleidt, F. Sammarruca, Can chiral EFT give us
satisfaction?, Eur. Phys. J. A 56 (3) (2020) 95. arXiv:

2001.05615, doi:10.1140/epja/s10050-020-00101-3.
22. D. R. Entem, R. Machleidt, Y. Nosyk, High-quality two-

nucleon potentials up to fifth order of the chiral expansion,
Phys. Rev. C 96 (2) (2017) 024004. arXiv:1703.05454,
doi:10.1103/PhysRevC.96.024004.

23. S. K. Bogner, R. J. Furnstahl, A. Schwenk, From low-
momentum interactions to nuclear structure, Prog. Part.
Nucl. Phys. 65 (2010) 94–147. doi:10.1016/j.ppnp.2010.

03.001.
24. R. Roth, J. Langhammer, A. Calci, S. Binder, P. Navrátil,
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lished (2021).

32. M. Frosini, J.-P. Ebran, A. Porro, T. Duguet, V. Somà,
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Holt, Converged ab initio calculations of heavy nuclei
(2021). arXiv:2104.04688.

http://arxiv.org/abs/1807.02518
https://doi.org/10.1088/1361-6471/aadebd
https://doi.org/10.1088/1361-6471/aadebd
http://arxiv.org/abs/0708.0441
http://arxiv.org/abs/0708.0441
https://doi.org/10.1103/PhysRevC.76.054315
http://arxiv.org/abs/0809.2049
https://doi.org/10.1103/PhysRevC.79.044320
https://doi.org/10.1103/PhysRevC.79.044320
http://arxiv.org/abs/0809.2045
https://doi.org/10.1103/PhysRevC.79.044319
http://arxiv.org/abs/0809.2041
https://doi.org/10.1103/PhysRevC.79.044318
http://arxiv.org/abs/1509.03058
https://doi.org/10.1103/PhysRevC.92.064310
https://doi.org/10.1103/PhysRevC.92.064310
http://arxiv.org/abs/1707.03940
https://doi.org/10.1103/PhysRevC.96.054310
https://doi.org/10.1103/PhysRevC.96.054310
https://doi.org/10.1103/PhysRevC.103.064302
http://arxiv.org/abs/1907.05493
https://doi.org/10.1103/PhysRevC.100.044308
https://doi.org/10.1103/PhysRevC.100.044308
http://arxiv.org/abs/2106.08841
http://arxiv.org/abs/2102.10120
https://doi.org/10.1140/epja/s10050-021-00458-z
https://doi.org/10.1140/epja/s10050-021-00458-z
http://arxiv.org/abs/1908.05424
https://doi.org/10.1103/PhysRevLett.124.232501
http://arxiv.org/abs/1807.11053
http://arxiv.org/abs/1807.11053
https://doi.org/10.1103/PhysRevC.98.054311
http://dx.doi.org/10.1016/j.physletb.2020.135651
http://dx.doi.org/10.1016/j.physletb.2020.135651
https://doi.org/10.1016/j.physletb.2020.135651
http://dx.doi.org/10.1016/j.physletb.2020.135651
http://dx.doi.org/10.1016/j.physletb.2020.135651
http://arxiv.org/abs/0811.1338
https://doi.org/10.1103/RevModPhys.81.1773
http://arxiv.org/abs/1908.09349
http://arxiv.org/abs/2001.05615
http://arxiv.org/abs/2001.05615
https://doi.org/10.1140/epja/s10050-020-00101-3
http://arxiv.org/abs/1703.05454
https://doi.org/10.1103/PhysRevC.96.024004
https://doi.org/10.1016/j.ppnp.2010.03.001
https://doi.org/10.1016/j.ppnp.2010.03.001
https://link.aps.org/doi/10.1103/PhysRevLett.107.072501
https://link.aps.org/doi/10.1103/PhysRevLett.107.072501
https://doi.org/10.1103/PhysRevLett.107.072501
https://link.aps.org/doi/10.1103/PhysRevLett.107.072501
https://link.aps.org/doi/10.1103/PhysRevLett.107.072501
https://link.aps.org/doi/10.1103/PhysRevC.90.024325
https://link.aps.org/doi/10.1103/PhysRevC.90.024325
https://link.aps.org/doi/10.1103/PhysRevC.90.024325
https://doi.org/10.1103/PhysRevC.90.024325
https://link.aps.org/doi/10.1103/PhysRevC.90.024325
https://link.aps.org/doi/10.1103/PhysRevC.90.024325
https://link.aps.org/doi/10.1103/PhysRevC.103.024315
https://link.aps.org/doi/10.1103/PhysRevC.103.024315
https://link.aps.org/doi/10.1103/PhysRevC.103.024315
https://doi.org/10.1103/PhysRevC.103.024315
https://link.aps.org/doi/10.1103/PhysRevC.103.024315
https://link.aps.org/doi/10.1103/PhysRevC.103.024315
https://link.aps.org/doi/10.1103/PhysRev.89.1102
https://link.aps.org/doi/10.1103/PhysRev.89.1102
https://doi.org/10.1103/PhysRev.89.1102
https://link.aps.org/doi/10.1103/PhysRev.89.1102
https://link.aps.org/doi/10.1103/PhysRev.89.1102
https://link.aps.org/doi/10.1103/PhysRev.108.311
https://link.aps.org/doi/10.1103/PhysRev.108.311
https://doi.org/10.1103/PhysRev.108.311
https://link.aps.org/doi/10.1103/PhysRev.108.311
https://link.aps.org/doi/10.1103/PhysRev.108.311
http://arxiv.org/abs/2010.14169
https://doi.org/10.1140/epja/s10050-021-00369-z
http://arxiv.org/abs/2104.04688


24

34. S. Binder, et al., Few-nucleon and many-nucleon systems
with semilocal coordinate-space regularized chiral nucleon-
nucleon forces, Phys. Rev. C 98 (1) (2018) 014002. arXiv:

1802.08584, doi:10.1103/PhysRevC.98.014002.

35. E. Epelbaum, H. Krebs, U. G. Meißner, Improved chiral
nucleon-nucleon potential up to next-to-next-to-next-to-
leading order, Eur. Phys. J. A 51 (5) (2015) 53. arXiv:

1412.0142, doi:10.1140/epja/i2015-15053-8.

36. E. Gebrerufael, K. Vobig, H. Hergert, R. Roth, Ab Initio
Description of Open-Shell Nuclei: Merging No-Core Shell
Model and In-Medium Similarity Renormalization Group,
Phys. Rev. Lett. 118 (15) (2017) 152503. arXiv:1610.

05254, doi:10.1103/PhysRevLett.118.152503.

37. W. Kutzelnigg, D. Mukherjee, Normal order and extended
wick theorem for a multiconfiguration reference wave func-
tion, J. Chem. Phys. 107 (1997) 432.

38. L. Kong, M. Nooijen, D. Mukherjee, J. Chem. Phys. 132
(2010) 234107.

39. K. Vobig, T. Mongelli, R. Roth, In-Medium No-Core Shell
Model for Ab Initio Nuclear Structure CalculationsIn
preparation (2021).
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