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Abstract Ab initio nuclear structure theory has experienced a phase of ground-
breaking developments over the past decade. Compared to the situation in the early
2000s, we now have a rich variety of powerful and complementary tools that connect
the underlying theory of the strong interaction to nuclear structure observables. This
enables us to describe amuch larger domain of nuclei and observableswith controlled
and quantified theoretical uncertainties—in the ab initio spirit. In this lecture we
provide a pedagogical introduction into the ab initio toolbox with a focus on basis-
expansion approaches, particularly on configuration interaction methods, like the
no-core shell model, and decoupling approaches, like the in-medium similarity
renormalization group.

1 Introduction

The landscape of methods that define the state-of-the-art in ab initio nuclear structure
theory has been completely transformed since the early 2000s. New and innovative
many-body schemes have been developed that radically expand the boundaries of
what is possible computationally. At the same time, the connection to the underlying
theory of the strong interaction has be strengthened through the use of effective field
theories for the construction of nuclear interactions.
In this lecture we provide an introduction to ab initio nuclear structure theory

with a focus on basis-expansion methods. This is really meant to be a lecture and not
a review article. We will present the material in a pedagogical manner, focussing on
systematics, clarity, and consistency. We will explore the basic theoretical concepts
and their interrelations and not so much the multitude of applications and results. We
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will not attempt to cover the field of ab initio theory completely—given the wealth
of recent developments this would fill a complete volume of this lecture series.

2 The Big Picture

We start by formulating the general nuclear structure problem as a quantum many-
body problem. Already the first steps in this formulation imply specific assumptions,
e.g., on the effective degrees-of-freedom for the theoretical description. This, in
turn, has consequences for the formulation of the relevant interactions and, thus, the
effective Hamiltonian governing the structure and dynamics of the system. Finally,
the quantum many-body problem has to be solved, which in our case amounts to the
solution of amany-particle Schrödinger equation. In this section, we go through these
steps and establish the basic language and notation. We will also give an overview
of the different classes of approaches to the many-body problem and address the
meaning of the term ‘ab initio’.

Constituents. We consider nuclei as quantum multi-particle systems, composed of
nucleons as effective degrees of freedom. It is understood that nucleons themselves
have a complicated substructure, being bound states of quarks governed by the com-
plicated quark-gluon interactions of Quantum Chromodynamics (QCD). However,
we do not wish to resolve this underlying layer of microphysics.
This seemingly obvious choice (from the perspective of low-energy nuclear struc-

ture physics) has profound consequences. From the beginning we decide to work
with an effective theory that has a limited range of validity resulting from the choice
of the effective degrees of freedom. By construction the nucleons in our effective
theory are point-like particles, they are inert and have no internal structure. This
is obviously not the full truth—nucleons are extended objects with a typical root-
mean-square radius of their charge distribution (for the proton) of around 0.8 fm and
they have internal excitations, e.g. the Δ resonances at about 300 MeV of excitation
energy. For the effective theory of point-nucleons this implies: (i) a limited range of
applicability and (ii) the need to account for corrections to the relevant observables.
In a proper effective theory, these points should follow in a systematic and trans-

parent fashion from the formulation of the theory. The range of validity should be
clearly defined from the outset and the theory should provide a consistent way to
construct the corrections to observables resulting from the unresolved physics. One
of the significant advances in nuclear structure theory over the past decade addresses
exactly this point—with the advent of chiral effective field theory, the step from
QCD to the world of point-nucleons has become a well-defined procedure. Nuclear
structure calculations have matured from a model to an effective theory.

Interactions. The simplifications with respect to the degrees of freedom necessarily
entail complications with respect to the interactions among them. The effective
interaction of point-nucleons also has to encapsulate the complicated quark-gluon
dynamics at the level of QCD that is not resolved in our description. The dynamics of
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quarks and gluons creates the net interaction that two or more nucleons experience
and this net effect has to be mimicked by the effective interaction among point-
nucleons in the effective theory.
This situation is not unique to nuclear structure physics.We find a similar scenario

in molecular physics when describing a system of atoms. Consider, e.g., a system
of two or more neutral 4He atoms. A simple effective theory could assume point-
like 4He particles, not resolving the complicated internal structure of the atoms.
The effective interaction between the point-atoms has to capture all the underlying
dynamics of the atoms, this is the famous van der Waals interaction in atomic and
molecular physics. Themechanism behind these forces can be understood intuitively.
At large distances the electrically neutral atoms do not affect each other and there
is no interaction. Only at short distances, the mutual polarization of their electron
distributions induces a net interaction. A similar mechanism is at work when color-
neutral baryons come close enough so that their quark-gluon distributions overlap.
In atomic physics it is possible to compute the residual interaction among the

atoms from solving the Schrödinger equation for the multi-electron two-atom prob-
lem. In principle this can also be done in QCD, specifically in Lattice QCD simula-
tions. Research along these lines is on the way [1, 2, 3] and has shown how difficult
this problem is. For the time being, we have to resort to effective field theories based
on QCD for a description of the nuclear interaction [4]. Chiral effective field theories
(EFT) have become a foundation of modern nuclear structure theory.

Many-Body Problem. Having defined the constituents and their interactions, we
are now in the position to formulate the basic equation that governs the structure
and dynamics of the many-body system, the Schrödinger equation. At this point
we restrict ourselves to a non-relativistic description of the many-body problem—
relativistic effects might enter as specific corrections in the Hamiltonian, but we will
not attempt a fully relativistic treatment.
In most cases we are interested in stationary properties of nuclei and we do not

need to address the explicit time evolution of the many-body problem. Thus, the
central equation we have to deal with is the stationary Schrödinger equation, in other
words, the eigenvalue problem of the Hamiltonian

𝐻̂ |Ψ𝑛〉 = 𝐸𝑛 |Ψ𝑛〉 , (1)

where 𝐻̂ is the Hamiltonian of the 𝐴-nucleon system, 𝐸𝑛 are the energy eigenval-
ues, and |Ψ𝑛〉 are the corresponding eigenvectors. We will use the representation-
independent Dirac notation throughout this lecture. The discrete index 𝑛 = 0, 1, 2, ...
already implies that we are concerned with the discrete part of the spectrum of the
Hamiltonian, i.e., the bound states of the nucleus. We will not discuss the continuous
part of the spectrum, i.e., the domain of nuclear scattering, reactions and resonances
in this lecture.
For a more detailed look at the eigenvalue problem, we first have to define the

Hilbert space in which we are working. We consider a system of 𝐴 indistinguishable
nucleons with spin and isospin degrees of freedom. A typical basis for the description
of the single-nucleon degrees of freedom in a finite nucleus consists of a spatial part,
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which encodes position and momentum information, a spin part and an isospin
part. For the spin part, we simply use the eigenstates of the the single-particle spin
operators ŝ and 𝑠𝑧 with quantum numbers 𝑠 = 1

2 and 𝑚𝑠 = ± 12 . Analogously for the
isospin, we use eigenstates of t̂ and 𝑡3 with quantum numbers 𝑡 = 1

2 and 𝑚𝑡 = ± 12 .
For this lecture we will limit ourselves to spherical basis sets |𝑛𝑙𝑚𝑙〉 in the spatial
degrees of freedom, labeled by a generic radial quantum number 𝑛 and orbital angular
momentum quantum numbers 𝑙 and 𝑚𝑙 . We will couple orbital angular momentum
and spin to obtain total angular momentum quantum numbers 𝑗 and 𝑚. The coupled
single-particle states thus read

|𝑝〉 = |𝑛𝑙 𝑗𝑚𝑚𝑡 〉 = |𝑛(𝑙 12 ) 𝑗𝑚〉 ⊗ | 12𝑚𝑡 〉 . (2)

Wewill use the collective indices 𝑝, 𝑞, ... to label single-particle basis states through-
out this lecture.
When proceeding to the many-body system, we have to take the permutation

antisymmetry of the states for a system of identical fermions into account. The
simplest way to construct a basis of the 𝐴-body antisymmetric Hilbert space H𝐴

uses antisymmetrized product states—so-called Slater determinants. Starting from
a complete single-particle basis { |𝑝〉}, we select 𝐴 different single-particle states
|𝑝1〉, ..., |𝑝𝐴〉 and construct product states for all possible permutations of the single-
particle indices. Summing over all these permutations with appropriate signs defines
an antisymmetrized product state or Slater determinant:

|𝑝1...𝑝𝐴〉 =
1

√
𝐴!

∑︁
𝜋

sgn(𝜋)𝑃̂𝜋 |𝑝1〉 ⊗ ... ⊗ |𝑝𝐴〉 . (3)

Here, 𝑃̂𝜋 is the permutation operator, which rearranges the single-particle indices
according to the permutation 𝜋, and sgn(𝜋) indicates the signum or parity of the per-
mutation 𝜋. The pre-factor is chosen such that the many-body states are normalized
provided that the single-particle states are normalized. Note that our notation does
not explicitly indicate the antisymmetric character of the 𝐴-body states |𝑝1...𝑝𝐴〉—
antisymmetry is always implied and we will never go back to simple product states.
The set of all antisymmetrized product states generated from an orthonormal

single-particle basis automatically provides an orthonormal basis of the antisym-
metric 𝐴-nucleon Hilbert spaceH𝐴. This is very convenient.
Another very convenient aspect of this basis is the formalism of second quanti-

zation. We can define creation operators 𝑎̂†𝑝 and annihilation operators 𝑎̂𝑝 that add
or remove particles to or from a given Slater determinant |𝑝1...𝑝𝐴〉, automatically
yielding a normalized antisymmetrized (𝐴+1) or (𝐴−1)-particle state, respectively.
We can even construct a complete 𝐴-body Slater determinant starting from the zero-
body vacuum state |0〉 through the application of a chain of creation operators:

|𝑝1...𝑝𝐴〉 = 𝑎̂†𝑝1 · · · 𝑎̂
†
𝑝𝐴

|0〉 . (4)

The complications of antisymmetry are nowhidden in the anti-commutation relations
of fermionic creation and annihilation operators. Finally, creation and annihilation



Ab Initio Approaches to Nuclear Structure 5

operators can be used to represent any operator, e.g., the components of the Hamil-
tonian, in an elegant way—we will make heavy use of this later on.

Basis Expansion, Truncation, Convergence. Why did we go through these basic
elements from many-body quantum mechanics? Well, they prompt a simple and
powerful strategy for the solution of the many-body Schrödinger equation. This
strategy can be summarized under the label basis expansion and is at the heart of all
methods discussed in this lecture.
Assume we have constructed an orthonormal basis |Φ𝜈〉 of the 𝐴-nucleon Hilbert

spaceH𝐴, e.g., the antisymmetrized product states |Φ𝜈〉 = |{𝑝1...𝑝𝐴}𝜈〉 discussed
before. We can immediately use this basis to transfer the abstract, representation-
independent eigenvalue problem (1) into a specific representation in the |Φ𝜈〉 basis.
We can expand the eigenstates |Ψ𝑛〉 in this basis

|Ψ𝑛〉 =
∑︁
𝜈

𝐶
(𝑛)
𝜈 |Φ𝜈〉 (5)

with expansion coefficients 𝐶 (𝑛)
𝜈 . Furthermore, we can multiply eq. (1) from the left

with all possible basis vectors 〈Φ𝜈 | and insert the above expansion of the eigenstates
to obtain a coupled system of algebraic equations∑︁

𝜈′
〈Φ𝜈 | 𝐻̂ |Φ𝜈′〉 𝐶 (𝑛)

𝜈′ = 𝐸𝑛 𝐶
(𝑛)
𝜈 ∀𝜈 , (6)

which can be conveniently cast into a matrix equation

©­­­­­«
〈Φ1 | 𝐻̂ |Φ1〉 〈Φ1 | 𝐻̂ |Φ2〉 〈Φ1 | 𝐻̂ |Φ3〉 · · ·
〈Φ2 | 𝐻̂ |Φ1〉 〈Φ2 | 𝐻̂ |Φ2〉 〈Φ2 | 𝐻̂ |Φ3〉 · · ·
〈Φ3 | 𝐻̂ |Φ1〉 〈Φ3 | 𝐻̂ |Φ2〉 〈Φ3 | 𝐻̂ |Φ3〉 · · ·

...
...

...
. . .

ª®®®®®¬
·

©­­­­­«
𝐶

(𝑛)
1

𝐶
(𝑛)
2

𝐶
(𝑛)
3
...

ª®®®®®¬
= 𝐸𝑛

©­­­­­«
𝐶

(𝑛)
1

𝐶
(𝑛)
2

𝐶
(𝑛)
3
...

ª®®®®®¬
. (7)

So the Schrödinger equation or the abstract eigenvalue problem of the Hamilto-
nian translates naturally into a standard matrix eigenvalue problem. The input for
this are the many-body matrix elements of the Hamiltonian 〈Φ𝜈 | 𝐻̂ |Φ𝜈′〉 in the
basis of choice, and the output are the energy eigenvalues 𝐸𝑛 and the eigenvectors
(𝐶 (𝑛)
1 , 𝐶

(𝑛)
2 , 𝐶

(𝑛)
3 , ...)T, which contain the expansion coefficients.

Seems like a pretty straightforward numerical exercise to solve this eigenvalue
problem. The only problem is that the matrix is infinite dimensional. Already the
single-particle basis |𝑝〉 and the single-nucleon Hilbert spaceH1 are infinite dimen-
sional, and the 𝐴-nucleon basis |𝑝1...𝑝𝐴〉 and the 𝐴-nucleon Hilbert space are even
more so.
The way out of this misery are truncations. We discard many-body basis states

based on a specific truncation criterion and, in this way, reduce the infinite-
dimensional basis to a finite set of states. This finite set spans the so-called model
space M𝐴, which is a sub-space of H𝐴. There are many ways to define physics-
motivated truncation criteria, and we will dive into this in Sect. 5.1. For the time
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being and as a simple example, assume that the single-particle basis |𝑝〉 is trun-
cated to a finite set—in case |𝑝〉 is built from a harmonic-oscillator basis, we could
simply limit the principal oscillator quantum number 𝑒 = 2𝑛 + 𝑙 ≤ 𝑒max with the
truncation parameter 𝑒max and discard all single-particle states with 𝑒 > 𝑒max. This
renders the 𝐴-body basis finite and defines the full configuration interaction scheme,
as discussed later.
Imposing a basis truncation implies a departure from the exact solution of (1). The

solution of the eigenvalue problem in the finite model space is only an approximation
to the exact Schrödinger equation. However, it is a very controlled approximation,
since the full problem and the exact solution are formally recovered if we include
more and more states into the model space and effectively remove the truncation
again, i.e., if we consider 𝑒max → ∞ and thusM𝐴 → H𝐴. Obviously, we cannot do
this in practical calculations, but we can explore the dependence of the solution and
of all observables on the truncation. Ideally we would observe convergence, i.e., the
observables becoming independent of the truncation for sufficiently large truncation
parameters and model spaces. Whether or not we are able to reach convergence
before the matrix is getting intractably large will be a central question for later.

Conclusions—Ab Initio. So far, we have approached nuclear structure theory from
a bird’s-eye view. However, we have already encountered the key concepts and dif-
ficulties of many nuclear structure methods: basis choice, model-space truncation,
convergence, uncertainty quantification. We have seen enough to discuss the no-
torious qualifier ‘ab initio’ that is used as a quality label for many recent nuclear
structure calculations. There is no agreed-upon definition of what qualifies a method
as ab initio, and we will not attempt to provide a rigorous definition. However, we
will mention some aspects relevant for the use of the term.
First, none of the nuclear structure methods qualifies as ‘ab initio’ or ‘from first

principles’ from the perspective of QCD—there are promising attempts to describe
light nuclei in lattice QCD [1, 2, 3], but more work is needed to provide quantitative
results. The baseline for the many-body solutions are Hamiltonians rooted in QCD,
but using nucleons as effective degrees of freedom. Today, chiral EFT provides
the most systematic way to establish the connection to QCD. However, the chiral
EFT construction of interactions in itself uses truncations and ad-hoc assumptions,
which affect the nuclear observables. Furthermore, chiral EFT interactions come
with parameters, the low-energy constants, that have to be fitted to experimental
data. The selection of data and the experimental uncertainties of the data itself
influence the predicted nuclear observables as well.
Second, all methods for the solution of the many-body problem contain some

level of approximation. For basis-expansion methods the truncation to a finite model
space introduces such an approximation, and there might be additional truncations
and approximations involved. These truncations affect the observables and, there-
fore, necessitate a systematic convergence analysis. The many-body method has to
provide systematic control parameters that govern the transition to a formally exact
solution—for basis-expansion methods this is the transition from the model space
to the full Hilbert space. We have to use these control parameters to demonstrate
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that observables are sufficiently converged, i.e., sufficiently independent of the trun-
cation. Doing this is not straightforward, particularly if multiple truncations and
approximations are involved—the convergence with respect to all of them has to be
addressed, otherwise the calculation is merely an uncontrolled approximation.
Third, the truncations and approximations introduced at the level of the Hamilto-

nian and in the many-body solution are the source of systematic theory uncertainties.
Even though we strive for convergence with respect to all truncations, we will hardly
ever reach complete convergence. Therefore, the remaining systematic uncertainties
in the theoretical predictions have to be quantified. This uncertainty quantification
should be done within the theoretical framework used for the calculation, e.g., by
exploring the convergence behavior with respect to truncations and by translating
this into an uncertainty estimate for each and every observable. In addition, there
might be statistical uncertainties inherited from experimental data used to calibrate
the theory, e.g., for the fit of the low-energy constants in the interaction. Some
many-body methods also produce additional statistical uncertainties through some
statistical sampling process. For a long time nuclear theory has been (and often still
is) remarkably unconcerned about its uncertainties—a complete discussion of all
sources of uncertainties leading to qualified error bars (not just guesswork) should
be part of all ab initio calculations. If not, the label ‘ab initio’ is not justified.

3 Hamiltonian

The foundation of any ab initio calculation is the Hamiltonian 𝐻̂. As discussed in the
previous section, it is not trivial to write down the Hamiltonian for the nuclear many-
body problem. We have to develop an effective theory framework to construct the
interactions that enter into the Hamiltonian—this theory framework will be chiral
EFT. Before addressing this, we start with a discussion of the symmetries of the
Hamiltonian and the consequences for the many-body eigenstates.

3.1 Intrinsic Hamiltonian

Nuclei are self-bound systems. Unlike the electrons in an atom that are trapped in the
Coulomb field of the central nucleus, the nucleons are held together solely by their
mutual interactions. This seemingly trivial fact already has important consequences,
it implies a number of symmetries.
From the fact that all the relevant interactions are intrinsic, i.e., act only among

the nucleons of the system, we can conclude that the properties of the nucleus, e.g.,
the binding or excitation energies, are invariant under basic spatial transformations.
These energies must not change if we place the nucleus at a different position in
space, or rotate the nucleus as a whole, or give the nucleus a non-vanishing total
momentum. Therefore, we expect the Hamiltonian to exhibit these symmetries as
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well: translational invariance, rotational invariance, and invariance undermomentum
boosts, i.e., the Galilean symmetries.
For the construction of the operators for the two- and multi-nucleon interactions

(𝑉̂NN, 𝑉̂3N, etc.) these symmetries are taken into account explicitly. In addition, we
have to pay attention to the kinetic energy operator 𝑇 . Naively, we might write
the kinetic energy in the 𝐴-body system as a sum of single-nucleon kinetic energy
operators

𝑇 =

𝐴∑︁
𝑖=1

1
2𝑚

p̂2𝑖 , (8)

where 𝑚 is the average nucleon mass—in most ab initio calculations the mass
difference between proton and neutron is not included. This operator is not invariant
under momentum boosts, it contains the kinetic energy associated with the center-of-
mass motion of the nucleus. We have to subtract the operator for the center-of-mass
kinetic energy 𝑇cm to arrive at the so-called intrinsic kinetic energy

𝑇int = 𝑇 − 𝑇cm =

𝐴∑︁
𝑖=1

1
2𝑚

p̂2𝑖 −
1
2𝐴𝑚

( 𝐴∑︁
𝑖=1

p̂𝑖

)2
=

𝐴∑︁
𝑖< 𝑗

1
2𝑚

(p̂𝑖 − p̂ 𝑗 )2 =
𝐴∑︁
𝑖=1

1
2𝑚(𝐴 − 1) p̂2𝑖 +

𝐴∑︁
𝑖< 𝑗

1
2𝑚

p̂𝑖 · p̂ 𝑗 .

(9)

The last two expressions show two practical forms of the intrinsic kinetic energy that
are being used in nuclear structure calculations—they are equivalent at the operator
level. However, within an approximate many-body scheme, the results obtained with
the two forms might differ [5].
With this we obtain the so-called intrinsic Hamiltonian, which obeys all the

Galilean symmetries:
𝐻̂ = 𝑇int + 𝑉̂NN + 𝑉̂3N + · · · . (10)

All the many-body approaches discussed in the following will use this type of
Hamiltonian. However, this does not guarantee that the solutions and observables
in a truncated many-body calculation also exhibit these symmetries. We will come
back to this point.

3.2 Practitioners view on chiral EFT

For constructing the two- and many-nucleon interaction operators, most ab initio
approaches resort to chiral EFT. There are many excellent reviews on chiral EFT for
nuclear interactions [6, 7, 8, 9, 10, 11, 12], and we invite the reader to explore these
sources.
We will look at chiral EFT from the perspective of a user, i.e., a many-body prac-

titioner that needs interactions as input for the solution of the many-body problem.
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Even from this vantage point, there are important aspects in the fabric of chiral EFT
we need to be aware of:

• Chiral order: Chiral EFT is built on an expansion in a small parameter and the
organization of contributions in powers of this small parameter, which is called
power counting. The small parameter 𝑄 is a ratio of the typical momentum
scale in the system 𝑃 and the breakdown-scale of the EFT Λ𝜒 and is of the
order 𝑄 = 𝑃/Λ𝜒 ≈ 1/3. The expansion of the interaction is truncated at some
finite power in 𝑄. We will call this the chiral order and consider interactions at
leading-order (LO) corresponding to 𝑄0, next-to leading oder (NLO) with 𝑄2,
next-to-next-to leading order (N2LO) with 𝑄3, and so on.

• Many-body forces: Starting from N2LO, chiral EFT predicts contributions that
correspond to irreducible three-nucleon (3N) interactions. Starting fromN3LO ir-
reducible four-nucleon interactions emerge. The fact that these many-body forces
emerge at higher orders in the expansion indicates that they are expected to be
successively weaker. It is a great success of chiral EFT that these terms emerge
naturally, in a systematic fashion and in a coherent theoretical framework.

• Regulator scheme and scale: Present chiral EFT interactions use a cutoff regu-
larization of divergencies, which is implemented though momentum-dependent
cutoff functions. Different types of momenta in the two- and few-nucleon system
can be used to formulate the regulators functions (relative momenta vs. momen-
tum transfer). We can even formulate cutoff functions in coordinate space or
hybrid schemes that use different regulators for different terms. In addition to the
regulator scheme, the cutoff scale Λ can be chosen in a certain range.

• Fitting strategy: For given chiral order, regulator scheme and scale, a number
of low-energy constants (LECs) associated with the contact terms have to be
determined, typically by a fit to experimental data. There are different strategies
to approach this parameter fit. One option is to fix all LECs that appear at the level
of two-body interactions in the two-body system, all additional LECs that appear
in three-body interactions using three-body observables, and so on. Another
option is to fix all LECs simultaneously to the selection of observables in a range
of different nuclei. We could also do something in between, fixing the two-body
LECs using two-body observables and the others using a selection of many-body
observables.

• Electroweak operators: Coupling photons and weak-interaction bosons to the
constituents of a chiral EFT formulation gives access to electromagnetic and weak
interaction operators that become relevant for the computation of electromagnetic
orweak transitions in nuclei. They can be derived consistently in chiral EFT,which
is another great advantage of this approach.

All these aspects are active fields of debate and research today. The different
options on chiral order, many-body forces, regulator scheme and scale, and strategy
for LEC determination lead to a growing collection of nuclear interactions from
chiral EFT that are available for nuclear structure calculations [13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23]. On top of these choices, there are more fundamental questions
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regarding, e.g., the specific choice of degrees-of-freedom or the power counting and
renormalizability, that require further research on the EFT side [24, 25].
For many-body practitioners and those who compare ab initio results it is impor-

tant to understand that there is no ‘single’ or ‘best’ chiral EFT interaction. There will
always be a variety of different realizations that are conceptually equally valid, but
might yield different many-body predictions. Even if all other variables are elim-
inated, chiral EFT interactions will always come at different chiral orders and the
convergence of this expansion has to be explored.

3.3 Uncertainty Quantification

The different choices at the chiral EFT level provide an opportunity to systemati-
cally quantify uncertainties in the theoretical description of the Hamiltonian and to
propagate these uncertainties to the many-body observables [26].
The paradigm that the theory uncertainties resulting from the modelling of the

Hamiltonian should be quantified, has entered ab initio nuclear structure theory only
recently. The tools and protocols for this uncertainty quantification (UQ) are still in
their infancy. Because of the many different design choices and truncations involved
in the construction of chiral interactions, there is no complete protocol yet.
The simplest starting point for an UQ protocol is the convergence of an observable

obtained with increasing order of the chiral expansion. For the moment we assume
that the many-body calculations are precise, i.e., we do not consider additional
uncertainties due to the many-body approach. Assuming that an observable 𝑋 (𝑛) at
chiral order 𝑛 follows the same power-series expansion in the small parameter 𝑄 as
the interaction, we can try to estimate the remainder of the truncated series based
on the behavior of the finite number of terms we have access to. One can use a
simple heuristic scheme [27, 28, 29] based the differences Δ𝑋 (𝑛) = 𝑋 (𝑛) − 𝑋 (𝑛−1)

in the observable in subsequent lower orders, scaled with expansion parameter to
estimate the remainder, e.g. through 𝛿𝑋 (𝑛) = max{𝑄Δ𝑋 (𝑛) , 𝑄2Δ𝑋 (𝑛−1) , ...}. There
are more elaborate schemes using Bayesian statistics to model the distribution of the
remainders [30, 31, 32], e.g., the pointwise model presented in [33] that is being
used routinely.
Applying these schemes is simple. However, in order to assess the chiral truncation

uncertainty, e.g., at order N3LO, we have to compute the observable for all orders
up to N3LO. Therefore, the computational cost for predicting the observable with
uncertainties is four times that of computing just the observable. This is a recurring
theme—a systematic uncertainty quantification (in contrast to guesswork) increases
the total computational cost significantly.
Another starting point for UQ is the propagation of the statistical uncertainties

related to the LEC determination into many-body observables. This requires the
construction of sets of interactions (at each chiral order) that sample the LECs as to
reproduce the fit observables within their experimental uncertainties. This has been
explored for N2LO interactions, e.g., in [34]. Obviously, propagating statistical un-
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certainties requires an even larger number of many-body calculations or emulations
of such many-body calculations.

4 Preconditioning

Now that we have specified the Hamiltonian, we can start to work on the solution of
the Schrödinger equation. The general strategy for this was laid out in Sect. 2. The
critical element in all applications of basis-expansion methods is convergence of the
observables with model-space size. This eventually limits the range of applicability
of specific many-body schemes, because the computational cost grows dramatically
with model-space size and eventually defines a largest feasible basis size. If a specific
observable for a given nucleus does not reach a sufficient level of convergence within
these model-space limits, then an accurate prediction will not be possible. So some
obvious questions are: Are there ways to accelerate the convergence of a given basis-
expansion approach? Is it possible to pre-condition the eigenvalue problem such that
smaller model spaces are sufficient to reach convergence? Can this be done without
modifying the physics outputs of such a calculation? Luckily, the answer to all these
question is: yes!
The most direct way to pre-condition the many-body problem consists in a trans-

formation of the Hamiltonian itself, and we will discuss this option in Sect. 4.1 and
4.2. Another way to accelerate the convergence in the context of a basis-expansion
approach is the choice of an optimized single-particle basis, as explored in Sect. 4.3.
Finally, we can simplify the numerical treatment with an approximate inclusion of
many-body forces through normal-ordering techniques discussed in Sect. 4.4.

4.1 Unitary Transformations, Prediagonalization and Correlations

The most efficient way to precondition the many-body problem in a basis-expansion
approach is a transformation of the Hamiltonian itself with the aim to accelerate the
convergence. We want to arrive at converged observables in smaller model spaces,
the smaller the better, because this will allow us to tackle heavier nuclei. However,
the transformation should not change the results of the many-body calculation—all
observables should be invariant under the transformation.
A general class of transformations that formally guarantees the invariance of

observables are unitary transformations. Assume a unitary operator 𝑈̂ with 𝑈̂†𝑈̂ =

1̂ = 𝑈̂𝑈̂†. The unitary transformation of the Hamiltonian is then given by

ˆ̃𝐻 = 𝑈̂†𝐻̂𝑈̂ . (11)

A key property of unitary transformation is that they do not change the spectrum of
the transformed Hamiltonian, i.e., all eigenvalues are invariant. This can be shown
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starting from the eigenvalue equation for 𝐻̂ and by inserting 𝑈̂𝑈̂† and multiplying
with 𝑈̂†:

𝐻̂ |Ψ𝑛〉 = 𝐸𝑛 |Ψ𝑛〉 ⇔ 𝑈̂†𝐻̂𝑈̂𝑈̂† |Ψ𝑛〉 = 𝐸𝑛𝑈̂
† |Ψ𝑛〉 ⇔ ˆ̃𝐻 |Ψ̃𝑛〉 = 𝐸𝑛 |Ψ̃𝑛〉 ,

(12)
where we have introduced the transformed eigenstates |Ψ̃𝑛〉 = 𝑈̂† |Ψ𝑛〉. By solving
the eigenvalue problem of ˆ̃𝐻 we obtain the same energy eigenvalues 𝐸𝑛 with the
transformed eigenstates. Considering other observables obtained from the energy
eigenstates, e.g., through expectation values of an operator 𝑂̂, we can perform a
similar calculation inserting 𝑈̂𝑈̂† twice:

𝑂𝑛 = 〈Ψ𝑛 | 𝑂̂ |Ψ𝑛〉 = 〈Ψ𝑛 | 𝑈̂𝑈̂†𝑂̂𝑈̂𝑈̂† |Ψ𝑛〉 = 〈Ψ̃𝑛 | ˆ̃𝑂 |Ψ̃𝑛〉 (13)

with the transformed operator
ˆ̃𝑂 = 𝑈̂†𝑂̂𝑈̂ . (14)

Thus, also expectation values and matrix elements can be computed using the trans-
formed eigenstates |Ψ̃𝑛〉 together with the consistently transformed operator ˆ̃𝑂.
In summary, many-body observables are invariant under unitary transformations.

When solving the many-body problem with the transformed Hamiltonian we only
have to make sure that observables are evaluated with consistently transformed
operators. Two questions remain: (1) What does the unitary transformation have to
do to the Hamiltonian to accelerate model-space convergence? (2) How to formulate
and implement such a transformation?
Imagine the matrix representation of the Hamiltonian in a large (infinite) many-

body basis, where all regions of the matrix are populated with non-zero matrix
elements. If we now truncate the basis to a small (finite) model space, and only solve
the eigenvalue problem of the small matrix, the eigenvalues and eigenvectors will
change as compared to the full matrix. This could be avoided if the full matrix would
have a block-diagonal structure, i.e., if the model space would form one block and
the rest of the Hilbert space would form the other block and all the matrix elements
connecting the two blocks would be zero. Solving the eigenvalue problem in the
small model space would reproduce part of the spectrum of the full matrix.
This block-diagonalization or block-decoupling idea with respect to the actual

model space of the many-body calculation, the so-called 𝑃-space, and the excluded
part of the Hilbert space, the so-called 𝑄-space, is at the heart of the Okubo-
Lee-Suzuki (OLS) transformation [35, 36]. In OLS a similarity transformation is
constructed explicitly from the formal decoupling condition, i.e., the requirement
that the transformed Hamiltonian should not connect 𝑃 and𝑄-space. We will not go
into the formalism, but just remark that, by construction, the resulting transformed
Hamiltonian will depend on nucleus, single-particle basis, and model-space. This
results in a non-trivial convergence behavior as function of model-space size, which
makes an uncertainty quantification difficult.
It would be advantageous to construct a transformation that performs a pre-

diagonalization in a more generic sense, independent of the specific nucleus and
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model space, with a transformed interaction that is universal and can be employed
in any basis expansion approach. Such a method will not provide a perfect block-
decoupling of a model space, but it will nonetheless accelerate the convergence and
provide a regular convergence behavior that obeys the variational principle.
Afirstmethod that implemented generic unitary transformations in this spirit is the

unitary correlation operator method (UCOM) [37, 38, 39]. Here we explicitly design
the operator for the unitary transformation, guided by the structure of the interaction
and the physics of correlations induced in the many-body states. The UCOM concept
highlights the intimate connection between decoupling and correlations.
As a reminder, correlations are a property of many-body states that distinguish

them from states of a system of non-interacting, independent particles. The eigen-
states of a system of non-interacting fermions are Slater-determinants, i.e., the basis
states we typically use in our basis expansion approaches. A strongly correlated state
can only be represented by a superposition of a huge number of Slater determi-
nants. Looking at the structure of the Hamilton matrix, a Hamiltonian with many
strong off-diagonal matrix elements will inducemore correlations, because these off-
diagonal matrix elements are generating the admixture of the corresponding basis
states to the eigenstates. A Hamiltonian with fewer off-diagonal matrix elements will
generate less admixtures, weaker correlations, and faster convergence. An extensive
discussion of UCOM and the concept of correlations can be found in [39].
Over the past decade a new method has essentially replaced OLS, UCOM, and

similar approaches in many applications. The reason for its success is the simplicity
and flexibility of the underling formulation. This method is the similarity renormal-
ization group, which will be discussed in detail in the following sections.

4.2 Similarity Renormalization Group

4.2.1 General Idea

The similarity renormalization group (SRG) transformation is the most elegant and
versatile way to implement a unitary transformation to pre-diagonalize the Hamil-
tonian. It goes back to Wegner [40, 41] as well as Glazek and Wilson [42], it
was adopted in nuclear structure physics in 2007 [43] and has thrived since then
[39, 44, 45, 46].
We start by formulating a continuous unitary transformation of the initial Hamil-

tonian 𝐻̂
𝐻̂ (𝛼) = 𝑈̂† (𝛼) 𝐻̂ 𝑈̂ (𝛼) , (15)

using a unitary transformation operator 𝑈̂ (𝛼), which depends on a continuous param-
eter 𝛼, the so-called flow parameter. The unitarily transformed Hamiltonian 𝐻̂ (𝛼)
now also depends on the flow parameter. For 𝛼 = 0 we define an initial condition
requiring that 𝑈̂ (𝛼 = 0) = 1̂ so that the evolved Hamiltonian coincides with the
initial Hamiltonian 𝐻̂ (𝛼 = 0) = 𝐻̂.
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Formally, we can take the derivative of eq. (15) with respect to the flow parameter
𝛼, which leads to

𝑑

𝑑𝛼
𝐻̂ (𝛼) =

( 𝑑

𝑑𝛼
𝑈̂† (𝛼)

)
𝐻̂ 𝑈̂ (𝛼) + 𝑈̂† (𝛼) 𝐻̂

( 𝑑

𝑑𝛼
𝑈̂ (𝛼)

)
=

( 𝑑

𝑑𝛼
𝑈̂† (𝛼)

)
𝑈̂ (𝛼) 𝐻̂ (𝛼) + 𝐻̂ (𝛼) 𝑈̂† (𝛼)

( 𝑑

𝑑𝛼
𝑈̂ (𝛼)

)
,

(16)

where we have inserted the unitarity relation 𝑈̂† (𝛼) 𝑈̂ (𝛼) = 1̂ to recover the trans-
formed Hamiltonian 𝐻̂ (𝛼). We now define the so-called generator 𝜂(𝛼) through

𝜂(𝛼) = −𝑈̂ † (𝛼)
( 𝑑

𝑑𝛼
𝑈̂ (𝛼)

)
. (17)

From the flow-parameter derivative of the unitarity relation 1̂ = 𝑈̂† (𝛼) 𝑈̂ (𝛼) we find
that the generator is an anti-hermitean operator, i.e., 𝜂† (𝛼) = −𝜂(𝛼). Combining all
this leads to the final form of the SRG flow equation

𝑑

𝑑𝛼
𝐻̂ (𝛼) = [𝜂(𝛼), 𝐻̂ (𝛼)] . (18)

The steps from eq. (15) to this flow equation are very general and do not rely on
any specifics of the transformation. The difference between the flow equation (18)
and the direct transformation (15) lies in inputs needed to evaluate the transformed
Hamiltonian: For the direct transformation we have to specify the unitary operator
𝑈̂ (𝛼), for the flow equation we only need to define the generator 𝜂(𝛼).
There are many different ways to define the generator 𝜂(𝛼). The simplest and

most intuitive choice goes back to Wegner [40, 41] and is based on the commutator
of the transformed Hamiltonian 𝐻̂ (𝛼) with its ‘diagonal part’ 𝐻̂𝑑 (𝛼)

𝜂W (𝛼) = [𝐻̂𝑑 (𝛼), 𝐻̂ (𝛼)] = [𝐻̂𝑑 (𝛼), 𝐻̂𝑜𝑑 (𝛼)] . (19)

Identifying the diagonal and off-diagonal parts of the Hamiltonian requires a matrix
representation of the Hamiltonian with respect to some specific basis. One can
identify the diagonal part with the strict diagonal of the Hamilton matrix, or one
can use more general band or block-diagonal structures to identify 𝐻̂𝑑 (𝛼). The
off-diagonal part then follows via 𝐻̂𝑜𝑑 (𝛼) = 𝐻̂ (𝛼) − 𝐻̂𝑑 (𝛼).
Irrespective of the specific choice, the flow equationwill suppress the off-diagonal

part of theHamiltonian throughout the flow evolution. If theHamiltonian has reached
a perfect diagonal form, then 𝐻̂𝑜𝑑 (𝛼) = 0, the generator (19) vanishes, and the flow
evolution stops—this defines the fix point of the SRG flow evolution.
This is the most important aspect of the SRG, it provides a simple and elegant way

to pre-diagonalize the Hamiltonian with respect to a specific basis. The choice of
the generator defines which basis this is and how exactly the pattern of diagonal and
off-diagonal pieces should look like. This makes the whole approach very flexible
and intuitive. It turns out that it is much simpler to construct a generator that drives a
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specific, physics-motivated pre-diagonalization than to formulate the corresponding
unitary operator directly.
As indicated earlier, instead of thinking in terms of diagonalization one can also

think in terms of decoupling. Any suppression of off-diagonalmatrix elements entails
a decoupling of certain parts of the basis from the rest of the basis. For a generator
that drives the Hamiltonian towards a block-diagonal structure, the individual blocks
would eventually decouple and it would suffice to solve the eigenvalue problem for
an individual block to recover a part of the exact spectrum.

4.2.2 Consistent Observables

When using a unitarily transformed Hamiltonian (15) in a subsequent many-body
calculation, we have to make sure that the operators of all other observables of
interest are transformed consistently (cf. Sect. 4.1). Thus, for a generic observable
𝑂̂ we have to evaluate the transformation

𝑂̂ (𝛼) = 𝑈̂† (𝛼) 𝑂̂ 𝑈̂ (𝛼) . (20)

We can use the same steps as for the Hamiltonian to convert this explicit unitary
transformation into flow equation

𝑑

𝑑𝛼
𝑂̂ (𝛼) = [𝜂(𝛼), 𝑂̂ (𝛼)] , (21)

with the initial condition 𝑂̂ (𝛼 = 0) = 𝑂̂. Note that the antihermitean generator 𝜂(𝛼)
has to be the same as in the flow equation of the Hamiltonian. Since the generator
necessarily contains the evolved Hamiltonian, we have to solve the flow equation
for 𝐻̂ (𝛼) as well. To handle this numerically, the two flow equations (18) and (21)
are solved simultaneously as a coupled system of differential equations of twice the
size. If there is only one other observable of interest, then this is usually no problem,
however, it is getting tedious if several operators have to be transformed.
A more elegant way is the construction of the unitary transformation 𝑈̂ (𝛼) itself.

We can recast equation (17), by multiplying from the left with the unitary operator
𝑈̂ (𝛼), into a differential equation for 𝑈̂ (𝛼)

𝑑

𝑑𝛼
𝑈̂ (𝛼) = −𝑈̂ (𝛼) 𝜂(𝛼) . (22)

This differential equation again involves the generator which depends on the evolved
Hamiltonian and, therefore, has to be solved simultaneously with the flow equation
(18). However, once this is done we have a representation of the unitary operator
𝑈̂ (𝛼) which can be used to explicitly transform any other operator (including the
Hamiltonian) using (20).
In a numerical setting where (22) is integrated stepwise starting from the initial

condition 𝑈̂ (𝛼 = 0) = 1̂, there is also the option to compute the Hamiltonian 𝐻̂ (𝛼)
entering the generator from an explicit transformation (15) with the 𝑈̂ (𝛼) obtained
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in the previous integration step. In this way we only need to handle one differential
equation.
There is a third way to handle the general transformation of operators, the so-

called Magnus expansion [47, 48]. It is similar to the solution of the differential
equation for 𝑈̂ (𝛼), but this time we first parametrize the unitary operator 𝑈̂ (𝛼) in
terms of an anti-hermitean Magnus operator Ω̂(𝛼) through

𝑈̂ (𝛼) = exp(−Ω̂(𝛼)) (23)

with Ω̂(𝛼 = 0) = 0. One might be tempted to think that the Magnus operator is
the same as the generator 𝜂(𝛼)—it is not. Since the generator 𝜂(𝛼) depends on 𝛼
itself and does not commute with itself for different values of the flow parameter,
the formal integration of (22) does not simply yield an exponential of the generator.
This is exactly what the Magnus expansion takes care of.
The Magnus operator can be obtained from the following differential equation

𝑑

𝑑𝛼
Ω̂(𝛼) =

∞∑︁
𝑘=0

𝐵𝑘

𝑘!
[Ω̂(𝛼), 𝜂(𝛼)]𝑘 , (24)

where 𝐵𝑘 are the Bernoulli numbers and [𝑋̂,𝑌 ]𝑘 = [𝑋̂, [𝑋̂, ...[𝑋̂,𝑌 ]]] are the 𝑘-
fold nested commutators, where 𝑘 gives the number of 𝑋̂ factors, i.e., [𝑋̂,𝑌 ]0 = 𝑌 ,
[𝑋̂,𝑌 ]1 = [𝑋̂,𝑌 ], etc. We will not be able to handle the infinite series on the right-
hand-side exactly, we have to truncate this series in finite order. The good news is
that no matter how bad this truncation for Ω̂(𝛼) is, it will not destroy the unitarity
of the transformation. Another technical benefit is that for typical applications, the
differential equation (24) is numerically easier to handle (less stiff) and thus more
efficient to solve (fewer and larger steps).
Once we have obtained Ω̂(𝛼), we still have to evaluate the unitary transformation

of the observables through (20) and (23). This can be done via another expansion,
the Baker-Campbell-Hausdorff series

𝑂̂ (𝛼) = exp(+Ω̂(𝛼)) 𝑂̂ exp(−Ω̂(𝛼)) =
∞∑︁
𝑛=0

1
𝑛!

[Ω̂(𝛼), 𝑂̂]𝑛 (25)

using nested commutators. Again, we will have to truncate this infinite series in
numerical applications, but typically this series converges rather quickly. Note that
this truncation might destroy the unitarity of the transformation.
It might seem that the Magnus approach only causes complications and, indeed,

whenever a direct construction of 𝑈̂ (𝛼) through (22) is possible this will be the
preferred method. However, the Magnus expansion will have important applications
in an advanced version of SRG that will be discussed in Sect. 6.1.
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4.2.3 Free-Space Similarity Renormalization Group

So far, we have discussed a generic version of the SRG at the operator level. The
Hamiltonian in this discussion is the Hamiltonian for the 𝐴-body system and the
basis used to identify diagonal and off-diagonal parts is the full 𝐴-body basis, as
introduced in Sect. 2, or at least an 𝐴-body basis in a huge model space. Therefore,
we have gained nothing regarding to the computational complexity of the problem—
it is more challenging to solve a coupled system of differential equations for the
matrix elements in a huge model space than to solve the eigenvalue problem of
this matrix. We have to use the SRG evolution in a different setting to really gain
something. There are two such beneficial settings that we will discuss in this lecture,
the free-space SRG and the in-medium SRG.
The free-space SRG is build on two design choices: (i) The use of a generator that

yields a basis-independent transformation and implements amore generic decoupling
idea; (ii) The evaluation of the SRG flow equations in few-body spaces, typically
𝐴 = 2 and 𝐴 = 3 and a subsequent embedding of the evolved operators into 𝐴-body
space via a cluster expansion.
Let us first discuss the generator that is most widely used in the free-space SRG.

To construct a universal Hamiltonian for use in a wide array of many-body methods
for different nuclei, we adopt a more generic concept of pre-diagonalization or
decoupling—and the concept that comes to mind is the decoupling of energy or
momentum scales. We could use the diagonal of the Hamiltonian in the eigenbasis
of the total momentum or the kinetic energy operator. Or even simpler, we can use
the kinetic energy operator directly, instead of the diagonal part of the Hamiltonian.
This leads to the SRG generator that was introduced in [49, 43] and is widely used
in nuclear physics

𝜂𝑇 (𝛼) =
𝑚2

ℏ4
[𝑇int, 𝐻̂ (𝛼)] , (26)

where 𝑇int is the intrinsic kinetic energy (9) and the prefactor including the nucleon
mass𝑚 is chosen such that the flow-parameter 𝛼 has units [length4]. For this specific
generator it is reasonable to associate the flow parameter with a momentum scale 𝜆,
using the relation 𝜆 = 𝛼−1/4.
Using this generator, the SRG flow equations will drive the Hamiltonian towards

a band-diagonal form in momentum representation. In other words, it decouples low-
momentum states from high-momentum states, since the matrix elements far-off the
diagonal in a momentum representation are suppressed. This suppression will also
be effective in other basis representations, e.g. the harmonic-oscillator basis, we will
illustrate this in Sect. 4.2.5.

4.2.4 Cluster Expansion & Cluster Truncation

Despite the simplicity of the equations, we cannot evaluate the flow equations at the
general 𝐴-body level. However, we can evaluate them in few-body systems, typically
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𝐴 = 2 and 𝐴 = 3, and reconstruct the evolved operator in 𝐴-body space from this
in an approximate way. The formal background of this procedure is the so-called
cluster expansion and a cluster truncation.
We can decompose the transformed Hamiltonian 𝐻̂ (𝛼) for the 𝐴-body system

into irreducible 𝑘-body operators 𝐻̂ [𝑘 ]

𝐻̂ (𝛼) = 𝐻̂ [1] (𝛼) + 𝐻̂ [2] (𝛼) + 𝐻̂ [3] (𝛼) + · · · + 𝐻̂ [𝐴] (𝛼) . (27)

Each 𝑘-body operator of the cluster expansion can be written in its second-quantized
form with 𝑘-body matrix elements 𝐻 𝑝1...𝑝𝑘

𝑞1...𝑞𝑘 (𝛼) = 〈𝑝1...𝑝𝑘 | 𝐻̂ [𝑘 ] (𝛼) |𝑞1...𝑞𝑘〉 and a
product of 𝑘 creation and 𝑘 annihilation operators

𝐻̂ [𝑘 ] (𝛼) = 1
(𝑘!)2

∑︁
𝑝1 ,..., 𝑝𝑘

∑︁
𝑞1 ,...,𝑞𝑘

𝐻
𝑝1...𝑝𝑘
𝑞1...𝑞𝑘 (𝛼) 𝑎̂

†
𝑝1 · · · 𝑎̂

†
𝑝𝑘
𝑎̂𝑞𝑘 · · · 𝑎̂𝑞1 (28)

To work out the individual terms of the cluster expansion, i.e., the matrix elements
𝐻

𝑝1...𝑝𝑘
𝑞1...𝑞𝑘 (𝛼) for 𝑘 = 1, 2, 3, ..., we simply perform the SRG transformation of the
Hamiltonian in Hilbert spaces of increasing particle number 𝐴. For 𝐴 = 1 the SRG
transformation does not do anything, since the generator does not have a one-body
contribution, so the one-body part of the transformed Hamiltonian equals the initial
one-body part. For 𝐴 = 2 we get a non-trivial transformation of the Hamiltonian.
After subtraction of the previously obtained one-body part embedded into two-body
space, this yields the irreducible two-body part. For 𝐴 = 3we again get a transformed
Hamiltonian that, after subtraction of the previously determined one and two-body
contributions, yields the irreducible three-body part [39, 45, 50].
This scheme continues up to the 𝐴-body level. Even if the initial Hamiltonian

only has up to three-body terms, because we only include up to 3N interactions,
the transformed Hamiltonian contains induced terms beyond the three-body level.
These induced multi-particle contributions formally have to be included to warrant
the unitarity of the transformation and to benefit from exact unitary equivalence
discussed in Sect. 4.1. Induced multi-particle interactions are the price to pay for
the improved convergence with the transformed Hamiltonian—a clear case of the
no-free-lunch theorem.
For the SRG transformation it is easy to see, how induced multi-particle terms

emerge. Consider the SRG-flow equation (18) with the free-space SRG generator
(26). Now we solve the flow-equation as an initial value problem in a simplistic
Euler-type approach, i.e., we assume a small step Δ𝛼 in the flow-parameter and use
a two-point finite difference form to approximate the derivative of the Hamiltonian.
After simple rearrangements we get for one Euler step

𝐻̂ (𝛼 + Δ𝛼) ≈ 𝐻̂ (𝛼) + Δ𝛼
𝑚2

ℏ4
[[𝑇int, 𝐻̂ (𝛼)], 𝐻̂ (𝛼)] . (29)

For simplicity we assume that the initial Hamiltonian 𝐻̂ (𝛼 = 0) only consists of a
two-body term andwe recall that the intrinsic kinetic𝑇int can also be written as a two-
body operator. We can now use a general property of commutators: The commutator
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of an 𝑛-body and an 𝑚-body operator yields contributions up to (𝑛 + 𝑚 − 1)-body
operators. Thus, the commutator of two two-body operators produces up to three-
body operators, and the nested-commutator of three two-body operator generates up
to four-body operators. As a consequence, a single Euler step from 𝛼 = 0 to 𝛼 = Δ𝛼

induces up to four-body terms in the Hamiltonian. And the many small Euler steps
needed to reach a finite flow parameter will induce multi-particle terms of arbitrary
particle rank.
Obviously, we cannot keep all induced multi-particle interactions in practical

calculations. First of all, it is computationally not possible to solve the SRG flow
equations for larger 𝐴—we can routinely handle the evolution in three-body space,
but already the evolution in four-body space is not fully tractable at present. Second,
even if the all induced multi-particle terms would be available, their inclusion in
the final many-body calculation would be prohibitive. Already the step from two-
body to three-body interactions significantly increases the computational complexity,
and some approaches are still not able to include three-body interactions without
additional approximation.
Therefore, we have to truncate the cluster expansion at finite particle-numbers and

by this introduce an approximation at the level of the Hamiltonian. Remember that
already the initial Hamiltonian constructedwithin chiral EFT is subject to truncations
with respect to chiral order and multi-particle interactions, and the truncation of the
cluster expansion can be viewed in the same context. The present state-of-the-art
is to include the chiral interactions up to the three-body level and to truncate the
evolved Hamiltonian also at the three-body level [50, 51, 45].
In this situation it is important to quantify the uncertainties resulting from the

cluster truncation. Luckily, the SRG offers a handy tool to assess these truncation
uncertainties without explicitly calculating the next order of the expansion. We can
use the continuous flow parameter 𝛼 as a diagnostic. Because the un-truncated SRG
evolution is unitary and preserves the spectrum and the observables, any dependence
of the energy eigenvalues or other observables on the flow parameter in a converged
many-body calculation using truncated operators signals the impact of discarded
multi-particle terms in the cluster expansion [50, 51, 45].

4.2.5 Example: SRG Evolution in Three-Body Space

As an illustration of the free-space SRG transformation we consider the three-body
system, corresponding illustrations for the simpler two-body system can be found in
the literature [44, 39].
In order to numerically solve the SRG flow equation for the Hamiltonian in three-

body space, we need an appropriate basis to convert the operator flow-equation (18)
into a set of coupled differential equations for the matrix elements. We will use a
harmonic oscillator basis in the relative coordinates of the three-particle system, the
so-called Jacobi coordinates. The antisymmetrized states of the relative harmonic-
oscillator basis, whichwill be discussed inmore detail in Sect. 4.3.1, can bewritten as
|𝐸𝑖𝐽 𝜋𝑀,𝑇𝑀𝑇 〉, with a three-particle principal quantum number 𝐸 and a collective
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SRG Evolution in Three-Body Space
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Fig. 1 Three-body matrix elements (top panels) and ground-state energy convergence (bottom
panels) for the triton with initial and SRG-evolved NN+3N interactions. Modified from [50].

quantum number 𝑖 that encapsulates the orbital angular momentum and spin degrees
of freedom [50].
The matrix elements of the initial chiral NN+3N interaction in this basis for

the quantum numbers of the triton, i.e., 𝐽 𝜋 = 1/2+, 𝑇 = 1/2, 𝑀𝑇 = −1/2, are
depicted in the top-left panel of Fig. 1. The rows and columns are spanned by the
quantum numbers (𝐸, 𝑖), where the apparent block-structure results from sections of
the basis with fixed 𝐸 . The lower-left panel shows the lowest eigenvalues resulting
for the numerical solution of the eigenvalue problem of the corresponding Hamilton
matrix, truncated to 𝐸 ≤ 𝑁max—as will be discussed later, this corresponds to a
Jacobi no-core shell model calculation for the triton ground state. We observe that
the matrix has strong off-diagonal matrix elements and that the ground-state energy
needs large model spaces with 𝑁max & 16 to converge. The next two columns show
the matrix elements and energies for the SRG evolved interaction for flow parameter
𝛼 = 0.04 fm4 and 0.16 fm4, respectively. The matrices clearly show the suppression
of off-diagonal matrix elements with increasing flow parameter—note that although
we use the kinetic energy generator (26) here, the pre-diagonalization is also evident
in an harmonic-oscillator basis. The corresponding plots for the ground-state energies
show a much faster convergence, now 𝑁max ≈ 8 is sufficient to reach the same level
of convergence as reached at 𝑁max ≈ 16 for the initial interaction. The converged
energy is the same in all cases, since the SRG transformation includes all three-body
terms.
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4.3 Single-Particle Basis

The convergence behavior of basis expansion calculations also depends on the choice
of the underlying single-particle basis. We can try to optimize this basis with respect
to global properties of the nucleus, e.g., its spatial size. Obviously, the convergence
will deteriorate if we choose basis sets spanning length scales that are completely
different from the intrinsic length scale of the nucleus. We will discuss three types
of single-particle bases for the description of finite nuclei: the harmonic-oscillator
basis, the Hartree-Fock basis, and a specific variant of a natural-orbital basis.

4.3.1 Harmonic Oscillator Basis

The harmonic oscillator (HO) is the default basis for any type of localized many-
body system, simply because the basis functions are analytically known and there are
many special relations for the HO basis that are of critical importance for practical
calculations.
When we talk about the HO basis, we refer to the eigenstates of a single particle

in a spherical harmonic-oscillator potential characterized by an oscillator frequency
Ω or an oscillator length 𝑎 =

√︁
ℏ/(𝑚Ω). The single-particle HO Hamiltonian reads

ℎ̂HO =
1
2𝑚

p̂2 + 𝑚Ω2

2
x̂2 . (30)

The analytic solution of the eigenvalue problem of this Hamiltonian can be found
in any textbook on quantum mechanics. We exploit spherical symmetry and intro-
duce orbital angular momentum quantum numbers 𝑙 and 𝑚𝑙 plus an addition radial
quantum number 𝑛, so that the eigenstates are characterized as |𝑛𝑙𝑚𝑙〉. The energy
eigenvalues are given by 𝜖𝑛𝑙 = ℏΩ(2𝑛 + 𝑙 + 3/2) = ℏΩ(𝑒 + 3/2) with the principal
quantum number 𝑒 = 2𝑛+ 𝑙. The spectrum is equidistant with a fixed energy spacing
ℏΩ between adjacent single-particle levels.
There is one feature thatmakes theHOunique and directly results from the fact the

the HO Hamiltonian is a quadratic form in position and momentum. If we consider
two classical particles of mass 𝑚 with positions x1 and x2, then we can introduce
a relative coordinate r = x1 − x2 and a center-of-mass coordinate X = 1

2 (x1 + x2).
We can extend this to the momenta of the two particles p1 and p2 and define a
relative momentum q = 1

2 (p1 − p2) and a total or center-of-mass momentum P =

p1 + p2. We can do the same with the position and momentum operators in quantum
mechanics and, because of our choice of prefactors, the canonical commutation
relations between position and momentum operators also hold for the relative and
center-of-mass operators.
We can transfer this to the (classical or quantum) Hamiltonian of a system of two

non-interacting particles in a HO potential andwrite it either using the single-particle
operators or the relative and center-of-mass operators. A simple calculation shows
that
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ℎ̂HO,1 + ℎ̂HO,2 =
1
2𝑚

p̂21 +
𝑚Ω2

2
x̂21 +

1
2𝑚

p̂22 +
𝑚Ω2

2
x̂22

=
1
2𝜇

q̂2 + 𝜇Ω2

2
r̂2 + 1

2𝑀
P̂2 + 𝑀Ω2

2
X̂2 = ℎ̂HO,rel + ℎ̂HO,cm

(31)

with the reduced mass 𝜇 = 𝑚/2 and the total mass 𝑀 = 2𝑚. In the second line
we have identified a HO Hamiltonian ℎ̂HO,rel in the relative quantities and a HO
Hamiltonian ℎ̂HO,cm for the center-of-mass quantities. The first line tells us, that a
tensor product of two single-particle HO states, i.e., |𝑛1𝑙1𝑚𝑙1〉⊗ |𝑛2𝑙2𝑚𝑙2〉, will be an
eigenstate of this two-body Hamiltonian with an energy eigenvalue ℏΩ(𝑒1 + 𝑒2 + 3).
The second line tells us that a tensor product of HO eigenstates for the relativemotion
|𝑛rel𝑙rel𝑚𝑙,rel〉 and the center-of-mass motion |𝑛cm𝑙cm𝑚𝑙,cm〉 is also an eigenstate with
eigenvalue ℏΩ(𝑒rel+𝑒cm+3). Thus we have two different eigenbasis sets for the same
Hamiltonian, spanning the same two-particle Hilbert space with the same degenerate
sub-spaces for the two-body principal quantum number 𝐸2 = 𝑒1 + 𝑒2 = 𝑒rel + 𝑒cm.
Therefore, there has to be a unitary transformation connecting the states of the two
bases within each of the degenerate subspaces. This basis transformation is the
celebrated Talmi or Talmi-Moshinsky-Smirnov transformation [52, 53, 54]

|𝑛rel𝑛cm [𝑙rel𝑙cm]𝐿𝑀𝐿〉 =
∑︁

𝑛1 ,𝑛2 ,𝑙1 ,𝑙2

〈〈𝑛1𝑛2, 𝑙1𝑙2; 𝑛rel𝑛cm, 𝑙rel𝑙cm; 𝐿〉〉 |𝑛1𝑛2 [𝑙1𝑙2]𝐿𝑀𝐿〉 ,

(32)
where the sum is restricted to 𝑒rel + 𝑒cm = 𝑒1 + 𝑒2. For convenience we have coupled
the two orbital angular momenta in each basis to total orbital angular momentum
𝐿 and 𝑀𝐿 . The transformation coefficients 〈〈𝑛1𝑛2, 𝑙1𝑙2; 𝑛rel𝑛cm, 𝑙rel𝑙cm; 𝐿〉〉 are the
so-called Moshinsky coefficients or harmonic-oscillator brackets [55].
Why is this important? Well, we use this transformation all the time in practical

calculations, here are a few examples:

• Computation of NN matrix elements: For the many-body calculation we need
two-body matrix elements with respect to antisymmetrized product states, as
they appear, e.g., in the second-quantized form of a two-body operator. For the
computation of the matrix elements of the chiral NN interaction or for the SRG
evolution, a relative two-body basis is much more convenient. We can exploit
spherical symmetry and the center-of-mass part of the basis separates, which
drastically reduces the number of matrix elements. Therefore, we first compute all
the relative-HOmatrix elements, perform the SRG-transformation in the relative-
HO basis, and in the end use the Talmi transformation to compute the matrix
elements in terms of single-particle quantum numbers for use in the subsequent
many-body calculation.

• Computation of 3N matrix elements: This is essentially the same story as for the
NN interaction, onlymore complicated since we have to work with three particles.
We need an extension of the relative and center-of-mass coordinates for the three-
body system, which leads to the so-called Jacobi-coordinates. This construction
of the Jacobi coordinates translates into a corresponding hierarchical nesting of
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relative HO quantum numbers and the corresponding Talmi transformations. We
refer the reader to [50] for a detailed discussion.

• Center-of-mass separation: We can formally extend the idea of the Jacobi coor-
dinates and the corresponding relative HO states and associated Talmi transfor-
mation to the many-body level. For an 𝐴-body model space spanned by all Slater
determinants of HO single-particle states up to a maximum total quantum num-
ber

∑
𝑖 𝑒𝑖 ≤ 𝐸𝐴,max, there is an alternative basis of relative and center-of-mass

HO states, connected through an 𝐴-body Talmi transformation. The relative HO
basis allows for an explicit separation of the center-of-mass state of the 𝐴-body
system from the intrinsic state. Therefore, also the Slater determinant basis in an
𝐸𝐴,max-truncated space allows for an exact center-of-mass separation. We will
come back to this point in Sect. 5.3.

All of this is unique to the HO and, therefore, we will always use the HO basis
at certain stages of the calculation. However, there is also a dark side, related to
the asymptotic behavior of the HO wave functions. The potential term in the HO
Hamiltonian grows quadratically with 𝑥 = |x| and, as a result, the HO coordinate-
space wave functions fall off with a Gaussian 𝑒−𝑥2/(2𝑎2) behavior. This is unrealistic
for a self-bound system. If a localized many-particle system is bound by finite-
range attractive interaction between the particles, then we can invoke a schematic
mean-field-type picture. The average interaction of a particle with all the others will
resemble a potential well, which goes to zero in the exterior. The bound single-
particle wave functions for such a mean-field potential will fall off exponentially and
not like a Gaussian. If we use the HO basis for a many-body calculation, then we
have to correct for the unrealistic asymptotic behavior by superpositions of many
basis states in order to build up the exponential asymptotic. This will slow down
the model-space convergence, particularly for weakly bound states and halo nuclei,
which show a prominent exponential tail in their density distribution.

4.3.2 Hartree-Fock Basis

An obvious candidate for a more suitable set of single-particle states is the Hartree-
Fock (HF) basis. The HF approximation itself is covered in many textbooks [56, 57],
so we keep this discussion brief.
The HF method provides a variational approximation for the ground state of the

𝐴-body system assuming a trial state that consists of a single Slater determinant.
The variational degrees of freedom are the single-particle states that enter into the
trial state. The HF equations that determine the single-particle basis simply result
as Euler-Lagrange equations from the minimization of the expectation value of the
many-body Hamiltonian with the Slater determinant trial state. This simple picture
holds for closed-shell nuclei, where all magnetic sub-states of the highest 𝑗-shell are
occupied. For the purpose of constructing a basis in open-shell nuclei, we can use a
simple constrained HF scheme with an equal-filling approximation for the partially
occupied shell.
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The HF single-particle basis definitely has advantages. It is constructed from
a variational calculation for the nucleus and the Hamiltonian under consideration,
using a single Slater determinant that will automatically be a basis state in the
subsequent many-body calculation. We can view the subsequent calculation as an
expansion around this variational optimum. Global properties of the ground-state
that are accessible already in the simplified mean-field picture are build into the
many-body basis.
However, it also has some problems. Strictly speaking, the variational approach

only constrains the energetically lowest single-particle states that are occupied in
the HF ground state. Higher-lying single-particle states are only determined through
technical constraints on the density matrix and orthogonality. Furthermore, the HF
potential really resembles a potential well with a finite number of bound states
with negative single-particle energies. In addition there is a continuous spectrum
of solutions at positive energies, representing unbound single-particle states. These
unoccupied and unbound states depend on the specific way in which we solve the HF
equations. Since our Hamiltonian is specified in term of HOmatrix elements, we will
represent the HF single-particle states in an HO basis expansion with a truncation
with respect to the principal HO quantum number 𝑒 requiring 𝑒 ≤ 𝑒max [58]. The
underlying HO basis depends on the oscillator frequency Ω and this dependence
carries over particularly to the unoccupied and unbound single-particle states.
Another limitation of the HF basis-optimization is the fact that it does not account

for correlations in the many-body state. The HF ground state is a single Slater
determinant without any correlations and it is typically far above the exact ground-
state energy. Even for SRG-evolved Hamiltonians, HF typically recovers only half of
the binding energy. For a bare chiral Hamiltonian, the ground state might not even be
bound at the HF level. This mismatch influences the structure of the single-particle
states, they are optimized for a badly approximated ground state.

4.3.3 Natural-Orbital Basis

There is a way to inform the single-particle basis about the correlated ground-state
of the system and this way involves so-called natural orbitals. In general, natural
orbitals are single-particle states that result as eigenstates of the one-body density
matrix.
We can start from a highly correlated many-body state |Ψ〉 and compute the

one-body density matrix with respect to a specific single-particle basis, e.g. the HO
basis, via

𝜌𝑝𝑞 = 〈Ψ| 𝑎̂†𝑝 𝑎̂𝑞 |Ψ〉 , (33)

where the creation and annihilation operators of second quantization are defined
with respect to the HO single-particle basis (or any other computational reference
basis). We can now solve the matrix-eigenvalue problem of the one-body density
matrix, which yields eigenvectors that define the natural-orbital single-particle basis
and the eigenvalues the mean occupation numbers of the natural-orbital states.
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The natural-orbitals inherit the angular momentum, spin and isospin structure
of the reference basis and only differ in the radial wave functions, because a scalar
one-body density matrix exhibits a corresponding block structure. So just like in the
spherical or constrained HF case, the new single-particle basis can be expressed via
a simple basis transformation with respect to the radial quantum numbers

|𝜈(𝑙 12 ) 𝑗𝑚;
1
2𝑚𝑡 〉 =

∑︁
𝑛

𝐶
(𝑙 𝑗𝑚𝑡 )
𝑛𝜈 |𝑛(𝑙 12 ) 𝑗𝑚;

1
2𝑚𝑡 〉 , (34)

where 𝜈 indicates the natural-orbital basis and 𝑛 the initial HO basis, and the expan-
sion coefficients 𝐶 (𝑙 𝑗𝑚𝑡 )

𝑛𝜈 are given by the eigenvectors of the density matrix.
The interesting question is, how to construct the correlated many-body state |Ψ〉

that determines the density matrix? Typically, we will consider an approximation for
the ground state of the system for the construction of the natural orbitals, although
one could also use a density matrix defined for a mixture of states. In principle one
can perform a preparatory ab initio calculation, e.g. in a configuration interaction
framework, to extract a proxy for the ground state. This has be done [59], but is
computationally very expensive.
Amuch simpler way to construct an approximation for the correlated ground state

is many-body perturbation theory [60]. We can start from a HF calculation and add
low-order perturbative corrections on top of the unperturbed HF ground state

|Ψ〉 = |Ψ(0)〉 + |Ψ(1)〉 + |Ψ(2)〉 + . . . with |Ψ(0)〉 = |HF〉 . (35)

The perturbative corrections |Ψ(𝑖)〉 (𝑖 > 0) account for the most important beyond-
HF correlations. Inserting this into the definition of the density-matrix and keeping
terms up to the second order in the perturbation yields

𝜌 ≈ 𝜌 (00) + 𝜌 (02) + 𝜌 (20) + 𝜌 (11) , (36)

where 𝜌 (00) denotes the unperturbed HF density matrix and

𝜌
(02)
𝑝𝑞 = 𝜌

(20)
𝑞𝑝 = 〈Ψ(0) | 𝑎̂†𝑝 𝑎̂𝑞 |Ψ(2)〉 , 𝜌

(11)
𝑝𝑞 = 〈Ψ(1) | 𝑎̂†𝑝 𝑎̂𝑞 |Ψ(1)〉 . (37)

Explicit expressions for these density matrix elements can be found in [60]. With
small computational effort, large single-particle spaces can be used to evaluate the
perturbative corrections, much larger than the model spaces of the subsequent many-
body solution. Thus, the basis can be informed about correlation effects in a very large
model space and effectively supply this information for the many-body treatment in
a smaller space.
We will use the natural-orbital basis in connection with different many-body

approaches and compare the performance of the different basis sets in Sect. 5.3.
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4.4 Normal Ordering of Many-Body Interactions

A less obvious preconditioning consists of a rearrangement of the Hamiltonian, the
so-called normal ordering. For some of the many-body methods discussed later,
normal-ordering is a necessary step to formulate the basic working equations of the
method in an efficient way. On top of this, normal ordering can be used to define an
approximation for the inclusion of many-body interactions, which presents a major
simplification for all many-body methods.
Normal ordering is the simple process for rearranging the order of creation and

annihilation operators in the second-quantized form of the Hamiltonian (or any
other operator). Let us start with a generic Hamiltonian for the many-body system
containing up to three-body operators

𝐻̂ = 𝐻̂ [1] + 𝐻̂ [2] + 𝐻̂ [3] . (38)

As in Sect. 4.2.4, 𝐻̂ [𝑘 ] represents the 𝑘-body part of the Hamiltonian. In second
quantization it can be written as

𝐻̂ [𝑘 ] =
1

(𝑘!)2
∑︁

𝑝1 ,..., 𝑝𝑘

∑︁
𝑞1 ,...,𝑞𝑘

𝐻
𝑝1...𝑝𝑘
𝑞1....𝑞𝑘 𝑎̂†𝑝1 · · · 𝑎̂

†
𝑝𝑘

𝑎̂𝑞𝑘 · · · 𝑎̂𝑞1 (39)

with the shorthand notation 𝐻
𝑝1...𝑝𝑘
𝑞1....𝑞𝑘 = 〈𝑝1...𝑝𝑘 | 𝐻̂ [𝑘 ] |𝑞1...𝑞𝑘〉 for the matrix el-

ements of the 𝑘-body part. This is the standard form of an operator in second
quantization with the creation operators to the left of the annihilation operators. For
later reference, we call this the vacuum normal-ordered form of the Hamiltonian.
Here, vacuum refers to the vacuum state |0〉, the only state in the zero-particle Hilbert
space, and from the basics of second quantization we remember that 𝑎̂𝑞 |0〉 = 0 for
all 𝑞 and thus 〈0| 𝑎̂†𝑝 · · · 𝑎̂𝑞 |0〉 = 0 and also 〈0| 𝐻̂ [𝑘 ] |0〉 = 0.
Nowwe start to reinterpret and reshuffle things. Assume a Slater determinant |Φ〉,

which represents a simplistic approximation for the ground state of a closed-shell
system, as obtained, e.g., in a HF calculation. We call this specific Slater determinant
the reference state. Acting with the annihilation operator 𝑎̂𝑞 on the reference state
|Φ〉 can lead to different results, depending on whether the single-particle state
|𝑞〉 is occupied or unoccupied in the reference state. Using an index convention to
distinguish states 𝑖, 𝑗 that are occupied in |Φ〉, the hole states, from states 𝑎, 𝑏 that
are unoccupied in |Φ〉, the particle states, we find

𝑎̂𝑖 |Φ〉 ≠ 0 , 𝑎̂𝑎 |Φ〉 = 0 , 𝑎̂
†
𝑖
|Φ〉 = 0 , 𝑎̂𝑎 |Φ〉 ≠ 0 . (40)

Comparing this to the behavior of annihilation and creation operator applied to
the vacuum state |0〉, we observe that 𝑎̂𝑎 and 𝑎̂†𝑖 seem to behave like annihilation
operators with respect to |Φ〉. Turning this around: |Φ〉 behaves like a vacuum state
with respect to the set 𝑎̂𝑎 and 𝑎̂†𝑖 of annihilation operators. So let us take eq. (39)
and rearrange the product of creation and annihilation operators such that at these
reinterpreted annihilation operators 𝑎̂𝑎 and 𝑎̂†𝑖 are to the right of the reinterpreted
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creation operators 𝑎̂†𝑎 and 𝑎̂𝑖 . This defines normal ordering with respect to the
reference state.
Let us convert this into notation. We start from the Hamiltonian 𝐻̂ and rewrite it

in terms of the normal-ordered Hamiltonian 𝐻̂N

𝐻̂ = 〈Φ| 𝐻̂ |Φ〉 + 𝐻̂N (41)

and the expectation value of 𝐻̂ with respect to the reference state |Φ〉 given by

〈Φ| 𝐻̂ |Φ〉 =
∑︁
𝑖

𝐻𝑖
𝑖 +
1
2

∑︁
𝑖 𝑗

𝐻
𝑖 𝑗

𝑖 𝑗
+ 1
6

∑︁
𝑖 𝑗𝑘

𝐻
𝑖 𝑗𝑘

𝑖 𝑗𝑘
. (42)

The normal-ordered Hamiltonian 𝐻̂N again contains a one-body, two-body, and
three-body part

𝐻̂N = 𝐻̂
[1]
N + 𝐻̂

[2]
N + 𝐻̂

[3]
N , (43)

each normal-ordered with respect to the reference state. We denote the normal-
ordered 𝑘-body part as

𝐻̂
[𝑘 ]
N =

1
(𝑘!)2

∑︁
𝑝1 ,..., 𝑝𝑘

∑︁
𝑞1 ,...,𝑞𝑘

𝐻̃
𝑝1...𝑝𝑘
𝑞1....𝑞𝑘

{
𝑎̂†𝑝1 · · · 𝑎̂

†
𝑝𝑘

𝑎̂𝑞𝑘 · · · 𝑎̂𝑞1
}
, (44)

where the curly brackets enclosing the string of creation and annihilation operators
indicates that this product is arranged in normal order with respect to the reference
state, i.e., that particle annihilation and hole creation operators are to the right
of particle creation and hole annihilation operators. Since the sums over the single-
particle indices 𝑝𝑖 and 𝑞𝑖 run over particle and hole states, the curly brackets indicate
that the proper normal order is established for each term of the sum. As a result, we
always have 〈Φ| {𝑎̂†𝑝 · · · 𝑎̂𝑞} |Φ〉 = 0 and 〈Φ| 𝐻̂ [𝑘 ]

N |Φ〉 = 0, in perfect analogy to the
relations for the vacuum state |0〉 in vacuum normal order.
Obviously, we cannot simply change the order of creation and annihilation op-

erators, there are the fermionic anti-commutation relations that we have to obey.
Changing the order of creation and annihilation operators produces an extra term,
𝑎̂
†
𝑝 𝑎̂𝑞 = 𝛿𝑝𝑞 − 𝑎̂𝑞 𝑎̂

†
𝑝 , which has fewer creation and annihilation operators. Starting

from a 𝑘-body operator (in vacuum normal order) there will be contributions of
lower particle ranks in reference normal order, generated by the extra terms. They
show up, in the coefficient 𝐻̃ 𝑝1...𝑝𝑘

𝑞1....𝑞𝑘 in front of the normal-ordered operators

𝐻̃
𝑝
𝑞 = 𝐻

𝑝
𝑞 +

∑︁
𝑖

𝐻
𝑝𝑖

𝑞𝑖
+ 1
2

∑︁
𝑖 𝑗

𝐻
𝑝𝑖 𝑗

𝑞𝑖 𝑗
, 𝐻̃

𝑝𝑞
𝑟𝑠 = 𝐻

𝑝𝑞
𝑟𝑠 + 1

4

∑︁
𝑖

𝐻
𝑝𝑞𝑖

𝑟𝑠𝑖
, 𝐻̃

𝑝𝑞𝑟
𝑠𝑡𝑢 = 𝐻

𝑝𝑞𝑟
𝑠𝑡𝑢 .

(45)
Working out the commutator algebra manually is a tedious job and can be circum-
vented by the use of Wick’s theorem. We will not go into details here, and rather
refer to the literature [61].
As mentioned already, normal ordering is instrumental for the formulation of

some many-body methods and we will come back to this in Sect. 6. It can be used
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to define in approximation for the multi-nucleon terms in Hamiltonian, specifically
for the contribution of the 3N interaction. Looking at the matrix elements in (45) we
observe that the three-body contributions𝐻 𝑝𝑞𝑟

𝑠𝑡𝑢 of the initial Hamiltonian (in vacuum
normal order) enter also into the two-body and one-body part of the reference normal-
ordered Hamiltonian. The three-body matrix elements in these terms are partially
summed over one or two occupied levels, so effectively selected three-body terms
are demoted to lower particle rank. This covers already an important part of the
three-body effects and we might omit the residual normal-ordered three-body term
in good approximation. This is the so-called normal-ordered two-body (NO2B)
approximation [51, 62, 63].
The great advantage of the NO2B approximation is that the many-body method

only has to deal with up to two-body terms, which is a significant formal and
computational simplification.We can convert theNO2BHamiltonian back to vacuum
normal order and obtain

𝐻̂NO2B =
1
6

∑︁
𝑖 𝑗𝑘

𝐻
𝑖 𝑗𝑘

𝑖 𝑗𝑘
+
∑︁
𝑝𝑞

(
𝐻

𝑝
𝑞 − 1
2

∑︁
𝑖 𝑗

𝐻
𝑝𝑖 𝑗

𝑞𝑖 𝑗

)
𝑎̂†𝑝 𝑎̂𝑞

+ 1
4

∑︁
𝑝𝑞𝑟𝑠

(
𝐻

𝑝𝑞
𝑟𝑠 +

∑︁
𝑖

𝐻
𝑝𝑞𝑖

𝑟𝑠𝑖

)
𝑎̂†𝑝 𝑎̂

†
𝑞 𝑎̂𝑠 𝑎̂𝑟 ,

(46)

which can be readily used inmany-bodymethods that do not employ normal ordering
otherwise (like, e.g., the no-core shell model).
So far, we have considered a reference state given by a single Slater determinant, a

so-called single-reference scheme.What about a reference state that is a superposition
of multiple Slater determinants? The immediate consequence is that the simple
distinction between particle and hole states breaks down. There will be single-
particle states that are occupied in some of the determinants making up the reference
state and unoccupied in others. Despite this complication, there is a generalization
of normal ordering and Wick’s theorem [64, 65, 66] for these multi-determinantal
reference states, ormulti-reference states for short. From a practical point of view, the
partitioning of the summations into particle and hole states is replaced by unrestricted
sums and the information on the structure of the reference state is introduced via
density matrices. A more detailed discussion of multi-reference normal ordering and
the resulting NO2B approximation can be found in [67].

5 Diagonalization Approaches

After our extensive preparations it is now almost trivial to define a first class of many-
body methods. Taking the basis-expansion idea introduced in Sect. 2 literally, we are
left with a large-scale matrix eigenvalue problem for the Hamiltonian represented in
the 𝐴-body basis of choice. The Hamiltonian and the many-body basis make use of
the preconditioning methods discussed in the previous section, which are hidden in
the 𝐴-body matrix elements. This general class of methods is typically identified as
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configuration interaction (CI) or exact diagonalization approaches. Methods of this
class still differ in the way the many-body basis is truncated and how convergence is
assessed.

5.1 Many-Body Truncations

There are different physics-motivated strategies to truncate the many-body basis
and to define the many-body model space. Essentially, different truncation schemes
define different many-body methods. We discuss the main contenders, provide a
physics motivation for the truncation, and comment on uncertainty quantification.

Full Configuration Interaction. Starting from a finite set of single-particle states
and buildingSlater determinants fromall possible combinations automatically results
in a finite set of 𝐴-body basis states spanning the model space of a so-called full
configuration interaction (FCI) scheme. In the context of the HO basis, we can
use the principal quantum number 𝑒 = 2𝑛 + 𝑙 to define a single-particle truncation
𝑒 ≤ 𝑒max with a control parameter 𝑒max. The model space of this FCI scheme can be
characterized as

MFCI = {all Slater determinants |𝑝1𝑝2...𝑝𝐴〉 with 𝑒𝑝𝑖 ≤ 𝑒max} . (47)

Obviously, in the limit 𝑒max → ∞ the FCI calculation will approach the exact
result. Therefore, it is in principle straightforward to assess the convergence behavior
via an explicit variation of 𝑒max. We can derive uncertainty estimates or construct
extrapolation schemes to deal with incomplete convergence—all of this is facilitated
by the fact that a single parameter, 𝑒max, controls the truncation.
This truncation is motivated by the assumption that energetically high-lying

single-particle states will contribute less to the basis expansion of low-lying eigen-
states. This resonates with the discussion of decoupling of low- and high-energy
states in Sect. 4.2. However, the FCI truncation still allows for configurations where
all particles occupy the highest available single-particle states—it is very unlikely
that such configuration will appear in the expansion of low-lying eigenstates. Not
surprisingly, FCI calculations turn out to be rather inefficient in nuclear structure
applications.

Particle-Hole-Truncated Configuration Interaction. In addition to the single-
particle truncation of FCI we use a truncation on the number of particle-hole pairs
that distinguish a basis state from a specific reference state |Φ〉. The reference state
represents a specific basis determinant, typically the one with the 𝐴 energetically
lowest single-particle states occupied and can be obtained, e.g., from an HF calcula-
tion. All basis states can be classified according to the number of single-particle states
that differ from the reference state |Φ〉. Or, equivalently, the number of particle-hole
excitations needed to construct a basis determinant from the reference state.
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We can use the creation and annihilation operators of second quantization to
define 𝑛-particle-𝑛-hole (𝑛p𝑛h) excitations on top of the reference state |Φ〉:

1p1h : |Φ𝑎
𝑖 〉 = 𝑎̂†𝑎 𝑎̂𝑖 |Φ〉

2p2h : |Φ𝑎𝑏
𝑖 𝑗 〉 = 𝑎̂†𝑎 𝑎̂

†
𝑏
𝑎̂ 𝑗 𝑎̂𝑖 |Φ〉

3p3h : |Φ𝑎𝑏𝑐
𝑖 𝑗𝑘 〉 = 𝑎̂†𝑎 𝑎̂

†
𝑏
𝑎̂†𝑐 𝑎̂𝑘 𝑎̂ 𝑗 𝑎̂𝑖 |Φ〉 ,

(48)

where we again use the index convention with 𝑖, 𝑗 , 𝑘 being hole states that are
occupied in the reference state and 𝑎, 𝑏, 𝑐 particle states that are unoccupied in |Φ〉.
This hierarchy can be easily extended to the 𝐴-particle-𝐴-hole level.
Including all levels of this particle-hole hierarchy will simply recover the FCI

model space, we have only structured the basis in a physically useful manner. How-
ever, we can introduce an additional, physics motivated truncation by only keeping
basis states up to a specific maximum 𝑛p𝑛h level and, thus, define the 𝑛p𝑛h-truncated
model space of CI(𝑛p𝑛h)

MCI(𝑛p𝑛h) = {all Slater determinants |Φ〉, |Φ𝑎
𝑖 〉, |Φ𝑎𝑏

𝑖 𝑗 〉, ...
up to the 𝑛p𝑛h level with 𝑒𝑎,𝑏,... ≤ 𝑒max} .

(49)

Note that we still need the 𝑒max truncation, since the particle-hole truncation alone
would not render the model space finite. Thus, we have to handle two parameters that
control the truncation of the model space, 𝑛 and 𝑒max. This makes the study of the
convergence as well as the quantification of uncertainties more difficult, particularly
since the inclusion of the next particle-hole level typically increases the model-space
dimension by orders of magnitude.
The physics motivation behind the particle-hole hierarchy results from a perturba-

tive consideration.We can consider the reference state as a simple first approximation
for the ground state of our system—very much in the spirit of HF—and, thus, as the
lowest-order approximation in a perturbative expansion. The first-order perturbative
corrections to this state will only include up to 2p2h excitations on top of |Φ〉 if
the Hamiltonian contains up to two-body operators. This is because the amplitudes
of the perturbative correction to the states involve matrix elements 〈Φ𝑎𝑏...

𝑖 𝑗...
| 𝐻̂ |Φ〉,

which vanish beyond the 2p2h level. Second-order corrections to the many-body
states will include up to 4p4h excitations etc. Thus, multi-particle-multi-hole states
enter in increasing orders of perturbation theory, and we expect their contribution to
be increasingly suppressed.
So far, we have considered the simple situation of a closed-shell system, which is

characterized by a unique Slater determinant as a reference state. For an open-shell
system, the filling of single-particle states in energetic order results in a partially
occupied 𝑗-orbit, i.e., not all (2 𝑗 + 1) magnetic substates are filled. As a result,
there are multiple possible reference Slater determinants with the same total unper-
turbed energy—there is a set of degenerate reference states. This trivial effect has
huge consequences, it is at the heart of all the differences between single-reference
(closed-shell) andmuchmore complicatedmulti-reference (open-shell) methods that
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will be discussed later. At the moment, we are only interested in model-space trun-
cations in a CI framework and there is an easy fix. Instead of counting particle-hole
excitations with respect to a specific reference state, which will depend on which of
the degenerate reference states we have picked, we count the single-particle states
that are above the last (partially) occupied orbit of the degenerate reference states.
This truncation is sometimes called𝑇max truncation, where𝑇 is the number of single-
particle states above the last reference orbit. When applied in a closed-shell situation,
the 𝑇max truncation is equivalent to an 𝑛p𝑛h-truncation with 𝑛 = 𝑇max.

No-Core Shell Model. The previous CI truncations are used across different fields
of quantum physics and quantum chemistry. The truncation we are discussing now,
which defines the so called no-core shell model (NCSM), is more specific to nuclear
physics [68, 69]. In its pure version, the NCSM uses an HO single-particle basis in
combination with a truncation with respect to the total HO energy of the many-body
basis states. This total HO energy is parametrized in terms of a parameter 𝑁max,
which counts the HO excitation quanta above the lowest-energy HO determinant,
i.e., the reference state. Formally, the number of excitation quanta 𝑁 is obtained from

𝑁 =

𝐴∑︁
𝑖=1

𝑒𝑖 − 𝐸ref. with 𝐸ref =

𝐴∑︁
𝑖=1

𝑒ref𝑖 , (50)

where 𝐸ref is the total principal quantum number of the lowest-energy reference
configuration whose single-particle state have principal quantum numbers 𝑒ref

𝑖
. Note

that degeneracy of reference determinants in the case of open-shell systems does not
pose a problem here. For the HO basis the number of excitation quanta 𝑁 can be
translated into an HO excitation energy by multiplying with ℏΩ. The NCSM model
space is, thus, defined as

MNCSM = {all Slater determinants |𝑝1𝑝2...𝑝𝐴〉 with 𝑁 ≤ 𝑁max} . (51)

Like the FCI scheme, the NCSMmodel space is based on a truncation with respect to
an unperturbed energy. However, the NCSM uses the total energy of the many-body
basis state, not the single-particle energy. Therefore, high-energy configurations with
all particles in high-lying single particle states are excluded.
Again, we can resort to perturbation theory to motivate this energy truncation.

Looking at the corrections to the many-body state predicted in perturbation theory,
the contributions of individual states are always scaled by energy denominators,
which correspond exactly to the HO excitation energies 𝑁 ℏΩ. Thus, with increasing
𝑁 the contribution of configurations gets more and more suppressed by the energy
denominators. The 𝑁max truncation, therefore, discards configurations that are ex-
pected to have small contributions based on a perturbative estimate. In this sense,
the 𝑁max truncation is much more physics-driven than the simple 𝑒max truncation.
Nowadays, the NCSM truncation is also used with other single-particle basis sets

than the HO, for example the natural orbitals discussed in Sect. 4.3.3. In this case, the
𝑁max parameter looses its direct connection to the unperturbed energies and is purely
defined on the basis of a pseudo-principal quantum number 𝑒 = 2𝑛+ 𝑙. Nevertheless,
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it remains a useful and efficient truncation, as the gross picture of energy scales is
still valid. Since the NCSM is the main work horse among the ab initio CI methods
in nuclear physics, we will come back to it in Sect. 5.3.

Valence-Space Shell Model. Also the traditional valence-space shellmodel (VSSM)
of nuclear physics can be viewed as a specific incarnation of the general configuration
interaction idea. It is based on a partitioning of the single-particle basis into three
subsets: core states, valence states, and excluded sates. The many-body basis is then
characterized by two different truncations: (1) a simple single-particle truncation
that eliminates all the excluded single-particle states; (2) a selective truncation that
retains only many-body configurations that have all core states filled. As a result,
the basis configurations of the many-body model space all have 𝐴𝑐 nucleons occu-
pying the same 𝐴𝑐 core states, and the states only differ in the assignments of the
𝐴𝑣 = 𝐴 − 𝐴𝑐 remaining valence nucleons to the valence single-particle states. We
can summarize the VSSM model space as follows

MVSSM = {all Slater determinants |𝑝1𝑝2...𝑝𝐴〉 with
{𝑝1, ..., 𝑝𝐴𝑐

} = core and {𝑝𝐴𝑐+1, ..., 𝑝𝐴} ⊂ valence space} .
(52)

For shell-model practitioners this definition might sound unfamiliar. Practical
VSSM calculations do not work with an 𝐴-body Slater determinant basis, but with an
𝐴𝑣 -body basis of the same dimension. Since the same core states are occupied in all
basis states of the model space, their contribution to all relevant many-body matrix
elements can be computed beforehand and absorbed into the remaining valence-
space part of the matrix elements. This is a purely technical step akin to the normal
ordering of operators discussed in Sect. 4.4. The reduction to an effective 𝐴𝑣 -body
problem does not imply additional approximations, it is an equivalent reformulation
of the problem.
Although the VSSM can be viewed as a truncation of the 𝐴-body Hilbert space,

its practical applications follow a different philosophy than the other CI-type ap-
proaches. In all ab initio CI approaches, the truncation parameters are varied in order
to assess the convergence towards the full Hilbert space and to extract model-space
uncertainties. This is not done in typical VSSM calculations that work with a fixed
valence space that is governed by computational feasibility and not by convergence
considerations. In practice, a systematic variation of core and excluded space is often
not possible, as model space dimensions become intractable very quickly. Therefore,
VSSM calculations are traditionally performed in a phenomenological setting, with
valence space interactions fitted to nuclear observables, e.g., excitation energies, for
nuclei in the respective valence shell. For other observables, e.g., electromagnetic
transition strengths and moments, phenomenological corrections in the form of ef-
fective charges are introduced. In addition to purely phenomenological interactions,
effective interactions derived in a perturbative framework or in a decoupling scheme
are being used. In this way, the connection to the underlying Hamiltonian is retained,
however, a quantification of model-space uncertainties generally is still lacking.
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Symmetry Reduction. For all the truncations discussed so far, we can take into
account symmetries to further reduce the basis dimension. The most important
symmetries for our purpose are charge conservation and rotational invariance.
As a consequence of charge conservation, the number of protons and neutrons is

fixed and, thus, the total isospin projection𝑀𝑇 = 𝑍−𝑁 is a good quantum number of
the nuclear eigenstates. In technical terms, there is a simultaneous eigenbasis of the
Hamiltonian and the operator 𝑇3 =

∑
𝑖 𝑡3,𝑖 for the 3-component of the total isospin.

The Slater determinant basis states that span the CI model spaces are also eigenstates
to 𝑇3 and the eigenvalue is the sum of all single-particle isospin projections 𝑚𝑡 , cf.
eq. (2). Therefore, only basis states with appropriate 𝑀𝑇 contribute to the expansion
of the eigenstates and we can discard all other basis states from the model space.
Obviously, this is a simple and effective way to reduce the model-space dimension
without changing the results.
A similar argument applies to the projection 𝑀 of the total angular momentum

𝐽𝑧 =
∑

𝑖 𝑗𝑧,𝑖 . Due to the rotational symmetry of the problem, the Hamiltonian does
not connect states with different 𝑀 quantum numbers and the energy spectrum
exhibits a degeneracy with respect to 𝑀 . Therefore, we can choose a specific value
of𝑀 at the beginning of the calculation and only include basis stateswith this specific
𝑀 into the model space. Again, the Slater determinant states are also eigenstates to
𝐽𝑧 with eigenvalues given by the sum of the single-particle projections 𝑚.
One could consider going one step further with rotational symmetry. The Hamil-

tonian also commutes with the square of the total angular momentum operator Ĵ2,
therefore, 𝐽 is also a good quantum number for the nuclear eigenstates. We could
focus on a specific value of 𝐽 and limit the model space to basis states with this value
of 𝐽. The problem here is that Slater determinants are generally not eigenstates of
Ĵ2, therefore, a simple basis-state selection is not possible. One can, however, use
information on a specific target value for 𝐽 through the choice of 𝑀 . Usually one
uses 𝑀 = 0 (for even 𝐴) or 𝑀 = 1

2 (for odd 𝐴), because this is compatible with all
possible 𝐽 values. For targeting larger values of 𝐽, one can use 𝑀 = 𝐽, which will
reduce the model-space dimension but exclude all eigenstates with 𝐽 < 𝑀 .
In order to exploit the good 𝐽 quantum number, one has to use a 𝐽-coupled

basis. The construction of such a basis is much more involved than the simple
Slater determinant basis and the computation of many-body matrix elements is
far from trivial. Therefore, 𝐽-coupled basis sets are rarely used in the CI context.
Exceptions are 𝐽-scheme versions of the valence-space shell model and Jacobi-
coordinate version of the NCSM.
A final remark: One can approach the question of symmetries from a completely

different angle. Instead of trying to incorporate the good quantum number into the
basis to reduce the model-space dimension, one can break symmetries on purpose to
enrich the basis and include specific correlations, and later restore the broken sym-
metries explicitly in order to arrive at the nuclear eigenstate. This symmetry breaking
and restoration strategy is particularly helpful to describe collective correlations, also
called static correlations, such as the intrinsic deformation of a nucleus.
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5.2 Importance Truncation

All ab initio CI approaches are eventually limited by the trade-off between conver-
gence and model-space dimension. The model space has to be large enough to reach
acceptable convergence of the target observable, but the computational cost for the
calculation increases rapidly withmodel-space size.With increasing particle number
𝐴 one quickly faces the situation that the calculation cannot be converged with nu-
merically tractable basis dimensions. However, there is one more trick—the selective
removal of basis states from the model space using an adaptive, state-specific, and
physics-guided truncation criterion [70, 71].
Assume we target a small number of low-lying eigenstates |Ψ(𝑚)〉 for 𝑚 =

1, ..., 𝑀 in a CI calculation for a specific model space. The full calculation would
yield eigenvectors representing the amplitudes 𝐶 (𝑚)

𝜈 for the expansion of the target
eigenstates in terms of the many-body basis states |Φ𝜈〉:

|Ψ(𝑚)〉 =
∑︁
𝜈

𝐶
(𝑚)
𝜈 |Φ𝜈〉 . (53)

Many of the amplitudes will be very small or vanishing, i.e., the corresponding basis
states do not contribute significantly to the target states. If these amplitudes were
known beforehand, we could reduce the basis dimension significantly by discarding
those basis states.
In order to estimate the amplitudes a priori, we use initial approximations of

the target states, the reference states |Ψ(𝑚)
ref 〉, that are typically determined from a

previous CI calculation in a smaller model spaceMref

|Ψ(𝑚)
ref 〉 =

∑︁
𝜈∈Mref

𝐶
(𝑚)
ref,𝜈 |Φ𝜈〉 . (54)

These reference states carry information about the physical properties of the target
eigenstates. Guided by first-order multiconfigurational perturbation theory, we esti-
mate the amplitudes of the individual basis states |Φ𝜈〉 ∉ Mref in the expansion of
the target eigenstate [71]. This first-order perturbative correction for the amplitudes
defines the so-called importance measure

𝜅
(𝑚)
𝜈 = −

〈Φ𝜈 | 𝐻̂ |Ψ(𝑚)
ref 〉

Δ𝜖𝜈
, (55)

where 𝐻̂ is the full Hamiltonian and Δ𝜖𝜈 is the unperturbed HO excitation energy of
the basis state |Φ𝜈〉 [70, 71].
The importance measure combines information about the properties of the target

states, carried by the reference states, about the many-body basis, and about the
Hamiltonian. It is the foundation for the definition of a state-dependent adaptive
truncation of themodel space, the so-called importance truncation (IT).We define the
importance-truncated model-spaceMIT (𝜅min) spanned by all states of the reference
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spaceMref plus all basis states |Φ𝜈〉 ∉ Mref with importance measure |𝜅 (𝑚)
𝜈 | ≥ 𝜅min

for at least one𝑚 ∈ {1, ..., 𝑀}. The importance threshold 𝜅min provides an additional
truncation parameter, which will be varied later on to probe the contribution of the
discarded basis states. Note that the importance measure (55) is based on the first-
order perturbative correction to the states, not on the perturbative correction to the
energies. It is, therefore, not biased to an optimal description of energies, but aims
at an optimal description of the states and, thus, of all observables.
Depending on the specific flavour of CI, we can use different strategies to set

up the importance-truncated model space. We can use iterative schemes, where the
IT-space is successively refined and expanded by using improved reference states
from a previous IT calculation. For the NCSM a particularly efficient scheme uses
the eigenstate of the next smaller 𝑁max as reference state for the construction of the
IT model space.
The importance threshold 𝜅min acts as an additional truncation parameter of the

CImodel space, and it is guaranteed that in the limit 𝜅min → 0we recover the original
CI model space. In practical applications, we typically perform calculations for a
sequence of importance thresholds 𝜅min and use an extrapolation of the observables
to vanishing importance threshold to effectively account for discarded basis states.
More details on the practical aspects of IT calculations can be found in [71, 72].

5.3 No-Core Shell Model

Since the NCSM is the most commonly used ab initio CI method in nuclear structure
physics [68, 69], wewill discuss themain components of the calculation and illustrate
the convergence behavior in a little more detail.

Setup and numerics. As discussed before, the NCSM uses a basis build from HO
single-particle states and is truncated with respect to the maximum number of HO
excitation quanta 𝑁max. This model space has the unique advantage that the center-
of-mass motion can be separated or factorized exactly from the intrinsic state of the
system. Therefore, we can use simple tricks like adding an extra HO Hamiltonian for
the center-of-mass to remove spurious center-of-mass excitations from the low-lying
excitation spectrum. This model space also offers two alternative basis sets to work
with: the Slater determinant HO basis and the relative-coordinate or Jacobi HO basis,
mentioned in Sect. 4.3.1. The former defines the standard 𝑚-scheme NCSM, which
is more universal and applicable to heavier nuclei, and the latter the Jacobi NCSM,
which is very efficient for light nuclei with 𝐴 . 6 [73]. The standard NCSM has the
advantage of numerical simplicity, e.g., for the computation of matrix elements, but
it requires large basis dimensions. The Jacobi NCSM can realize much smaller basis
dimensions for the same 𝑁max, because all symmetries, including translational and
rotational invariance, are exploited, however, the computation of matrix elements is
much more complicated and practically feasible only for light nuclei.
Let us expand on the computational aspects of standard NCSM calculations in

large model spaces. Today, advanced NCSM implementations handle model spaces



36 Robert Roth

with up to 1010 basis states [74, 75], i.e., they tackle the eigenvalue problem of
a 1010 × 1010 matrix, which might seem impossible. Storing this full matrix with
single-precision floating-point numbers would require on the order of 108 TB of
storage. Luckily, the Hamilton matrix is very sparse, and we only need to store the
non-zero matrix elements. This is because a Hamiltonian with up to two or three-
body interactions connects only those pairs of basis states that differ by up to two
or three single-particle states, respectively. As a result, the sparsity decreases with
increasing particle-rank of the Hamiltonian, which is why the NO2B approximation
discussed in Sect. 4.4 can be useful in the NCSM as well.
These huge basis sizes require an efficient computation of many-body matrix

elements—a significant fraction of the total runtime goes into the computation of
the matrix elements of the Hamiltonian. The next step in the calculation is the
solution of the matrix eigenvalue problem. Since we are only interested in a tiny
fraction of the eigenstates at the lower end of the spectrum, we can use iterative
Krylov subspace methods, like the famous Lanczos or Arnoldi algorithms. Each
iteration of these algorithms requires a matrix-vector multiplication, which can be
implemented efficientlywith sparsematrix storage and evenwith distributedmemory
schemes. Only about 10 iterations are needed to converge the lowest eigenvalue, i.e.,
the ground state, and for about 100 iterations we typically get the interesting part
of the low-lying excitation spectrum. If the matrix elements are computed very
efficiently, one can even consider computing them on-the-fly during the evaluation
of matrix-vector products without ever storing them—this shifts characteristics of
the calculation from being very storage intensive to being very compute intensive.
As for all CI methods, the solution of the eigenvalue problem yields the energies

of the low-lying states and the eigenvectors that contain the coefficients for the basis
expansion of the eigenstates in Eq. (5). They can be used in a post-processing step
to evaluate all other observables that are defined in terms of expectation values
or matrix elements with these eigenstates. Note that ground and excited states are
always obtained on the same footing.

Convergence and frequency dependence. The model-space size is controlled
solely by the truncation parameter 𝑁max and we recover the full Hilbert space in
the limit 𝑁max → ∞. The HO basis has an additional parameter, the oscillator
frequency ℏΩ, and all observables have to become independent of ℏΩ in the limit
of large 𝑁max. However, the choice of ℏΩ will affect the convergence behavior of
the calculation. An example for NCSM calculations with the HO basis is shown in
the left-hand panels of Fig. 2 for the ground-state energy and the point-proton rms
radius of 16O. The observables are plotted as function of ℏΩ with different curves
representing different 𝑁max. For the ground state energy we observe the characteris-
tic monotonic convergence from above—the curves shift downwards and flatten out
with increasing 𝑁max. For the rms-radii the convergence pattern is completely dif-
ferent, there is no variational principle that warrants monotonic convergence and we
observe that, depending on ℏΩ, the radius converges from above or below. For both
observables there are sweet-spots in ℏΩwhich yield the most rapid convergence. For
the energy this is in the range of ℏΩ = 16 to 20 MeV and for the rms-radius at 16
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Fig. 2 Comparison of the convergence of NCSM calculations with three different basis sets for
the ground-state energy and point-proton rms-radius for 16O using an SRG-evolved chiral NN+3N
interaction with 𝛼 = 0.08 fm4. Modified from [60].

MeV, where the radius is practically independent of 𝑁max. We can use these optimal
values of ℏΩ to extract a most converged result and possibly even improve on it via
an extrapolation 𝑁max → ∞ with quantified uncertainties. This shows, however, that
we have to perform NCSM calculations for multiple values of ℏΩ to explore the
frequency dependence of each observable.

Basis optimization. What does the convergence look like with the other single-
particle basis sets? Of course, with the HF and the natural-orbital states discussed
in Sect. 4.3 we loose the formal properties of the HO, e.g., the exact separation of
intrinsic and center-of-mass degrees of freedom. We also do not have the equidistant
energy spectrum and the interpretation of 𝑁maxℏΩ as unperturbed excitation energy
anymore, but we can still set up an 𝑁max-truncatedmodel space based on the quantum
numbers of the single-particle states, using the pseudo-principal quantum number
𝑒 = 2𝑛+ 𝑙 th evaluate 𝑁max. As discussed in Sect. 4.3 we still use the HO to represent
the single-particle states of these optimized basis sets, therefore, there is still an ℏΩ
parameter involved.
The NCSM results for 16O with the HF and the natural-orbital basis are depicted

in the center and right-hand columns of Fig. 2. The convergence of the ground-state
energy with the HF basis shows an anomalous pattern: the frequency dependence is
reduced but the energies drop almost linearly with 𝑁max and the 𝑁max = 10 results are
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Fig. 3 NCSM calculations for the ground-state energies of oxygen isotopes. Left: Convergence
of the energy as function of 𝑁max using the natural orbital basis together with an exponential
extrapolation. Right: Extrapolated ground-state energies obtained with the full 3N interaction and
with the NO2B approximation in comparison to experiment.

well above the corresponding HO energies. This is related to the pathologies of the
HF basis discussed in Sect. 4.3.2, which is not not suitable for NCSM calculations.
The situation is different with the natural-orbital basis. As evident from the right-

hand panels of Fig. 2 energies and radii are, for all practical purposes, independent
of ℏΩ. The 𝑁max-convergence of both observables is comparable to the convergence
with the HO basis for the optimal ℏΩ. This is a great result! We do not need to
optimize ℏΩ anymore, this is done implicitly by the natural orbitals already, because
it contains global information on the nucleus, such as its size.

Oxygen isotopic chain. Using the natural-orbital basis, we can attempt large-scale
NCSM calculations that reach the limit of particle numbers the NCSM can handle.
We consider the oxygen isotopic chain from the neutron deficient 14O to 26O be-
yond the neutron dripline and the results are summarized in Fig. 3. Because of the
preconditioning, using the natural-orbital basis with an SRG-evolved Hamiltonian,
we are close to convergence for 𝑁max = 10 and simple exponential extrapolations
can be used to obtain a final energy with an uncertainty estimate. Reaching these
large 𝑁max parameters for 𝐴 ≈ 20 systems requires the IT scheme discussed in Sect.
5.2. The right-hand panel of Fig. 3 shows the extrapolated ground-state energies for
calculations with explicit 3N terms in the Hamiltonian in comparison to the NO2B
approximation. We observe a small overestimation of the ground state energy by
1 − 2 MeV when using the NO2B approximation, which is acceptable given that the
NCSM calculation speeds up by a factor of 10 due to the increased sparsity of the
Hamilton matrix.
For going much beyond the oxygen isotopes, we have to resort to a different

many-body strategy—we will move from diagonalization to decoupling.
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6 Decoupling Approaches

We have already established the conceptual relation between diagonalization and
decoupling during the discussion of unitary transformation and the SRG in Sect.
4.2. Now we transfer this directly to the methods for the solution of the many-body
problem. The CI approaches discussed in the previous section use the concept of
diagonalization—we construct a matrix representation of the Hamiltonian and solve
thematrix eigenvalue problem,which is equivalent to a diagonalization of thematrix.
Typically we will only extract a few low-lying eigenvalues and eigenvectors, which
can be viewed as a selective diagonalization of a few rows and columns of the matrix.
This structure of the matrix could also be viewed as a specific decoupling, i.e., a
suppression of the off-diagonal matrix elements that connect the low-lying states
with the rest of the model space.

6.1 In-Medium Similarity Renormalization Group

The most obvious implementation of the decoupling strategy is the SRG framework
discussed in Sect. 4.2. We can use the SRG flow-equation to drive a continuous
decoupling of a selected state or subspace from the rest of themodel space. In contrast
to the free-space SRG, we now aim at a pre-diagonalization of the Hamiltonian in
𝐴-body space. As mentioned earlier, the direct solution of the flow equations for the
Hamiltonian in an 𝐴-body CI-type matrix representation is neither advantageous nor
feasible. Therefore, we combine the SRG flow-equation with the normal-ordering of
the Hamiltonian and a truncation analogous to the NO2B approximation discussed
in Sect. 4.4. This results in the so-called in-medium similarity renormalization group
(IM-SRG) [76, 77, 78, 79, 80].
Let us start with the single-reference formulation of normal ordering suitable for

closed shell nuclei. We define a reference state |Φ〉 as a single Slater determinant
constructed, e.g., in a previous HF calculation or with a natural-orbital basis. We
convert the relevant operators for the formulation of the SRG flow equation into
normal-ordered formwith respect to this reference state and truncate after the normal-
ordered two-body terms, i.e., the Hamiltonian

𝐻̂ (𝑠) = 𝐸 (𝑠) +
∑︁
𝑝𝑞

𝐻
𝑝
𝑞 (𝑠) {𝑎̂†𝑝 𝑎̂𝑞} +

1
4

∑︁
𝑝𝑞𝑟𝑠

𝐻
𝑝𝑞
𝑟𝑠 (𝑠) {𝑎̂†𝑝 𝑎̂†𝑞 𝑎̂𝑠 𝑎̂𝑟 } . (56)

and the anti-hermitean generator

𝜂(𝑠) =
∑︁
𝑝𝑞

𝜂
𝑝
𝑞 (𝑠) {𝑎̂†𝑝 𝑎̂𝑞} +

1
4

∑︁
𝑝𝑞𝑟𝑠

𝜂
𝑝𝑞
𝑟𝑠 (𝑠) {𝑎̂†𝑝 𝑎̂†𝑞 𝑎̂𝑠 𝑎̂𝑟 } . (57)

The Hamiltonian, the generator, and all their matrix elements are functions of the
IM-SRG flow parameter 𝑠 (we reserve 𝛼 for the free-space SRG flow parameter).
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The zero-body part of the Hamiltonian, i.e. the expectation value of the Hamiltonian
in the reference state, is denoted by 𝐸 (𝑠). These normal-ordered operators enter in
the IM-SRG flow equation, which looks just like the general SRG flow equation (18)

d
d𝑠

𝐻̂ (𝑠) =
[
𝜂(𝑠), 𝐻̂ (𝑠)

]
. (58)

After working out the commutator with normal-ordered operators and truncating
again after the two-body level, we obtain a system of coupled first order differen-
tial equations for the normal-ordered zero-body, one-body, and two-body matrix
elements of the Hamiltonian

d
d𝑠

𝐸 =
∑︁
𝑝𝑞

𝜂
𝑝
𝑞𝐻

𝑞
𝑝 (𝑛𝑝 − 𝑛𝑞) +

1
2

∑︁
𝑝𝑞𝑟𝑠

𝜂
𝑝𝑞
𝑟𝑠 𝐻

𝑟𝑠
𝑝𝑞𝑛𝑝𝑛𝑞 𝑛̄𝑟 𝑛̄𝑠

d
d𝑠

𝐻12 =
∑︁
𝑝

[
𝜂1𝑝𝐻

𝑝

2 + (1↔ 2)
]
+
∑︁
𝑝𝑞

(𝑛𝑝 − 𝑛𝑞)
(
𝜂
𝑝
𝑞𝐻

𝑞1
𝑝2 − 𝐻

𝑝
𝑞 𝜂

𝑞1
𝑝2

)
+ 1
2

∑︁
𝑝𝑞𝑟

[
𝜂𝑟1𝑝𝑞𝐻

𝑝𝑞

𝑟2 (𝑛𝑝𝑛𝑞 𝑛̄𝑟 + 𝑛̄𝑝 𝑛̄𝑞𝑛𝑟 ) + (1↔ 2)
]

d
d𝑠

𝐻1234 =
∑︁
𝑝

[
𝜂1𝑝𝐻

𝑝2
34 − 𝐻1𝑝𝜂

𝑝2
34 − (1↔ 2)

]
−
∑︁
𝑝

[
(𝜂𝑝

3 𝐻
12
𝑝4 − 𝐻

𝑝

3 𝜂
12
𝑝4) − (3↔ 4)

]
+ 1
2

∑︁
𝑝𝑞

[
𝜂12𝑝𝑞𝐻

𝑝𝑞

34 (1 − 𝑛𝑝 − 𝑛𝑞) + (1, 2↔ 3, 4)
]

−
∑︁
𝑝𝑞

(𝑛𝑝 − 𝑛𝑞)
[
(𝜂𝑞2

𝑝4 − 𝜂
𝑝1
𝑞3𝐻

𝑞2
𝑝4) − (1↔ 2)

]
,

(59)

wherewe have omitted the flow-parameter arguments for brevity.We have introduced
single-particle occupation numbers 𝑛𝑝 ∈ {0, 1} and 𝑛̄𝑝 = 1 − 𝑛𝑝 of the reference
state to effectively distinguish hole and particle states. Note that the external single-
particle indices that enter on the left-hand side are simply denoted by numbers to
easily distinguish them from the additional summation indices.
We have not specified the generator 𝜂(𝑠) yet, but we can draw on our discussion

in Sect. 4.2. The simplest choice for 𝜂(𝑠) is again the Wegner ansatz (19)

𝜂W (𝑠) = [𝐻̂𝑑 (𝑠), 𝐻̂ (𝑠)] = [𝐻̂𝑑 (𝑠), 𝐻̂𝑜𝑑 (𝑠)] (60)

with a commutator of the diagonal parts 𝐻̂𝑑 (𝑠) and off-diagonal parts 𝐻̂𝑜𝑑 (𝑠) of the
Hamiltonian. TheWegner generator is not very efficient, and in practical applications
other choices, mainly the imaginary-time and White generators, are being used. We
refer to the literature for more details [78, 79, 80]. For all generators we still have to
decide what we consider as diagonal and off diagonal, this defines the decoupling
pattern.
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Fig. 4 Illustration of an IM-SRG evolution for 16O. The bottom panel shows the flow-parameter
dependence of the zero-body part 𝐸 (𝑠) of the Hamiltonian in comparison to the NCSM result for
the ground state energy. The upper panels depict a part of the evolved Hamiltonian in a particle-hole
basis representation for different values of 𝑠. Each circle indicates a non-vanishing matrix element
and its area encodes the absolute value of the matrix element.

The single-reference IM-SRG for closed-shell nuclei uses a simple and extreme
decoupling pattern. The off-diagonal part of the Hamiltonian is everything that
connects the reference state |Φ〉 to any other basis state. In the language of the
matrix elements 𝐻𝑞

𝑝 (𝑠) and 𝐻𝑟𝑠
𝑝𝑞 (𝑠), all matrix elements that connect particle and

hole states are considered off-diagonal. Consequently the IM-SRG aims to decouple
the reference state from all particle-hole excitations. This is illustrated with an actual
IM-SRG evolution for 16O in Fig. 4. The top row depicts matrix representations of
the Hamiltonian in a particle-hole CI basis with increasing flow parameters marked
by triangles. The flow evolution will selectively diagonalize the matrix with respect
to the first row and column with the matrix element 〈Φ| 𝐻̂ (𝑠) |Φ〉 on the diagonal.
The lower panel shows the evolution of this matrix element, which constitutes zero-
body part of the flowing Hamiltonian 𝐸 (𝑠) = 〈Φ| 𝐻̂ (𝑠) |Φ〉. With increasing flow
parameter, 𝐸 (𝑠) first decreases and then stabilizes once the decoupling is achieved.
In this decoupled regime, 𝐸 (𝑠) corresponds to an eigenvalue and directly represents
the ground-state energy of the system.
Addressing other ground-state observables, e.g., the rms-radius, requires more

work. As discussed in Sect. 4.2.2, we have to transform the matrix elements of the
observable consistently using the same IM-SRG flow evolution. At this point the
Magnus formulation of the flow equations comes in handy (cf. Sect. 4.2.2) and is
used in many state-of-the-art IM-SRG implementations.
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The numerical character of IM-SRG calculations is very different from the CI or
NCSM approaches discussed before. We are dealing with an initial value problem
for a system of coupled first-order differential equations (59) for the matrix elements
of the normal-ordered Hamiltonian. Similar to FCI, the single-particle basis has to
be truncated to arrive at a finite set of equations. Beyond the 𝑚-scheme formulation
discussed here, we can use angular momentum coupled matrix elements and exploit
their symmetries in order to reduce the number of equations drastically. In this way,
large single-particle basis sets become tractable with moderate computational effort.
Note that the particle number 𝐴 does not directly affect the dimension of the system
of differential equations (59), so heavy nuclei are accessible in principle.
A final comment regarding uncertainties: Multiple truncations are being used

in the IM-SRG framework: the truncation of the single-particle basis, the NO2B
approximation of the initial Hamiltonian, the NO2B truncation of commutator terms
leading to the flow equations, and further truncations at the level of the 3N matrix
elements entering the calculation. All these truncation potentially affect the results
and it is difficult to quantify them explicitly within the IM-SRG method. Therefore,
comparisons with other many-body approaches, e.g., the NCSM as shown in Fig. 4,
are important to gauge the accuracy.

6.2 In-Medium No-Core Shell Model

The single-reference IM-SRG formulation is rather limited, we would certainly like
to address excited states and open-shell nuclei as well in an IM-SRG framework.
One option is to use the single-reference IM-SRG formulation in conjunction with
the VSSM [81, 82]. Here the IM-SRG is used to decouple the valence space from
the closed-shell core and from the excluded space. This approach has been used
successfully in a range of different applications, but it inherits the limitations of the
VSSM discussed in Sect. 5.1.
Amore powerful option is the use of amulti-reference formulation of the IM-SRG.

It results from the combination of the SRG flow equations with multi-reference nor-
mal ordering, mentioned in Sect. 4.4. Instead of being limited to single-determinant
reference states, we can now use much more elaborate reference states, tailored for
open-shell situations. The first formulation of a multi-reference IM-SRG approach
employed reference states from particle-number projected Hartree-Fock-Bogoliubov
calculations, which give access to semi-magic isotopic chains [83, 84]. However, we
can go further than this and combine the multi-reference IM-SRG with reference
states from theNCSM.Thiswill lead to a new hybrid ab initiomethod, the in-medium
no-core shell model (IM-NCSM) [85].
We will not go into the equations for the general multi-reference IM-SRG but

refer to the literature [80, 85]. Compared to the single-reference equations (59) the
information on the reference states is encoded in density matrices in addition to the
occupation numbers, which directly result from themulti-reference normal-ordering.
For the IM-NCSM we use an NCSM eigenstate for a small model space, typically
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Fig. 5 Illustration of an IM-NCSM evolution for 12C. The bottom panel shows the flow-parameter
dependence of the zero-body part 𝐸 (𝑠) as well as NCSM results for the ground-state energy
obtained with the evolved Hamiltonian in different model spaces. The upper panels depict a part
of the evolved Hamiltonian in an NCSM basis representation for different values of 𝑠. Each circle
indicates a non-vanishing matrix element and its area encodes the absolute value of the matrix
element.

𝑁max = 0 or 2 as reference state. The reference state already contains a significant
amount of correlations and we control the complexity of the reference state through
the size of the model or reference space the state is obtained from. Since we will
be using an angular momentum coupled formulation of the multi-reference flow
equations, we will limit ourselves to reference states with 𝐽 = 0 leading to scalar
density matrices.
The multi-reference IM-SRG flow evolution will decouple the reference space

from the rest of the model space. This is illustrated in Fig. 5 showing the flow
evolution for 12C with an 𝑁 refmax = 0 reference space. The upper panels depict a part
of Hamiltonian in the NCSM many-body basis at different flow parameters. The
upper-left corner of the matrix shows the 𝑁 = 0 sector of the matrix, the rest belongs
to the 𝑁 = 2 subspace. We observe that the 𝑁 = 𝑁 refmax = 0 block is decoupled from
the rest of the model space throughout the flow evolution, i.e., the off-diagonal blocks
are suppressed. As a result of the IM-SRG evolution we obtain an approximately
block-diagonal Hamiltonian, which serves as import for a second NCSM calculation
to extract observables. The 𝑁max-convergence of the ground-state energies obtained
in these NCSM calculations at different points in the flow evolution are depicted by
the colored symbols in Fig. 5. At small flow-parameters we observe the usual slow
convergence of a standard NCSM calculation, with a HF basis in this case. However,
with increasing flow parameter the convergence accelerates up to a point, where
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Fig. 6 IM-NCSM calcula-
tions for the ground state
energies of oxygen isotopes
in comparison to the corre-
sponding NCSM results (cf.
figure 3). For odd isotopes the
IM-NCSM calculation use a
particle-attached or particle-
removed scheme starting from
even 𝐽 = 0 reference states.
All calculations use an SRG-
evolved chiral NN+3N inter-
action with 𝛼 = 0.08 fm4.
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all calculations starting from 𝑁max = 0 provide the same result. This is the regime
where the decoupling of the 𝑁max = 0 block is complete and, therefore, already the
diagonalization within this block provides the converged ground-state energy. The
converged ground-state energy is stable over a range of flow parameters, but starts to
change at very large 𝑠 signaling the impact of induced normal-ordered multi-particle
contributions that have been truncated in the flow equations.
The combination of aNCSMcalculation for the construction of the reference state,

the multi-reference IM-SRG evolution for the coupling of the residual model space,
and another NCSM calculation for the extraction of converged observables is very
powerful. The final NCSM calculation gives access to exited states and to all relevant
observables. Again, the operators for other observables, e.g. radii or electromagnetic
properties, have to be transformed consistently in the IM-SRG evolution and can use
a Magnus formulation of the multi-reference IM-SRG for this.
The quantification of many-body uncertainties is more difficult in the IM-NCSM

than in the NCSM, since multiple truncations are involved. Nevertheless, we can
construct uncertainty quantification protocols that use the dependence of observables
on the main control parameters of the calculation, i.e., 𝑁 refmax, 𝑁max, and 𝑠. To validate
these protocols we can use comparisons to other ab initio methods with known
uncertainties. This is illustrated in Fig. 6 for the ground-state energies of oxygen
isotopes in comparison to the NCSM results discussed before. We observe a very
good agreement between the two calculations. The small deviations correspond to the
expected effect of the NO2B truncation on the order of 2 MeV. A similar comparison
for excitation energies is presented in Fig. 7, where panel shows the IM-NCSM
convergence on the left-hand-side and the NCSM convergence of the right-hand-
side. For those states that are well converged we again observe good agreement,
however, some states converge slowly or are sensitive to the flow-parameter of the
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Fig. 7 IM-NCSM and NCSM
results for the excitation
spectra of selected carbon and
oxygen isotopes as function of
𝑁max. All calculations use an
SRG-evolved chiral NN+3N
interactionwith 𝛼 = 0.08 fm4.
The bands shown for the IM-
NCSM results provide an
indication of the IM-SRG
flow-parameter dependence.
Modified from [85].
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IM-SRG evolution as indicated by the shaded bands. A prominent example is the 0+
state in 12C,which has largemany-body uncertainties in both, NCSMand IM-NCSM.
The IM-NCSM provides access to the same range of observables as the NCSM,

for ground excited states and for open and closed-shell systems all on the same
footing. Since 𝑁max-convergence can be reached in very small model spaces, e.g.,
𝑁max = 0 or 2, much heavier nuclei up into the calcium region can be described with
moderate computational effort.

7 Things Left Out

Unfortunately, we could not cover all of the recent developments in ab initio nuclear
structure theory, not even in the domain of basis-expansion methods. Therefore, we
would like to provide a few references to recent review articles for filling these gaps.
In the group of decoupling methods, another prominent and important member

is coupled-cluster theory, which shares some aspects with the IM-SRG and is a
standard method in many fields of quantum many-body physics and chemistry. We
refer to [86] for an overview. Another medium-massmethod used in nuclear structure
theory is based on propagator theory and known as self-consistent Green’s function
method. A recent pedagogical review can be found in [87]. A big group apart from
the diagonalization and the decoupling approaches, are methods build on many-
body perturbation theory. There are many different incarnations of perturbation
theory, also in hybrid schemes combined with other ab initio methods like the
NCSM.A comprehensive overview can be found in [88]. Beyond the basis-expansion
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Fig. 8 NCSM calculations for the excitation spectra of p-shell nuclei using a family of nonlocal
chiral NN+3N interactions up to N3LO for cutoff Λ = 500 MeV. The excitation energies at N2LO
and N3LO are shown with uncertainty bands extracted from the order-by-order behavior of the
chiral expansion. Modified from [14].

methods, there is exciting progress on quantumMonteCarlomethods for finite nuclei,
presented, e.g., in [89]. Moreover, lattice EFT methods, merging chiral EFT directly
with lattice simulation techniques, have provided exciting results [90]. A nice over-all
summary of the current state of ab initio methods is provided in [91].

8 The Future of Ab Initio Nuclear Structure

Instead of a summary, we provide a brief and somewhat biased outlook into the
future of ab initio nuclear structure theory. We are at a point where the focus of the
research work in this field is shifting. Over the past decade, the focus was on the
development of ab initio frameworks thatmake calculations possible, i.e., that extend
the reach of ab initio methods to heavier nuclei, open-shell systems, excited states,
electromagnetic observables, etc. These developments will continue, but the focus
is shifting to methodological advances that make calculations precise and accurate.
Discussing the precision of ab initio calculations requires the quantification of all

the theory uncertainties that accumulate on the way from the chiral EFT formulation
of the interactions to the many-body observables. Throughout the lecture we have
discussed individual sources of uncertainties and ways to quantify them within the
respective framework. All of this has to be propagated through the whole ab initio
toolchain to the eventual observable. Illustrations of how uncertainty quantified ab
initio results will look like are shown in Figs. 8, 9, and 10. We apply the full
range of ab initio methods discussed in this lecture, starting from the NCSM for the
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description of light nuclei and their excitation spectra in Fig. 8, via the description
of beyond p-shell nuclei in the IM-NCSM in Fig. 9, to the study of medium-mass
closed-shell nuclei in the IM-SRG in Fig. 10.
All calculations use a family of chiral NN+3N interactions, presented in [14], that

allow for a systematic variation of the chiral order and the cutoff and, thus, enable a
quantification of uncertainties due to the truncation of the chiral expansion. To this
end, the many-body calculations have to be repeated for each chiral order and each
cutoff, i.e., the computational cost multiplies. This is the price to pay for assessing
the uncertainties related to the input interaction, an aspect that was not addressed
quantitatively in past generations of ab initio calculations. The results presented in
Figs. 8, 9, and 10 show that these uncertainties can be sizable, in most cases the
chiral truncation uncertainties are larger than themany-body truncation uncertainties.
Therefore, increasing the precision of the calculations primarily requires a reduction
of the uncertainties associated with the input interactions. Work along these lines is
under way with chiral EFT interactions that include conceptual improvements and
higher orders [92, 93].
Assessing the accuracy of ab initio calculations, i.e., the agreement with exper-

iment, once the precision is acceptable, i.e., once theory uncertainties are small
enough to enable meaningful comparisons, is a next step. With the precision of the
present calculations, all observables are in agreement with experiment within the
estimates uncertainties. With an improved precision this can change and we might
find discrepancies between theory and experiment, hinting at weak links in the chain
of ab initio tools that connect nuclear structure observables to the underlying theory
of the strong interaction.
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