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Ab initio approaches to the nuclear many-body problem have seen their reach considerably ex-
tended over the past decade. However, collective excitations have been scarcely addressed so far
due to the prohibitive cost of solving the corresponding equations of motion. Here, a numerically
efficient method to compute electromagnetic response functions at zero- and finite-temperature in
superfluid and deformed nuclei from an ab initio standpoint is presented and applied to 16O, 28Si,
46Ti and 56Fe. This work opens the path to systematic ab initio calculations of nuclear responses
to electroweak probes across a significant portion of the nuclear chart.

Introduction. – As strongly correlated many-body
systems, atomic nuclei display complex behaviours, from
deformation [1, 2] to superfluid and molecular instabil-
ities [3–5]. The interference of these phenomena gives
birth to a vast diversity of possible arrangements of the
nucleons inside nuclei, which eventually imprint specific
signatures in ground- and excited states properties. In
this context, the nuclear response to electroweak probes,
in addition to providing key inputs to various applica-
tions, e.g. to reaction mechanisms involved in nucleosyn-
thesis processes, such as p- and r-processes [6], is a valu-
able tool to scrutinize nucleonic correlations.

Against this background, the theoretical description
of nuclear systems based on a web of interlocking ef-
fective field theories (EFTs), among which ab initio ap-
proaches occupy a privileged position, has become a dy-
namic and productive area of research in recent years [7].
Significant progress in the ab initio treatment of nu-
clear systems has been driven by (i) the construction of
consistent and systematically improvable nuclear inter-
actions within the frame of chiral EFT (χEFT) [8–10],
and (ii) the formulation of new and refined many-body
schemes with controlled uncertainties [11–14]. However,
in spite of the ever-increasing applicability of such meth-
ods across the table of nuclides [15], the ab initio study
of strength distributions for electromagnetic transition
operators largely remains uncharted territory.

Early attempts to compute electromagnetic response
functions from an ab initio standpoint made use of the
random phase approximation (RPA) [16] and its quasi-
particle extension (QRPA) [17]. More recent calcula-
tions have been performed either via coupled cluster
(CC) [18–21], no-core shell model (NCSM) [22] or Dyson
self-consistent Green’s function (SCGF) [23] approaches.

However, calculations have been mostly limited to dou-
bly closed-shell systems so far. The extension of such
methods to singly and doubly open-shell nuclei is highly
non-trivial because of the associated increase in numeri-
cal cost. As a result, a first-principles computation of the
nuclear response to electroweak probes is currently miss-
ing for the large majority of nuclei, even in the medium-
mass sector.

Eventually, the description of collective excitations has
been the hallmark of phenomenological models so far, es-
pecially that of energy density functionals (EDFs) based
on the RPA and its extensions [24]. In this context, a
novel scheme to solve (Q)RPA equations was proposed a
few years ago in Refs. [25, 26]. This approach, coined as
the (quasiparticle) finite amplitude method ((Q)FAM),
replaces the intensive calculation and diagonalization of
the QRPA matrix by a set of non-linear equations of
similar dimension to that of the static Hartree-Fock-
Bogoliubov (HFB) mean-field approach it builds upon.
The QFAM has proven to be a very efficient tool to ob-
tain electric [27–30] and charge-exchange [31, 32] strength
functions, as well as to determine collective inertia
[33, 34], quasiparticle-vibration coupling [35], discrete
eigenmodes [36] and sum rules [37].

On the ab initio side, some efforts have been re-
cently dedicated to the calculation of ground and low-
lying excited states in doubly open-shell, e.g. deformed
and superfluid, nuclei [12–14, 38–40]. These develop-
ments are well suited to be complemented with QFAM-
type algorithms to access higher-lying collective excita-
tions [41]. The present letter thus reports on the first
zero-temperature (ZT) and finite-temperature (FT) elec-
tromagnetic strength distributions computed in doubly
open-shell nuclei from first principles. Based on the
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QFAM, resulting HFB-based QRPA (HFB-QRPA) cal-
culations (i) employ full two- and three-nucleon inter-
actions rooted into quantum chromodynamics (QCD)
via χEFT1, (ii) apply indistinctly to doubly closed-shell,
singly open-shell and doubly open-shell nuclei, (iii) dis-
plays a favourable scaling with mass number.

Thereafter, the ab initio HFB-QRPA is first bench-
marked in the doubly closed-shell nucleus 16O based on
the ZT electric isovector dipole (IVD) E1 photoabsorp-
tion cross-section. The same observable is confronted
to experimental data in doubly open-shell 28Si and 46Ti
nuclei before investigating the role of the temperature
in 56Fe. Details about the FT HFB-QRPA formalism
through the FT-QFAM, a numerical benchmark against
results obtained via the diagonalization method, the em-
ployed χEFT Hamiltonians and the numerical settings
are provided as Supplemental Materials [43].

Benchmarks in 16O. – Ab initio methods aim at
accessing approximate solutions of the many-body
Schrödinger equation that are systematically improvable.
Present ab initio calculations employ the QRPA based on
an HFB reference state2 [44], which a priori constitutes
a rather severe approximation that is not guaranteed to
deliver converged enough results. However, in the follow-
ing, the fact that QRPA targets differential quantities,
i.e. excitation energies and associated transition proba-
bilities, is proven to largely benefit from the cancellation
of so-called dynamical correlations consistently added to
ground- and excited states3 on top of HFB-QRPA.

To illustrate this key result, the ZT electric IVD pho-
toabsorption cross-section computed via HF-RPA in the
doubly-closed shell 16O nucleus is compared in Fig. 1
to the same quantity computed via coupled-cluster RPA
(CC-RPA) and in-medium RPA (IM-RPA) in the up-
per panel as well as via HF second RPA (HF-SRPA)
and IM-SRPA in the bottom panel. More details on
these hybrid methods can be found in the Supplemen-
tal Materials [43] as well as in Refs. [47, 48]. All calcu-
lations are performed with the state-of-the-art next-to-
next-to-leading-order (N2LO) NNLOsat chiral Hamilto-
nian [49, 50] softened through a similarity renormaliza-
tion group (SRG) transformation characterized by a flow

1 The treatment of three-nucleon interactions follows the proce-
dure described in Ref. [42]. While this method is strictly exact in
(FT-)HFB and (FT-)QFAM calculations of non-superfluid spher-
ical nuclei, it becomes quasi exact whenever the system deforms
and/or is superfluid.

2 The QRPA based on an HFB state reduces to the RPA based on
a Hartree Fock (HF) reference state in closed-shell nuclei.

3 Such a quantitative cancellation was also recently demon-
strated to occur for low-lying collective states computed via
the projected generator coordinate method perturbation the-
ory (PGCM-PT) [12–14]. Specifically, spectroscopic properties
delivered by the PGCM itself, a method intimately related to
QRPA [45, 46], were shown to be essentially identical to those
obtained after the addition of dynamical correlations to both
ground and low-lying excited states.

parameter α = 0.08 fm4. While CC-RPA and IM-RPA
constitute two alternative ways to add dynamical corre-
lations to the ground state [47], SRPA does the same for
the excited states accessed via the E1 photoabsorption
process.
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FIG. 1: Integrated isovector E1 photoabsorption
cross-section of 16O computed as a function of the

excitation energy ω through HF-RPA, CC-RPA and
IM-RPA calculations (upper panel) as well as through
HF-SRPA and IM-SRPA calculations (bottom panel).
The NNLOsat chiral Hamiltonian [49] softened through

a SRG transformation (α = 0.08 fm4) is employed,
whereas experimental data are taken from Ref. [51].

One first observes in the upper panel that explic-
itly correlating the ground-state mechanically favors the
ground-state energy of 16O by 5 − 6 MeV and thus con-
sistently shifts the excitation strength upward by the
same amount, without changing significantly the overall
profile. While operating very differently, CC-RPA and
IM-RPA deliver consistent results in this respect4. Con-
trarily, correlating the excited states via SRPA system-
atically pushes the strength downward by about 5 MeV.
When correlating both ground and excited-states at once
via IM-SRPA, a remarkable compensation effect is ob-
served. Consequently, the IM-SRPA IVD photoabsorp-
tion cross-section is very similar to the initial HF-RPA

4 A consistent effect is obtained via dressed RPA calculations based
on self-consistent Green’s function theory, where dressing one-
nucleon propagators relates to using a correlated rather than a
HF ground-state [23].
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one, even though not in perfect agreement for the en-
ergy position of the main peaks and for the intensity of
the associated strength [52]. As visible from Tab. I, a
sensitive quantity such as the dipole polarizability is im-
pacted by dynamical correlations beyond HF-RPA [20].
In any case, the above analysis demonstrates that the
basic ab initio HF-RPA quantitatively captures the main
characteristics of the converged electromagnetic response
in 16O5.

Because adding dynamical correlations to both
ground- and excited states comes at a high computa-
tional cost, the validation of the HF(B)-(Q)RPA as a
viable approach to collective excitations in nuclei con-
stitutes a critical result. Indeed, it opens the possibility
to perform systematic ab initio calculations of nuclear re-
sponses across a large portion of the nuclear chart. Based
on the above analysis, all results presented below are ob-
tained from ZT and FT HF(B)-(Q)RPA calculations.

A second important point relates to the uncertainty
of nuclear responses associated with the employed chi-
ral Hamiltonian. Fig. 2 displays the 16O ZT isovector
E1 photoabsorption cross-section obtained from a con-
sistent family of chiral Hamiltonians produced at NLO,
N2LO and N3LO [56] and softened through a SRG trans-
formation (α = 0.08 fm4). Going from NLO to N2LO,
the strength is shifted down by about 6 MeV whereas
the height of the main peak is increased by nearly 50%,
thus bringing the calculation in agreement with experi-
mental data 6. This is consistent with the systematic ef-
fect of three-nucleon interactions [47] that first contribute
at N2LO. Going from N2LO to N3LO, the cross-section
remains essentially unchanged, demonstrating an excel-
lent convergence with respect to the Hamiltonian expan-
sion. Fig. 2 also shows the results displayed in Fig. 1
for the NNLOsat Hamiltonian [49]. One observes a non-
negligible shift with respect to the N2LO results, the lo-
cation of the main peak being shifted up by 1.5 MeV and
its strength being reduced by about 30%. This high-
lights the remaining uncertainty associated with the way
the low-energy constants entering the chiral Hamiltonian
are adjusted on experimental data and with the way the
Hamiltonian is regularized; see e.g. Ref. [57] for a recent
account of these issues. Based on the above analysis,
all results presented below are obtained with the N3LO
chiral Hamiltonian of Ref. [56].

ZT IVD excitations in doubly open-shell nuclei. –
Dynamical correlations were shown above to be essen-
tially identical in ground and excited states, thus largely
cancelling out in the 16O IVD photoabsorption cross-

5 Such an up and down shift was already observed and discussed
in the equation of motion phonon method [53–55]

6 It has been explicitly checked in 16O that the quality of the
E1 IVD results is representative of the one obtained for other
multipolarities of the transition operator.

αD NNLOsat N3LO Exp

[fm3] HFB-QRPA IM-SRPA HFB-QRPA

16O 0.63 0.53 0.61 0.58(1)

28Si - - 1.33 -

46Ti - - 2.50 -

56Fe - - 3.05 -

TABLE I: ZT dipole polarizability αD in the nuclei of
present interest. The experimental value in 16O is taken

from Ref. [58].
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FIG. 2: Integrated isovector E1 photoabsorption
cross-section of 16O calculated as a function of the

excitation energy ω through HF-RPA. Results obtained
with a consistent family of chiral Hamiltonians at NLO,

N2LO and N3LO [56] are displayed in addition to
results obtained from the NNLOsat Hamiltonian [49]
already employed in Fig. 1. Experimental data are

taken from Ref. [51].

section. In addition, such correlations vary smoothly
with mass number [47]. Contrarily, the magnitude of so-
called static correlations, responsible for non-trivial col-
lective behaviours such as superfluidity and deformation,
evolves quickly with nucleon number, i.e. with the open-
versus closed-shell character of the nucleus under con-
sideration7. Furthermore, static correlations are known
to qualitatively impact electromagnetic strength distribu-
tions such that their inclusion from the outset is manda-
tory. One efficient way to do so relies on the concept of
spontaneous symmetry breaking [12, 24, 40], thus lead-
ing in the present context to the axially-deformed HFB-
QRPA extension of the spherical HF-RPA employed so

7 A closed-shell nucleus such as 16O does not display significant
static correlations.
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far in ab initio calculations. While this extension is pro-
hibitive for ab initio calculations when employing the
traditional diagonalization method, the FAM language
enables a computationally affordable formulation of the
deformed HFB-QRPA, tremendously enlarging the pool
of accessible nuclei from few doubly-closed shell nuclei to
thousands of singly and doubly open-shell ones.

Having validated the ZT HF-RPA in 16O, its axially-
deformed HFB-QRPA extension is now employed for
doubly open-shell 28Si and 46Ti nuclei whose integrated
isovector E1 photoabsorption cross-sections are displayed
in Fig. 3. At the HFB level, the ground states of 28Si and
46Ti spontaneously break both U(1) and SO(3) symme-
tries, respectively associated with particle-number and
angular-momentum conservation. In particular, the in-
trinsic deformation of 28Si (46Ti) is found to be oblate
(prolate).
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FIG. 3: Integrated isovector E1 photoabsorption
cross-section of 28Si (upper panel) and 46Ti (lower

panel) as a function of the excitation energy ω.
Experimental data are taken from Ref. [51].

In 28Si, the energy of the experimental isovector gi-
ant dipole resonance (GDR) at 20 MeV and of the shoul-
der appearing around 26 MeV are accurately reproduced.
Similar conclusions can be drawn for 46Ti, even if the
width of the resonance is slightly underestimated in spite
of delivering the three-peak structure. A better detailed
reproduction would benefit from an explicit inclusion of
dynamical correlations beyond HFB-QRPA that would
further fragment the strength. In any case, the present
examples demonstrate the capacity of the ab initio HFB-
QRPA to capture decisive static correlations in (doubly)
open-shell nuclei and to be consistent with experimental
data.

 [MeV]

0
10

20
30

40
kBT

0
1

2
3

4

IV
D
 [m

b]

   0

   50

   100

   150

56Fe
E1Total

K = 0
|K| = 1

 [MeV]

0
5

10
15

20
kBT

0
1

2
3

4

IV
D
 [m

b]

0

  0.2

  0.4

  0.6

  0.8M1

FIG. 4: FT IVD electric (E1) (top) and magnetic (M1)
(bottom) components of integrated photoabsorption

cross-section in 56Fe.

FT IVD excitations. – Next, temperature effects are
investigated in 56Fe by displaying in Fig. 4 the evolution
of the integrated IVD photoabsorption cross-section, de-
composed into its angular-momentumK = 0 and |K| = 1
electric and magnetic components8, over the temperature
interval kBT ∈ [0, 4] MeV.

At ZT, the maxima of the K = 0 and |K| = 1 com-
ponents are shifted apart as a result of the intrinsic de-
formation of 56Fe ground-state. While both |K| compo-
nents are equally important in the electric response, the
|K| = 1 component largely dominates the magnetic one.

8 Due to the axial and time-reversal symmetry imposed in the
HFB calculation, K = 1 and K = −1 HFB-QRPA responses
contribute identically.
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Increasing the temperature induces two different pro-
cesses. On the one hand, the temperature smears out
the Fermi-Dirac HFB quasi-particle occupation factors
compared to the ZT mean-field calculation, with the ef-
fect of increasing the matter radius R of the system. In
schematic models of the GDR in spherical nuclei by Gold-
haber and Teller (GT) [59] or by Steinwedel, Jensen and
Jensen (SJJ) [60], this effect induces a decrease of the
peak energy according to R−1/2 (GT) and R−1 (SJJ)
laws, respectively. This effect is indeed qualitatively vis-
ible for the |K| = 1 component of the electric response
in Fig. 4 and more clearly illustrated in Fig. 5. On the
other hand, the temperature generates a collective trans-
formation of the mean-field at play, driving the system
from being intrinsically deformed at ZT to being spheri-
cal above a critical temperature Tc. Because the K = 0
electric component operates along the symmetry axis, the
change from prolate to spherical shape leads to an effec-
tive shrinking of the matter distribution in this direction.
As a result of these two competing effects, the E10 mean
energy undergoes almost no evolution up to Tc where it
eventually merges with the decreasing E11 mean energy,
initially located at higher energy. The merging beyond Tc
of the initially different K = 0 and |K| = 1 responses vis-
ible in Fig. 4 constitutes the fingerprint of the phase tran-
sition associated with the restoration of spherical sym-
metry induced by the temperature. Beyond that point,
the main resonance keeps evolving downwards, whereas
the increase of thermal excitations enhances the dipole
strength at ω . 12 MeV.

Magnetic modes being located at much lower energies
than electric ones, they bear greater sensitivity to ther-
mal excitations that dominate their evolution. As a re-
sult, the mean K = 0 and |K| = 1 excitation energies
continuously decrease until their merging at Tc.

Eventually, the IVD response is mostly driven by the
electric modes, resulting in a mean excitation energy of
about 22 MeV at kBT = 1 MeV. This value is higher than
the experimental centroid, located at 18.4 MeV. Present
results indicate that uncertainties associated with the
chiral expansion of the nuclear Hamiltonian and the trun-
cation of the computational basis are not responsible for
this 20% discrepancy. While one may inquire the er-
ror associated with discarded terms beyond three-body
operators in the SRG evolution of the Hamiltonian, dy-
namical correlations beyond HFB-QRPA are most likely
responsible and must thus be considered in ab initio FT
calculations in the future.

The low-energy part (ω ≤ 10 MeV) of measured and
predicted total electromagnetic (E1+M1) IVD response
functions are displayed in Fig. 6. The experimental
γ−strength functions [62] were extracted using the Oslo
method [63, 64], from which the temperature of the ini-
tial state was estimated to be approximately kBT = 1
MeV. Experimentally, the Oslo method focuses on the de-
excitation strength function, whose theoretical descrip-
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FIG. 5: Thermal evolution of mean excitation energies
of the different dipoles modes in 56Fe. The white star
denotes the experimental measurement of Ref. [61].
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FIG. 6: Low-lying FT HFB-QRPA total
electro-magnetic (E1 +M1) response in 56Fe as a
function of the excitation energy ω. Experimental

strength-function are extracted from [62].

tion still constitutes an active field of research [65, 66].
The FT de-excitation strength-function can be obtained
from the photoabsorption strength function computed
via FT HFB-QRPA by correcting the latter with the mul-
tiplicative factor (1− e− ω

kT )−1, effectively enhancing the
low-lying part of the strength [67].

As visible from Fig. 6, the experimental dipole re-
sponse displays an upbend towards ω = 0 MeV. The
upbend, particularly pronounced in 56Fe, constitutes a
phenomenon of upmost interest, especially given that it is
expected to significantly impact thermal neutron capture
cross-sections [68]. While temperature effects success-
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fully prevent the collapse of the de-excitation theoretical
strength function at low energy, the experimental trend
of the upbend is not fully reproduced by the FT HFB-
QRPA calculation. The origin of this discrepancy, which
could be due to other multipolarities actually contribut-
ing non-negligibly to the experimental strength, to miss-
ing dynamical correlations beyond HFB-QRPA and/or
to the nuclear Hamiltonian itself, will have to be investi-
gated in future works.

Conclusions. – This letter presents the first ab initio
description of electromagnetic response functions at FT
in mid-mass nuclei with a method handling simultane-
ously pairing correlations and deformation, i.e., allowing
the study of doubly closed-shell, singly open-shell and
doubly open-shell nuclei.

After demonstrating in 16O that the ab initio HFB-
QRPA constitutes a viable approach to electromagnetic
responses in nuclei, the numerically-affordable QFAM
implementation is employed on the basis of two- and
three-nucleon interactions derived from a low-energy ef-
fective theory of QCD to investigate ZT and FT IVD
photoabsorption cross-sections in the doubly open-shell
28Si and 46Ti nuclei. After obtaining an excellent account
of experimental data at ZT, the impact of increasing the
temperature is scrutinized in 56Fe. One must of course
keep in mind that quantities sensitive to the details of
the strength, such as the dipole polarizability provided
in Tab. I for the nuclei of present interest, require the
inclusion of dynamical correlations beyond HFB-QRPA
to reach fully converged values.

The numerical tool presently introduced and the first
results obtained with it open the path to systematic ab
initio calculations of nuclear responses to electroweak
probes at ZT and FT across a large portion of the nuclear
chart.
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[56] T. Hüther, K. Vobig, K. Hebeler, R. Machleidt, and

R. Roth, Phys. Lett. B 808, 135651 (2020).
[57] P. Maris and et al. (LENPIC), (2022), arXiv:2206.13303

[nucl-th].
[58] J. Arhens, H. Borchert, K. H. Czock, H. B. Ep-

pler, H. Gimm, H. Gundrum, M. Kroning, P. Riehn,
G. Sita Ram, A. Zieger, and B. Ziegler, Nucl. Phys.
A 251, 479 (1975).

[59] M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948).
[60] H. Steinwedel, J. H. D. Jensen, and P. Jensen, Phys.

Rev. 79, 1019 (1950).

[61] M. Jingo, E. Z. Buthelezi, J. Carter, G. R. J. Cooper,
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