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We present a comprehensive investigation of few-nucleon systems as well as light and medium-mass
nuclei up to A = 48 using the current Low Energy Nuclear Physics International Collaboration two-
nucleon interactions in combination with the third-order (N2LO) three-nucleon forces. To address
the systematic overbinding of nuclei starting from A ∼ 10 found in our earlier study utilizing the
N2LO two- and three-nucleon forces, we take into account higher-order corrections to the two-
nucleon potentials up through fifth order in chiral effective field theory. The resulting Hamiltonian
can be completely determined using the A = 3 binding energies and selected nucleon-deuteron cross
sections as input. It is then shown to predict other nucleon-deuteron scattering observables and
spectra of light p-shell nuclei, for which a detailed correlated truncation error analysis is performed,
in agreement with experimental data. Moreover, the predicted ground state energies of nuclei in the
oxygen isotopic chain from 14O to 26O as well as 40Ca and 48Ca show a remarkably good agreement
with experimental values, given that the Hamiltonian is fixed completely from the A ≤ 3 data, once
the fourth-order (N3LO) corrections to the two-nucleon interactions are taken into account. On the
other hand, the charge radii are found to be underpredicted by ∼ 10% for the oxygen isotopes and
by almost 20% for 40Ca and 48Ca.

I. INTRODUCTION

Chiral effective field theory (EFT) and ab initio few-
and many-body methods play a key role in the quest
for precision nuclear theory [1–14]. For the simplest nu-
clear system involving just two nucleons, chiral EFT has
already reached a high level of maturity in terms of ac-
curacy and precision. In particular, the latest-generation
semilocal momentum-space regularized (SMS) nucleon-
nucleon (NN) potentials of Ref. [15] at the highest avail-
able order N4LO+ provide, for the regulator values Λ =
450 and 500 MeV, a nearly perfect description of mutu-
ally compatible neutron-proton and proton-proton scat-
tering data below Elab = 300 MeV with χ2

datum = 1.01
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[16]. This qualifies the N4LO+ NN potentials to be re-
garded as partial wave analysis from the point of view
of NN data description, and also puts them among the
most accurate and precise NN interactions to date. The
determination of the pion-nucleon coupling constants f2

0 ,
f2
p and f2

c from NN scattering data in Ref. [15] and
the calculation of the deuteron structure radius rstr =
1.9729+0.0015

−0.0012 fm in Ref. [17] provide additional examples
of recent chiral EFT calculations at a sub-percent accu-
racy level.

Maintaining a comparable level of accuracy and preci-
sion beyond the NN sector is currently not feasible be-
cause of both computational limitations and unavailabil-
ity of consistently regularized many-body forces and ex-
change current operators beyond third order (N2LO) of
the chiral EFT expansion [3], which represents the main
limiting factor by restricting the calculations to N2LO.
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An overview of ongoing efforts towards developing con-
sistent many-body forces and nuclear current operators
can be found in Ref. [16]. In the meantime, a series of
detailed investigations of low-energy three-nucleon scat-
tering observables and selected properties of light and
medium-mass nuclei at low orders in chiral EFT has been
performed by the Low Energy Nuclear Physics Interna-
tional Collaboration (LENPIC) using different variants
of chiral EFT NN interactions [18–20] with and with-
out the three-nucleon force (3NF) at N2LO [21, 22], see
Refs. [23–27]. Some of the most interesting conclusions
from these studies include the explicit and implicit (i.e.,
based on the discrepancies between calculated observ-
ables and experimental data) verification of the 3NF ef-
fects being compatible with the expected size of N2LO
corrections, in line with the Weinberg power counting
[28, 29], as well as insights into the convergence pattern
of chiral EFT for nuclear systems and implications for
uncertainty quantification.

In our recent paper [27], we have calculated selected
nucleon-deuteron (Nd) elastic scattering and breakup ob-
servables, properties of the A = 3 and A = 4 nuclei
as well as spectra of p-shell nuclei up to A = 16 us-
ing the SMS potentials at leading (LO), next-to-leading
(NLO) and N2LO from Ref. [20] in combination with the
3NF at N2LO regularized in the same way as the SMS
NN potentials. While the obtained predictions at N2LO
were generally found to be consistent with experimen-
tal data within errors, a systematic overbinding of nuclei
was found starting from A ∼ 10 and increasing with A.
Furthermore, a slight underprediction was observed for
the 4He structure radius, which however still came out
consistently with the experimental value at the 95% con-
fidence level, while the radii of heavier nuclei were not
considered.

The main purpose of this paper is to shed light on the
origin of the significant (even at the 95% confidence level)
overbinding of heavier p-shell nuclei at N2LO found in
our previous study [27]. To clarify whether this discrep-
ancy is related to deficiencies of the NN force at N2LO
or rather has to be resolved by higher-order corrections
to the 3NF, we perform a series of calculations based
on the higher-order SMS NN potentials (N3LO, N4LO
and N4LO+) in combination with the 3NF at N2LO.
While the obtained predictions are still accurate only
at the N2LO level due to the missing contributions to
the many-body forces at N3LO and beyond, we demon-
strate that the overbinding issue is resolved by including
higher-order contributions to the NN force. Moreover,
we extend the results of Ref. [27] to heavier nuclei by
performing calculations for the oxygen and calcium iso-
tope chains and study the convergence pattern of chiral
EFT for the corresponding charge radii. Last but not
least, the large generated set of calculated energy levels
allows us to perform a more detailed error analysis of the
correlated excitation energies of the considered nuclei.

Our paper is organized as follows. In Sec. II we fo-
cus on the 3N systems and discuss the determination

of the low-energy constants (LECs) entering the N2LO
3NF, a selected range of Nd elastic and breakup scatter-
ing observables along with properties of A = 3 nuclei.
The main focus of Sec. III is on light p-shell nuclei. For
4He, we benchmark the calculations using the No-Core
Configuration Interaction (NCCI) method, applied to the
Hamiltonians softened by means of a Similarity Renor-
malization Group (SRG) transformation, with the results
obtained by solving the Yakubovsky equations with bare
interactions. Heavier p-shell nuclei considered in this sec-
tion are calculated using the NCCI approach. We also
present the analysis of the correlated truncation errors
for the calculated spectra. Finally, our results for heav-
ier nuclei up to A = 48 obtained using the in-medium
no-core shell model (IM-NCSM) approach are presented
in Sec. IV, while the main conclusions are summarized in
Sec. V.

II. THREE-NUCLEON SYSTEMS

A. Neutron-deuteron elastic scattering: Total cross
section

In this section, we present our results for 3N observ-
ables. We start with the 3N continuum and will dis-
cuss the bound states below. The continuum results
were obtained within the Faddeev approach, which is a
well established method of studying 3N processes. In
brief, starting from a given two-nucleon potential, first
the solution of the Lippmann-Schwinger equation for the
transition matrix (t-matrix) was obtained. Next, this
t-matrix together with a 3N interaction entered the Fad-
deev equation for the auxiliary state T . After solving this
equation the transition amplitudes, both for the elastic
and inelastic Nd scattering were computed. Finally, these
amplitudes were used to obtain observables: the differ-
ential cross sections and various polarization observables.
All computations were performed using the partial wave
decomposition in momentum space. That approach has
been described in detail in Refs. [31, 32].

In Fig. 1, we show the results for the total neutron-
deuteron cross-section at the laboratory energies of E =
70 MeV and E = 135 MeV for various chiral orders
and all available cutoff values. At LO and NLO, the
results are based on the two-nucleon (NN) force only.
Starting from N2LO, we also include the three-nucleon
force (3NF) at N2LO. The regularized form of the em-
ployed 3NF is specified in Eq. (1) of Ref. [27]. Follow-
ing this paper, the two low-energy constants (LECs) cD
and cE entering the 3NF are fixed from the triton bind-
ing energy and the differential cross-section minimum at
E = 70 MeV.1 The results for the total cross-section

1 Notice that the determination of cD and cE needs to be carried
out for each value of the cutoff Λ and for every order of the NN
force starting from N2LO.
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FIG. 1. Predictions for the neutron-deuteron total cross-section at 70 MeV (left panel) and 135 MeV (right panel) based on the
semilocal momentum-space regularized chiral interactions at different orders (shown by solid symbols with error bars). Three-
nucleon force is included at N2LO only. Error bars show the EFT truncation uncertainty calculated using the Bayesian model
C̄650

0.5−10 from Ref. [26] (68% DoB intervals). For the incomplete calculations at N3LO and N4LO, the quoted errors correspond
to the N2LO truncation uncertainties. Gray open symbols without error bars show the results based on the two-nucleon forces
only. Horizontal bands are experimental data from Ref. [30].

shown in Fig. 1, therefore, come out as predictions. We
do not show the results for the total cross-section at low
energies since it is governed by the S-wave contribution
and known to be correlated with the triton binding en-
ergy. Also, the effects of the 3NF we are interested in
here start becoming significant at intermediate energies
above E ∼ 50 MeV.

The obtained results show a number of interesting fea-
tures. First, as already pointed out in Ref. [23] based on a
different version of the chiral potentials, the NLO predic-
tions appear to underestimate the total cross-section, and
the size of the discrepancy with the experimental data is
roughly consistent with the NLO truncation errors. Nat-
urally, softer NLO NN interactions with smaller values of
the cutoff Λ show larger deviations from the data at high
energies, which is most pronounced for Λ = 400 MeV.
Including higher-order corrections to the NN force up
through N4LO+, the results for σtot tend to converge
to values that underestimate the cross-section data by
∼ 4% (∼ 7%) at E = 70 MeV (E = 135 MeV). These
observations are in line with the systematics found us-
ing high-precision phenomenological NN potentials [30],
the feature that should not come as a surprise given the
nearly perfect description of NN data at N4LO+ [20].

The discrepancy between the predicted Nd scattering
observables based on NN interactions only and exper-
imental data are expected to be resolved by the 3NF.
In line with the chiral power counting, the leading 3NF
at N2LO indeed brings the calculated total cross-section
in agreement with the data within N2LO truncation er-
rors. Also the magnitude of the 3NF effects appears to
be consistent with the expectations based on the power
counting, see also Ref. [23] for a related discussion. These

findings are consistent with the results shown in Fig. 2
of Ref. [27].

The cutoff dependence of the obtained predictions also
reveals interesting insights into the convergence pattern
of the chiral expansion. In particular, one observes that
the rather significant Λ-dependence of the N2LO results
at the larger energy of E = 135 MeV is mostly absorbed
into the “running” of the N3LO NN contact interactions.
The remaining cutoff dependence of the predictions at
N3LO and N4LO+, both with and without the 3NF,
is significantly smaller than the N2LO truncation error.
This might be explained by the expectation for the resid-
ual cutoff dependence to be taken care of by short-range
3NF operators that appear at N4LO.2

B. Nucleon-deuteron elastic and breakup
scattering

Let us now turn to other observables in the elastic Nd
scattering process. In this case predictions obtained at

2 Notice, however, that the strength of some of the short-range
terms is enhanced by a factor of m/Λb [33], where m and Λb refer
to the nucleon mass and the breakdown scale of chiral EFT in
the few-nucleon sector, respectively. This is because for the SMS
NN interactions of Ref. [20], a specific choice was made to remove
the redundant (off-shell) N3LO contact interactions. However,
the largely universal results for the Nd total cross-section based
on a broad class of different high-precision NN potentials seem
to indicate that this observable is almost insensitive to off-shell
ambiguities of the NN force.



4

0.1

1

10

dσ/dΩ [mb sr
-1

]

-0.4

-0.2

0

0.2

0.4

A
Y

(d)

-1.6

-1.2

-0.8

-0.4

0

A
XX

-A
YY

0 30 60 90 120 150 180

Θ [deg]

0.1

1

10

0 30 60 90 120 150 180

Θ [deg]

-0.4

-0.2

0

0.2

0.4

0 30 60 90 120 150 180

Θ [deg]

-1.6

-1.2

-0.8

-0.4

0

a) b) c)

d) e) f)

FIG. 2. The center-of-mass differential cross section dσ
dΩ

, the deuteron vector analyzing power AY (d) and the the tensor analyzing
power AXX−AY Y for the neutron-deuteron elastic scattering at incoming neutron lab. energy E = 200 MeV. In the top panels
the dashed blue (red) curve represents predictions based on the two-nucleon N2LO (N4LO+) forces. The solid blue curve
represents complete results at N2LO and the solid red curve stands for predictions of N4LO+ NN interaction supplemented by
N2LO 3NF. In all cases, the cutoff Λ = 450 MeV is used. In the bottom panels, the light (dark) green band shows the size of
the truncation error at 95% (68%) DoB. The grey band shows a spread of the N4LO+ NN + N2LO 3N force based predictions
due to the value of Λ regulator, in the range of Λ ∈ [400− 550] MeV. The red curve is the same as in the upper panels. In e)
and f), the dashed dark-green curve shows the borders of the dark green band. Data in a) and d) are from [34]: black circles
for E = 181 MeV and orange triangles for E = 216.5 MeV. Data in b), c), e) and f) are from [35].

N2LO with 2N and 3N interactions for lower incoming nu-
cleon kinetic energies (E = 65 MeV and E = 135 MeV)
were shown in Ref. [27]. Having now at our disposal the
N4LO+ NN interaction we decided to investigate a higher
energy case, which we choose to be E = 200 MeV. In the
top panel of Fig. 2, we compare these new predictions,
obtained with the N4LO+ NN interaction supplemented
by the N2LO 3NF, with the strict N2LO results. In addi-
tion, we show predictions solely based on the N2LO and
N4LO+ NN interactions. For the differential cross sec-
tion, taking into account higher terms in the NN inter-
action slightly modifies predictions at the center-of-mass
scattering angles θ > 80◦. The effects of the 3NF only
indirectly (through the values of the LECs cD and cE)
depend on the order of the chiral NN force used, and
the whole difference between N2LO and N4LO+ NN pre-
dictions transfers to those for NN+3N forces. The data
remain underpredicted in both cases, which is similar to
the observations made for phenomenological forces [36].
Among all possible polarization observables, which are
more sensitive to details of the nuclear interactions, vari-
ous situations can be found. In Figs. 2b and 2c, we show

two examples: for the vector analyzing power AY(d), the
3NF acts in a similar way if combined with the N2LO or
N4LO+ NN potential, but the 3N force effects for the ten-
sor analyzing power AXX-AYY depend on the order of the
NN force. Combining the N4LO+ NN interaction with
the N2LO 3NF delivers a slightly better data description,
but definitely leaves room for improvement. The lower
panels of Fig. 2 shows theoretical uncertainties for the
N4LO+ NN + N2LO 3N force predictions. At this rather
high energy both 95% and 68% degree of belief (DoB)
intervals for truncation errors remain wide but the data
are at least in the first of these two intervals. The cut-
off dependence, represented by the grey band comprising
predictions with the regulator Λ ∈ [400 − 550] MeV, is
also significant at some scattering angles and comparable
to the 68% DoB truncation errors.

Next, in Figs. 3 and 4, we show a few results for the
differential cross section and the analyzing powers for
selected kinematical configurations defined by the direc-
tions of two final proton momenta and the position on
the S-curve [31]. In the case of the cross section at both
energies (E = 135 MeV in Fig. 3, and E = 200 MeV in
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FIG. 3. The differential cross section and the nucleon analyzing power AY(N) at incoming neutron lab. energy E = 135 MeV.
The directions of momenta of outgoing neutrons are: in a) and d): θ1 = 20◦, θ2 = 16◦, and φ12 = 180◦, in b) and e):
θ1 = 28◦, θ2 = 28◦, and φ12 = 180◦, and in c) and f): θ1 = 20◦, θ2 = 16◦, and φ12 = 20◦. In the top panels the dashed blue
(red) curve represents predictions based on the two-nucleon N2LO (N4LO+) forces. The solid blue curve represents complete
results at N2LO and the solid red curve stands for predictions of N4LO+ NN interaction supplemented by N2LO 3NF. In all
cases, the cutoff Λ = 450 MeV is used. In the bottom panels, light (dark) green band shows size of truncation error at 95%
(68%) DoB at Λ = 450 MeV. The grey band shows a spread of the N4LO+ NN + N2LO 3NF based predictions due to the
variation of Λ in the range Λ ∈ [400− 550] MeV. The red curve is the same as in the upper panels. Data are from Ref. [37].

Fig. 4), the situation is similar to elastic scattering: there
are small differences in the predictions when replacing the
NN forces. These differences remain when the 3NF is in-
cluded. At both energies, the cut-off dependence remains
visibly smaller than the truncation errors. Depending
on the kinematical configuration, the data description is
satisfactory, or small discrepancies persist. The nucleon
vector analyzing power AY(N) shown in Fig. 3c is charac-
terized by a strong effect of the 3NF when combined with
the N4LO+ NN interaction, while the strictly N2LO pre-
dictions are insensitive to the 3NF for 70◦ < θ < 115◦.
Clearly, the 3NF combined with the N4LO+ NN force
moves predictions towards the data, however large ex-
perimental errors do not allow us to go beyond qualita-
tive conclusions. At E = 200 MeV, we show the ten-
sor analyzing power AXX, for which, at both minimum
points (around θ = 75◦ and θ = 220◦) the 3N force ef-
fects depend on the order of the NN interaction. As for
the differential cross section, the truncation errors for the
analyzing powers shown here are much bigger than the
uncertainty related to the value of the cut-off.

Summarizing, we find that the N4LO+ NN interac-
tion, supplemented by the N2LO 3N force yields a sat-

isfactory description of the Nd continuum data, leaving
however room for corrections from higher orders of the
three-nucleon interaction, see Ref. [38] for recent work in
this direction.

C. Binding energies

We now turn to the predictions for binding energies for
3He and 3H. The energies have been obtained by solv-
ing Faddeev equations in momentum space using a par-
tial wave decomposition as described in [27]. For these
calculations, the NN subsystem angular momenta are re-
stricted to j12 ≤ 5. In order to take the full charge depen-
dence into account, the 3N states include the dominant
isospin T = 1/2 and a small T = 3/2 component. This is
sufficient to obtain energies with a numerical uncertainty
of 1 keV. For 3He also the point proton-proton Coulomb
interaction is taken into account. The results are sum-
marized in Table I. For the calculation of the energies
and also for the fitting of the LECs cD and cE an aver-
aged proton-neutron mass was employed. Afterwards the
change 〈TCSB〉 of the kinetic energy due to using physical
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FIG. 4. The differential cross section and the deuteron analyzing power AXX at incoming neutron lab. energy E = 200 MeV.
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in Fig. 4.

proton and neutron masses is perturbatively estimated.
In most cases, it is approximately of the order for 5-
7 keV. This contribution is included in the results for the
expectation value 〈H〉 but not in the energy E obtained
by solving the Faddeev equations. When excluding the
contribution from the nucleon mass difference, the expec-
tation value and the energy agree within 1 keV which is
a non-trivial confirmation of the numerical accuracy.

The results for LO, NLO and N2LO have already been
presented in [27]. LO and NLO overpredict the bind-
ing energy. It was also found in [27] that, at N2LO, the
prediction without 3NFs is slightly underbinding 3H and
3He. This also holds true for the higher order NN interac-
tions. Therefore, the properly adjusted 3NF contributes
attractively to the 3N systems. The contribution is com-
parable to the expectation values 〈V3NF 〉 of the 3NF. The
deviations of the N2LO to N4LO+ results for the 3H en-
ergy from experiment are mostly due to the contribution
of the proton-neutron mass difference that was not taken
into account when fitting the 3NF parameters. The good
agreement with experiment is of course no prediction but
by construction. When 3H is used to fit the 3NF, 3He
is slightly overbound compared to experiment. The dif-
ference is of the order of 20 keV, which is comparable to
the contribution expected for charge-symmetry breaking
NN forces and other electromagnetic contributions [39],
which are not included here.

For symmetric operators, we exploit the faster conver-
gence with respect to partial waves of Faddeev compo-
nents compared to wave functions for the evaluation of
expectation values and also for the normalization. There-
fore, wave functions are not normalized to 1. The devia-
tion of 〈Ψ|Ψ〉 from one is a measure of higher partial wave
contributions to the wave function and is below 0.1%. We
also give the probabilities P(S), P(P) and P(D) for the 3N
system being in a total orbital momentum L = 0, 1 and
2 state. As expected, the S-state dominates the A = 3
nuclei. Generally, the P-state contribution is tiny. The
D-state is more significant. A direct comparison to cal-
culations without 3NF (not shown) reveals that 3NFs
increase the D-state contribution. It also is enhanced for
larger cutoffs Λ as can be seen in the table. This is in
line with results for phenomenological interactions [39].
Finally, we also give the proton and neutron radii assum-
ing point-like protons and neutrons (referred to as point-
proton/neutron radii in the following). These quantities
are correlated with the binding energies. It is reassuring
that the results are quite independent of the cutoff and
order once the 3NFs have been added. For a comparison
to experiment, we include the structure radius defined by

r2
str = r2

c −
(
R2
p +

3

4m2
p

+
N

Z
R2
n

)
(1)

where rc is the charge radius of the nucleus, Rp the
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Λ E 〈H〉 〈T 〉 〈VNN 〉 〈V3NF 〉 〈TCSB〉 〈Ψ|Ψ〉 P(S) P(P) P(D) rp rn

3H

LO

450

−12.22 −12.24 52.38 −64.61 — −10.51 1.0000 96.25 0.019 3.73 1.250 1.319
NLO −8.515 −8.521 34.31 −42.82 — −5.80 0.9999 94.79 0.028 5.19 1.556 1.702
N2LO −8.483 −8.489 36.13 −44.16 −0.459 −5.84 0.9995 92.54 0.077 7.38 1.576 1.725
N3LO −8.483 −8.489 35.60 −43.56 −0.520 −5.72 0.9996 92.53 0.078 7.39 1.579 1.729
N4LO −8.483 −8.489 35.35 −43.40 −0.430 −5.75 0.9996 92.77 0.078 7.16 1.579 1.728
N4LO+ −8.483 −8.489 35.46 −43.49 −0.460 −5.75 0.9996 92.64 0.079 7.28 1.580 1.729

3H

LO

500

−12.52 −12.53 57.84 −70.36 — −11.53 0.9999 94.96 0.036 5.01 1.224 1.286
NLO −8.325 −8.332 35.87 −44.19 — −6.15 0.9998 94.29 0.032 5.68 1.575 1.725
N2LO −8.482 −8.488 40.27 −48.09 −0.660 −6.24 0.9992 91.39 0.109 8.50 1.581 1.731
N3LO −8.483 −8.489 37.83 −45.59 −0.724 −5.93 0.9994 91.80 0.103 8.10 1.580 1.731
N4LO −8.483 −8.489 37.86 −45.72 −0.628 −6.07 0.9994 92.02 0.106 7.87 1.580 1.730
N4LO+ −8.484 −8.490 38.08 −45.89 −0.672 −6.07 0.9994 91.84 0.108 8.05 1.582 1.731

Expt. 3H −8.482 −8.482 — — — — — — — — 1.604(96) —

3He

LO

450

−11.34 −11.33 51.45 −62.79 — 9.85 1.0000 96.24 0.019 3.75 1.342 1.264
NLO −7.751 −7.745 33.55 −41.30 — 5.22 0.9998 94.79 0.027 5.18 1.744 1.579
N2LO −7.734 −7.729 35.37 −42.65 −0.452 5.26 0.9995 92.57 0.076 7.35 1.766 1.598
N3LO −7.737 −7.732 34.85 −42.08 −0.509 5.15 0.9995 92.55 0.076 7.37 1.770 1.601
N4LO −7.739 −7.734 34.61 −41.93 −0.423 5.18 0.9995 92.78 0.076 7.14 1.769 1.601
N4LO+ −7.740 −7.734 34.72 −42.01 −0.452 5.18 0.9995 92.66 0.078 7.26 1.770 1.602

3He

LO

500

−11.63 −11.62 56.88 −68.51 — 10.87 0.9999 94.94 0.036 5.02 1.308 1.237
NLO −7.574 −7.568 35.07 −42.65 — 5.56 0.9997 94.30 0.031 5.67 1.768 1.598
N2LO −7.739 −7.733 39.44 −46.54 −0.641 5.65 0.9991 91.43 0.107 8.47 1.772 1.602
N3LO −7.738 −7.733 37.04 −44.07 −0.705 5.34 0.9993 91.83 0.101 8.07 1.772 1.602
N4LO −7.743 −7.737 37.08 −44.21 −0.615 5.49 0.9993 92.05 0.104 7.85 1.771 1.602
N4LO+ −7.744 −7.738 37.29 −44.38 −0.658 5.49 0.9993 91.87 0.106 8.02 1.772 1.603

Expt. 3He −7.718 −7.718 — — — — — — — — 1.792(17) —

TABLE I. Summary of energies and wave function properties for 3H/3He for NN interactions up to N4LO+ (including N2LO
3NFs starting from N2LO). Energies and cutoffs are given in MeV except for 〈TCSB〉 which is given in keV. Radii are given
in fm and the S,P and D-state probabilities are given in %. For the experimental values of the point-proton radii, we use the
structure radii.

proton charge radius and R2
n the neutron charge radius

squared. N and Z are the neutron and proton numbers.
The values given here have been obtained in [27] using
the values of CODATA-2018 and the current PDG val-
ues for Rp and Rn, respectively. The structure radius
differs from the non-observable point-proton radius due
to relativistic corrections and exchange charge density
and similar contributions. For 3H, the structure radius
is in agreement with the point-proton radius within the
experimental error bar. For 3He, we observe a slight un-
derprediction of experiment.

III. LIGHT NUCLEI

A. Helium-4

We also performed Yakubovsky calculations in momen-
tum space for 4He. The approach has been briefly de-
scribed in [27]. We present our results in Table II. For
these calculations, we truncate the partial waves in sev-
eral ways. First, the two-body subsystem total angular
momentum is restricted to j12 ≤ 5, then the orbital angu-
lar momentum of the third and fourth nucleon or between
two two-nucleon clusters is restricted to li ≤ 6. Finally,

the sum of all orbital angular momenta is smaller than
or equal to 10. For the calculations shown here, we also
take the small admixtures of isospin T = 1 and 2 to the
dominant T = 0 component into account. With these re-
strictions, our numerical accuracy is better than 10 keV
for the binding energy and energy expectation values.
Again, results up to N2LO have already been shown in
[27]. Note the small differences compared to the previous
work that are due to the isospin T = 1 and 2 components
of the 4He state which were omitted in [27]. The calcu-
lations were performed using an averaged nucleon mass.
For 4He, the contribution of the proton-neutron mass dif-
ference is tiny and is omitted. Due to the correlation of
the 3N and 4N binding energy, we again find a consider-
able overbinding in LO and NLO. Starting from N2LO,
the 3N system is correctly bound. Nevertheless, there are
still variations of the 4He binding energy of the order of
400 keV when the cutoff and/or order of the NN interac-
tion is changed. The changes of energy at N4LO are only
of the order of 60 keV. The remaining deviations of the
energies at the two cutoffs and the deviation from exper-
iment can therefore be expected to be explained by the
missing three- and four-nucleon forces at order N3LO.
Based on the contribution from NN interactions, we can
expect to predict energies with an accuracy of 60 keV
once a complete calculation up to N3LO is performed.



8

Λ E 〈H〉 〈T 〉 〈VNN 〉1 〈VNN 〉2 〈V3NF 〉 〈Ψ|Ψ〉1 〈Ψ|Ψ〉2 P(S) P(P) P(D) rp rn
LO

450

−49.98 −49.98 124.44 −174.42 −174.43 — 0.99994 0.99998 95.72 0.070 4.21 0.991 0.988
NLO −29.35 −29.35 71.48 −100.83 −100.83 — 0.99975 0.99962 92.03 0.129 7.84 1.378 1.372
N2LO −28.61 −28.61 75.74 −101.97 −101.96 −2.38 0.99954 0.99927 86.72 0.462 12.82 1.426 1.420
N3LO −28.35 −28.35 73.60 −99.43 −99.42 −2.52 0.99958 0.99935 87.10 0.429 12.47 1.433 1.427
N4LO −28.29 −28.28 73.04 −99.25 −99.25 −2.07 0.99958 0.99936 87.41 0.429 12.16 1.435 1.429
N4LO+ −28.31 −28.31 73.45 −99.48 −99.47 −2.27 0.99958 0.99935 87.07 0.446 12.48 1.435 1.430
LO

500

−51.46 −51.46 139.21 −190.67 −190.67 — 0.99991 0.99994 93.74 0.147 6.11 0.957 0.954
NLO −28.14 −28.13 74.56 −102.69 −102.68 — 0.99941 0.99895 90.96 0.153 8.89 1.411 1.405
N2LO −28.71 −28.68 86.73 −111.93 −111.88 −3.48 0.99895 0.99816 85.06 0.598 14.35 1.427 1.421
N3LO −28.56 −28.55 80.30 −105.00 −104.97 −3.85 0.99929 0.99883 85.51 0.568 13.92 1.430 1.424
N4LO −28.48 −28.47 80.56 −105.60 −105.56 −3.42 0.99924 0.99872 85.79 0.581 13.63 1.433 1.428
N4LO+ −28.52 −28.50 81.20 −105.97 −105.94 −3.73 0.99922 0.99868 85.30 0.606 14.10 1.434 1.429
Expt. −28.28 −28.28 — — — — — — — — — 1.462(6) —

TABLE II. Summary of energies and wave function properties for 4He for NN interactions up to N4LO+ (including N2LO 3NFs
starting from N2LO). See text for explanations. Energies and cutoffs are given in MeV. The point-proton and neutron radii rp
and rn are given in fm and the S, P and D-state probabilities are given in %. For the experimental value of the point-proton
radius, we use the structure radius. The tiny numerical difference from the previous work [27] is due to the calculation including
not only the isospin T = 0 component but also T = 1 and T = 2 ones.

For the four-body system, using Yakubovsky equa-
tion has the advantage that the 4N states are simulta-
neously expanded in coordinates that single out a 3N
subsystem (“3+1”coordinates) and coordinates that sin-
gle out two two-body cluster (“2+2” coordinates). The
wave function can be represented in both kinds of coor-
dinates. Similarly to the 3N system, we normalize the
wave function using overlaps of Yakubovsky components
and the wave function. Therefore, for our wave functions,
the norm in “3+1” and “2+2” coordinates, 〈Ψ|Ψ〉1 and
〈Ψ|Ψ〉2, respectively, differ from 1. As can be seen in the
table, the deviations are again less than 0.1%. Generally,
the norms indicate that the wave function is better repre-
sented in “3+1” coordinates. This also holds true for the
evaluation of the expectation values of the NN interac-
tions, 〈VNN 〉1 and 〈VNN 〉2. Therefore, we use the result
in “3+1” coordinates 〈VNN 〉1 for the evaluation of 〈H〉.
Note also that the expectation values of the 3NF 〈V3NF 〉
of the order of a few MeV are consistent with the power
counting expectation. Compared to the 3N system, S-
state probabilities are smaller while the P- and D-state
probabilities are larger. Still, the S-state is dominating
as can be expected for 4He.

Finally, we briefly comment on the non-observables
point-proton and neutron radii. In the isospin T = 0
approximation, both radii agree. The small difference is
therefore entirely due to the T = 1 and 2 components
that are now included. We again compare the point-
proton to the structure radius as defined in Eq. (1). For
4He, we observe a small but visible underprediction of
this value indicating that either the left out subleading
3NFs or the relativistic corrections or contributions of
the exchange charge density are non-negligible for a high
order prediction of the radii. Work in this direction is in
progress.

B. Calculations for p-shell nuclei

For selected p-shell, we use the No-Core Configuration
Interaction (NCCI) approach [40] to calculate the ground
states and low-lying narrow excited states. In the NCCI
approach we expand the wave function Ψ of a nucleus
consisting of A nucleons in an A-body basis of Slater de-
terminants Φk of single-particle wave functions φnljm(~r).
Here, n is the radial quantum number, l the orbital mo-
tion, j the total spin from orbital motion coupled to the
intrinsic nucleon spin, and m the spin-projection. The
Hamiltonian Ĥ is also expressed in this basis and thus
the many-body Schrödinger equation becomes a matrix
eigenvalue problem; for an NN potential plus 3NFs, this
matrix is sparse for A > 4. The eigenvalues of this sparse
matrix are approximations to the energy levels, to be
compared to the experimental energy levels.

We use the conventional harmonic oscillator (HO) ba-
sis with energy parameter ~ω for the single-particle wave
functions, in combination with a truncation on the total
number of HO quanta in the system: the basis is limited
to many-body basis states with

∑
ANi ≤ N0 + Nmax,

with N0 the minimal number of quanta for that nucleus
and Nmax the truncation parameter. In order to improve
the convergence of the basis space expansion, we first
apply a Similarity Renormalization Group (SRG) trans-
formation [41–43] to soften these interactions. All of the
results for p-shell nuclei presented here have been evolved
to α = 0.08 fm4 and all of them include (induced) 3NFs.

Numerical convergence toward the exact results for
a given Hamiltonian is obtained with increasing Nmax,
and is marked by approximate Nmax and ~ω indepen-
dence. Furthermore, we apply the same procedure as
in Refs. [27, 44, 45] to extrapolate the approximate en-
ergy levels in finite bases to the complete (but infinite-
dimensional) space [46–50]. Most of the actual numerical
calculations to obtain the lowest eigenvalues of the in-
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creasingly large but sparse matrices were performed with
the NCCI code MFDn [51, 52] on the Cray XC40 Theta
at the Argonne Leadership Computing Facility (ALCF),
with additional calculations performed on the Cray XC40
Cori at the National Energy Scientific Computing Center
(NERSC).

C. Correlated truncation errors for spectra

For scattering observables, we have used a pointwise
Bayesian statistical model that estimates uncertainties
learned from the order-by-order convergence pattern of
the chiral expansion, but with each observable treated
independently. For the ground states and low-lying spec-
tra in light nuclei presented in Tables III through VII,
we take into account correlations between the conver-
gence patterns of different observables. This is particu-
larly important for excitation energies, as they are a dif-
ference between excited- and ground-state energies that
if treated independently would lead to individual errors
added in quadrature. As known from experience and
the treatment in Ref. [27], these excitation energies are
generally much better determined than energies of the
individual levels. Therefore, to avoid overestimating the
truncation errors it is essential to apply a correlated error
model.

A Bayesian model for correlated truncation errors
based on Gaussian processes (GPs) was developed in
Ref. [56] and applied to infinite matter in Refs. [57, 58].
The adaptation of this model in Ref. [27] to p-shell exci-
tation energies was able to still use GPs for the discrete
spectra, with every finite number of inputs having a joint
Gaussian distribution. The covariance structure between
discrete energy levels and nuclei is learned from the ob-
served pattern of order-by-order expansion coefficients ci,
which are defined for an observable X by

X = X(0) + ∆X(2) + ∆X(3) + . . .

=: Xref

(
c0 + c2Q

2 + c3Q
3 + . . .

)
. (2)

Here ∆X(2) := X(2) −X(0) and ∆X(3) := X(3) −X(2),
Q is the expansion parameter, the superscripts denote
the chiral order Qn, the ellipses refer to terms beyond
N2LO, the quantity Xref sets the overall scale and the ci
are dimensionless.

There is a subtle but important complication to the
Bayesian model for chiral EFT truncation errors in the
present case, where the orders beyond N2LO are in-
complete because they include only the NN contribu-
tions. It is clear that the expected error at N3LO and
higher orders should be counted the same as the expected
error at N2LO because in all cases there are omitted
terms of N2LO order. But how should we extract the
c4 and higher-order coefficients? Naively one might ar-
gue that the differences of higher-order NN-only terms in
(2) should come with increasing powers of Q. However,
the LEC fitting of the NN interaction at each individ-
ual order to scattering data means only that they are
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FIG. 5. (Color online) Expansion coefficients defined as
in Eq. (2) for the individual of the light nuclei listed with
α = 0.08 fm4 and Λ = 450 MeV. These are extracted with a
fixed value of Q ≈ 0.31 and Xref taken from experiment [53–
55] (or the N2LO result for the 0+ in 8Li).

two-body on-shell equivalent; there is an off-shell ambi-
guity for A > 2. With a complete N2LO calculation, the
off-shell ambiguity is resolved at the three-body level by
the 3N contributions. For N3LO and higher, the resid-
ual N2LO ambiguity persists, and in the absence of prior
information it must be assumed that the difference in
calculations of observables inherit an uncertainty of the
same order as this ambiguity. Therefore we extract c4
and higher using the same Q counting as at N2LO.

The correlations among the ci coefficients are mani-
fested in Fig. 5 through plots of the ci’s for ground states
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FIG. 6. (Color online) Posteriors for the dimensionless ex-
pansion parameter Q learned from the order-by-order coeffi-
cients for the ground and excited-state energies of the nuclei in
Tables III and IV. These coefficients encode the convergence
pattern of the chiral expansion for these nuclei. The posteri-
ors were extracted separately for nuclei with A < 8 and A ≥ 8
because of the differing degree of correlation between the co-
efficients in these two groups (see Fig. 5). The top panel is for
Λ = 450 MeV and the bottom panel for Λ = 500 MeV, both
using α = 0.08 fm4.

in Tables III and IV and the excited states in Tables V
through VII. For this visualization, we extract the cis
using a fixed Q = M eff

π /Λb = 200/650 ≈ 0.31 for all
the states, with Xref taken from experiment. As already
noted in Ref. [27], we see high correlation as expected
between observable coefficients for the spectra of a given
nucleus but also between nuclei, now continued beyond
N2LO.

To model these correlations, we introduce a covariance
matrix and determine it empirically [59]. We emphasize
that the correlations shown beyond c0 are for the correc-
tions to the observables. The truncation error model is
contingent on the expansion parameter Q and the char-
acteristic variance c̄2 of the observable expansion coeffi-
cients ci. Unlike in Ref. [27], here we learn both Q2 and
c̄2 from the order-by-order calculations together with the
prior expectations for each, which is possible because we
now have enough higher-order coefficients for good statis-
tics. This is the case even though we omit low orders
(namely c0 and c2) that obscure the order-by-order con-
vergence pattern for the spectra of light nuclei because
of the strong cancellation between kinetic and potential
energies [44]. (In Ref. [27] only the c3 coefficients were
used to learn c̄2.)

The posteriors for the expansion parameter Q that are
learned from two sets of light nuclei are shown in Fig. 6.
By “learning” we mean obtaining a statistical solution to
the inverse problem of determining the distribution the
coefficients come from (which is characterized by c̄2 and
Q). We use the hierarchical model from Appendix A of
Ref. [56], which is computationally efficient and enables
us to both parameterize our prior expectations and easily
marginalize (i.e., integrate over) the hyperparameters to

reduce sensitivity. In Ref. [27], with only up to N2LO
available, we were sensitive to the choice of priors, but
with higher orders included, this sensitivity is greatly re-
duced. For the analysis here we use the scaled inverse-χ2

conjugate prior proposed in Ref. [56] with hyperparame-
ters ν0 = 1.5 and τ0 = 1.5.

As seen in Fig. 6, the posteriors for Q peak close to the
value expected a priori (Q ≈ 0.3), although the width of
the posteriors is significant (and the Λ = 500 MeV results
are slightly higher). These fits were done separately for
A < 8 and A ≥ 8 nuclei because of different correlation
patterns among the coefficients, as is evident in Fig. 5.
We expect in general that Q should increase with the
increasing average kinetic energy (the use of the non-
observable kinetic energy in estimating Q is discussed in
Ref. [44]). This is consistent with the systematic trends
of increasing Q with increasing A and Λ in Fig. 6, but
the broad widths preclude definitive conclusions.

The resulting Bayesian 95% confidence intervals for
the ground-state and excitation energies are given in Ta-
bles III–VIII and Figs. 7–12. The reduced error bars
for excitation energies can be understood quantitatively
through the formula for the variance of the difference of
two Gaussian-distributed variables A and B with corre-
lation coefficient ρ:

σ2
A−B = σ2

A + σ2
B − 2ρσAσB . (3)

The learned values of ρ were mostly between 0.85 and
0.9, which by (3) implies the correlated excitation-energy
error bars are about 0.3–0.4 times the values from adding
in quadrature.

D. Ground state energies of p-shell nuclei

Our results for the stable Helium isotopes, as well as
6Li, are given in Table III for different chiral orders and
two values of the regulators, both SRG evolved to α =
0.08 fm4. Induced 3NFs from the SRG evolution are
included in all calculations, and starting from N2LO, the
explicit N2LO 3NFs are also included; however, induced
four-nucleon (and higher, for A ≥ 6) are neglected in
these calculations.

For 4He we can compare the NCCI results using SRG
evolved interactions with the Yakubovsky calculations of
Table II, which are obtained without SRG evolution. The
numerical uncertainties in both the Yakubovsky results
and the NCCI results are of the order of 10 keV or less.
Therefore, any differences in the ground state energies of
4He in Tables II and III beyond 10 keV are due to missing
induced four-nucleon interactions. For Λ = 450 MeV,
this difference is small, in most cases only of the order of
20 keV, but, for Λ = 500 MeV, the SRG evolution leads
to changes of the energy of about 200 keV. This is still
smaller than the expected contribution of N3LO 3NFs,
but will possibly become relevant once these subleading
3NFs are included in complete N3LO calculations in the
future.
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4He (0+) 6He (0+) 8He (0+) 6Li (1+)

Λ = 450 MeV

LO −49.73(0.01)(∗) −46.7(0.3)(∗) −41.6(0.9)(∗) −50.4(0.3)(∗)
NLO −29.37(0.01)(3.6) −27.86(0.14)(3.7) −28.2(0.7)(6.0) −31.93(0.09)(4.1)
N2LO −28.53(0.01)(1.0) −29.04(0.07)(1.0) −30.42(0.20)(1.8) −32.04(0.06)(1.2)
N3LO −28.38(0.01)(1.0) −28.39(0.08)(1.0) −28.69(0.23)(1.8) −31.41(0.06)(1.2)
N4LO −28.29(0.01)(1.0) −28.28(0.08)(1.0) −28.62(0.24)(1.8) −31.28(0.06)(1.2)
N4LO+ −28.29(0.01)(1.0) −28.33(0.07)(1.0) −28.75(0.24)(1.8) −31.32(0.06)(1.2)

Λ = 500 MeV

LO −51.17(0.01)(∗) −47.6(0.4)(∗) −41.6(1.0)(∗) −51.1(0.3)(∗)
NLO −28.12(0.01)(3.6) −27.39(0.10)(3.8) −26.3(0.6)(6.9) −31.45(0.06)(4.1)
N2LO −28.63(0.01)(1.2) −29.21(0.06)(1.2) −30.92(0.15)(2.3) −32.29(0.04)(1.3)
N3LO −28.45(0.01)(1.2) −28.54(0.08)(1.2) −29.06(0.20)(2.3) −31.61(0.05)(1.3)
N4LO −28.31(0.01)(1.2) −28.37(0.07)(1.2) −28.91(0.18)(2.3) −31.41(0.05)(1.3)
N4LO+ −28.30(0.01)(1.2) −28.41(0.07)(1.2) −29.04(0.17)(2.3) −31.43(0.05)(1.3)

Expt. −28.296 −29.27 −31.41 −31.99

TABLE III. Ground-state energies of Helium isotopes and 6Li obtained with the NCCI approach for different chiral orders
and cutoffs, SRG evolved to α = 0.08 fm4. Numbers in parenthesis indicate first the estimated extrapolation uncertainties and
then the chiral truncation uncertainties at the 95% confidence level, (∗) indicating no chiral truncation uncertainties at LO.

NLO
N2LO
N3LO
N4LO
N4LO+

Λ = 450 MeV

4He 6He 8He 6Li

E
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]
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Λ = 500 MeV
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FIG. 7. (Color online) Ground-state energies for 4He, 6He,
8He, and 6Li with SMS interactions from NLO to N4LO+

with Λ = 450 MeV (left-hand panel) and Λ = 500 MeV (right-
hand panel), both using α = 0.08 fm4. Error bars indicate the
NCSM model-space uncertainties and shaded bands indicate
the chiral truncation uncertainties at the 95% confidence level
for the N2LO (blue) and N4LO+ (purple) NN potentials. Hor-
izontal bars show the experimental ground-state energies.

Based on the comparison with the Yakubovsky calcu-
lations for 4He, we anticipate an uncertainty of about
0.5% to 1% for A ≥ 6 nuclei, due the SRG evolution
to α = 0.08 fm4. This SRG dependence is similar in
magnitude to the estimated extrapolation uncertainties
listed in Table III. Note that the effect of the omitted
induced four-nucleon forces depends not only on the ac-
tual SRG parameter α, but also on the interaction (that
is, for these calculations, on the chiral order and on the
regulator Λ), as well as on the nucleus.

The second set of uncertainties in Table III correspond
to our Bayesian 95% confidence intervals as discussed in
the previous subsection; and these results are shown in
Fig. 7, with error bars for the numerical uncertainties,

and the 95% confidence intervals for the N2LO NN po-
tential (blue shaded band) and for the N4LO+ NN po-
tential (purple shaded band). This clearly shows that
the chiral truncation uncertainties are both noticeably
larger than the numerical uncertainties, and larger than
the estimated SRG uncertainties of about 1%. With the
exception of 8He, our predictions for the ground state
energies of these nuclei agree with the experimental data
within the estimated chiral uncertainty, for each of the
N2LO, N3LO, N4LO, and N4LO+ NN potentials in com-
bination with the N2LO 3NF. However, the central values
with the N2LO NN potential are noticeably closer to the
experimental ground state energies of these light nuclei
than those obtained with the N3LO, N4LO, or N4LO+

NN potential; while the difference between N3LO, N4LO,
and N4LO+ results is of the same order as the estimated
numerical and SRG uncertainties. For 8He however, only
the N2LO NN potential agrees with the experimental
ground state energy within the 95% confidence interval,
whereas the higher-order NN potentials lead to an under-
prediction of the 8He ground state energy. Furthermore,
note that the central values for the He isotopes with the
N3LO, N4LO, and N4LO+ NN potentials suggest increas-
ing underbinding as one moves away from N = Z. It re-
mains to be seen how this changes when consistent N3LO
3NFs are incorporated in future work.

Our results for the ground state energies of A = 10
and 12 nuclei are shown in Fig. 8, and tabulated in Ta-
ble IV; in the latter we also include our results for 14O.
Again, the estimated numerical extrapolation uncertain-
ties are of the order of 0.5% to 1%, that is, of the same or-
der as the estimated dependence on the SRG parameter,
whereas the chiral uncertainty estimate, at the 95% level,
is significantly larger. Here in the middle of the p-shell,
we see that for A = 10 the N2LO NN potential overbinds,
whereas using the NN potentials at N3LO and higher lead
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10Be (0+) 10B (3+) 12B (1+) 12C (0+) 14O (0+)

Λ = 450 MeV

LO −97.7(1.5)(∗) −92.8(1.6)(∗) −113.7(1.3)(∗) −145.0(0.9)(∗) −152.2(0.7)(∗)
NLO −61.9(0.6)(12.) −61.1(0.6)(12.) −76.0(0.7)(15.) −89.7(0.5)(17.) −98.1(0.7)(32.)
N2LO −66.5(0.5)(3.6) −66.4(0.4)(3.6) −84.8(0.4)(4.5) −98.7(0.4)(5.2) −113.1(0.4)(11.)
N3LO −62.4(0.6)(3.6) −62.5(0.5)(3.6) −77.3(0.6)(4.5) −90.6(0.6)(5.2) −99.8(0.8)(11.)
N4LO −62.0(0.6)(3.6) −62.1(0.5)(3.6) −76.8(0.6)(4.5) −89.9(0.6)(5.2) −99.0(0.8)(11.)
N4LO+ −62.1(0.6)(3.6) −62.2(0.6)(3.6) −77.0(0.7)(4.5) −90.0(0.7)(5.2) −99.2(0.8)(11.)

Λ = 500 MeV

LO −98.1(1.7)(∗) −92.5(2.0)(∗) −111.7(1.6)(∗) −144.6(1.3)(∗) −148.2(0.9)(∗)
NLO −57.9(0.6)(14.) −57.0(0.5)(14.) −70.4(0.6)(17.) −83.3(0.5)(20.) −89.6(0.6)(39.)
N2LO −67.5(0.4)(4.7) −68.4(0.4)(4.6) −87.5(0.4)(5.7) −101.8(0.4)(6.6) −116.9(0.4)(13.)
N3LO −63.6(0.6)(4.7) −64.1(0.5)(4.6) −79.5(0.6)(5.7) −92.7(0.6)(6.6) −103.3(0.8)(13.)
N4LO −62.9(0.6)(4.7) −63.4(0.6)(4.6) −78.8(0.6)(5.7) −91.6(0.6)(6.6) −102.0(0.9)(13.)
N4LO+ −63.0(0.6)(4.7) −63.4(0.6)(4.6) −78.8(0.7)(5.7) −91.5(0.6)(6.6) −101.9(0.9)(13.)

Expt. −64.98 −64.75 −79.58 −92.16 −98.7

TABLE IV. Ground-state energies of A = 10, 12, and 14O nuclei obtained in the NCSM for different chiral orders and cutoffs,
SRG evolved to α = 0.08 fm4. Numbers in parenthesis indicate first the estimated extrapolation uncertainties and then the
chiral truncation uncertainties at the 95% level, (∗) indicating no chiral truncation uncertainties at LO.
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FIG. 8. (Color online) Ground-state energies for 10Be, 10B,
12B, and 12C with SMS interactions from NLO to N4LO+ with
Λ = 450 MeV (left-hand panel) and Λ = 500 MeV (right-hand
panel), both using α = 0.08 fm4. Error bars and bands are
the same as in Fig. 7. Horizontal bars show the experimental
ground-state energies.

to underbinding. As we go up in the p-shell and increase
A further, we see that for A = 12 the overbinding with
the N2LO NN potential increases, whereas the higher-
order NN potentials give excellent agreement with the
data. This appears to be a systematic trend, which con-
tinues for 14O and beyond, as will be discussed in more
detail in the next section.

For all of these ground state energies, we see that the
cutoff of Λ = 500 MeV leads to larger chiral truncation
uncertainties than the smaller cutoff of Λ = 450 MeV,
which is to be expected, and also in agreement with the
posteriors for the expansion parameter Q shown in Fig. 6.

E. Excitation spectra of p-shell nuclei

In addition to the ground-state energies, we have also
calculated the low-lying spectra of these p-shell nuclei,
limiting ourselves to the normal parity states, that is,
states with the same parity as the valence space. Since we
are only considering even p-shell nuclei here, that implies
we are only considering positive parity states. Again, we
perform a series of calculations at increasing values of
Nmax for a range of the HO parameters ~ω around the
variational minimum, and apply the same extrapolation
method as for the ground state energies. For narrow
excited states, this extrapolation method seems to give
results that are numerically reasonably stable, even for
states that are above threshold.

Our results for the obtained excitation energies (the
difference of the extrapolated total energies) of the low-
lying excited states of A = 6 and A = 10 are given in
Table V, together with the corresponding experimental
values. Similar to the ground state energies in Tables III
and IV, the first uncertainties are the numerical uncer-
tainties associated with the extrapolation to the complete
bases; for these uncertainties we use again the same pro-
cedure as in Refs. [27, 44, 45], namely the maximum of
the estimated extrapolation uncertainties of the total en-
ergies of the two states. The second set of uncertainties
correspond to the 95% confidence interval of the chiral
EFT truncation error, taking into account correlations
between the ground state and the excited state, as dis-
cussed in subsection III C, see Eq. (3).

Again, as in the case of the ground state energies, the
uncertainties of the obtained excitation energies are dom-
inated by their chiral truncation uncertainties. However,
due to the strong correlations between the ground state
and the excited state, the chiral truncation uncertainties
of the excitation energies are significantly smaller than
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6He(2+) 6Li(3+) 10Be(2+)1
10Be(2+)2

10B(1+)1
10B(1+)2

10B(2+)

Λ = 450 MeV

LO 3.5(0.9)(∗) 5.3(0.8)(∗) 7.7(2.1)(∗) 6.1(1.7)(∗) −6.7(1.6)(∗) 0.2(1.7)(∗) −0.6(1.8)(∗)
NLO 1.10(0.31)(1.6) 2.90(0.17)(2.0) 3.5(0.8)(5.8) 4.6(0.9)(5.8) −1.4(0.8)(6.9) 1.8(0.8)(5.8) 2.1(0.6)(5.8)
N2LO 2.10(0.15)(0.5) 2.40(0.07)(0.6) 3.3(0.5)(1.7) 6.3(0.6)(1.7) 1.7(1.0)(2.1) 1.4(0.5)(1.7) 3.4(0.5)(1.8)
N3LO 2.09(0.18)(0.5) 2.41(0.09)(0.6) 3.4(0.6)(1.7) 5.6(0.7)(1.7) 0.8(1.0)(2.3) 1.4(0.6)(1.7) 3.3(0.6)((1.8)
N4LO 2.07(0.17)(0.5) 2.40(0.08)(0.6) 3.4(0.6)(1.7) 5.6(0.7)(1.7) 0.8(1.0)(2.3) 1.5(0.6)(1.7) 3.3(0.6)((1.8)
N4LO+ 2.07(0.18)(0.5) 2.42(0.09)(0.6) 3.4(0.6)(1.7) 5.6(0.7)(1.7) 0.8(1.0)(2.3) 1.4(0.6)(1.7) 3.3(0.6)((1.8)

Λ = 500 MeV

LO 3.6(1.0)(∗) 5.1(9)(∗) 8.1(2.5)(∗) 6.6(2.0)(∗) −7.0(2.0)(∗) 0.2(2.0)(∗) −0.8(2.1)(∗)
NLO 2.08(0.23)(1.7) 3.93(0.14)(2.0) 3.4(0.7)(6.8) 4.2(0.7)(6.8) −1.6(0.6)(7.7) 1.6(0.7)(6.6) 1.6(0.5)(6.9)
N2LO 2.08(0.09)(0.5) 2.41(0.07)(0.6) 3.2(0.5)(2.2) 6.2(0.6)(2.2) 2.2(1.0)(2.5) 1.9(0.5)(2.2) 4.1(0.5)(2.3)
N3LO 2.10(0.14)(0.5) 2.35(0.08)(0.6) 3.4(0.6)(2.2) 6.0(0.7)(2.2) 1.3(1.0)(2.5) 1.8(0.6)(2.2) 3.8(0.6)(2.3)
N4LO 2.08(0.14)(0.5) 2.34(0.07)(0.6) 3.3(0.6)(2.2) 5.9(0.7)(2.2) 1.3(1.0)(2.5) 1.7(0.6)(2.2) 3.8(0.6)(2.3)
N4LO+ 2.09(0.13)(0.5) 2.37(0.08)(0.6) 3.3(0.6)(2.2) 6.0(0.7)(2.2) 1.3(1.0)(2.5) 1.7(0.6)(2.2) 3.7(0.6)(2.3)

Expt. 1.80 2.19 3.37 5.96 0.72 2.15 3.59

TABLE V. Excitation energies of low-lying normal parity states in 6He, 6Li, 10Be and 10B obtained in the NCSM for different
chiral orders and cutoffs, SRG evolved to α = 0.08 fm4. Numbers in parenthesis are first the maximum of the estimated
extrapolation uncertainties in the excited-state and ground-state energies and then the correlated chiral truncation uncertainties
at the 95% confidence level, (∗) indicating no chiral truncation uncertainties at LO.
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FIG. 9. (Color online) Excitation energies of low-lying
states in 10B with SMS interactions from NLO (gray) to
N4LO+ (purple) with Λ = 450 MeV (left-hand panel) and
Λ = 500 MeV (right-hand panel), both using α = 0.08 fm4.
Error bars indicate the NCSM model-space uncertainties and
shaded bands indicate the chiral truncation uncertainties at
the 95% confidence level. Horizontal lines show the experi-
mental excitation energies.

those of the ground state energies. For almost all of the
excited states shown in Table V, this uncertainty esti-
mate is reduced by at least a factor of two compared
to that of the corresponding ground state energies; the
exception is the first 1+ state in 10B. Furthermore, the
excitation energies of most of these states are almost in-
dependent of the chiral order of the NN potential starting
at N2LO, again with the exception of the first 1+ state
in 10B, and, at Λ = 450 MeV, the second 2+ state in
10Be. Finally, note that for all of these excited states our
results agree with experiment within the 95% confidence
interval, starting at NLO.

Both from Table V and in Fig. 9, we see that the energy
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FIG. 10. (Color online) Excitation energies of low-lying
states in 12B with SMS interactions from NLO (gray) to
N4LO+ (purple) with Λ = 450 MeV (left-hand panel) and
Λ = 500 MeV (right-hand panel), both using α = 0.08 fm4.
Error bars and bands are the same as in Fig. 9. Horizontal
lines show the experimental excitation energies.

level of the first 1+ state of 10B is not actually strongly
correlated to the ground state energy, but jumps around
relative to the ground state: this state is the ground state
at LO and NLO; at N2LO including 3NFs it becomes the
second excited 1+ state (without the 3NFs it remains the
ground state at N2LO [27]); and it drops down again to
become the first excited 1+ state if we use higher chiral
orders for the NN potential.

Also in 12B we see that the chiral truncation uncer-
tainty estimate in the excitation energies is reduced by
more than a factor of two compared to that of the corre-
sponding ground state energy, due to strong correlations
between the ground state and the excited states, see Ta-
ble VI. And, like in 10B, the lowest states jump around a
bit at the lower chiral orders: at LO, the 0+ is the low-
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12B(2+)1
12B(0+) 12B(2+)2

12B(1+)2
12B(3+)

Λ = 450 MeV

LO 4.4(1.3)(∗) −1.3(1.3)(∗) 0.0(1.4)(∗) 2.1(1.6)(∗) 4.9(1.4)
NLO 1.2(0.8)(6.7) 0.3(0.9)(6.8) 1.8(0.9)(6.7) 3.0(0.8)(6.7) 3.8(0.9)(6.6)
N2LO −0.9(0.4)(2.0) 1.9(0.6)(2.0) 3.4(0.6)(2.0) 4.9(0.6)(2.0) 5.3(0.7)(2.0)
N3LO 0.1(0.6)(2.0) 1.5(0.7)(2.0) 3.1(0.7)(2.0) 4.4(0.7)(2.0) 4.9(0.7)(2.0)
N4LO −0.1(0.6)(2.0) 1.6(0.7)(2.0) 3.1(0.7)(2.0) 4.5(0.7)(2.0) 5.0(0.7)(2.0)
N4LO+ 0.0(0.7)(2.0) 1.6(0.7)(2.0) 3.1(0.7)(2.0) 4.5(0.7)(2.0) 5.0(0.7)(2.0)

Λ = 500 MeV

LO 4.6(1.7)(*) −1.4(1.6)(∗) 0.0(1.7)(∗) 2.3(2.0)(∗) 5.2(1.8)(∗)
NLO 1.4(0.7)(7.5) 0.1(0.8)(7.8) 1.5(0.8)(7.7) 2.6(0.6)(7.7) 3.5(0.8)(7.6)
N2LO −1.1(0.4)(2.5) 2.7(0.6)(2.6) 4.1(0.6)(2.5) 5.7(0.6)(2.5) 6.1(0.7)(2.5)
N3LO −0.2(0.6)(2.5) 2.1(0.7)(2.6) 3.6(0.7)(2.5) 5.0(0.7)(2.5) 5.4(0.7)(2.5)
N4LO −0.3(0.6)(2.5) 2.3(0.7)(2.6) 3.8(0.7)(2.5) 5.2(0.7)(2.5) 5.6(0.7)(2.5)
N4LO+ −0.2(0.7)(2.5) 2.2(0.7)(2.6) 3.7(0.7)(2.5) 5.1(0.7)(2.5) 5.6(0.7)(2.5)

Expt. 0.95 2.72 3.76 4.99 5.61

TABLE VI. Excitation energies of low-lying normal parity states in 12B obtained in the NCSM for different chiral orders
and cutoffs, SRG evolved to α = 0.08 fm4. Numbers in parenthesis are first the maximum of the estimated extrapolation
uncertainties in the excited-state and ground-state energies and then the correlated chiral truncation uncertainties at the 95%
confidence level, (∗) indicating no chiral truncation uncertainties at LO.
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FIG. 11. (Color online) Excitation energies of low-lying
states in 12C with SMS interactions from NLO (gray) to
N4LO+ (purple) with Λ = 450 MeV (left-hand panel) and
Λ = 500 MeV (right-hand panel), both using α = 0.08 fm4.
Error bars and bands are the same as in Fig. 9. Horizontal
lines show the experimental excitation energies.

est state; at NLO lowest 1+ state is the lowest state, in
agreement with experiment, but at N2LO, the 2+ state
becomes the lowest state. Incorporating higher chiral or-
ders for the NN potential, in combination with the N2LO
3NFs, makes this 2+ state almost degenerate with the 1+

ground state. On the other hand, the level ordering of
the second 2+, the second 1+, and the lowest 3+ states
is in agreement with experiment starting at NLO. And
again, for all these five excited states our theoretical ex-
citation energies agree with experiment well within the
95% confidence interval.

Finally, in Table VII and Fig. 11, we show our results
for the 2+ and 4+ rotational excitations of the ground
state of 12C, as well as the first excited 1+ state. Not sur-
prisingly, the rotational excitations of the ground state

12C(2+) 12C(1+) 12C(4+)

Λ = 450 MeV

LO 6.9(0.9)(∗) 31.3(1.2)(∗) 23.3(1.1)(∗)
NLO 3.4(0.5)(7.1) 14.2(0.6)(8.6) 12.2(0.7)(7.2)
N2LO 4.2(0.4)(2.1) 9.6(0.4)(2.6) 13.7(0.4)(2.2)
N3LO 3.7(0.6)(2.1) 10.9(0.6)(2.6) 12.6(0.7)(2.2)
N4LO 3.7(0.6)(2.1) 10.6(0.6)(2.6) 12.6(0.7)(2.2)
N4LO+ 3.7(0.7)(2.1) 10.5(0.7)(2.6) 12.6(0.7)(2.2)

Λ = 500 MeV

LO 7.5(1.3)(∗) 32.2(1.4)(∗) 24.6(2.0)(∗)
NLO 3.1(0.5)(8.2) 13.6(0.6)(9.0) 11.4(0.6)(8.4)
N2LO 4.5(0.4)(2.7) 9.9(0.4)(3.0) 14.6(0.4)(2.8)
N3LO 3.6(0.6)(2.7) 10.6(0.6)(3.0) 12.9(0.7)(2.8)
N4LO 3.6(0.6)(2.7) 10.1(0.6)(3.0) 12.9(0.7)(2.8)
N4LO+ 3.6(0.6)(2.7) 9.9(0.6)(3.0) 12.9(0.7)(2.8)

Expt. 4.44 12.71 14.08

TABLE VII. Excitation energies of low-lying normal parity
states in 12C obtained in the NCSM for different chiral orders
and cutoffs, SRG evolved to α = 0.08 fm4. Numbers in paren-
thesis are first the maximum of the estimated extrapolation
uncertainties in the excited-state and ground-state energies
and then the correlated chiral truncation uncertainties at the
95% confidence level, (∗) indicating no chiral truncation un-
certainties at LO.

are strongly correlated, not only to the 0+ ground state,
but also to each other. More interesting is the 1+ ex-
cited state: of all the excited states considered here, it
shows a noticeable dependence on the NN potential be-
yond N2LO. Furthermore, this is the only state for which
our theoretical calculations with the N2LO and higher
orders for the NN potential barely agree with the exper-
imental value. This will therefore be an important test
once we incorporate consistent N3LO 3NFs, which should
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significantly reduce the chiral uncertainties.

IV. BEYOND LIGHT NUCLEI

Extending our analysis beyond the p-shell, we first con-
sider the oxygen isotopic chain from 14O to 26O. We focus
on the ground-state energies and point-proton rms-radii
for the even oxygen isotopes and explore the systematics
and uncertainties of these observables for different chiral
orders and cutoffs along the lines of the previous section.

For the ab initio solution of the many-body problem in
this mass range, we employ the in-medium no-core shell
model (IM-NCSM), which is a hybrid approach based on
a multi-reference in-medium similarity renormalization
group (IM-SRG) evolution of the Hamiltonian and the
NCSM for the extraction of the many-body states and
observables [60]. In a first step, a NCSM calculations in
a small model space, the so called reference space char-
acterized by the truncation parameter N ref

max, is used to
extract a multi-determinantal reference state for the nu-
cleus of choice. This reference state is used to set up a
multi-reference normal ordering for all relevant operators
and to formulate the multi-reference IM-SRG flow equa-
tions [61–63]. The flow evolution is designed such that
off-diagonal matrix elements of the Hamiltonian that cou-
ple the reference space to higher-lying basis states are
suppressed, i.e., the flow evolution decouples the small
N ref

max reference space from the rest of the model space.
This evolved Hamiltonian is then used in a final NCSM
calculation with a truncation Nmax ≥ N ref

max to extract
the energy eigenvalues and the eigenstates. The latter
are used to compute additional observables, e.g., rms-
radii, with matrix elements that are consistently evolved
in the multi-reference IM-SRG. For reasons of efficiency,
we use the Magnus formulation of the multi-reference
IM-SRG truncated at the multi-reference normal-ordered
two-body level. All calculations start from a natural-
orbital single-particle basis obtained from a perturba-
tively corrected density matrix [64] constructed in a large
HO space including 13 oscillator shells.

We use the same sequence of SMS interactions from
LO to N4LO+ in the NN sector supplemented with a 3N
interaction at N2LO as in the previous sections for few-
body systems and light nuclei for two different cutoffs
Λ = 450 MeV and 500 MeV. As in the NCCI calcula-
tions, the Hamiltonian is subject to a free-space SRG
evolution including three-body terms and we evolve the
translationally-invariant radius operator consistently at
the two-body level.

The results of the IM-NCSM calculations for the
oxygen isotopic chain are presented in Fig. 12 and in
Tab. VIII. All calculations are done with a simpleN ref

max =
0 reference space and with and Nmax = 2 model space
for the final NCSM calculation. We have confirmed in
all cases that the calculations are converged with respect
to Nmax. In order to address the uncertainties of the
many-body scheme, we probe the dependence of the ob-

Λ = 450 MeV Λ = 500 MeV
E [MeV] Rp,rms [fm] E [MeV] Rp,rms [fm]

14O
LO −152.3 1.68 −149.4 1.74
NLO −97.4(32.) 2.14(0.34) −89.1(39.) 2.25(0.27)
N2LO −114.0(11.) 2.12(0.11) −117.6(13.) 2.14(0.09)
N3LO −100.3(11.) 2.28(0.11) −103.7(13.) 2.25(0.09)
N4LO −99.4(11.) 2.27(0.11) −102.2(13.) 2.25(0.09)
N4LO+ −99.6(11.) 2.27(0.11) −102.2(13.) 2.25(0.09)
Expt. −98.7 – −98.7 –

16O
LO −217.0 1.51 −207.3 1.59
NLO −134.1(42.) 2.08(0.38) −122.6(50.) 2.21(0.31)
N2LO −148.3(14.) 2.12(0.13) −152.5(17.) 2.15(0.10)
N3LO −130.8(14.) 2.28(0.13) −134.3(17.) 2.27(0.10)
N4LO −129.1(14.) 2.28(0.13) −131.7(17.) 2.27(0.10)
N4LO+ −129.2(14.) 2.28(0.13) −131.6(17.) 2.28(0.10)
Expt. −127.6 2.58 −127.6 2.58

18O
LO −228.9 1.51 −217.1 1.61
NLO −142.3(45.) 2.12(0.40) −129.1(55.) 2.26(0.32)
N2LO −163.0(15.) 2.10(0.13) −168.0(18.) 2.14(0.11)
N3LO −141.8(15.) 2.28(0.13) −146.4(18.) 2.25(0.11)
N4LO −139.5(15.) 2.28(0.13) −142.8(18.) 2.26(0.11)
N4LO+ −139.7(15.) 2.28(0.13) −142.6(18.) 2.27(0.11)
Expt. −139.8 2.66 −139.8 2.66

20O
LO −240.0 1.53 −220.0 1.64
NLO −150.6(49.) 2.11(0.34) −135.7(60.) 2.27(0.27)
N2LO −180.4(16.) 2.07(0.11) −187.2(20.) 2.10(0.09)
N3LO −153.8(16.) 2.26(0.11) −159.9(20.) 2.23(0.09)
N4LO −151.0(16.) 2.27(0.11) −155.3(20.) 2.24(0.09)
N4LO+ −151.2(16.) 2.27(0.11) −154.9(20.) 2.25(0.09)
Expt. −151.4 – −151.4 –

22O
LO −235.1 1.55 −219.6 1.69
NLO −159.1(52.) 2.11(0.34) −142.0(64.) 2.28(0.27)
N2LO −200.1(17.) 2.03(0.11) −208.6(21.) 2.07(0.09)
N3LO −166.5(17.) 2.23(0.11) −174.9(21.) 2.19(0.09)
N4LO −163.2(17.) 2.24(0.11) −169.0(21.) 2.21(0.09)
N4LO+ −163.3(17.) 2.24(0.11) −168.3(21.) 2.22(0.09)
Expt. −162.0 – −162.0 –

24O
LO −235.1 1.57 −217.0 1.71
NLO −166.9(55.) 2.11(0.35) −147.8(66.) 2.29(0.27)
N2LO −214.5(18.) 2.04(0.12) −222.4(22.) 2.08(0.09)
N3LO −174.7(18.) 2.25(0.12) −183.9(22.) 2.21(0.09)
N4LO −171.2(18.) 2.26(0.12) −177.2(22.) 2.23(0.09)
N4LO+ −171.5(18.) 2.27(0.12) −176.6(22.) 2.24(0.09)
Expt. −168.5 – −168.5 –

26O
LO −233.2 1.58 −212.4 1.75
NLO −167.0(55.) 2.16(0.39) −147.2(67.) 2.35(0.28)
N2LO −210.3(18.) 2.09(0.10) −216.6(22.) 2.14(0.09)
N3LO −170.8(18.) 2.32(0.12) −178.6(22.) 2.28(0.09)
N4LO −166.9(18.) 2.33(0.12) −171.1(22.) 2.30(0.09
N4LO+ −167.3(18.) 2.34(0.12) −170.8(22.) 2.32(0.09)
Expt. −168.4 – −168.4 –

TABLE VIII. Ground-state energies and point-proton rms-
radii for the oxygen isotopes obtained in the IM-NCSM. Num-
bers in parenthesis indicate the chiral truncation uncertainties
at the 95% confidence level.
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FIG. 12. (Color online) Ground-state energies and point-proton radii for even oxygen isotopes obtained in the IM-NCSM
with SMS interactions from N2LO to N4LO+ with Λ = 450 MeV (left-hand panels) and Λ = 500 MeV (right-hand panels) for
flow-parameter α = 0.08 fm4. The error bands show the chiral truncation uncertainties at the 95% confidence level obtained
with the Bayesian model for N2LO and N4LO+.

servables on Nmax, N ref
max, and the IM-SRG flow param-

eter. As for most ground-state calculations a variation
of the N ref

max truncation parameter has the largest im-
pact on the observables. Therefore, we use the difference
between N ref

max = 0 and 2 to assess the many-body uncer-
tainties, which are approximately 2 MeV for ground-state
energies and 0.05 fm for radii. These uncertainty esti-
mates are confirmed by the explicit comparison of the 14O
ground-state energies reported in Tab. VIII for the IM-
NCSM with the conventional NCSM results presented in
Tab. IV. For all orders and cutoffs we observe excellent
agreement of the two many-body approaches well within
their respective uncertainties.

To assess the uncertainties due to the truncation of
the chiral expansion, we employ the correlated Bayesian
statistical model described in Sec. III C. The interaction
uncertainties are significantly larger than the estimated
many-body uncertainties, therefore, we only show the in-
teraction uncertainties in Fig. 12 as colored bands for
N2LO and N4LO+. In Tab. VIII the interaction un-
certainties for all orders starting with NLO are given in
parentheses.

Let us first discuss the systematics of the ground-state
energies for the two cutoffs shown in the upper panels
of Fig. 12. As expected, the LO interaction does not
provide a realistic description with ground states over-
bound by 50 to 80 MeV (cf. Tab. VIII). But already the
NN interaction at NLO provides energies in a reasonable
range compared to experiment. The energies obtained at

N2LO again show a sizable overbinding and deviate from
the general systematics. A similar effect was already ob-
served for the mid-p-shell isotopes in Fig. 8. Starting
from N3LO the energies are very stable up to the high-
est order—within the estimated uncertainties they agree
across the different chiral orders and the two cutoffs. And
they are in excellent agreement with experiment for all
isotopes. This is remarkable, since the underlying chiral
interactions was determined strictly in the A = 2 and
A = 3 sector, without any information on heavier nuclei.
The lower panels in Fig. 12 show the corresponding re-
sult for point-proton rms radii. Again, the radii at LO are
unrealistically small, but NLO already provides a signifi-
cant improvement. In line with the overbinding observed
when going to N2LO, the radii decrease further. From
N2LO to N3LO we observe a systematic increase of the
radii, which exhausts or even exceeds the N2LO uncer-
tainty band. From N3LO on, the radii are very stable and
consistent within uncertainties across the different orders
and the two cutoff values. While the pattern correlates
with the pattern observed for the ground-state energies,
the converged values of the radii are significantly smaller
than the structure radii extracted from the experimen-
tal charge radii for 16O and 18O—despite the excellent
agreement for the energies.

These trends continue if we proceed to heavier nuclei.
In Fig. 13 we show the ground state energies and the rms
radii of 16O and 24O as well as 40Ca and 48Ca obtained in
single-reference IM-SRG calculations, which correspond
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FIG. 13. (Color online) Ground-state energies and point-
proton radii for doubly-magic oxygen and calcium isotopes
obtained in the IM-SRG with SMS interactions from NLO to
N4LO+ for Λ = 450 MeV (left-hand panels) and Λ = 500 MeV
(right-hand panels) with SRG flow parameter α = 0.08 fm4.
The error bands show the chiral truncation uncertainties at
the 95% confidence level obtained with the pointwise Bayesian
model for N2LO and N4LO+.

to the N ref
max = Nmax = 0 limit of the IM-NCSM for 16O

and 40Ca. Also for the doubly-magic calcium isotopes,
we observe a very nice convergence of the chiral expan-
sion for both energies and radii. As before, N2LO leads
to significant overbinding, but the higher orders stabi-
lize quickly and agree within uncertainties. Though the
ground-state energies are still in reasonable agreement
with experiment, the underestimation of the radii is even
more pronounced. For the calcium isotopes the radii at
the highest chiral orders are by about 0.5 fm too small
compared to experiment, this corresponds to a reduction
of the nuclear volume by almost 50%.

There are obvious limitations in the present calcula-
tions that might explain the systematic deviation for
radii. Starting from N3LO the 3N interaction is incom-
plete and while the additional 3N terms at N3LO do
not introduce additional LECs, the 3N terms at N4LO
come with a set of new 3N LECs. Work is in progress to
derive all 3N contributions at N3LO and N4LO [65–69]
and to compute the corresponding matrix elements in a
partial-wave representation [70]. In order to probe the
sensitivity of ground-state energies and radii to the sub-
leading three-body contributions, particularly the terms
with new LECs at N4LO, we have selectively included
the simplest, spin-isospin-independent contact term at
N4LO [67] with different values of the corresponding LEC
cE1 = −1, 0,+1 on top of the N4LO+ interaction. The re-
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FIG. 14. (Color online) Ground-state energies and point-
proton radii for even oxygen isotopes obtained in the IM-
NCSM with the SMS interaction at N4LO+ for Λ = 450 MeV,
supplemented by the E1 three-nucleon contact term at N4LO
with LEC values cE1 = 0,±1.

sulting ground-state energies and radii for the oxygen iso-
topes obtained in the IM-NCSM are depicted in Fig. 14.
Clearly, these higher-order terms have the potential to
significantly affect energies and radii. It remains to be
seen whether the consistent inclusion of all terms will al-
low for a net change in the radii while keeping the good
reproduction of the ground-state energies.

Another limitation are the missing corrections to the
charge density from exchange terms predicted in chiral
EFT. We are working on the consistent inclusion of these
corrections to the charge densities and to the charge ra-
dius.

V. SUMMARY AND CONCLUSIONS

In this paper we have extended our earlier study [27]
of few-nucleon systems based on the SMS NN potentials
along with the consistently regularized N2LO 3NF by
considering a broader range of Nd scattering observables
and heavier nuclei up to 48Ca. We have also studied
the role of higher-order corrections to the NN interac-
tion in connection with the systematic overbinding trend
for A & 10 nuclei found in our earlier paper using the
SMS N2LO NN potentials [27]. To quantify the contri-
butions of the NN interactions beyond N2LO to various
observables, we performed a series of additional calcu-
lations using the SMS NN potentials at N3LO, N4LO
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and N4LO+ orders of the EFT expansion in combina-
tion with the N2LO 3NF and employing the same pro-
cedure to fix the LECs cD and cE from the 3H binding
energy and the differential cross section in Nd scattering
at E = 70 MeV. Clearly, from the point of view of chiral
EFT, the performed calculations can only be regarded
complete to N2LO due to the missing contributions of
many-body forces beyond N2LO. Yet, these results al-
lowed us to get insights into the convergence pattern of
chiral EFT for light and medium-mass nuclei and to ex-
tend and refine the Bayesian analysis of correlated trun-
cation errors. Moreover, they provide an important con-
sistency check of our previous calculations based on the
SCS and SMS chiral EFT potentials. The main results
of our paper can be summarized as follows:

• We have calculated selected Nd elastic scattering
and breakup observables. The obtained correc-
tions to the neutron-deuteron total cross section
at E = 70 and 135 MeV stemming from the contri-
butions to the NN force beyond N2LO agree well
with expectations based on the power counting, as
revealed by the estimated N2LO truncation errors.
We also found that these corrections significantly
reduce the residual cutoff dependence of the cal-
culated total cross sections. The predictions based
on the NN potentials at N3LO and N4LO+ are con-
sistent with the experimental values within errors.
This conclusion also holds for the differential cross
section and the vector and tensor analyzing pow-
ers AY (d) and AXX − AY Y in elastic Nd scatter-
ing at the considered energy of E = 200 MeV. We
have also calculated the differential cross section
and the analyzing powers AY (N) and AXX for se-
lected breakup configurations at E = 135 and 200
MeV, finding again a satisfactory agreement with
the available experimental data.

• We have calculated the binding energies of the
A = 3 and 4 nuclei using Faddeev-Yakubovsky
equations as well as of selected p-shell nuclei with
4 ≤ A ≤ 14 in the framework of the NCCI ap-
proach using SRG transformed two- and three-
nucleon interactions. As already pointed out in
Ref. [27], the purely N2LO calculations lead to a
systematic overbinding of nuclei with A & 10 for
both considered cutoff values of Λ = 450 MeV and
500 MeV, that increases with A and reaches about
15% for 14O. On the other hand, including the cor-
rections to the NN forces beyond N2LO, the pre-
dicted ground-state energies of all considered nu-
clei are found to be in very good agreement with
the experimental data. We have also calculated
the low-lying (narrow) excited state energies of the
considered p-shell nuclei, which are known to be
strongly correlated [27]. To avoid an overestima-
tion of the truncation uncertainty, we performed a
Bayesian analysis that explicitly takes into account
correlations between energy levels by using Gaus-

sian processes and learning the covariance structure
from the calculations. The larger set of results at
different orders as compared to our earlier paper
Ref. [27] allowed us to infer not only the characteris-
tic variance of the expansion coefficients c̄2 but also
the value of the dimensionless expansion parameter
Q. For both considered cutoffs, the posteriors are
found to be consistent with the prior value Q ∼ 0.3
used in Ref. [27]. All predicted excited state en-
ergies agree with the data within errors, and we
also observed little sensitivity in the spectra to the
higher-order corrections to the NN force.

• We used IM-NCSM to study the ground state ener-
gies and point-proton rms-radii of the even oxygen
isotopes from 14O to 26O, while the correspond-
ing results for the calcium isotopes 40Ca and 48Ca
were obtained using the single-reference IM-SRG
approach. For the ground state energies, the re-
sulting convergence pattern of the chiral EFT ex-
pansion is similar to the one for lighter nuclei. In
particular, the strong overbinding observed when
using both the NN interactions and the 3NF at
N2LO is drastically reduced by taking into account
the contributions to the NN force beyond N2LO.
On the other hand, these corrections still appear
to be insufficient to reproduce the point-proton
radii for oxygen and calcium isotopes, which are
significantly underpredicted. The observed pat-
tern is qualitatively similar to the one reported
in Ref. [71] using a different version of the chiral
EFT NN and 3N interactions in the framework of
self-consistent Green’s function theory. To explore
the impact of higher-order corrections to the 3NF,
we have included one particular short-range term
that contributes to the 3NF at N4LO with the cor-
responding dimensionless LEC set to cE1 = ±1,
see Ref. [26] for a similar study in Nd scattering.
We found sizable contributions to both the ground
state energies and radii, which also show a tendency
to increase with A. These results suggest that the
employed Bayesian model for estimating trunca-
tion uncertainties might become too optimistic for
medium-mass and heavier nuclei, see also Ref. [24]
for similar conclusions and a related discussion. Fi-
nally, it is also worth pointing out that the short-
range isoscalar NN charge density operators were
found to contribute significantly to the deuteron
charge and quadrupole form factors [17, 72], but
their impact on the charge radii of heavier nuclei
and its scaling with A have not been investigated
yet.

Clearly, to shed light on the remaining disagreement for
the radii of medium-mass nuclei it will be necessary to
perform complete calculations beyond N2LO by taking
into account consistently regularized three- and four-
nucleon forces and the corresponding contributions to
the charge density operator. These studies would not
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only provide more accurate predictions for the consid-
ered observables, but also increase the information about
the convergence pattern of the EFT expansion that can
be used to refine the Bayesian truncation model. Work
along these lines is in progress by the LENPIC collabo-
ration.
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105, 054004 (2022).

[39] A. Nogga, A. Kievsky, H. Kamada, W. Glöckle, L. Mar-
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and R. Skibiński, Phys. Rev. C 91, 044001 (2015),
arXiv:1502.02977 [nucl-th].

[71] A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev.
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