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ABSTRACT

The development of sophisticated ab initio methods and the improvement of nuclear inter-

actions derived from chiral effective field theory allow a very precise description of nuclear

bound-state observables. In recent years, the development of ab initio methods that include

the continuum degrees of freedom have made significant progress. Those methods allow the

description of nuclear resonances.

In this work, we develop an ab initio Gamow no-core shell model (GNCSM) framework

for the description of nuclear resonances. The GNCSM is an extension of the NCSM, which

is a very common ab initio method for a precise calculation of bound-state observables.

The GNCSM makes use of the Berggren completeness relation, which enables the use of

single-particle resonance and scattering continuum states in an orthonormal single-particle

basis. As a consequence, the GNCSM Hamilton matrix becomes complex symmetric. The

complex eigenvalues are able to describe the decay rate of nuclear resonances. The matrix

elements for the GNCSM are calculated using an expansion in harmonic-oscillator matrix

elements in order to regulate the infinite single-particle continuum states.

The GNCSM with the Berggren single-particle basis is used to calculate a reference state.

For this reference state, we compute a set of optimized Gamow natural orbitals in order to

enhance the convergence rate in a subsequent GNCSM calculation. Finally, multiple Gamow

natural orbital sets are used to compute a final result with a many-body uncertainty.

The GNCSM framework is applied to resonances of various light nuclei. For some of these

nuclei, we present a more precise calculation than the current spread of experimental results.

Furthermore, we investigate different realistic interactions derived from chiral effective field

theory with respect to their influence on the resonance energy and find that the dependence

on the interaction is negligible compared to the many-body uncertainty of our framework. As

a final application, we study the tetraneutron and find indications for a low-lying resonance.
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ZUSAMMENFASSUNG

Die Entwicklung fortgeschrittener ab initio Methoden und die Verbesserung der Wechsel-

wirkung zwischen Nukleonen, die mithilfe der chiralen effektiven Feldtheorie bestimmt wird,

hat eine präzise Beschreibung von Observablen von gebundenen Kernzuständen ermöglicht.

In den letzten Jahren ist auch die Entwicklung von ab initio Methoden, die das Kontinuum

mit in Betracht ziehen, signifikant fortgeschritten. Mithilfe dieser Methoden ist es möglich

Resonanzzustände in Kernen zu beschreiben.

In dieser Arbeit entwickeln wir ein Gamow No-Core Schalenmodell (GNCSM) Frame-

work für die Beschreibung von Resonanzzuständen. Das GNCSM ist eine Erweiterung des

NCSM, welches eine verbreitete ab initio Methode zur präzisen Berechnung von Observ-

ablen von gebundenen Kernzuständen ist. Dazu nutzt das GNCSM eine von Berggren be-

wiesene Vollständigkeitsrelation, die es ermöglicht aus Streuzuständen und Resonanzen von

Einteilchensystemen eine orthonormale Einteilchenbasis zu erzeugen. Eine Folge dieser

Einteilchenbasis ist, dass die Hamiltonmatrix in der Vielteilchenbasis komplex wird. Die resul-

tierenden komplexen Eigenwerte beschreiben die Zerfallszeit von Resonanzzuständen. Um

die Hamiltonmatrixelemente zu berechnen, werden die Resonanzen und Streuzustände der

Einteilchenbasis in harmonischen Oszillatorfunktionen entwickelt, welche die unendliche

Reichweite dieser Kontinuumszustände einschränken.

Der Resonanzzustand aus der GNCSM-Rechnung mit der Berggren-Einteilchenbasis wird

als Referenzzustand für die Bestimmung einer optimierten Einteilchenbasis, den natürlichen

Orbitalen, verwendet. Diese natürlichen Orbitale beschleunigen die Konvergenz in einer

zweiten GNCSM-Rechnung. Diese GNCSM-Rechnung wird für die natürlichen Orbitale

von mehreren Referenzzuständen durchgeführt und daraus ein finales Ergebnis mit einer

Unsicherheit der Vielteilchenrechnung bestimmt.

Das GNCSM Framework wird für die Berechnung von Resonanzenergien von verschiedenen
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leichten Kernen verwendet. Für einige dieser Kerne sind die experimentellen Ergebnisse

nicht eindeutig, sodass die Unsicherheiten unserer Rechnung kleiner als die Streuung der

experimentellen Ergebnisse ist. In einer weiteren Anwendung untersuchen wir den Einfluss

von verschiedenen nuklearen Wechselwirkungen aus der chiralen effektiven Feldtheorie auf

die Resonanzenergie eines Kernzustands. Dabei stellt sich heraus, dass die Abhängigkeit der

Wechselwirkung im Vergleich zur Ungenauigkeit der Vielteilchenrechnung vernachlässigbar

ist. Als finale Anwendung untersuchen wir das Tetraneutron und finden Anzeichen für einen

Resonanzzustand bei niedrigen Energien.
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INTRODUCTION

The theory of quantum mechanics emerged at the beginning of the twentieth century and

provides the foundation for many of today’s physical fields, including nuclear physics. The

solution of the quantum many-body problem, i.e., the stationary Schrödinger equation, is

one of the main tasks of nuclear structure and reaction theory. As the name already states,

nuclear structure theory aims at a fundamental understanding of the structure of the inner

most part of an atom, the nucleus. This includes the calculation of binding energies, radii, and

electromagnetic observables. Complementary, nuclear reaction theory describes reaction

and decay mechanisms. The impact of nuclear structure theory exceeds the microscopic

region by far and is also important in astrophysics [HWS21; Nun+20; Gre+20; HK17b].

At the end of the lifecycle of a star, it can explode in a supernova [BV21; Kur+22]. The

remnant of such a supernova can be a neutron star, an extremely dense object consisting

mostly of neutrons [LP01; Man20]. A system of gravitationally bound neutrons is impossible

to create in a laboratory and we rely on correct microscopical theoretical description of

neutron matter in order to draw conclusions on the equations of state for a neutron star.

The microscopic description of the interaction between the multi-neutron system inside a

neutron star, is part of current research in nuclear structure theory [IÁA19; Due+22; Fos+17;

Li+19]. The aforementioned quantum many-body problem is key to achieve this goal. It

consists of two main ingredients, a nuclear Hamiltonian and a many-body method to solve

the many-body problem.

The derivation of a nuclear Hamiltonian is a very complicated procedure. The interaction

between nucleons is governed by a residual force of the quarks and gluons inside the nucle-

ons, which interact via the strong and electromagnetic force. After the nuclear interactions
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Introduction

were constructed phenomenologically for many decades in the past [Mac01; VP11; Pie+01],

the development of the effective field theories based on the theory of quantum chromody-

namics allowed a more fundamental derivation of the nuclear Hamiltonian [EM03; ME11;

Epe+19; Eks+15]. Nuclear interactions are called realistic if they are fitted to nucleon-nucleon

scattering data at high precision, typically up to energies of ∼ 350MeV [BNV13].

The second ingredient of the quantum many-body problem is a many-body method that

solves the Schrödinger equation. Before we jump into details of different many-body methods,

we want to define the term ab initio, which translates literally to "from the beginning". We

define ab initio as the solution of the quantum many-body problem [Nav+16]

I. ... for a realistic nuclear Hamiltonian.

II. ... without any uncontrolled approximation.

III. ... with a quantifiable uncertainty.

We are interested in an ab initio description of the spectrum of bound states as well as

resonance and scattering states in the low-energy continuum. Especially, the inclusion of the

continuum proves to be a very challenging task in the development of ab initio methods for

the complete energy spectrum.

The development of ab initio methods for discrete bound states has been very successful in

the past twenty years. In particular, the availability of modern high-performance computers

has allowed the application of a multitude of different methods. Some of the most common

ab initio methods for bound states are the no-core shell model (NCSM) [BNV13; Rot09], the

Faddeev-Yakubovsky equations [LHL88; LC20], the coupled cluster (CC) method [DH04],

the in-medium similarity renormalization group (IM-SRG)[Her+13; GCR16; Her17] and the

Green’s function Monte Carlo method [CBN13]. These methods allow precise ab initio

calculations of bound state observables over a large range of light and medium-mass nuclei.

However, the inclusion of the quantum mechanical continuum poses a huge problem for

these methods, such that they are only able to extrapolate from the discrete bound-state

spectrum towards the continuum [Pie03; LC05].

The inclusion of the continuum enables non-stationary, time-dependent nuclear states,

i.e., resonance states or scattering states. The quantum many-body problem including

continuum states can be solved using the time-dependent Schrödinger equation [Vol09;

OHS14]. Alternatively, we can still use the time-independent, stationary Schrödinger equation

for a complex symmetric Hamiltonian, where the imaginary part of the energy parametrizes

2



the decay time of a resonance. The extension towards the continuum has successfully been

applied to the NCSM, e.g., NCSM with resonating group method [QN08; QN09], NCSM

with continuum [BNQ13a; BNQ13b], the single-state harmonic oscillator representation of

scattering equations [Shi+16b; Shi+16a], and the Gamow NCSM (GNCSM) [Pap+13; Fos+17;

Li+19; Li+21].

In this work, we develop a GNCSM framework for the calculation of nuclear resonance

states. In this approach, we include the continuum degrees of freedom at the level of the

single-particle basis, the so called Berggren basis [Ber68; Lin93]. Berggren was able to prove

that it is possible to normalize single-particle resonance states in the continuum, which

enables the derivation of an orthonormal single-particle basis. Since all the information of

the continuum is already included at the level of the single-particle basis, it can be used in all

calculations that are based on a single-particle basis, e.g. the GNCSM [Fos+17; Li+19; Li+21],

the Gamow IM-SRG [Hu+19] or the Gamow CC [Hag+07].

Formally, the use of the Berggren basis in the GNCSM only affects the standard NCSM

approach for bound states at a few steps. The use of the Berggren single-particle basis results

in a complex Hamilton matrix in the GNCSM. Thus, the solution of the complex eigenvalue

problem becomes computationally more demanding. In order to minimize the many-body

model space dimension, we optimize the Berggren single-particle basis throughout the

calculations using a set of Gamow natural orbitals. Natural orbitals (NAT) were already used

successfully in the GNCSM [Fos+17; Li+19] and bound-state methods, e.g., the NAT-NCSM

[TMR19], the NAT-IM-SRG [Vob20; Hop+21], and the NAT-CC [Nov+20].

This work is structured in three main parts. In part I, we introduce the basics necessary to

build and apply the GNCSM framework. We start with the setup of the nuclear Hamiltonian

in chapter 1, which includes an introduction to realistic interactions derived from chiral

effective field theory. Chapter 2 introduces the NCSM for bound states, which presents the

foundation for the development of the GNCSM. The definition and computation of the single-

particle Berggren basis, which includes the continuum information, is done in chapters 3

and 4, respectively.

Afterwards, we move on towards the development of the GNCSM framework in part II. The

complete single-particle basis is computed in chapter 5 and the necessary matrix elements

for the calculation of the Hamilton matrix for the GNCSM are calculated in chapter 6. Finally,

we are able to perform and investigate the first GNCSM calculations in chapter 7. In order to

optimize our calculations we calculate a set of Gamow natural orbitals and use them for a

second GNCSM calculation for our final results in chapter 8.
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Introduction

The final part III contains the first applications of our GNCSM framework. We start our

calculations for a set of light nuclei, which have a ground or excited-state resonance, in

chapter 9. Afterwards, we analyze a set of realistic nuclear interactions, which are derived

from chiral effective field theory, in chapter 10. As a final application, we investigate the tetra-

neutron, which has gained increased interest after the very recent detection of a correlated

four-neutron system [Due+22], in chapter 11.
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BASICS
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1
NUCLEAR HAMILTONIAN

The main goal in nuclear structure theory is to solve the time-independent many-body

Schrödinger equation

Ĥ |Ψn〉 = En |Ψn〉 (1.1)

with the nuclear Hamiltonian Ĥ , the eigenstates |Ψn〉 and the eigenvalues En . In order to

solve this many-body problem we need to define a nuclear Hamiltonian and construct a

many-body method. The latter will be discussed in the chapter 2. In this chapter, we will

focus on the definition and construction of the translationally invariant intrinsic nuclear

Hamiltonian [HR09]

Ĥint = T̂int + V̂ (1.2)

with the intrinsic kinetic energy T̂int and an intrinsic nuclear interaction V̂ .

For the intrinsic kinetic energy operator we use the following two representations later on

[HR09]

T̂int = T̂ − T̂cm = 1

2A

∑
i< j

(
p̂i − p̂ j

)2

mN
(1.3)

=
(
1− 1

A

)∑
i

p̂2
i

2mN
− 1

2AmN

∑
i< j

p̂i · p̂ j (1.4)

with the single-particle kinetic energy operator p̂, the mean nucleon mass mN and the particle

7



Chapter 1. Nuclear Hamiltonian

number A. The first representation consists of a pure two-body operator whereas the second

representation is a sum of a one-body and a two-body operator.

The derivation of the nuclear interaction V̂ is more complicated and a major part of current

research [EMN17; Hüt+20; Mar+21]. The complications originate from the fact that the

building blocks of nucleons are quarks and gluons and their interaction is characterized by

the theory of quantum chromodynamics (QCD). Because of the asymptotic freedom of the

QCD coupling strength, it is not possible to treat the QCD interaction perturbatively in the

low-energy regime of nuclear physics. As a workaround, one uses that quarks and gluons are

confined in hadrons and builds a residual interaction of quarks and gluons in order to describe

the interaction between nucleons. One type of nuclear interactions are phenomenological or

empirical interactions. Prominent representatives for phenomenological interactions are the

Argonne V18 [WSS95; VP11] and the CD-Bonn [Mac01] nucleon-nucleon interactions as well

as the Illinois three-nucleon interactions [Pie+01]. A more fundamental and systematic way

to define a nuclear interaction is to formulate an effective field theory (EFT) of the underlying

fundamental theory of QCD. The most popular EFT in nuclear structure physics is the chiral

EFT (χEFT) [EM03; ME11; EMN17].

1.1. Chiral Effective Field Theory

The goal of χEFT is to build an effective theory with nucleons and pions as effective degrees of

freedom based on QCD. The underlying quark-gluon structure of nucleons and pions cannot

be resolved in the energy regime of nuclear structure theory. The range of the nuclear energy

regime is characterized in multiple ways and we only mention some of them here [EHM09].

From empirical interactions we know that the long-range part of the nuclear interaction is

characterized by the one-pion exchange which corresponds to energies at the order of the

pion mass ∼ 140MeV. Second, we know that the binding energy per nucleon is much smaller

than the pion mass at the order of (1 to 8)MeV. Schematically speaking, the χEFT zooms

out of the short-distance microphysics of the fundamental quark-gluon interaction of QCD.

Compared to phenomenological interactions this approach preserves the symmetries and

constrains of the underlying theory of QCD. From a practitioners view, the χEFT has two

important characteristics. First, it includes many-body forces systematically and, second, it

arranges different contributions to the interaction by their importance. In the context of ab

initio this means, that it is possible to systematically improve the interaction order by order by

including more terms to the interaction. Since we expect the orders to become less important

8



1.2. Similarity Renormalization Group

in a perturbative sense, this allows to estimate an uncertainty for the residual contribution to

the interaction. We will discuss the power counting scheme and different families of chiral

interactions in more detail in chapter 10. For a formal insight and an in-depth derivation of

interactions from χEFT we refer the reader to [ME11; HK17a].

1.2. Similarity Renormalization Group

The nuclear interaction has a strong short-range repulsion which is also described as short-

range correlations and it has a strong tensor-force contribution [BFP07]. As a consequence it

generates many-body wave functions that are highly correlated. In the subsequent many-

body method this results in large model spaces needed in order to obtain converged results

(see chapter 2).

The similarity renormalization group (SRG) approach aims to enhance the convergence

speed in subsequent many-body calculations by pre-diagonalizing the nuclear Hamiltonian

[BFP07; Fur12; RRH08]. Formally, the SRG transformation is a continuous unitary transfor-

mation

Ĥα = Û †
αĤ0Ûα (1.5)

with the evolved Hamiltonian Ĥα, the unitary transformation operator Ûα and the flow

parameter α. As boundary conditions, we use the initial or bare interaction Ĥ0 and Û0 = Û †
0 =

1 for α= 0. Calculating the derivative with respect to α yields the flow equation

d

dα
Ĥα = [

η̂α, Ĥα

]
, (1.6)

with the generator η̂α

η̂α =
(

d

dα
Ûα

)
Û †
α =−η̂†

α. (1.7)

The choice of the generator will determine the behavior of the flow equation. A common

choice for the generator is

η̂α = m2
N

[
T̂int, Ĥα

]
(1.8)

with the mean nucleon mass mN. This generator pre-diagonalizes the Hamiltonian Ĥα in the

momentum-space representation.

Figure 1.1 shows the matrix representation of an NN interaction in momentum space

for the initial Hamiltonian and a SRG evolved Hamiltonian. During the transformation the

9



Chapter 1. Nuclear Hamiltonian

0 1 2 3 4
q ′ in fm−1

0

1

2

3

4

q
in

fm
−1

0 1 2 3 4
q ′ in fm−1

0

1

2

3

4

q
in

fm
−1

-80 -60 -40 -20 0

SRG

evolution

α= 0.0fm4 α= 0.32fm4

VNN in MeV

FIGURE 1.1.: Matrix representation of the 3S1 channel of the deuteron partial wave for

the bare interaction with α= 0.0fm4 (left) and the SRG evolved interaction

for α = 0.32fm4 (right). The SRG evolution is performed in momentum-

space representation with relative momenta q and q ′. The used interaction

is the chiral interaction by Entem, Machleidt and Nosyk at N3LO with a

cutoff ofΛ= 500MeV [EMN17].

off-diagonal matrix elements are suppressed. The kinetic energy stays unchanged throughout

the SRG evolution, since it commutes with the generator.

A downside of the SRG evolution are so called induced many-body forces. During the

SRG evolution of the Hamiltonian the commutator relation in the flow equation produces

contributions of higher particle ranks to the interaction. This can already be seen from the

first step ∆α in the evolution of the flow equation for an initial two-body Hamiltonian

Ĥ∆α = Ĥ0 +∆α m2
N

[[
T̂int, Ĥ0

]
, Ĥ0

]
. (1.9)

The expansion of the commutator contains products of two-body operators which results in

higher rank forces. The impact of the induced many-body forces becomes larger for larger

flow parameters α. Depending on the application we only use the NN or NN+3N forces in

the final interaction and neglect the induced many-body forces with a higher particle rank.

This results in an error to the many-body calculation which is traded off for the enhanced

convergence speed.
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2
NO-CORE SHELL MODEL

The no-core shell model (NCSM) has proven to be a very powerful ab initio method in nuclear

structure theory [BNV13; Var+09; Nav+09]. In the standard formulation, it is able to calcu-

late numerically exact eigenvalues and eigenvectors of the time-independent Schrödinger

equation for bound states of light nuclei in an ab initio manner. This means we can use

realistic interactions and obtain results with a controlled approximation that allows us to

quantify a theoretical uncertainty [Knö+23]. However, the standard NCSM has two limitations.

Firstly, the model space dimension grows factorially with the nuclear mass number, setting

a computational limit to light nuclei. Secondly, the NCSM is limited to the description of

bound states.

In the past decade, there have been different approaches that either optimize the NCSM or

combine it with other known many-body methods to build so called hybrid methods in order

to partially remedy the limitations. Table 2.1 shows an overview of existing extensions to the

NCSM. We will start with a short introduction to methods that extend the NCSM to heavier

nuclei, and afterwards focus on the extensions towards many-body resonance and scattering

states.

On the side of the extensions towards heavier nuclei, the NCSM with natural orbitals (NAT-

NCSM)[TMR19; Con+17; Con17] uses an optimized single-particle basis in order to enhance

the convergence speed of the NCSM calculations. An optimization of the many-body model

space is achieved by the so called importance-truncated NCSM (IT-NCSM)[Rot09] that uses

11



Chapter 2. No-Core Shell Model

extension beyond extension beyond

light nuclei bound states

basis optimization
NAT-NCSM

GNCSM
IT-NCSM

hybrid methods
NCSM-PT NCSM/RGM

IM-NCSM NCSMC

TABLE 2.1.: Classification of NCSM extensions and the respective limitation it lifts. For

further information see the text.

an a priori estimate for the importance of the many-body basis states. This allows for a

restriction of the model space to the most relevant many-body basis states. Since these

two optimizations act on separate parts of the method they can be used simultaneously.

Considering hybrid methods, we can combine the NCSM with other many-body methods in

order to overcome most of their individual restrictions and retain most of their advantages.

One of these hybrid methods is the perturbatively-improved NCSM (NCSM-PT)[Tic+18],

which combines the advantage of highly correlated eigenstates from the NCSM with the

perturbative corrections for very large model spaces. Another method is the in-medium

NCSM (IM-NCSM)[Geb+17], which combines the multi-reference in-medium similarity

renormalization group with the NCSM.

On the side of hybrid methods extending the NCSM towards resonance and scattering

states, the NCSM with the resonating group method (NCSM/RGM) is able to describe the

scattering of a binary cluster system [QN08; QN09; NRQ10]. The eigenstates of the clusters

are calculated using the NCSM, whereas the relative motion of the two clusters with particle

numbers a and (A −a) is described within the RGM. This approach has been successfully

applied to nucleon-nucleus scattering, especially if the nucleus is well bound and only a few

NCSM eigenstates are needed to obtain converged results. This hints at the problems of the

NCSM/RGM if one or even both of the binary clusters are weakly bound and there exist a

lot of coupled channels in the reaction which cannot be described by a two cluster system

but rather by an A-body nucleus. This functionality was added in the so called NCSM with

continuum (NCSMC), which includes eigenstates of the A-body system in addition to the

binary cluster states [BNQ13a; BNQ13b; Lan14]. This method has successfully been applied

12



2.1. Basic Concept

to weakly bound nucleon-nucleus scattering, e.g., n-6He and n-8Be scattering.

In this thesis, we access many-body resonance states by using an optimized single-particle

basis namely, the Berggren basis. This basis already includes information on the continuum

on the level of single-particle states. With this basis we can solve the matrix eigenvalue

problem of a complex symmetric Hamiltonian obtaining many-body resonance energies

and eigenstates. The Berggren basis was already applied in the Gamow shell model (GSM)

[Mic+02; Mic+03; Mic+08] as well as first applications in the NCSM with pure nucleon-nucleon

interaction called the Gamow NCSM (GNCSM) [Pap+13; Li+19; Li+21]. Since we already

include the the continuum in the many-body basis through the single-particle physics, we

can naturally calculate the resonance states in the NCSM framework without any additional

effort like the RGM. The concept of the NCSM is unchanged as only the single-particle basis

is exchanged and the eigenvalue solver is modified in order to solve a complex symmetric

eigenvalue problem.

This chapter introduces the basic concepts and the setup of the many-body model space of

the NCSM. Afterwards, we show the impact of an alternative single-particle basis to optimize

the convergence speed of the NCSM calculation. Even though we introduce the standard

NCSM formulation here, the formulas and model space definitions used will still prove to be

correct for the extension towards the GNCSM with the inclusion of the Berggren basis. We

will discuss the necessary changes in chapter 7 later on.

2.1. Basic Concept

In the NCSM, the basis-independent eigenvalue problem in (1.1) is rewritten into a matrix

eigenvalue problem using a complete set of Slater determinants {|Φi 〉}
∑

i
〈Φ j |Ĥ |Φi 〉 〈Φi |Ψn〉 = En 〈Φ j |Ψn〉 . (2.1)

This matrix eigenvalue problem can be solved numerically and yields the eigenvalues En and

the expansion coefficients of the eigenstates

|Ψn〉 =
∑

i
Cni |Φi 〉 . (2.2)

The Slater determinants are anti-symmetrized product states

|Φ〉 = |s1s2s3...sA〉a =
p

A! Â |s1s2s3...sA〉 (2.3)

13



Chapter 2. No-Core Shell Model

with the antisymmetrizer Â [RS80] and single-particle basis states
{|s〉 =

∣∣nl j m j mt
〉}

. The

collective index unites the radial quantum number n, the orbital angular momentum l , the

total angular momentum j , its projection m j and the isospin projection mt . Since we only

consider nucleons with spin s = 1/2 and isospin t = 1/2, we omit these quantum numbers in the

collective index. The standard choice for the single-particle basis is the harmonic oscillator

(HO) single-particle basis which offers two advantages. First, the eigenvalue problem of the

single-particle HO Hamiltonian can be solved analytically and has analytic transformations

from the spherical momentum basis as well as between single-particle coordinates and

relative and center-of-mass coordinates. Second, the eigenstates of the nuclear Hamiltonian

can factorize into a relative and a center-of-mass part if we use the so called Nmax truncation,

which is introduced in the next section. The HO potential has a free parameter which

characterizes the strength of the potential, and therefore the range of the single-particle wave

functions. This free parameter is usually described as the HO frequencyΩ or the HO length a,

which are related via

a =
√

ℏ
mNΩ

. (2.4)

The range of the wave functions becomes larger for large HO lengths or small HO frequencies,

respectively and vice versa. In this thesis, we redefine the HO frequency as ℏΩ and use it to

characterize the HO single-particle basis.

2.2. Model Space

The full Hilbert space as well as the many-body basis representation of Slater determinants is

infinite dimensional, which makes it impossible to calculate an exact solution of the many-

body Schrödinger equation numerically. Hence, the matrix eigenvalue problem of the NCSM

is solved in a finite model space. The truncation scheme is built in such a way that an increase

of the truncation parameter leads to an increase of the model space size. The goal is to reach

convergence with respect to the truncation parameter. This means that an increase of the

truncation parameter does not lead to a change in the observables. Before taking a closer look

at the truncation schemes used later in this thesis, we want to resume to the consequences

of the symmetries of the nuclear Hamiltonian, which can be exploited in the setup of the

many-body Slater determinant basis.

Symmetries The nuclear Hamiltonian is rotationally invariant and parity conserving. The

first property also implies that the eigenvalues are independent of the total angular momen-
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2.2. Model Space

tum projection. We can use these symmetries and fix the desired total angular momentum

projection quantum number M J and parity π for the calculation in order to reduce the model

space size. The Slater determinants are eigenstates to the total angular momentum projection

operator Ĵz with eigenvalues

M (|Φ〉) =
A∑

i=1
mi . (2.5)

Since we know that the eigenvalues of the nuclear Hamiltonian are independent of the

total angular momentum projection, we can restrict the Slater determinant basis to Slater

determinants with a fixed value for M J . Similarly, the Slater determinants are eigenstates of

the parity operator π̂ with eigenvalues

π (|Φ〉) =
A∏

i=1
(−1)li . (2.6)

We can use this property to divide the calculation of the nuclear spectrum in two, one

calculation for each parity since it is computationally advantageous to solve the eigenvalue

problem in two disjunct subspaces. The reason for that is, that the solution of an eigenvalue

problem for a model space dimension d scales with O
(
d 3

)
. Hence, the diagonalization

of two subspaces with different parities and smaller basis dimension is computationally

advantageous, especially if we are only interested in the results for a single parity.

The symmetries are used for all calculations as they are independent of any truncation

scheme. In the following, we discuss two different truncation schemes which will be com-

bined in the GNCSM later on.

Truncation In case of the standard NCSM we truncate the model space by a maximum

number of HO excitation quanta Nmax allowed in a Slater determinant relative to a reference

Slater determinant. Since all nucleons can be excited, they are active degrees of freedom,

which is one of the differences to shell-model calculations with a frozen core. We define the

number of excitation quanta N of a Slater determinant as

N (|Φ〉) =
A∑

i=1
ei −

A∑
i=1

eref
i (2.7)

with the single-particle energy quantum number e = 2n + l . The energy eref describes the

single-particle energies in the reference Slater determinant, which is a Slater determinant

with the smallest possible HO energy. This definition of the Nmax truncation stems from

the use of the harmonic oscillator single-particle basis. The complete model space in the
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e=0

e=1

e=2

e=3
n p n p

FIGURE 2.1.: Schematic representation of a 4He reference Slater determinant on the

left and an excited Slater determinant on the right with a total excitation

energy of N = 4 or T = 2. This Slater determinant is part of the model space

for Nmax ≥ 4 or Tmax ≥ 2, respectively.

standard NCSM is defined by

M (Nmax, M J ,π) = {|Φ〉 : N (|Φ〉) ≤ Nmax, M (|Φ〉) = M J , π (|Φ〉) =π
}

. (2.8)

Figure 2.1 shows a schematic representation of the reference Slater determinant and an

excited Slater determinant with N = 4 which would be included in the model space for

Nmax ≥ 4. Since the full Hilbert space is covered for Nmax →∞, we can study the convergence

behavior of the eigenvalues and expect to receive a converged, exact result for sufficiently

large Nmax. This property asserts the ab initio behavior of the NCSM where the Nmax is the

control parameter.

An example for NCSM calculation using SRG evolved and unevolved interactions from

χEFT is shown in figure 2.2. In case of 4He, the ground-state energy for the evolved interaction

is converged at Nmax = 10, whereas the ground-state energy for the unevolved interaction

does not reach convergence for the calculated Nmax sequence. We can already see that

the converged ground-state energy for the unevolved interaction is smaller than the result

from the evolved interaction because the convergence with respect to Nmax is decreasing

monotonously. The deviation of the ground state energies for the evolved interaction is

a consequence of the induced many-body contributions in the SRG evolution, which we

neglect beyond the three-body level.

For 4H, we can see that the ground-state energies for both interactions are not converged.

The reason why the SRG works better for the ground-state energy of 4He compared to the

ground-state energy of 4H can be explained as follows. The SRG evolution mainly suppresses

16



2.2. Model Space
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FIGURE 2.2.: Calculation of the ground state energies of 4He and 4H in the NCSM with

respect to the model space truncation parameter Nmax for an unevolved

interaction with α= 0.0fm−4 ( ) and a SRG evolved interaction with α=
0.08fm−4 ( ). The interaction used is a chiral NN+3N interaction [EMN17;

Hüt+20] at N3LO with a non-local regulator function and a cutoff value

of Λ= 500MeV. The HO basis uses the HO frequencies ℏΩ= 40MeV and

20MeV for the unevolved and evolved interactions for 4He, respectively, as

well as ℏΩ= 20MeV and 12MeV for the unevolved and evolved interactions

for 4H, respectively.

short-range corrections, hence, it has an impact on the short-range part of the wave function.

The ground state of 4He is strongly bound and has a small mass radius. On the other side, the

ground state of 4H is weekly bound and has a larger mass radius. Consequently, it is necessary

to include Slater determinants with large radii in the model space in order to represent the

ground state of 4H. This means we have to use large Nmax truncations to describe the 4H

ground state. This also explains why we use different HO frequencies for the SRG evolved and

unevolved interaction in figure 2.2. In the complete Hilbert space, the converged result for

an observable is independent of the HO frequency. However, the model-space convergence

behavior of every observable depends on the HO frequency such that we can optimize the HO

frequency for every calculation in order to get the best converge behavior. For the unevolved

interactions, we need a high resolution in the short-range part of the basis states in order to

describe the short-range correlations, which means small HO lengths or large HO frequencies,

respectively. On the other hand, the SRG evolved interactions do not show strong short-range

correlations and we get basis states with a larger HO lengths or smaller HO frequencies,
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Chapter 2. No-Core Shell Model

respectively.

Nevertheless, the SRG evolution still speeds up the convergence of the ground-state energy

of 4H. It is even more important to use SRG evolved interaction to describe heavier nuclei

for which it is not possible to calculate results for larger Nmax. In these cases, we rely on the

SRG transformation to decrease the many-body uncertainty at the cost of a higher interaction

uncertainty caused by the induced many-body contributions.

A different approach to truncate the model space is to truncate the number of particle-hole

excitations allowed in a Slater determinant. The Tmax truncation sets the maximum number

of particle-hole excitations beyond the HO single-particle shells that are not occupied in

the reference Slater determinant. Additionally, we have to apply a single-particle energy

truncation emax parameter in order to obtain finite model spaces. In case of the excitation

shown in figure 2.1, the excited Slater determinant on the right-hand side corresponds to

T = 2 since one neutron and one proton occupy a single-particle shell that is not occupied in

the reference Slater determinant on the left. Similar to the Nmax truncation, the full Hilbert

space is covered for emax →∞ and Tmax equal to the mass number A.

In the GNCSM, we will define a combined truncation consisting of an Nmax truncation and

a slightly adapted version of the Tmax truncation.

2.3. Center-of-Mass Spuriousity

Physical observables like the energy spectrum or electromagnetic transitions of nuclei are

independent of the center-of-mass motion of the nucleus. Hence, the nuclear Hamiltonian is

translationally invariant, but the many-body basis in the NCSM which is constructed from

Slater determinants is not translationally invariant in general. One exception is a model space

spanned by HO Slater determinant basis with an Nmax truncation [BNV13]. In this case it is

possible to ensure that the NCSM eigenstates separate into an intrinsic and a center-of-mass

part

|Ψ〉 = |Ψint〉⊗ |Ψcm〉 . (2.9)

In order to shift the eigenstates with center-of-mass excitations out of the energy spectrum,

we can add a center-of-mass Hamiltonian to the intrinsic Hamiltonian that only acts on the

center-of-mass part of the wave function and keeps the intrinsic part of the wave function

unchanged. The center-of-mass Hamiltonian reads

Ĥcm = 1

2m Â
P̂

2
cm + m ÂΩ2

2
X̂

2
cm − 3

2
ℏΩ (2.10)
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with the center-of-mass momentum P̂ cm and the center-of-mass coordinate X̂ cm[RGP09].

The center-of-mass Hamiltonian is added as so called Lawson term

Ĥ(λ) = Ĥint +λcmĤcm, (2.11)

where λcm controls the strength of the center-of-mass Hamiltonian [RGP09].

For a different single-particle basis, the exact separation of the center-of-mass and the

intrinsic part of the eigenstates is only possible in the full Hilbert space. We can still use the

center-of-mass Hamiltonian for different single-particle basis sets and truncations in order

to shift eigenstates with an excited center-of-mass part upwards in the spectrum. However,

by including the center-of-mass Hamiltonian to the intrinsic Hamiltonian, the eigenvalue

problem is altered, which can result in wrong results for the intrinsic energies if the eigenstates

do not separate exactly.

2.4. Natural Orbitals

At first glance, the choice of the underlying single-particle basis seems to be not very im-

portant as for Nmax → ∞ the solution of the many-body problem is independent of the

underlying Slater determinant basis, i.e., the single-particle basis the Slater determinants

are constructed from. However, the model space sizes to obtain converged results differ for

different single-particle basis sets.

From a technical point of view the HO basis is advantageous compared to any other single-

particle basis because we can use the analytic properties of the wave function and the basis

transformations between relative and absolute coordinates. However, the HO single-particle

states exhibit a Gaussian falloff, whereas the many-body wave function has an exponential

falloff. This can lead to a slow convergence rate, and thus large model spaces are needed to get

converged results in the NCSM calculation. In the past years, multiple sets of single-particle

basis states have been used to perform NCSM calculations [Con+17; TMR19].

One possible ansatz to obtain a physically motivated single-particle basis is to calculate

natural orbitals. Natural orbitals are the eigenstates of an one-body density matrix. The

one-body density matrix elements for a many-body state |Ψref〉 are

ρi j = 〈Ψref|â†
i â j |Ψref〉 (2.12)

with the single-particle creation and annihilation operators â† and â, respectively. Thus, the

natural orbitals depend on the choice of the many-body state |Ψref〉. In recent years, two
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FIGURE 2.3.: Comparison of the HO ( ) and NAT ( ) single-particle basis on the con-

vergence behavior of the ground-state energy for 4He and 4H. The HO

frequencies for the HO calculation are ℏΩ= 20MeV and ℏΩ= 12MeV for
4He (left) and 4H, respectively. The NAT basis is independent of the HO

frequencies and uses ℏΩ= 20MeV for the underlying HO basis. The interac-

tion used is the same as in figure 2.2 with a SRG evolution of α= 0.08fm−4.

The center-of-mass strength parameter is λcm = 0.3 for the NAT basis.

different approaches were used to calculate the many-body state. Both approaches attempt

to include physical properties from a large HO model space into the newly formed basis set

of natural orbitals.

The first approach uses many-body perturbation theory to calculate a second-order pertur-

bative correction to the Hartree-Fock ground-state Slater determinant which is used as the

many-body reference state for the calculation of one-body density matrix [TMR19]. Figure

2.3 shows the impact on the convergence behavior compared to the HO basis. In case of
4He the convergence is sped up by one step in the Nmax convergence, however, for 4H the

convergence does not differ from the HO basis significantly. The natural orbitals perform

better for heavier and well bound systems which is not the case for 4H.

The second approach uses a many-body eigenstate from a NCSM calculation for the largest

model space accessible in the HO basis [Con+17]. Afterwards, the calculation is repeated

using the natural-orbital basis of this eigenstate. We will use a similar ansatz in order to

calculate a natural orbitals basis from a GNCSM calculation later on.

20



3
THE BERGGREN BASIS

The aim of the Berggren basis is to include resonance and scattering states with a complex

single-particle energy into the single-particle basis [Ber68]. Including those resonance and

scattering states requires a new mathematical framework to work in because the Hilbert space

is not able to describe unbound states. The new space we will use is a rigged Hilbert space,

which also defines a new inner product. We do not discuss the mathematical framework of

rigged Hilbert spaces in detail here, but rather give a short introduction to resonance states

and the emerging difficulties, how they are resolved and how this affects our calculations

later on. Note, in this section we will only demonstrate that it is formally possible to set up an

orthogonal and complete Berggren basis [Ber68]. The actual framework to calculate the basis

states will be the R-matrix method discussed in chapter 4.

3.1. Resonant and Capturing States

We start from the time-independent radial Schrödinger equation for a single particle

u′′
l (k,r )− l (l +1)

r 2 ul (k,r )− 2m

ℏ2 v(r )ul (k,r ) =−k2ul (k,r ) (3.1)

with the orbital angular momentum quantum number l , mass m, Planck’s constant ℏ, and

radial wave functions ul (k,r ). The one-body mean-field potential

v(r ) = vN(r )+ vC(r ) (3.2)
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Chapter 3. The Berggren Basis

consists of a finite range nuclear potential vN and a Coulomb potential vC. Resonant states

have a purely outgoing wave behavior for large distances as stated by Siegert [Sie39] and fulfill

the boundary conditions

ul (k,0) = 0, (3.3)

ul (k, a)O′
l (ka)−u′

l (k, a)Ol (ka) = 0, (3.4)

where a is a finite radius greater than the range of the nuclear part of the potential

vN(r ) = 0, r ≥ a. (3.5)

The wave function Ol (kr ) is the outgoing solution of equation (3.1) for a particle in a Coulomb

field which is asymptotically proportional to

Ol (kr ) ∝ exp

(
i

(
kr − l

2
π

))
. (3.6)

An equivalent solution can be defined for capturing states with purely incoming solutions

ũ(k,r ) and the boundary conditions

ũl (k,0) = 0, (3.7)

ũl (k, a)I ′l (k̃a)− ũ′
l (k, a)Il (k̃a) = 0, (3.8)

where Il (k̃r ) is the incoming solution of equation (3.1) for a particle in a Coulomb field. It is

possible to show that the wave functions u(k,r ) and ũ(k,r ) as well as the momenta k and k̃

fulfill the following properties

ũ(k,r ) = u(k,r )∗, (3.9)

k̃ =−k∗, (3.10)

Im(k) = Im(−k∗) < 0, Re(k) ̸= 0. (3.11)

Hence, the momentum can be parametrized as

k = kR − iκ, κ> 0. (3.12)

The energy of a resonance has a negative imaginary part which is commonly parametrized

via

E = ER − i
Γ

2
. (3.13)
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These two parametrizations lead to two more characteristics of resonance states. First,

inserting this energy into the time evolution operator acting on a resonance eigenstate |u(t )〉
yields

|u(k, t )〉 = exp

(
− i

ℏ
Ĥ t

)
|u(k,0)〉 = exp

(
− i

ℏ
ER t

)
exp

(
− Γ

2ℏ
t

)
|u(k,0)〉 (3.14)

with the exponential decay rate depending on the imaginary part of the energy which con-

nects Siegert’s definition of resonance states as outgoing wave functions [Sie39] with Gamow

states [Gam28].

A problem arises with the second characteristic of resonance states, they are divergent for

large distances

ul (k,r ) ∝ exp

(
i

(
kR r − l

2
π

))
exp(κr ). (3.15)

However, Berggren used a different inner product for a resonance, capturing, and bound

states and was able to show that they are orthogonal and normalizable to

〈ũ(k) j |u(k)i 〉 = δi j . (3.16)

This inner product is different from the inner product in the traditional Hilbert space. The

expanded space which contains resonance and scattering as well as bound states is called

the rigged Hilbert space (RHS) [GV64; Mic+08], which consists of a biorthogonal basis, i.e.,

different single-particle basis sets for the bra and the ket space. Note, that equation (3.9)

yields a relation between incoming and outgoing states and it appears that the only obvious

difference to the traditional framework of the Hilbert space is that the radial part of the wave

function in the dual Hilbert space is equivalent to the radial part in the Hilbert space. The

norm of resonance states is

N 2
l =

∫ ∞

0
ũl (k,r )∗ ul (k,r ) dr =

∫ ∞

0
ul (k,r )2dr, (3.17)

which looks similar to the norm of bound states in the traditional Hilbert space. There are

different ways to regularize the norm integral for resonance states. Berggren used the ansatz

of Zel’dovich [Ber68] to prove that it is possible to regularize resonance states. We use the

exterior complex scaling method in order to regulate the resonance states in section 4.4

[GV71].

3.2. Completeness Relation

The last ingredient for a complete single-particle basis is a proper completeness relation. A

single-particle basis consisting of bound and real energy scattering states was already defined
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FIGURE 3.1.: Schematic representation of two possible contours in the complex momen-

tum plane. On the left, the Newton contour (N ) includes bound states

( ) and a real energy continuum. On the right, the Berggren contour (L )

additionally includes resonances ( ) in the fourth quadrant of the complex

momentum plane and includes complex scattering states as well.

by Newton [Lin93] using the contour shown in the left-hand side of figure 3.1. Berggren was

able to define a different path L of the contour departing from the real axis. The contours

are evaluated using Cauchy’s theorem with the bound and resonance states as poles of the

S-matrix. The final Berggren completeness relation is given by

1̂=
∑

n=b,r

|un〉〈ũn |+
1

π

∫

L
|u(k)〉〈ũ(k)|dk, (3.18)

where we sum over all bound (b) and resonance (r) states and integrate over the scattering

continuum along the path of the contour L shown in figure 3.1. In practical applications the

integral is discretized yielding

1̂=
∑

n=b,r

|un〉〈ũn |+
∑

i
wi |u(ki )〉〈ũ(ki )| (3.19)

with the discretized momenta ki and their corresponding weights wi , which formally results

in a discrete completeness relation [Mic+08].
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4
R-MATRIX METHOD

With the Berggren completeness relation at hand, the formal ground is set to build a single-

particle basis of bound, resonance and scattering states. In this chapter, we introduce the

R-matrix method which is a useful tool to calculate the relative interaction of two subsystems

or clusters [DB10]. These systems can be single nucleons or nuclei. In case of the NCSM/RGM

method mentioned earlier, the R-matrix is successfully used to describe the interaction

between a well bound (A−1)-particle nucleus and a single nucleon [QN08; QN09; NRQ10].

In our case we intend to use the single-channel R-matrix method to construct a set of

single-particle Berggren states. The formal description follows Descouvemont et al. [DB10]

who provide a detailed review on the R-matrix method and its applications.

4.1. Basics

In order to obtain a single-particle basis, we use the R-matrix method to describe the relative

wave function of a single nucleon and the residual (A −1) particle nucleus. The one-body

mean-field potential is split into a nuclear potential VN as the finite range interaction gener-

ated by the (A−1)-particle nucleus and the Coulomb potential, which is treated explicitly. The

Coulomb potential influences the asymptotic wave function, which we calculate analytically.

The radial Schrödinger equation for the partial wave l reads

Hl ul (k,r ) =
[(

A−1

A

)(
− ℏ2

2mN

d 2

dr 2 + ℏ2l (l +1)

2mNr 2

)
+VC(r )+VN(r )

]
ul (k,r ) = Eul (k,r ). (4.1)
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Chapter 4. R-Matrix Method

The energy is connected to the momentum via

E =
(

A−1

A

) ℏ2k2

2mN
. (4.2)

Note, we do not use a reduced mass in our formulation of the kinetic energy, but rather use

the coordinate representation of the one-body part of the intrinsic kinetic energy operator

defined in equation (1.4). This specific choice is helpful later on for the calculation of the

nuclear matrix elements in chapter 6.

In the R-matrix approach, we split the coordinate space into an internal and an external

region. The matching point is called channel radius Rc and it has to be chosen large enough

such that

VN(r ) = 0,r ≥ Rc. (4.3)

We perform the calculation of the internal and external solutions of the wave function

ul (k,r ) =




uint
l (k,r ), if r ≤ Rc,

uext
l (k,r ), if r > Rc,

(4.4)

separately and match them at the channel radius

uint
l (k,Rc) = uext

l (k,Rc) , (4.5)

u
′ int
l (k,Rc) = u

′ ext
l (k,Rc) . (4.6)

In the external region, the wave functions can be calculated analytically since we assume that

the nuclear potential vanishes. Hence, we describe a free neutron or proton in a Coulomb

potential of the residual protons (Z > 1). In the internal region the solution for uint
l (k,r ) can

be approximated over a finite set of basis functions ϕi (r )

uint
l (k,r ) =

N∑
i=1

c(k)iϕi (r ) (4.7)

with expansion coefficients c(k)i . We use a set of Lagrange functions which have empirically

shown to yield converged results for a small number of mesh points N [DB10]. One problem

arising with the definition of an internal and an external region is that the Hamiltonian is

non-hermitian in the internal region because it is not probability preserving. This can be

solved by introducing the so called Bloch operator [Yvo57; DB10]

L(B) =
(

A−1

A

) ℏ2

2mN
δ(r −Rc)

(
d

dr
− B

r

)
(4.8)
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with a real number B as discussed later on. Thus, the radial Schrödinger equation from (4.1)

is transformed to the so called Bloch-Schrödinger equation in the internal region

(Hl +L(B)−E)uint
l = L(B)uext

l . (4.9)

If we combine this equation with the matching condition from equation (4.5) we find that the

Bloch-Schrödinger equation is equivalent to the initial radial Schrödinger equation since the

Dirac delta function in the Bloch operator restricts its impact to the channel radius.

With the general approach of the R-matrix method set, we can start calculating bound,

resonance and scattering states. Originally, the R-matrix method was used only for wave

functions in the continuum [Wig46; WE47; LT58], i.e., resonance and scattering states, but it

is possible to extend the approach towards bound states [BD83]. The next sections introduce

the procedure to calculate bound, resonance and scattering states.

4.2. Bound States

For the calculation of bound states, we exploit that bound states have a negative real energy,

such that the asymptotic wave functions fall off to zero. There are multiple ways to calculate

bound states for a given Hamiltonian, e.g., via the solution of an eigenvalue problem, which

is essentially done in the R-matrix approach in the internal region. In the external region, the

wave functions have an exponential falloff. We start the discussion of bound states in the

external region followed by the internal region.

External Region The radial Schrödinger equation in the external region omits the nuclear

potential from equation (4.1) and we can rewrite it to Whittaker’s equation [Olv+22] via
[(

A−1

A

)(
− ℏ2

2mN

d 2

dr 2 + ℏ2l (l +1)

2mNr 2 − ℏ2k2

2mN

)
+ (Z −1)e2

r

]
ul (k,r ) = 0 (4.10)

⇐⇒
[

d 2

dr 2 − l (l +1)

r 2 −
(

A

A−1

)
2mN(Z −1)e2

ℏ2r
+k2

]
ul (k,r ) = 0 (4.11)

k → iκ⇐⇒
[

1

κ2

d 2

dr 2 − l (l +1)

κ2r 2 −
(

A

A−1

)
2mN(Z −1)e2

ℏ2κ2r
−1

]
ul (κ,r ) = 0 (4.12)

r → z
2κ⇐⇒

[
d 2

d z2 − l (l +1)

z2 −
(

A

A−1

)
mN(Z −1)e2

ℏ2κz
− 1

4

]
ul (κ, z) = 0 (4.13)

⇐⇒
[

d 2

d z2 − l (l +1)

z2 − ηB

z
− 1

4

]
ul (κ, z) =0. (4.14)
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Chapter 4. R-Matrix Method

In the second step, we use that a bound state has a real negative eigenvalue and can be

represented by a positive imaginary momentum and in the third step, we transform the

coordinate. The last step simplifies the equations using the real Sommerfeld parameter

ηB =
(

A

A−1

)
mN(Z −1)e2

ℏ2κ
. (4.15)

The solution to equation (4.14) is the Whittaker function [Olv+22]

W (ηB, l , z) = exp

(
−1

2
z

)
z l+1U

(
1+ l +ηB,2+2l , z

)
(4.16)

with Kummer’s function U .

Internal Region In the internal region, we start with the Bloch-Schrödinger equation (4.9)

and set the Bloch parameter to

B(κB) = 2κB a
W ′(ηB, l ,2κBRc)

W (ηB, l ,2κBRc)
, (4.17)

which suppresses the right-hand side of the equation. The bound state momentum κB is

connected to the bound state energy EB via

EB =−
(

A−1

A

) ℏ2κ2

2mN
. (4.18)

Applying the expansion in the Lagrange functions ϕi results in the Bloch-Schrödinger equa-

tion

N∑
j=0

〈ϕi |Hl +L(B(EB))|ϕ j 〉c j = EB ci . (4.19)

This equation is similar to a standard eigenvalue problem, but the value for the Bloch pa-

rameter B depends on the eigenvalue EB. This problem is numerically solved by an iterative

approach, treating the eigenvalue problem for B = 0 and updating the Bloch parameter after

each matrix eigenvalue solution. However, the iterative process may become unstable if the

amplitude of the wave function and its derivative is small at the channel radius. In practice,

we do not iterate if the channel radius is chosen large enough, such that the wave functions

have already fallen off to zero. Hence, the contribution of the Bloch operator on the left-hand

side of equation (4.9) vanishes similar to the Bloch operator on the right-hand side of the

equation discussed before.
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4.3. Resonance and Scattering States

4.3. Resonance and Scattering States

As discussed for the Berggren single-particle basis, the energy of resonance and scattering

states is complex with a positive real part. The wave functions behave like particles in a

Coulomb field in the external region, which requires a different approach compared to bound

states. An important aspect of scattering theory is to locate the resonance states. We use

the so called scattering or S-matrix, which exhibits a pole for a resonance energy. Before we

can define the S-matrix in the R-matrix approach it is necessary to calculate the internal and

external solutions of the wave functions which are needed to define and derive the S-matrix.

External Region In case of resonances and scattering states, the wave functions in the

external region are given by the solutions of the Coulomb wave equation. We start from the

radial Schrödinger equation with a Coulomb potential as in equation (4.11), but with the key

difference that the momentum k is a complex number
[

d 2

dr 2 − l (l +1)

r 2 − 2kη

r
+k2

]
ul (k,r ) = 0 (4.20)

⇐⇒
[

1

k2

d 2

dr 2 − l (l +1)

k2r 2 − 2η

kr
+1

]
ul (k,r ) = 0 (4.21)

r → z
k⇐⇒

[
d 2

d z2 − l (l +1)

z2 − 2η

kz
+1

]
ul (z) =0. (4.22)

with the complex Sommerfeld parameter

η=
(

A

A−1

)
mN(Z −1)e2

ℏ2k
. (4.23)

The solutions of the Coulomb wave equation are the regular and irregular Coulomb functions

Fl (η, z) and Gl (η, z), respectively. For our solutions, we will use the conjugate functions

H+
l (η, z) =Gl (η, z)+ i Fl (η, z) (4.24)

H−
l (η, z) =Gl (η, z)− i Fl (η, z) (4.25)

which correspond to incoming (-) and outgoing (+) waves in the asymptotic region. The

external solution of the Schrödinger equation will be a linear superposition of these conjugate

functions

uext
l (η, z) =C+H+

l (η, z)+C−H−
l (η, z) (4.26)

=Cl
(
H−

l (η, z)−Sl H+
l (η, z)

)
(4.27)
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Chapter 4. R-Matrix Method

with the normalization constants C+, C− and Cl . The S-matrix Sl of partial wave l appears for

the first time and will be calculated in the internal region. The normalization Cl is given by

C+C− = 1

2π
, (4.28)

Cl =C− =
√

− 1

2πSl
, (4.29)

which originates from the normalization to the Dirac delta function for scattering states

[Mic+08]. As discussed before, resonance states have a purely outgoing wave function in the

asymptotic region, which corresponds to a pole in the S-matrix at the resonance energy

Sl →∞, (4.30)

Cl → 0. (4.31)

Internal Region For the calculation of the internal part, it is possible to show that the results

of the R-matrix calculation do not depend on the Bloch parameter B . Thus, in order to

simplify the equations we set it to zero and neglect it in the following formulas. We define the

R-matrix at an energy E as

Rl (E) = ul (k,Rc)

u′
l (k,Rc)

, (4.32)

which is the inverse logarithmic derivative at the channel radius. The definition of the

R-matrix is needed to calculate the S-matrix later on. Now, we can start from the Bloch-

Schrödinger equation (4.9) again and use the Lagrange basis expansion (4.7) to get

N∑
i=1

〈
ϕi

∣∣Hl +L(0)−E
∣∣ϕ j

〉
c j =

(
A−1

A

) ℏ2

2mN
ϕi (Rc)u

′ ext
l (k,Rc), (4.33)

where we projected the equation on ϕi (r ). We define the left-hand side matrix element as the

so called C-matrix for partial wave l

[Cl (E)]i j =
〈
ϕi

∣∣Hl +L(0)−E
∣∣ϕ j

〉
. (4.34)

The solution of the Bloch-Schrödinger equation yields the coefficients ci , which can be

inserted into the basis expansion (4.7). This allows the calculation of the R-matrix for a given

energy

Rl (E) =
(

A−1

A

) ℏ2

2mNRc

N∑
i , j=1

ϕi (Rc) [Cl (E)]−1
i j ϕ j (Rc). (4.35)
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4.3. Resonance and Scattering States

The internal wave function is then given by

uint
l (k,r ) =

(
A−1

A

) ℏ2

2mNRl (E)
uext

l (k,Rc)
N∑

j=1
ϕ j (r )

N∑
i=1

[Cl (E)]−1
i j ϕi . (4.36)

Up to now, the Bloch-Schrödinger equation has to be solved for every energy E explicitly. Since

we are using an orthonormal set of basis functions, it is possible to reduce the computational

cost of the R-matrix calculation. We start from an eigenvalue problem of the C-matrix for

E = 0

[Cl (0)] v nl = Enl v nl (4.37)

with eigenvalues Enl and eigenstates v nl . The spectral decomposition yields

[Cl (E)]−1 =
N∑

n=1

v nl v T
nl

Enl −E
(4.38)

with the number of mesh points N . This equation can be inserted into equation (4.35) for the

R-matrix to get

Rl (E) =
N∑

n=1

γ2
nl

Enl −E
(4.39)

with the reduced width amplitude

γnl =
((

A−1

A

) ℏ2

2mNRc

) 1
2 N∑

i=1
v nl ,iϕi (Rc). (4.40)

This approach only needs one matrix eigenvalue solution of the C-matrix at zero energy and

we are able to calculate the R-matrix for every energy E afterwards.

S-Matrix The S-matrix plays an important role in the location of the resonance states. As

we have seen in equation (4.30) the poles of the S-matrix correspond to resonance states. In

the R-matrix approach, the S-matrix of partial wave l is determined by

Sl (k) = exp
(
2iφl

)1−L∗
l Rl (E)

1−Ll Rl (E)
(4.41)

with the logarithmic derivative of the outgoing wave function H+
l

Ll (k) = ka
H

′+
l (η,kRc)

H+
l (η,kRc)

(4.42)

and the phase shift

φl (k) = arg(H−
l (η,kRc)) (4.43)

at the channel radius.
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4.4. Normalization

The norm of the total wave function of the bound state is given by the traditional norm in the

Hilbert space. Since we calculate the norm numerically, we use a cutoff value R for the norm

integral

N 2 =
∫ R

0
(ul (k,r ))2 dr. (4.44)

The cutoff value R is chosen large enough such that

ul (r ) ≃ 0 if r ≥ R. (4.45)

For scattering states, it is possible to normalize the external wave function to the Dirac

delta function as shown in equation (4.28). Since the internal wave function is connected to

the external wave function via the matching conditions it is normalized accordingly.

In case of resonance states, Berggren has shown that it is possible to normalize a resonance

wave function using the ansatz of Zel’dovich [Ber68]. Since this regularization scheme is

numerically unstable, we make use of a different approach known as exterior complex scaling

(ECS) [GV71]. The ECS is a rotation of the coordinate axis into the complex energy plane in

the asymptotic region of the wave function. The unitary transformation of the coordinate

reads

r → r e iθ (4.46)

with the rotation angle θ. The rotation angle has to be chosen large enough such that

2θ > |arg(Er)| (4.47)

with the energy of the resonance state Er. The transformed states

U (θ)ul (k,r ) =




ul (k,r ), if r ≤ a,

ul
(
k, a +|r −a|e iθ

)
if r > a

(4.48)

become square integrable under two conditions: First, the potential has to have a finite range

smaller than a or has to fall of faster or equal to r−1, which includes the Coulomb interaction.

Second, they have to be purely incoming or outgoing waves, which is the case for resonance

states, but not for scattering states. A schematic illustration of the coordinate transformation

is shown in figure 4.1.

Using the ECS to calculate the norm defined in equation (3.17) we find

N 2
l =

∫ ∞

0
ul (k,r )2dr =

∫ a

0
ul (k,r )2dr +

∫ ∞

a
ul (k, a +|r −a|e iθ)2e iθdr. (4.49)
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4.4. Normalization

FIGURE 4.1.: Illustration of the coordinate transformation in the exterior complex scal-

ing with scaling radius a and scaling angle θ.

It is also possible to calculate matrix elements of resonance states for a localized interaction

using the ECS. However, this does not work for scattering states and the realistic interactions

we are interested in. The former consists of ingoing and outgoing wave functions and the

exterior complex scaling is only able to suppress one contribution of these two. This only

works for resonance states, which have a purely outgoing wave function. In case of realistic

interactions, we are unable to calculate the coordinate representation of realistic interactions

except for a basis expansion, which results in a non-local representation for resonance and

scattering states. In this case, we cannot use the exterior complex scaling as well. In the next

chapter, we will discuss a different approach to calculate interaction matrix elements in the

Berggren basis.
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INTRODUCTION TO PART II

In the first part of this thesis, we introduced the fundamental elements necessary to develop

the Gamow NCSM (GNCSM) framework. All of these fundamental tools will be used in the

following part, which covers the entire development of the GNCSM framework. In figure II.A,

we show a schematic representation of the relevant steps towards a final many-body result.

We start with the setup of the single-particle Gamow basis using the Berggren completeness

relation. For the calculation of the single-particle basis we use the R-matrix method. From

the R-matrix we obtain a coordinate representation of the single-particle Berggen wave

functions, which we use to calculate the interaction matrix elements. These matrix elements

are the relevant input for the first GNCSM calculation. However, after the approximation of

the scattering and resonance wave functions, the single-particle basis is non-orthonormal,

which induces problems for the solution of the eigenvalue problem. Thus, we setup a new

single-particle basis constructed from the one-body density matrix of the first GNCSM states,

namely the Gamow natural orbitals. This basis set is orthonormal and we are able to calculate

the matrix elements using a basis expansion. With these new Gamow natural orbitals, we

perform our final natural orbital GNCSM (NAT-GNCSM) calculations.

In order to keep track of the important steps for the application of the GNCSM for future

applications we will summarize the relevant steps of the calculation in form of a small "cheat

sheet" in every chapter in this part of the thesis. Additionally, we include all relevant parame-

ters and truncation that occur during the development. The parameters characterize and

define the structure of the single-particle basis, e.g., the potential parameters. An analogous

parameter in the standard NCSM with the HO single-particle basis is the HO frequency. In the

complete Hilbert space, the many-body results are independent of the single-particle basis,
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GNCSM
framework

Gamow basis

(chapter 5)

Matrix elements

(chapter 6)

GNCSM

(chapter 7)

NAT-GNCSM

(chapter 8)

FIGURE II.A.: Illustration of the individual steps

in the calculation of many-body

resonance states in the GNCSM

framework. They are discussed in

detail in the following chapters.

i.e., the HO frequency. But the convergence behavior with increasing model space dimension

differs for different HO frequencies. The truncations truncate the single-particle Gamow

basis and the many-body model space. If we are able to converge truncations universally, we

show the converged values as well. The convergence behavior with respect to the remaining

truncations depends on the specific nucleus and needs to be analyzed individually.
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5
SETUP GAMOW BASIS

The first step in the development of a GNCSM framework is the setup of a suitable single-

particle basis. For the calculation of the Berggren basis, we have to define a single-particle

potential VN(r ) and identify bound and resonance states. Since it is computationally not

feasible to use all partial waves in a Berggren basis in a NCSM type calculation, we have to

determine which partial waves are important to have the continuum degrees of freedom

included. All other partial waves will be described in the single-particle HO basis. We call the

newly formed single-particle basis Gamow basis.

5.1. One-Body Potential

As we have seen in the introduction of the R-matrix method in chapter 4, the one-body po-

tential is split into a finite nuclear part V̂N(r̂ ), which falls off faster than r−1 in the asymptotic

region, and a Coulomb potential, which can be solved analytically in the external region. If

not stated otherwise, we use a Woods-Saxon potential combined with a spin-orbit potential

V̂N(r̂ ) = VWS

1+exp
(

(r̂−RWS)
aWS

) +VLS

exp
(

(r̂−RWS)
aWS

)
ˆ⃗l · ˆ⃗s

r̂ aWS

[
1+exp

(
(r̂−RWS)

aWS

)]2 (5.1)

with the potential depths VWS and VLS, the width of the potential RWS, and the surface

parameter aWS. In case of the Coulomb potential, we use the electrostatic potential of a
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homogenous sphere

V̂C(r̂ ) =





3(Z−1)e2

2RWS

(
1− r̂ 2

3R2
WS

)
, if r ≤ RWS,

(Z−1)e2

r̂ , if r > RWS,
(5.2)

where Z is the proton number of the system and e is the elementary charge.

The modification of the parameter values for the nuclear potential can change the structure

of the single-particle basis, and thus can influence the final results for the many-body energies

in the GNCSM calculation. A suitable choice for these values becomes important later on.

5.2. Locate Single-Particle Resonance States

After the potential is defined, we need to locate the single-particle resonance states, i.e., poles

in the S-matrix. The S-matrix is calculated within the R-matrix method using equation (4.41).

In order to search for poles in the S-matrix, we calculate the S-matrix values on a coarse

energy grid for an energy range between 0MeV and (10−10i)MeV with 100 mesh points in

the real and imaginary direction. In a first iteration, we search for local maxima on this grid.

Afterwards, the precise location of each local maximum is searched for on a finer grid. The

procedure is depicted in figure 5.1. In order to benchmark the procedure, we use a known

toy potential that reproduces the p+12C scattering energy approximately. It is a Gaussian

potential with a point-like Coulomb source [DB10]

V̂N(r̂ ) =−73.8MeV ·exp

(
−

(
r̂

2.7fm

)2)
, (5.3)

V̂C(r̂ ) = 6e2/r̂ . (5.4)

For the channel radius we used Rc = 12fm and the mesh size in the internal region is N = 30

which lead to converged results. In the next section, we discuss the dependence on these

two parameters in more detail. The iterative approach to calculate the resonance energy

converges at

E ≈ (0.41463−0.01819i)MeV. (5.5)

The experimental value for the resonance of the p+12C system is

Eexp ≈ (0.42−0.0185i)MeV (5.6)

in the l = 0 partial wave [Ajz91; DB10]. Note, the difference of the two values may result from

an inaccurate parametrization of the potential. The aim of this example is to present the

method which is used to locate the resonances and calculate their energy.
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FIGURE 5.1.: Scheme of the pole search in the absolute value of the S-matrix for the
12C+p scattering toy potential in equation (5.3). The picture in the upper

left shows the pole serach on a coarse energy grid. The region around

the pole is iterated up to an uncertainty of |∆E | < 0.1keV is reached. The

blue cross in the lower right picture shows the final value of the resonance

energy at E = (414.63−18.19i)keV.

5.3. Partial-Wave Selection

As a final step towards the Gamow basis it is necessary to decide which partial waves are

represented in the Berggren basis and which in the HO basis. The notation for the partial
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waves in the Berggren basis specifies the orbital angular momentum, total angular momen-

tum and isospin projection quantum numbers in the form l mt

j , e.g., the s-wave partial wave

of neutrons is denoted via sn
1/2, where mt describes protons (p) and neutrons (n). The radial

quantum number in Gamow basis is denoted by ν and the maximum radial number in the

Berggren partial waves is given by

νmax = νb +νr +νs (5.7)

with the total number of bound states νb, resonance states νr, and scattering states νs. All

partial waves that are not denoted to use the Berggren single-particle basis use the HO single-

particle basis. The HO single-particle basis is truncated by a maximum energy quantum

number emax and a maximum orbital angular momentum lmax. The structure of the Gamow

basis is highly dependent on the selection of Berggren and HO partial waves. Its effect on

the results for the many-body resonance energy has to be investigated later on. Since the

final many-body resonance state is highly correlated, it is not always possible to determine

an optimal single-particle Gamow basis a priori.

In order to get an idea of how to partition the Berggren and HO partial waves, we consider

an example. From experimental observations we know that the many-body resonance ground

state of 4H has the quantum numbers Jπ = 2−, which allows the assumption that it is primarily

composed of a 3H core and a loosely bound neutron in the p3/2 shell. Therefore, we expect

that the pn
3/2 partial wave is the most relevant partial wave for the inclusion of the continuum

in the Berggren basis. We can parametrize the one-body potential such that it generates a

single-particle resonance in the pn
3/2 partial wave. The nuclear potential given in equation

(5.1) produces a single-particle resonance state at

Er = (1.05−0.99i)MeV, (5.8)

kr = (0.28−0.11i) fm−1 (5.9)

for the parameter values VW S =−20MeV, VLS =−25MeV, aWS = 0.67fm and RWS = 2.02fm.

The position of the resonance is depicted in figure 5.2.

Furthermore, we have to set a contour path for the partial waves using the Berggren basis.

In case there exist only bound states in the partial wave, we use a contour along the real axis

up to the cutoff kmax and use an equidistant grid for the discretized scattering states. For the
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FIGURE 5.2.: Schematic selection of the HO and Berggren partial waves in case of an

example for the description of the ground state of 4H. The left side of the

figure shows the first partial waves for protons and neutrons. Colored

partial waves represent the use of the Berggren basis and black partial

waves represent HO partial waves. The plot on the right side shows the

single-particle resonance energy ( ) and the chosen contour with its anchor

points ( ).

partial waves including resonance states, we choose the contour by the approximate rule

Re(k1) ≈ Re(kr), (5.10)

Im(k1) ≈ 2Im(kr), (5.11)

k2 ≈ 2Re(kr). (5.12)

where k1 is the complex momentum in the fourth quadrant of the complex momentum plane,

k2 is the real momentum at which the contour becomes the real momentum axis again. We

discretize each part of the path with a third of the total number of scattering states. For the

example we use the following contour parameters

k1 = (0.3−0.2i) fm−1, (5.13)

k2 = 0.6fm−1, (5.14)

kmax = 3fm−1 (5.15)
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Chapter 5. Setup Gamow Basis

for the pn
3/2 partial wave. For the number of discretized scattering states for each path we use

(0+0i) fm−1 → k1

k1 → k2

k2 → kmax





νs

3
. (5.16)

In order to fulfill this discretization procedure, we choose suitable values for νs in the follow-

ing.

5.4. Radial Wave Functions

The next step to the Gamow basis is the calculation of the respective wave functions, more

precisely the radial wave functions. As previously stated we use the R-matrix method intro-

duced in chapter 4 to calculate the wave functions. In this section we take a closer look at

the characteristics of bound, resonance and scattering wave functions. Furthermore, we

investigate two parameters which emerge in the R-matrix approach, namely the channel

radius Rc and the mesh size N in the internal region.

In figure 5.3, we show the wave functions of a single-particle bound, resonance and scatter-

ing state calculated for the neutrons of 4H with the potential parameters from the example

given in the previous section. In the sn
1/2 partial wave the one-body potential has a bound

state at an energy of E =−3.35MeV. The normalized radial wave function u(r ) has a large am-

plitude for short distances and falls off towards zero at a finite range of ∼ 8fm. For a channel

radius of Rc = 8fm the wave function has a small discontinuity in the derivative at the channel

radius. This is a consequence of the fact that we do not solve the Bloch-Schrödinger equation

(4.9) iteratively, but rather choose values for the channel radius that are large enough such

that the wave function has fallen off towards zero at the channel radius as discussed in section

4.2. For a larger channel radius of Rc = 10fm this problem is eliminated. The scattering state

for ν = 4 in the same partial wave with an energy of E = 2.98MeV has an oscillating wave

function with a constant amplitude in the external region. The weights of the scattering

wave function are characterized by the number of scattering states νs = 24. The resonance

state in the pn
3/2 partial wave is located at an energy of E = (1.05−0.99i)MeV, which is a very

broad resonance. It shows a large amplitude at distances between 5fm and 10fm and starts

to oscillate afterwards.

All radial wave functions are converged for a channel radius of Rc = 10fm and a mesh size

of N = 100 and we use these parameter values in all following calculations. The dependence
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FIGURE 5.3.: Analysis of the dependence of the wave function of a bound (upper left),

resonance (upper right) and scattering (lower left) wave function for N

mesh points and the channel radius Rc using the R-matrix approach. The

lines correspond to N = 50, Rc = 8fm ( ) and N = 100, Rc = 10fm ( ).

The scheme in the lower right shows a possible choice for the contours

for the sn
1/2 partial wave ( ) containing the bound ( ) and the scattering

state ( ) and the pn
3/2 partial wave ( ) containing the resonance state

( ). The potential parameters are given in section 5.3. The scattering

contour is discretized with νs = 24 points and the momentum cutoff is at

kmax = 3fm−1.

of the final results in the GNCSM calculation on the number contour discretization points of

νs = 24 and the momentum cutoff for the contour at kmax = 3fm−1 needs to be checked later,

since both parameters influence the structure of the single-particle basis.
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Chapter 5. Setup Gamow Basis

5.5. Cheat Sheet: Gamow Basis Setup

The first part of the GNCSM framework development is finished. Many of the existing

parameters and truncations in the GNCSM framework already appeared at the setup of the

Gamow basis. For some truncations we were already able to determine converged values.

The convergence of the remaining truncations and the impact of the parameters that vary

the structure of the Gamow basis will be discussed for the first GNCSM calculations later on.

All truncations that appear in this chapter can be systematically increased in order to obtain

converged results.

Gamow basis
Parameters Truncations

1.) Define one-body potential
VWS, Vls,

aWS,RWS

2.) Choose BG/HO partial waves
l mt

j ,

emax, lmax

3.) Set contour path k1, k2 kmax, νs

4.) R-matrix calculation
N = 100

Rc = 10fm
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6
CALCULATION OF MATRIX ELEMENTS

Matrix elements represent the relevant input to the GNCSM as they are needed to calculate

the matrix representation of the nuclear Hamiltonian. Thus, the information on the single-

particle basis is encoded in the nuclear matrix elements. In the standard NCSM using the HO

basis, the matrix elements of the kinetic energy can be calculated analytically in the HO basis.

The matrix elements of realistic interactions derived from χEFT are calculated in a relative

momentum basis and the transformation coefficients to the relative HO basis as well as the

m-scheme HO basis are known analytically. If we use a different orthonormal single-particle

basis, e.g., the natural-orbital basis, we can calculate a finite number of transformation

coefficients numerically and transform the matrix elements into the new single-particle basis.

The main problem arising with the inclusion of Berggren partial waves is that we cannot

calculate nuclear matrix elements containing resonance and scattering states directly due to

their infinite range. However, it is possible to calculate the nuclear matrix elements using the

basis expansion in HO single-particle states. This induces additional effort which we discuss

in the following. We start with the calculation of the HO expansion coefficients for bound,

resonance, and scattering states in the Berggren basis. With these HO coefficients we can

define two procedures to calculate the matrix elements of the interaction and the kinetic

energy of the complete Gamow basis, respectively.
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Chapter 6. Calculation of Matrix Elements

6.1. Wave Function Expansion

The HO expansion coefficients of the Berggren states are calculated in coordinate space using

the overlap of the HO single-particle states with the Berggren states given by

〈
uHO

nl j m j mt

∣∣∣uBG
νl ′ j ′m j ′mt ′

〉
≈ δl l ′δ j j ′δm j m j ′δmt mt ′

∫ Rcut

0
uHO

nl j m j mt
(r )uBG

νl j m j mt
(r )dr =C

(l j m j mt )
νn .

(6.1)

For the radial integral, we use a cutoff Rcut, which is necessary to ensure the numerical

stability as we discuss in the next section. The superscripts of the HO coefficients C indicate

the diagonal quantum numbers, i.e., l , j , m j and mt . The Kronecker deltas originate from

the symmetries of the one-body potentials for both basis sets. The potentials are diagonal in

the spin and isospin parts and are spherical symmetric, which translates to diagonal j and

m j quantum numbers in a j -coupled basis set. For simplicity, we omit the diagonal quantum

numbers in the following derivations. The subscripts indicate the non-diagonal quantum

numbers, i.e., the radial quantum number n in the HO basis and the quantum number ν in

the Berggren partial waves of the Gamow basis. The complete set of HO coefficients for the

Gamow basis are given by

Cνn =




〈
uHO

n

∣∣uHO
ν

〉= δνn HO partial wave,
〈

uHO
n

∣∣uBG
ν

〉
BG partial wave.

(6.2)

First, we take a look at the HO expansion coefficients and the corresponding wave function

in figure 6.1. The left column shows the expansion coefficients of a bound, a resonance

and a scattering state for different HO frequencies. The coefficients of the bound state

are converged to zero at n ≈ 12. In case of resonance and scattering states the expansion

coefficients behave differently. Even though the coefficients for smaller HO radial quantum

numbers are larger, the expansion coefficients do not converge towards zero, hence, their

contribution to the expansion wave function and the norm is not negligible. In this case, we

need to take a closer look at the convergence of the respective matrix elements containing

resonance or scattering states and need to ensure that the matrix element transformation is

converged for a maximum number of HO coefficients nmax.

If we take a look at the right-hand side of the figure 6.1, we show the expanded wave

functions for emax = 24. This is the maximum single-particle quantum number that we can

use for the expansion of the matrix elements of the nuclear interaction later. In case of the

bound state, the original wave function from the R-matrix method is described very well
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FIGURE 6.1.: The left column shows the expansion coefficients in the HO basis depend-

ing on the HO radial quantum number n and the HO frequencies 4MeV ( ),

8MeV ( ), 12MeV ( ), 16MeV ( ), 20MeV (✚) and 24MeV ( ) for the same

bound, resonance and scattering state as in figure 5.3. The right column

shows the exact wave function from the R-matrix method ( ) and the

expanded wave functions for the HO frequencies 4MeV ( ), 8MeV ( ),

12MeV ( ), 16MeV ( ), 20MeV ( ) and 24MeV ( ). The wave func-

tions correspond to emax = 24, i.e., nmax = 12 for the bound and scattering

wave function and nmax = 11 for the resonance wave function. The cutoff

is set to Rcut = 10fm.
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FIGURE 6.2.: Representation of the HO wave functions with n = 11 and l = 1 for the HO

frequencies 16MeV ( ), 20MeV ( ) and 24MeV ( ). The last node of

the wave functions is marked (✚).

for the short-range part. The tail of the bound wave function is regulated by the HO wave

functions implicitly. For the resonance and the scattering state, the overall agreement up to

Rcut = 10fm is good as well, however, the oscillation artifacts from the HO wave functions are

still visible. The effect of the radial cutoff is visible for the resonance wave functions. For all

HO frequencies except for the HO frequency of 24MeV, the wave functions fall off towards

zero at the same distance, i.e. the value of the radial cutoff. In case of the HO frequency of

24MeV, the range of the wave function is shorter than the radial cutoff, hence the HO wave

functions regulate the expanded wave function implicitly. We can explain this behavior if

we take a look at figure 6.2. It shows the HO wave function for n = 11 and l = 1 which is the

broadest wave function we can use for the expansion of interaction matrix elements. Thus,

the range of the expanded wave function is limited by the broadest HO wave function and,

additionally, the expansion becomes unstable for short distances if

max[x0 (nmax)] < Rcut (6.3)

where x0 (nmax) is the set of node positions for the broadest HO wave function. The positions

of the nodes are important because they characterize the maximum range of the expanded

wave function. The range and quality of the HO expansion can be increased with contri-

butions of waves with higher radial quantum numbers, but as already mentioned, for the

calculation of interaction matrix elements we are limited to single-particle energy quantum
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6.2. Interaction Matrix Elements

0 5 10 15
r in fm

0.0

-0.4

-0.8R
e(

u
(r

))
in

fm
−

1 2

Rcut =8fmRcut =8fmRcut =8fmRcut =8fmRcut =8fmRcut =8fm

0 5 10 15
r in fm

Rcut =10fmRcut =10fmRcut =10fmRcut =10fmRcut =10fmRcut =10fm

0 5 10 15
r in fm

Rcut =12fmRcut =12fmRcut =12fmRcut =12fmRcut =12fmRcut =12fm

0 5 10 15
r in fm

Rcut =14fmRcut =14fmRcut =14fmRcut =14fmRcut =14fmRcut =14fm

FIGURE 6.3.: Dependence of the expanded wave function on the cutoff value Rcut for the

real part of the resonance wave function from figure 5.3. The plots show

the initial wave function from the R-matrix method ( ) and the expanded

wave functions for the HO frequencies 4MeV ( ), 8MeV ( ), 12MeV

( ), 16MeV ( ), 20MeV ( ) and 24MeV ( ). The wave functions

correspond to nmax = 11.

numbers of emax = 24 which translates to the radial quantum numbers nmax = 11,12 for p-

and s-wave orbits, respectively.

The influence of Rcut on the real part of the previous resonance wave function is depicted

in figure 6.3. The quality of the expansion using a HO basis decreases significantly if the

value of the cutoff parameter exceeds the range of the HO wave functions and equation 6.3

is not fulfilled. For the HO frequency of 16MeV and n = 11 the wave functions fall off to

zero at about 13fm and the last node has a value of about 10fm. The expansion is unable to

describe the complete wave function properly beyond the last node and the overall quality

of the expansion is decreased because the expansion becomes numerically unstable. The

dependence of the values for the matrix elements on the cutoff Rcut is investigated in the next

section.

6.2. Interaction Matrix Elements

As we have seen in the previous section, the expansion in the HO basis is only able to represent

the short-range part of resonance and scattering wave functions. In case of interaction matrix

elements this is not too problematic, because we can make use of the finite range R of a
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Chapter 6. Calculation of Matrix Elements

nuclear potential. This means that the expansion of the wave function using a finite number

of HO wave functions can be sufficient because the potential ultimately regulates the matrix

elements [HHM06; Mic+08; Pap+13]. A schematic representation of the radial part of a matrix

element of a local two-body interaction V (r ) shows

〈u1u2|V̂NN|u3u4〉∝
∫ R

0
u1(r1)u2(r2)V (r )u3(r3)u4(r4)

×δ(r − (r4 − r3))δ(r − (r2 − r1))dr1dr2dr3dr4.

(6.4)

We do not have to expand the entire wave function but only the part of the wave functions

where the potential does not vanish. Note, this is only a schematic illustration and motivation

to use a HO expansion for the calculation of the interaction matrix elements. This illustration

has two weaknesses: First, we are not able to derive a local coordinate representation of the

realistic interactions derived from χEFT that we use in this thesis. The radial dependence of

the interaction matrix elements is represented in a non-trivial way in the HO single-particle

states. Second, it is possible to have two large absolute coordinates r1 and r2 with a small

relative coordinate r = r1 − r2, where the potential does not vanish. When we calculate the

matrix elements in the Gamow basis we have to make sure that the expanded matrix elements

are converged with respect to the cutoff Rcut for the HO expansion of the single-particle states

and the maximum single-particle energy emax.

The expansion of a J-coupled two-body matrix element in the Gamow basis in matrix

elements of the HO basis reads

〈
(αβ)J M J

∣∣V̂NN
∣∣(γδ)J M J

〉≈
nmax∑

na ,nb ,
nc ,nd

=0

Cναna Cνβnb Cνγnc Cνδnd

〈
(ab)J M J

∣∣V̂NN
∣∣(cd)J M J

〉
, (6.5)

where the greek letters correspond to the set of Gamow single-particle quantum numbers,

i.e., α= {
ναlα jαmtα

}
and the latin letters correspond to a set of HO single-particle quantum

numbers, i.e., a = {
na la jamta

}
. The expansion only affects the radial quantum number,

which is truncated by the maximum radial quantum number nmax. The expansion coefficients

are given by equation (6.2).

Before we analyze the convergence of the expanded interaction matrix elements on a small

set of matrix elements, we need to fix an interaction for our calculations. For the remaining

part of the development of the GNCSM we use the same chiral interaction that was used

in chapter 2. It is a two-body interaction by Entem, Machleidt and Nosyk at fourth order

with a regulator cutoff ofΛ= 500MeV [EMN17]. The interaction is SRG evolved with a flow

parameter of α= 0.08fm4 [BFP07; RRH08].
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FIGURE 6.4.: Convergence of the expanded diagonal interaction matrix elements in

dependence on the HO expansion parameter n, the radial integral cutoff

Rcut and the HO frequencies 4MeV ( ), 8MeV ( ), 12MeV ( ), 16MeV ( ),

20MeV (✚) and 24MeV ( ). The rows show the matrix elements defined in

equation (6.6) and (6.7), respectively.

Since it is impossible to analyze the convergence of every single interaction matrix element,

we take a look at two diagonal matrix elements first in order to investigate the Rcut dependence

in figure 6.4. For the first row we use the single-particle scattering state

α=β= γ= δ=
{

4,0,
1

2
,−1

2

}
, J = M J = 0 (6.6)
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and for the second row we use the single-particle resonance state

α=β= γ= δ=
{

0,2,
3

2
,−1

2

}
, J = M J = 0, (6.7)

which are shown in figure 6.1.

For Rcut = 8fm the values for both matrix elements converge towards the same value for

all HO frequencies. Similarly, for Rcut = 10fm the values converge to the same value for

all HO frequencies in the first row. However, the converged value does not coincide with

the converged value for the cutoff of Rcut = 8fm. This means that the interaction has a

contribution even at these distances. For the matrix element in the second row, the two

largest HO frequencies are not converged at nmax = 11.

If we increase the radial cutoff to Rcut = 12fm, the matrix element in the first row converges

to the same value as the previous cutoff. This does not hold for the matrix element in the

second row. The expansion of the matrix elements becomes unstable and yields different

results for almost every frequency. This effect becomes also visible for the matrix element

in the first row at Rcut = 14fm. The origin of these unstable convergence patterns are the

following: First, the calculation of the HO expansion coefficients becomes unstable if the

radial wave functions of the HO fall off towards zero. Second, the deviation of expanded wave

functions from the exact wave function increases for short distances if we use larger radial

cutoffs.

Since we expect that the interaction matrix element are mainly effected by the short-range

part of the wave function, this also decreases the quality of the matrix element expansion.

Hence, we have to make sure that the cutoff value is large enough such that we do not exclude

parts of the interaction and small enough such that the expansion still converges to the same

value for all frequencies. In the following, the default value for the cutoff radius is Rcut = 10fm.

From the analysis of the second row, we also know that we should not use HO frequencies

that are larger than ℏΩ= 16MeV for this Gamow basis. We investigate the uncertainty of the

final many-body result generated by the matrix element expansion in chapter 7. Note, we

only use the Gamow basis for the calculation of a reference state for the following natural

orbital calculation and the impact on the natural orbitals might be small.

As a further analysis, figure 6.5 shows three off-diagonal matrix elements containing the

bound, resonance and scattering states from figure 6.1. From the left to the right, the value

of the matrix elements correspond to the off-diagonal matrix element for the bound and
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FIGURE 6.5.: Convergence of the approximation of off-diagonal interaction matrix el-

ements in dependence on the HO expansion parameter n and the HO

frequencies 4MeV ( ), 8MeV ( ), 12MeV ( ), 16MeV ( ), 20MeV (✚) and

24MeV ( ). For the information on the single-particle states of the matrix

elements see the text.

resonance states

α=β=
{

0,2,
3

2
,−1

2

}
, γ= δ=

{
0,0,

1

2
,−1

2

}
, J = M J = 0, (6.8)

the resonance and scattering states

α=β=
{

0,2,
3

2
,−1

2

}
, γ= δ=

{
4,0,

1

2
,−1

2

}
, J = M J = 0, (6.9)

and the scattering state with two different HO states

α=
{

1,0,
1

2
,

1

2

}
,γ=

{
0,0,

1

2
,

1

2

}
,β= δ=

{
4,0,

1

2
,−1

2

}
, J = M J = 0. (6.10)

The first two matrix elements converge to the same value for all HO frequencies similar to

the diagonal matrix elements. The last matrix element is a little different and demonstrates

an important characteristic of the HO wave functions. First, since the HO wave functions

depend on the HO frequency, the matrix element converges to different values. Second, the

matrix elements containing HO states are usually converged because the HO wave functions

fall off to zero at finite distances. Thus, the matrix elements that cause the most problems are

the matrix elements only containing resonance or scattering states. In this case the expansion

of the matrix element is regulated by the maximum radial quantum number nmax and can

yield results that are not converged.
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6.3. Kinetic Energy Matrix Elements

For the calculation of the many-body kinetic energy matrix elements we use the represen-

tation of the kinetic energy operator given in equation (1.4). We use different approaches

to calculate the two parts of the kinetic energy operator. Since the one-body part contains

most of the information and the two-body operator is a correction to the one-body part, we

assume that the correction is less important. Thus, we use the same approach of a HO basis

approximation as already used for the two-body interaction in the previous section in order

to calculate the two-body part of the kinetic energy operator. The one-body part is calculated

directly from the results of the R-matrix method as discussed in the following.

One-Body Part For the R-matrix calculation, we chose the kinetic energy operator to be

the one-body part of the many-body kinetic energy. We obtain the one-body part of the

many-body kinetic energy using the one-body Schrödinger equation

(
T̂ + V̂N + V̂C

) |ui 〉 = E |ui 〉 (6.11)

where V̂N and V̂C are the nuclear potential and the Coulomb potential defined in the R-matrix

method and E is the energy of the state |ui 〉. If we rearrange the equation and multiply by a

bra state
〈

ũ j
∣∣, we obtain

〈ũ j |T̂ |ui 〉 = 〈ũ j |E − V̂N − V̂C|ui 〉 . (6.12)

The right-hand side of the equation can be calculated in coordinate space using the wave

functions from the R-matrix

〈ũ j |T̂ |ui 〉 = E δi j −
∫ R

0
(VN(r )+VC(r ))u j (r )ui (r )dr. (6.13)

The cutoff value is set to R = 20fm, which yields converged results.

Two-Body Part Since it is not possible to calculate the exact two-body matrix element

using the wave functions from the R-matrix method, we use the same approximation to the

two-body part of the matrix element as we have used for the interaction matrix elements. The

kinetic energy operator is not spatially confined like the interaction. Thus, the calculation

of the matrix element is not regulated by the operator. However, we assume that the main

part of the kinetic energy information is included in the one-body part of the operator and

the two-body matrix elements are a correction to the one-body part. The results for the

approximation of two off-diagonal matrix elements of the two-body part of the kinetic energy
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FIGURE 6.6.: Convergence of the approximation of off-diagonal kinetic energy matrix

elements in dependence on the HO expansion parameter n, the radial

integral cutoff Rcut and the HO frequencies 4MeV ( ), 8MeV ( ), 12MeV

( ), 16MeV ( ), 20MeV (✚) and 24MeV ( ). The rows show the matrix

elements defined in equation (6.8) and (6.9), respectively.

operator are shown in figure 6.6 in dependence on the cutoff parameter Rcut. The first row

shows the matrix element for the bound and resonance states

α=β=
{

0,2,
3

2
,−1

2

}
, γ= δ=

{
0,0,

1

2
,−1

2

}
, J = M J = 0, (6.14)

and the second row shows the matrix elements of the scattering and resonance states

α=β=
{

0,2,
3

2
,−1

2

}
, γ= δ=

{
4,0,

1

2
,−1

2

}
, J = M J = 0, (6.15)
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shown in figure 6.1. The value of the first matrix element converges for all HO frequencies

and radial cutoffs. This is a consequence of the finite bound-state wave function in the matrix

element. For the second matrix element, the situation is similar to the interaction matrix

element using the resonance state. The results converge towards the same value for all HO

frequencies at Rcut = 8fm. For Rcut = 10fm the converged values differ for the largest HO

frequency. If we increase the radial cutoff even further, the results become unstable.

6.4. Cheat Sheet: Calculation of Nuclear Matrix Elements

The calculation of the nuclear matrix elements generates the first truncations that we are

not always able to converge. For the approximation of the interaction matrix elements, we

only have access to matrix elements up to emax = 24 in the HO basis. In order to include

as much information from the HO matrix elements, but still remain numerically robust, it

is necessary to tune and optimize the cutoff of the radial integral in the expansion of the

Berggren wave functions and define a set of HO frequencies that yield converged matrix

elements. The optimal value for this cutoff and the set of suitable HO frequencies differs for

different parameters of the Gamow basis. An important characteristic of the Gamow basis is

that it is non-orthonormal which entails a problem for the GNCSM calculation as we will see

in the next chapter.

Matrix Elements

Parameters Truncations

1.) Choose HO frequency ℏΩ

2.) Calculate HO approximation Rcut = 10fm

3.) Calculate matrix elements emax = 24
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7
GAMOW NO-CORE SHELL MODEL

The GNCSM extends the NCSM towards complex single-particle basis sets. The matrix

elements calculated in the previous chapter form the essential input we need to perform these

calculations. As already stated in the previous part, in the bra-ket notation the NCSM and

the GNCSM are identical. However, it is still useful to take a look into the changes occurring

using the complex Gamow basis. In the following section, we define the necessary extensions

to the standard NCSM needed in order to perform GNCSM calculations. Afterwards, we can

perform first calculations and investigate the parameters and truncations from the Gamow

basis and the matrix element approximation.

7.1. Extensions towards the GNCSM

The necessary extensions to the GNCSM pull through all parts of the NCSM. Most of the

changes only affect the formal definition of the already existing formula in the bra-ket nota-

tion. Therefore, we discuss the basic concepts (cf. section 2.1), the model space definition (cf.

section 2.2) and the center-of-mass spuriousity (cf. section 2.3) of the standard NCSM again

and point out the relevant changes that appear in the GNCSM.

Basic concept As we have already discussed in chapter 3 it is not possible to obtain complex

valued observables in a Hilbert space and we have to replace the many-body Hilbert space

by a rigged Hilbert space analogous to the one-body case for the Berggren basis. Using a
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Chapter 7. Gamow No-Core Shell Model

rigged Hilbert space entails two consequences. The first consequence concerns the formal

structure of the many-body basis. The basis of Slater determinants {|Φ〉} fulfills the following

completeness relation [Pap+13]

1̂=
∑

i

∣∣Φi
〉〈
Φ̃i

∣∣ , (7.1)

which is similar to equation (3.19). The tilde on the bra label wave function reflects the differ-

ent definition of the scalar product in the rigged Hilbert space, similar to the scalar product

for the single-particle Bergren states given in equation (3.16). The expansion coefficients of

an eigenstates |Ψn〉 calculated in the GNCSM fulfill

∑
i

C 2
ni = 1. (7.2)

Note, the expansion coefficients Cni become complex if we include resonances and complex

scattering states to the Gamow basis. This behavior originates from the underlying single-

particle states of the Gamow basis. The Slater determinant basis in a rigged Hilbert space

results in a complex symmetric Hamilton matrix, which leads to the second consequence

regarding the numerical algorithm and memory resources. Since the matrix eigenvalue

problem becomes complex symmetric, the diagonalization method, i.e., the Lanczos method,

has to be adjusted [And+99] and the memory requirements for the storage of the Hamilton

matrix are doubled for complex values.

At this point we want to clarify the important change to the standard NCSM that leads to

complex energy eigenvalues. It is necessary to use a complex symmetric Hamilton matrix in

order to obtain complex energy eigenvalues. If we use a Hermitian matrix instead, we are still

working in a standard Hilbert space and the eigenvalues of a Hermitian matrix are real.

Model Space The standard NCSM is truncated solely by the Nmax which is motivated by

the intrinsic and center-of-mass separation of the many-body wave function. Furthermore,

using the Nmax truncation we expect that states with lower single-particle energies in the

HO single-particle basis are more important. For the Berggren partial waves none of these

properties hold. The inclusion of resonance and scattering states does not allow the use of

the center-of-mass Hamiltonian from equation (2.10) in order to shift center-of-mass part

excitations out of the low-energy spectrum. Additionally, the energies of the scattering states

are not split equidistantly as for the HO basis such that the use of the Nmax truncation has no

physical motivation.
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7.1. Extensions towards the GNCSM

In the following, we define a new many-body truncation scheme, which truncates the HO

partial waves and the Berggren partial waves separately. For the HO partial waves we keep

the Nmax truncation, which is indicated as N HO
max. In case of the Berggren partial waves we

use the number of scattering states occupied in a Slater determinant S(|Φ〉) and define a

particle-hole truncation Smax, which limits the number of scattering states allowed in the

Slater determinants. The final model space definition is an extension from the standard

definition in equation (2.8)

M (N HO
max,Smax, M J ,π) = { |Φ〉 : N (|Φ〉) ≤ N HO

max, S (|Φ〉) ≤ Smax,

M (|Φ〉) = M J , π (|Φ〉) =π
}

.
(7.3)

Note, the two truncations act on disjunct parts of the Gamow basis as N HO
max only acts on HO

partial waves and Smax only acts on Berggren partial waves. Bound and resonance states in

Berggren partial waves are always included in the model space.

A problem in the GNCSM is that the inclusion of Berggren partial waves produces an

extreme increase of the many-body basis dimension with an increasing number of scattering

states compared to the Nmax truncation in the standard NCSM. It is necessary to discretize the

contour with νs ≥ 15 scattering states. Figure 7.1 shows a comparison in the many-body basis

dimension for a set of light nuclei for a standard NCSM calculation and a GNCSM calculation,

where the Berggren single-particle basis is used in one or two partial waves. The parameter

Smax is always chosen at its maximum value such that all nucleons are allowed to occupy a

scattering state. For instance, for 4H with the sn
1/2 and pn

3/2 partial waves for neutrons we use

Smax = 3, such that all three neutrons can occupy a scattering state. We can see that the many-

body basis dimension increases by one to two orders of magnitude in the GNCSM even for

νs = 20 scattering points. These large basis dimensions complicate the GNCSM calculations

on a few levels. First, the matrix elements are complex and, as a consequence, the memory

use is doubled compared to standard NCSM calculations with real matrix elements. Second,

the arithmetic of complex numbers is more time-consuming compared to real numbers.

Third, since we use the Smax truncation together with the number of single-particle scattering

states, the Hamilton matrix is denser compared to the standard NCSM. Consequently, the

diagonalization algorithm needs more operations for every iteration and, in general, more

iterations. At the moment, it is possible to perform GNCSM calculations for many-body basis

dimension of 106 to 107.

Non-Orthogonal Basis Sets We have already discussed that the inclusion of the Gamow

basis requires a complex eigenvalue problem solver. A further property of the Gamow basis
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FIGURE 7.1.: Growth of the basis dimension D in dependence on the truncation N (HO)
max

for standard NCSM calculations (left) and GNCSM calculations (right) for
3H ( ), 4H ( ), 4He ( ) and 5He ( ). In the GNCSM calculations we

use the following partial waves: sn
1/2 for 3H, sn

1/2pn
3/2 for 4H, ppn

3/2 for 4He

and pn
3/2 for 5He. The contours are discretized with νs = 12 ( ), 18 ( ),

24 ( ) scattering states. For all calculations we use lmax = 5.

is that it is non-orthogonal. This non-orthogonality follows from the expansion in a finite

number of HO wave functions, which results in a finite range. Since we usually use around

νs = 18 scattering states in our calculations, but only use nmax ≤ 12 HO wave functions

to expand the scattering states, the expanded wave functions are guaranteed to be non-

orthogonal.

The GNCSM or even the NCSM in general require two main modifications in order to treat

non-orthogonal basis sets appropriately. First, we need to solve a generalized eigenvalue

problem, which includes an overlap matrix of the basis states. If the basis is orthogonal, this

overlap matrix is the identity matrix. The extension towards a generalized eigenvalue solver

can be implemented straight forward and can also be solved using the Lanczos algorithm

[Lan50]. Second, the calculation of the Hamilton matrix elements has to be redefined. For

orthogonal basis sets we use the so called Slater-Condon rules [SO96] to evaluate the matrix

elements of an n-body operator in second quantization for Slater determinant. The matrix

elements of many-body Slater determinants are expressed in terms of a sum of matrix ele-
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ments of n-particle states. This simplification cannot be adopted for non-orthogonal basis

sets. Besides the formal extension for the calculation of the many-body matrix elements, it is

also important to note that the implementation of such an extension requires a lot of work.

Center-of-Mass Spuriousity The calculation of the center-of-mass Hamiltonian as it is

defined in equation (2.10) is not possible in the GNCSM. The matrix elements of the center-

of-mass operator are not defined for resonance and scattering states. Applying the approxi-

mation method using HO wave functions as it is used for the interaction matrix elements is

not useful since the matrix elements of center-of-mass Hamilton do not converge. A possible

solution is a different definition of the center-of-mass Hamiltonian which yields valid matrix

elements for resonance and scattering states. It includes the center-of-mass orbital angular

momentum L̂z [Mic+08]

Ĥcm ∝ L̂2
z . (7.4)

On the other hand, we know that scattering states are translationally invariant outside of the

interaction range [Pap+13]. In our case, we do not use a Lawson term in the Hamiltonian

since we use the GNCSM to calculate a reference state for the subsequent NAT-GNCSM

calculation. In the NAT-GNCSM, we are able to expand the center-of-mass Hamiltonian and

use the Lawson term from equation (2.11) once again.

7.2. Overlap Method

For the GNCSM we have to define a new method to identify the many-body bound and

resonance eigenstates of interest. The inclusion of continuum degrees of freedom entails that

many-body resonances of interest are embedded in the discretized scattering continuum

[Mic+08]. Thus, most of the many-body states we calculate are many-body scattering states.

In order to identify the many-body resonances we use the so called overlap method

[Mic+03]. For this method we perform a GNCSM calculation for Smax = 0. Hence, we only

allow HO states as well as bound and resonance states in the Berggren partial waves in the

many-body model space. The results of this calculation provide a bound-state approximation

since the scattering continuum is not included yet. We assume that most of the information

about the full many-body resonance state is already included in this approximation, hence,

the inclusion of the discretized scattering continuum generates a small correction to the

final many-body resonance. In order to determine the many-body resonance in the final
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Chapter 7. Gamow No-Core Shell Model

calculation we calculate the overlap with the bound-state approximation of the target state∣∣Ψref
〉

with the eigenstates of the full calculation
∣∣Ψfull

n

〉

On =
∣∣∣
〈
Ψref

∣∣∣Ψfull
n

〉∣∣∣ . (7.5)

The full calculation refers to a calculation including scattering states, i.e., Smax > 0. Since we

expect that the contribution of the discretized scattering continuum is small, we assume that

the overlap of the physical bound or resonance eigenstate in the full calculation is the state

with the largest overlap with the reference state.

7.3. Cheat Sheet: GNCSM calculation

The GNCSM calculation yields the first many-body results. We can use these results to

investigate and analyze the parameters and truncations of the Gamow basis and the matrix

element expansion. During the GNCSM calculation we only face new truncations and no

additional parameters. The model space truncations N HO
max and Smax can be increased in an

ab initio manner in contrast to the simplification of an orthogonal eigenvalue problem solver

for a non-orthogonal basis set.

GNCSM Truncations

1.) Setup reference many-body model space N HO
max, Smax = 0

2.) Setup full many-body model space N HO
max, Smax > 0

3.) Solve eigenvalue problem for both model spaces orthogonal solver

4.) Determine largest overlap for full calculation

5.) Analyze parameter and truncation dependence

7.4. Triton Ground-State Energy

Finally, we are able to perform the first GNCSM calculations and validate our code. For this,

we use the ground-state energy of 3H. Since the ground-state of 3H is a bound state, we

can compare the results from the GNCSM with results from the standard NCSM. If we only
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7.4. Triton Ground-State Energy

use scattering states on the real momentum axis, the GNCSM should yield exactly the same

results as the standard NCSM. Hence, we can investigate the impact of the single-particle

truncations and the matrix element approximation on the final many-body results even

without the inclusion of the complex continuum. Furthermore, we can analyze how the

non-orthogonality of the Gamow basis effects the results using an eigenvalue problem solver

for orthogonal eigenvalue problems.

The single-particle basis is parametrized by the one-body potential for the R-matrix calcu-

lation of the partial waves in the Berggren basis, the contour path and the HO frequency for

the partial waves in the HO basis

VWS = −25MeV, VLS = −30MeV,

aWS = 0.67fm, RWS = 1.83fm,

ℏΩ = 20MeV.

(7.6)

This potential produces a bound single-particle state in the spn
1/2 partial waves with an energy

of

Eb
(
spn

1/2

)=−5.16MeV. (7.7)

We only include scattering states in the s-wave and, more importantly, no broad resonance

in the p-wave. Thus, it is possible to use matrix elements up to HO frequencies of 24MeV.

Recall, the matrix element expansion in figure 6.4 is most problematic for the diagonal matrix

element of the single-particle resonance state. For the analysis of truncations of the Gamow

basis we use a default set of truncation values

kmax = 3fm−1, νs = 30,

Rcut = 10fm, emax = 24,

lmax = 5.

(7.8)

We use three different Gamow basis sets with different partial wave combinations, i.e.,

the sp
1/2, sn

1/2 and spn
1/2 partial waves. The path of the contour leads along the real axis of the

complex momentum plane and the scattering points are split equidistantly. The truncation

for the maximum number of scattering states allowed in the model space Smax is set large

enough to allow all possible nucleons to occupy a scattering state, i.e., Smax = 1,2 and 3 for

the three Gamow basis sets, respectively. The results of the calculations are shown in figure

7.2. The ground-state energies are almost converged for all single-particle basis sets and

the largest overlaps for the ground state are very large, which is expected for a bound state.
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FIGURE 7.2.: Benchmark of the GNCSM for the calculation of the ground-state energy of
3H depending on the many-body truncation N HO

max and the HO frequencies

16MeV ( ), 20MeV ( ) and 24MeV ( ). The first row shows the energy of

the ground state and the second row shows the largest (filled) and second to

largest (open) overlaps. The columns show the standard NCSM calculation

using the HO single-particle basis as benchmark calculation and three

different Gamow basis sets with different partial waves selections. The 30

scattering states are placed on an equidistant grid on the real momentum

axis from 0 to kmax = 3fm−1. All remaining parameters are defined in

equations (7.6) and (7.8).

However, the convergence of the ground-state energy shows two anomalies which need to be

discussed further.

First, even though the results are not fully converged we can already see that all GNCSM

calculations yield different ground-state energies. During the setup of the GNCSM we utilized

three approximations, which can influence the final result in an uncontrolled way. First, for

the calculation of the nuclear matrix elements we are limited to a HO single-particle space
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7.4. Triton Ground-State Energy

of emax = 24 which produces an uncertainty in the matrix elements. Second, the intrinsic

and center-of-mass part of the many-body wave function are not decoupled. Third, the

Gamow basis is non-orthogonal for the Berggren partial waves after the expansion of the

matrix element, but the GNCSM diagonalization does not account for this non-orthogonality.

The degree of the non-orthogonality increases with the number of scattering states, because

the same number of HO states is used in order to approximate all scattering states. For exact

results, the GNCSM has to be extended towards non-orthogonal basis sets.

A different approach to bypass the problem of the non-orthogonal Gamow basis is to use a

natural-orbital basis. The set of Gamow natural orbitals has two immediate advantages. First,

it is an orthonormal basis and following many-body eigenvalue problem can be solved as

such. Second, the number of single-particle states in the Berggren partial waves is lowered to

the number of HO single-particle states used for the expansion of the matrix elements, which

significantly lowers the dimension of the many-body model spaces.

The second anomaly concerns the pathological convergence behavior, e.g., for the N HO
max =

2,4,6 sequence for the sp
1/2 Gamow basis and HO frequencies 20MeV and 24MeV. The

values for the ground-state energy for N HO
max = 4 seem to be smaller or larger than expected,

respectively. That alone is not formally forbidden, however in order to understand what

happens at this step in the N HO
max sequence, we take a closer look at the values of the two

largest overlaps corresponding to these HO frequencies in the second row of figure 7.2. For

the given example, the largest overlap decreases and the second largest overlap increases for

N HO
max = 4. This means that there exist two states that are very similar to the reference state. In

our example the value of the ground-state energy for 20MeV seems to be too low, whereas

the value for 24MeV seems to be too large.

The overlaps and energies of the two eigenstates with the largest overlaps are shown in table

7.1. The left-hand table shows that the energy values depend on the HO frequency. The values

do not coincide exactly, but it is still apparent that the eigenvalues for the HO frequencies

20MeV and 24MeV are interchanged. In both cases the values of the largest two overlaps

are comparably close together and both values differ from the expected result given by the

calculation for the HO frequency 16MeV. Often times, the degeneracy in the eigenstates is an

effect that only appears for one step in the N HO
max sequence, in this case N HO

max = 4, and the gap

between the two largest overlaps is significantly larger for the neighboring N HO
max values. This

behavior is shown in the table 7.1 (B) for the N HO
max = 2,4,6 sequence for the HO frequency

20 MeV.
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ℏΩ n
∣∣〈Ψn

∣∣Ψref
0

〉∣∣ En

16MeV
0 0.90 −7.80MeV

1 0.29 −6.58MeV

20MeV
0 0.71 −8.35MeV

1 0.68 −7.16MeV

24MeV
0 0.81 −7.08MeV

1 0.55 −8.65MeV

(A) Variation of ℏΩ for N HO
max = 4.

N HO
max n

∣∣〈Ψn
∣∣Ψref

0

〉∣∣ En

2
0 0.92 −6.11MeV

1 0.34 −8.27MeV

4
0 0.71 −8.35MeV

1 0.68 −7.16MeV

6
0 0.92 −8.47MeV

1 0.35 −7.72MeV

(B) Variation of N HO
max for ℏΩ= 20MeV.

TABLE 7.1.: Comparison of the eigenvalues En of the eigenstates |Ψn〉 with the largest

overlaps for different HO frequencies (A) and a sequence of N HO
max truncations

(B). The data corresponds to the data shown in figure 7.2 for the sp
1/2 Gamow

basis.

7.5. Truncation Dependence of Triton Ground-State Energy

In this section, we investigate the dependence of the many-body results on a variation of the

default single-particle truncations defined in equation (7.8). Furthermore, we analyze the

dependence on the many-body scattering truncation Smax. For all parameters that are not

varied explicitly, we use the default single-particle truncation parameters and Smax = 2. We

use the single-particle basis characterized by the parameters in equation (7.6) and the sn
1/2

Gamow basis already used in figure 7.2.

Matrix Element Expansion In chapter 6, we have set the optimal values for the maximum

energy of the HO approximation wave functions and the cutoff of the radial integral to

emax = 24,

Rcut = 10fm.

Since the values for the expansion of the matrix elements are not fully converged for scattering

matrix elements, we want to analyze the impact of the uncertainty in the matrix element val-

ues on the results of the GNCSM. Figure 7.3 shows the dependence of the energy convergence

of the 3H ground state on both parameters. The ground-state energies are independent of

these two truncations for all N HO
max, i.e., the uncertainty from the calculations of the matrix
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FIGURE 7.3.: Analysis of impact of the matrix element approximations on the conver-

gence behavior of the ground-state energy of 3H with respect to N HO
max in the

GNCSM. The plots show the dependence on the maximum single-particle

energy in the HO wave function approximation (A) and the radial cutoff in

the HO wave function approximation (B). The Gamow basis uses the sn
1/2

partial waves in the Berggren basis.

element expansion does not affect the many-body results. This behavior is not guaranteed

and might be a consequence of the large overlap of > 90% for the full eigenstate. Thus, Slater

determinants that occupy scattering states only contribute with < 10% to the norm of the full

eigenstate. This small contribution in combination with the small uncertainties of matrix

elements containing scattering states does not generate a visible impact on the ground-state

energy.

Single-Particle Basis Truncation After the analysis of the matrix element truncation, we

take a closer look at the single-particle basis truncations that affect the single-particle model

space. The variation of these single-particle truncations is shown in figure 7.4.

We start with a discussion of the truncation of the maximum orbital angular momentum.

In figure 7.4 (A), we show that the results with respect to the maximum orbital angular

momentum are converged for lmax ≥ 5. The next truncation to the single-particle basis is the

cutoff of the scattering contour, i.e., the maximum momentum kmax. In order to rule out the

dependence on the grid spacing of the discretization, we use a constant grid spacing ∆k in
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(B) Convergence of contour cutoff

kmax = 2fm−1 ( ), 3fm−1 ( ), 4fm−1 ( )

with νs = 20, 30, 40 respectively.
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(C) Convergence with number of scattering states νs = 10 ( ), 20 ( ), 30 ( ), 40 ( ).

FIGURE 7.4.: Analysis of truncation parameters on the convergence behavior of the

ground-state energy of 3H with respect to N HO
max in the GNCSM. The plots

show the dependence on truncation of the single-particle basis, i.e., the

maximum orbital angular momentum (A), the contour cutoff (B) and the

step size in the contour discretization (C).

figure 7.4 (B). The results are converged for kmax = 3fm−1 for ∆k = 0.1fm−1.

Lastly, we take a look at the dependence of the results on the grid spacing of the discretiza-

tion, which is parametrized by the number of scattering points on the contour. In figure 7.4
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(C), we show the results for two momentum cutoffs and different numbers of scattering states,

i.e., different grid spacings. The convergence with respect to the number of scattering states is

very poor for νs ≥ 20 for both values of kmax. Furthermore, the values are shifted upwards for

the larger value of kmax = 4fm−1. This in combination with the previous observation that the

momentum cutoff is converged at kmax = 3fm−1 shows that two truncations counteract each

other. On the one hand, a larger number of scattering states is a more accurate approximation

of the scattering contour. On the other hand, the more scattering states we include, the higher

does the level of non-orthogonality increase.

For this section, we choose νs = 30 for the analysis of 3H, however in following calculations

for heavier nuclei we have to use smaller values in order to keep the model space dimension

manageable. When we introduce the Gamow natural orbitals in chapter 8, we analyze the

dependence of the natural orbitals on the number of scattering states again. As mentioned

before, the Gamow natural orbitals are supposed to remedy the problem of a non-orthogonal

single-particle basis.

Many-Body Basis Truncation The last truncation we analyze is the many-body truncation

parameter Smax which truncates the maximum number of scattering states allowed in the

model space. For the Gamow basis using the sn
1/2 partial wave this means that at maximum

both neutrons in 3H occupy scattering states. Thus, for Smax ≥ 2 this truncation effectively

vanishes and only the N HO
max truncation remains. Since the model spaces in 3H are very small

it is possible to choose Smax = 2 and converge all calculations with respect to the remaining

N HO
max truncation. This is not possible for all nuclei with A > 3 whose model spaces grow

factorially as already shown in figure 7.1 earlier.

In figure 7.5, we show the variation of the scattering truncation for the calculation of the

ground-state energy and overlaps of 3H. The calculation for Smax = 0, which only includes

bound and resonance single-particle states, already generates a bound state and the largest

overlap is one by definition. If we include scattering states in the model space the results

lie ∼ (10 to 15)% below the energy for Smax = 0. This justifies the overlap method which is

built on the assumption that the inclusion of single-particle scattering states produces a

small correction to the bound-state energy. Another observation regarding the overlaps is

the ordering of the largest overlaps for Smax = 1 and Smax = 2. Contrary to expectations the

overlaps do not increase for larger values of Smax even though larger values of Smax add Slater

determinants with more scattering states occupied to the many-body model space.

One thing that we have not discussed up to now is why scattering states have a contribution
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FIGURE 7.5.: Analysis of the model space convergence for the ground-state energy in the

first column and the largest (filled) and second to largest (open) overlaps

of 3H in the second column. The model spaces are truncated with the

scattering truncations Smax = 0 ( ), 1 ( ), 2 ( ).

to the bound state of 3H at all. The radial wave function of a bound state is finite. Hence,

it cannot include scattering states, which are essentially plane waves in the asymptotic

region. However, the only input to the GNCSM calculation are matrix elements and the

matrix elements mainly include the short-range part of the scattering wave functions. This

means the GNCSM knows the short-range part of the scattering states, but not the asymptotic

behavior. Consequently, the bound state of 3H includes Slater determinants that occupy

scattering states as well.

7.6. Calculation of the 4H Ground-State Resonance Energy

The previous calculation of the ground-state energy of the bound 3H served as a first approach

to GNCSM calculations and the different parameters that need to be considered for a robust

many-body result. Since it is a bound state, we do not expect large contributions by the

scattering states, which is reflected in large overlaps with the bound-state approximation.

In this section, we take a look at the Jπ = 2− ground-state resonance of 4H. In this case, the

standard NCSM only yields a bound-state approximation to the ground-state energy and the

inclusion of the continuum is necessary for a correct description of the ground state. We
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expect that the inclusion of single-particle resonance and scattering continuum states has

a larger impact on the final wave function compared to the 3H ground state. Similar to the

calculation of 3H, we have to analyze the dependence on the basis truncations before we can

explore different one-body potentials and contour paths for the GNCSM calculations.

Compared to the previous calculation we use a slightly weaker one-body potential which

produces a broader resonance and needs a broader contour path for the calculations

VWS = −20MeV, VLS = −25MeV,

aWS = 0.67fm, RWS = 2.02fm,

k1 = (0.3−0.2i) fm−1, k2 = 0.6fm−1,

ℏΩ = 16MeV.

(7.9)

We already used this potential during the calculation of the radial wave functions in chapter

5 and matrix elements in chapter 6. This potential produces a bound and a resonance

single-particle state in the sn
1/2pn

3/2 partial waves with energies and resonance momentum of

Eb
(
sn

1/2

)=−3.35MeV, (7.10)

Er
(
pn

3/2

)= (0.98−0.84i)MeV, (7.11)

kr
(
pn

3/2

)= (0.27−0.1i) fm−1. (7.12)

The set of suitable HO frequencies is limited to ℏΩ≤ 16MeV as we have seen in chapter 6.

For the analysis of truncations of the Gamow basis, we use almost the same set of optimal

truncation values. In order to make the calculations feasible the number of scattering points

needs to be smaller

kmax = 3fm−1, νs = 18,

Rcut = 10fm, emax = 24,

lmax = 5.

(7.13)

The first calculations of the 4H ground-state energy are shown in figure 7.6 for different partial-

wave selections and HO frequencies. Since the ground state of 4H has total angular moment

J = 2, we expect a single neutron in the pn
3/2 shell. Therefore, we use two different single-

particle Gamow basis sets which include the pn
3/2 shell in order to calculate the many-body

resonance, i.e., pn
3/2 and sn

1/2pn
3/2.

The real part of the energy has a similar convergence behavior for both partial-wave

selections. Furthermore, the overlaps of the ground state are smaller compared to the bound

state of 3H, which shows the impact of the continuum to the state. The two partial-wave
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FIGURE 7.6.: Calculation of the ground-state energy of 4H in the GNCSM for differ-

ent Gamow basis sets (middle, right) and the HO basis in the standard

NCSM (left) using the HO frequencies 8MeV ( ), 12MeV ( ), 16MeV ( ),

20MeV ( ) and 24MeV (✚). The first and second row show the real and

imaginary part of the ground-state energy, respectively. The third row

shows the largest (filled) and second to largest (open) overlaps. For every

single-particle basis set we show the three HO frequencies with the best

convergence behavior for the real part of the energy.

selections differ for the imaginary part of the energy. For small values of N HO
max we find a many-

body resonance state with negative values for the imaginary part of the energy. However, for

larger N HO
max and decreasing real parts the imaginary part of the energy becomes positive if we

only use the pn
3/2 partial wave in the Berggren basis.

In case of the sn
1/2pn

3/2 partial-wave selection the imaginary part of the energy remains

almost constant, which indicates that the continuum information from the sn
1/2 partial wave
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is not negligible. For the following calculations in this section, we use the sn
1/2pn

3/2 partial-wave

selection. The dependence on the HO frequency is very small for a broad range of frequencies

for the standard HO calculation and the calculation using the pn
3/2 partial wave. This is not

the case if we use the sn
1/2pn

3/2 partial-wave selection for which the energy decreases further

for increasing HO frequencies.

7.7. Truncation and Parameter Dependence of 4H Ground-State Energy

In this section, we analyze the dependence of many-body results on three types of parameters.

First, we analyze the influence of the truncations in the matrix element expansion. Second,

we investigate the convergence of the results with respect to the single-particle and many-

body basis truncation parameters. Third, we analyze the dependence on the one-body

potential and the contour path parameters used for the calculations. If the parameter is not

varied specifically, we us the default parameters defined in equations (7.13) and (7.9) and the

sn
1/2pn

3/2 partial-wave selection with Smax = 2.

Matrix Element Expansion We start with the analysis of the matrix-element expansion,

which showcases the problems and uncertainties arising in the many-body result of 4H. In

section 6.2 we already defined optimal values for Rcut and emax and the benchmark for the

ground-state energy of 3H shows that the results are converged for these optimal values.

However, for the ground-state energy of 4H it causes an uncertainty since the impact of

scattering states is much larger as reflected in smaller overlaps of ∼ 60% for the 4H ground

state compared to overlaps of ∼ 90% for 3H.

Figure 7.7 shows the dependence of the real part of the ground-state energy on Rcut and

emax. In the left part of the figure, we show that the results for a HO frequency of 16MeV

depend on Rcut. This is not surprising since we have already demonstrated in section 6.2 that

for small Rcut we cut off some parts of the long-range interaction, whereas for large cutoffs

the wave function approximation becomes unstable. Therefore, we have to accept a small

uncertainty in the final result of the many-body calculations, which appears if the impact of

scattering states increases in the ground-state wave function.

In the right-hand panel of figure 7.7, we show the results for the HO frequency of 24MeV,

which seem to converge for larger Rcut. However, as discussed in section 6.2 this is a conse-

quence of the range of the wave functions which is about 10fm for emax = 24. The calculation

of the HO expansion coefficients becomes unstable and does not change for larger Rcut since

the wave functions have already fallen off to zero at this point. This example shows how a
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FIGURE 7.7.: Analysis of effect of the matrix element approximations on the conver-

gence behavior of the ground-state energy of 4H with respect to N HO
max in

the GNCSM. The plots show the dependence on the radial cutoff (A) and

the maximum single-particle energy (B) in the HO wave function approxi-

mation.

false convergence can appear in the many-body calculation as consequence of the matrix

element that are not converged with respect to emax for HO frequencies larger that 16MeV.

The second parameter that affects the matrix element expansion is the maximum number
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of HO wave functions in the expansion of the wave function which is given by emax. In figure

7.7 (B), we show that the result for the real part of the energy is not completely converged

for the maximum value emax = 24. However, the uncertainty is very small compared to the

overall uncertainty arising from the many-body calculation.

Even though these uncertainties in the final many-body results seem problematic, it does

not have to be a problem for the calculations using Gamow natural orbitals later on. We can

expect the uncertainties from Rcut and emax to be negligible because they do not change the

physical characteristics of the wave function very much, i.e., the state is always well bound

and has a negative imaginary part, which corresponds to a resonance state. Hence, a further

development in the calculation of the HO matrix elements in order to reach higher values for

emax does not enhance the results later on.

Model Space Truncations In the next part of our analysis, we take a look at the convergence

with respect to the model space truncations. On the one hand, the number of scattering states

νs in the Berggren partial waves of the Gamow basis truncates the single-particle basis. On

the other hand, the many-body scattering truncation Smax truncates the many-body Slater

determinant basis. For both truncations the resulting many-body basis dimension increases

rapidly with increasing truncations. Thus, for large values of νs and Smax we are limited to

small values of N HO
max.

In figure 7.8 we show the real and imaginary part of the ground-state energy of 4H de-

pending on the number of scattering states νs and the many-body scattering truncation

Smax. The convergence of νs shows that the calculations are almost converged for the real

and imaginary part of the energy for a large number of scattering points. Furthermore, the

imaginary part of the energy tends towards a constant if we increase the number of scattering

states. The residual variation can result from the non-orthonormality of the single-particle

basis as we have already discussed for the 3H ground-state energy in figure 7.4 (C). For the

variation of the many-body scattering truncation Smax we are unable to perform calculations

for Smax = 3 and N HO
max > 3 due to the large many-body model space dimension. However, the

results are almost converged for Smax = 2 for the real and imaginary part of the energy. Again,

the convergence pattern of the imaginary part of the energy tends towards a constant for

larger values of Smax. Following the argument from the previous paragraph, we expect that

the impact of the uncertainty on the results for values of νs ≥ 12 and Smax ≥ 2 to be very small

in the following calculations with Gamow natural orbitals.
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FIGURE 7.8.: Analysis of truncation parameters on the convergence behavior of the

ground-state energy of 4H with respect to N HO
max in the GNCSM. The plots

show the dependence on the number of scattering states on the contour (A)

and on the many-body scattering truncation (B).The first and second row

show the real and imaginary part of the ground-state energy, respectively.

Single-Particle Basis Variation In the previous paragraphs, we analyzed the dependence

of different approximations and truncations on the ground-state energy of 4H and the goal

was to find truncation values for which the final results are converged. In theory, we would

like to achieve the same converged results for different single-particle Gamow basis sets

because the result of the many-body calculations should be independent of the single-particle

basis. However, we discretize the continuum and restrict ourselves to specific parts of the

continuum, e.g., a specific selection of partial waves in the Berggren basis. As a consequence,

we obtain a model dependence on the specific one-body potential or contour path used in

the Berggren partial waves. In this paragraph, we analyze how the many-body results depend

on different single-particle basis sets and contour paths.
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potential
VWS VLS aWS Eb

(
sn

1/2

)
Er

(
pn

3/2

)

in MeV in MeV in fm in MeV in MeV

I −20 −25 0.67 −3.35 0.98−0.84i

II −19 −25 0.67 −2.93 1.05−1.0i

III −21 −25 0.67 −3.78 0.89−0.69i

IV −15 −20 1.2 −2.02 0.42−0.39i

V −25 −30 0.67 −5.64 0.47−0.22i

TABLE 7.2.: List of five different one-body potentials with different potential parameters

for the calculation of a Gamow basis of 4H. It includes the energy of the

bound and resonance state in the sn
1/2 and pn

3/2 partial wave, respectively.

For the variation of one-body potentials we use a set of one-body potentials characterized

in table 7.2. The default one-body potential is potential I. The potentials II and III only differ

in a small decrease and increase of the Woods-Saxon potential depth, respectively. Thus,

the energies of the bound and resonance states do not vary much. A larger variation in the

one-body potential definition is given for the potentials IV and V which also include changes

in the other potential parameters. This also produces different energies for the bound and

resonance states.

The results for the variation of the five one-body potentials are shown in figure 7.9 (A). The

small shifts in the Woods-Saxon potential depth in potentials II and III generates a shift in

both parts of the complex energy, but the overall shape of the convergence pattern stays

unchanged.

For the potential IV, the Gamow basis still produces a resonance state with an imaginary

energy in the order of the first three potentials, but the real part of the energy lies almost

2MeV below the first three potentials throughout the N HO
max sequence. For this potential, the

non-orthonormality of the Gamow basis and approximation of the matrix elements generates

large uncertainties on the final results. This does not exclude this calculation for a following

natural-orbital calculation, but needs to be treated with care. We will analyze the influence of

the one-body potentials again for the natural-orbital calculations later on.

Finally, potential V does not produce a many-body resonance state at all which might

become a problem in the upcoming natural-orbital calculations. In fact, this potential

produces multiple states with very similar overlaps, which also explains the kink in the
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FIGURE 7.9.: Analysis of different one-body potentials (A) and contour paths (B) on the

convergence behavior of the ground-state energy of 4H with respect to

N HO
max in the GNCSM. The first and second row show the real and imaginary

part of the ground-state energy, respectively.

convergence pattern at N HO
max = 4.

As our final analysis, we take a look at the impact of different contour paths on the final

result. In figure 7.9 (B) we compare two different contour paths to the default path. For

simplicity, we only vary the imaginary part of the contour point k1. The real part of the

energy stays almost unchanged except for one pathological point for the broad contour

k1 = (0.3−0.3i) fm−1 at N HO
max = 5. The imaginary part of the energy is shifted for both variations

compared to the default parameter.

This section has shown that the results of the many-body calculations are heavily affected

by the underlying Gamow basis. It is necessary to choose a suitable one-body potential in

order to obtain reasonable many-body results. If the one-body potential does not yield the
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necessary parts of the continuum, we are unable to generate a many-body resonance state.

Furthermore, we suggest contour paths that stay rather close to the resonance as given by

equation (5.10).
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8
GAMOW NO-CORE SHELL MODEL WITH

NATURAL ORBITALS

The GNCSM with the natural-orbital single-particle basis (NAT-GNCSM) is an extension to

the GNCSM. We use the natural orbitals in order to solve two problems. First, we want to

decrease the model space size in order to speed up the convergence. Second, we want to build

an orthonormal single-particle basis, such that we can calculate matrix elements and obtain

an orthogonal many-body eigenvalue problem. This Gamow natural orbitals have already

been applied successfully in the GNCSM framework [Fos+17; Li+19]. Similar to the natural

orbitals in the standard NCSM [Con+17; TMR19], it enhances the model space convergence

in the many-body calculation.

8.1. Gamow Natural Orbitals

By definition, the natural-orbital basis is the eigenbasis of an one-body density matrix given

in equation (2.12). In our case, we use a GNCSM eigenstate as the reference state. Thus, the

one-body density matrix elements for every partial wave read

ρ
(l j m j mt )
nn′ = 〈Ψref|

(
â

(l j m j mt )
n

)†
â

(l j m j mt )
n′ |Ψref〉

=
∑
i , j

C∗
i C j 〈Φi |

(
â

(l j m j mt )
n

)†
â

(l j m j mt )
n′ |Φ j 〉 ,

(8.1)
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where we used the basis expansion of the NCSM eigenstate from equation (2.2). The creation

and annihilation operators are represented in the HO basis. For the computation of the action

of these operators on Berggren states in the reference state, we use the same HO expansion as

we used for the matrix element calculation before. The resulting one-body density matrix has

a block structure and is calculated for every block of the diagonal l , j , m j , and mt quantum

numbers. Hence, the natural-orbital states for the radial quantum number ñ

∣∣ñl j mt
〉

NAT =
nmax∑
n=0

C (l j mt )
ñn

∣∣nl j mt
〉

HO (8.2)

only mix the radial quantum number n of the HO basis. The number of natural-orbital states

ñmax for every partial wave is

ñmax =




emax−l
2 , if Berggren partial wave

nmax, if HO partial wave
(8.3)

The ñ quantum number orders the natural orbitals states by their occupation probability in

the reference state. The occupation probability is given by the eigenvalues pñ of the density

matrix entries. We order the radial quantum number of the natural orbitals with decreasing

probability such that

ñ < ñ′ =⇒ pñ ≥ pñ′ . (8.4)

This ordering is important for the definition of a new many-body model space truncation

for the upcoming NAT-GNCSM calculation because we cannot apply the Smax truncation

anymore.

Since we use a GNCSM reference state, the one-body density matrix inherits information

about the continuum from the reference state. These admixtures are transferred into the

complex eigenbasis of the one-body density matrix. The natural-orbital basis has two prop-

erties that can improve the GNCSM calculation compared to the Gamow basis. First, the

natural-orbital basis is orthonormal. We can expand the nuclear matrix elements in the

natural orbitals as it is done for the standard NCSM [TMR19] and can use an orthogonal

eigenvalue problem solver. Second, the natural-orbital basis has a smaller basis dimension

than the previous Berggren basis.

At this point, we note one possible problem of the natural orbitals. The information

about the continuum is solely inherited by the reference state, which is not converged in

the GNCSM calculation. Thus, it does not contain the full information about the continuum
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and the generated natural orbitals are only an approximation to the one-body continuum.

Hence, we trade off a decrease in the model space dimension and an orthonormal basis set

for an approximation of the one-body continuum. We will investigate the impact of this

approximation to the many-body results later.

8.2. Extensions towards NAT-GNCSM

Similar to the previous chapter, we discuss the necessary changes to the GNCSM in order to

perform the calculations using a natural-orbital basis. First, we have to define a new model-

space truncation, since the scattering truncation Smax is no longer applicable. Second, since

the natural-orbital wave functions have a finite range, the center-of-mass Hamiltonian Ĥcm

can be expanded in this basis set as well. The basic concept of the NAT-GNCSM compared to

the GNCSM using the Gamow basis stays unchanged.

Model Space As mentioned before, we have to define a new many-body truncation scheme

because we do not have scattering states in the natural-orbital basis. The radial quantum

number of the natural orbitals orders the single-particle states with respect to their occupation

probability in the reference state in equation (8.1). Similar to the use of the natural orbitals in

the standard NCSM, we expect the single-particle states with higher occupation probability

to be more important [Con+17; TMR19]. Hence, we also use an Nmax-type truncation with

N = 2ñ + l . (8.5)

This truncation is similar to the truncation in the standard NCSM with the HO basis or the

truncation for the HO partial waves in the GNCSM. However, the number N does not count

the HO excitation quanta anymore. The definition of the model space now reads

M (Nmax, M J ,π) = {|Φ〉 : N (|Φ〉) ≤ Nmax, M (|Φ〉) = M J , π (|Φ〉) =π
}

, (8.6)

which is the same definition as for the NAT-NCSM.

Remember, even though we use an Nmax-type truncation here, we cannot use the ad-

vantages of the Nmax truncation in the standard NCSM with the HO basis, e.g., the exact

separation of the intrinsic and center-of-mass wave functions.

Center-of-Mass Spuriousity For the natural-orbital basis it is possible to expand the matrix

elements of the center-of-mass Hamiltonian. Since we do not use the HO basis it can be

problematic to use the center-of-mass Hamiltonian as Lawson term as defined in (2.11)
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in order to shift eigenstates, which have an excited center-of-mass state, towards higher

energies in the spectrum. We use the expectation value of the center-of-mass Hamiltonian to

determine the physical many-body resonance states. We expect it to be small for the physical

many-body resonance states compared to other discretized many-body scattering states

[Pap+13]. In order to verify that this approach works accurately, we have to investigate the

expectation value of the center-of-mass Hamiltonian later.

8.3. Determination of the 4H Ground-State Resonance

As a first calculation in the NAT-GNCSM, we pick up the ground-state resonance of 4H, which

we already used for the GNCSM at the end of the previous chapter. For the NAT-GNCSM

calculation, we have to analyze a few things: First, we have to decide which reference state we

use. Second, we have to determine the physical resonances. Third, we have to analyze how

the NAT-GNCSM results depend on the parameters and truncations of the reference state.

In the GNCSM calculation we found the one-body potential given in equation (7.9) and

the truncation parameters given in equation (7.13) for the optimal calculation. For the

partial-wave selection sn
1/2pn

3/2, the many-body state is a resonance and for the partial-wave

selection pn
3/2, the resonance characteristics vanished for larger values of N HO

max. These GNCSM

calculations are the first, intuitive choice for a reference state for the following NAT-GNCSM

calculation. Thus, we use the eigenstate of the ground-state for N HO
max = 3 and Smax = 2 for

both partial-wave selections as reference state. Note, the partial waves of the Gamow basis,

which are not occupied in the reference state, remain HO partial waves effectively. Thus, the

natural-orbital basis depends on the HO frequency as well.

After we performed the NAT-GNCSM calculation, we have to determine the physical reso-

nances. The calculation of an overlap with the bound-state approximation requires some

additional efforts. Instead, we compute the expectation value of the center-of-mass Hamilto-

nian. We use the real part of the expectation value of the center-of-mass Hamiltonian since

we assume physical resonances to have a small center-of-mass contributions compared to

discretized many-body scattering states. In the following, we first investigate the expectation

value of the center-of-mass Hamiltonian of the physical resonances in the NAT-GNCSM, and

afterwards, compare the results of the GNCSM and NAT-GNCSM calculations.

In figure 8.1, we show the first results for the partial-wave selections pn
3/2 and sn

1/2pn
3/2. The

figure shows the eigenvalues and the real part of the expectation value of the center-of-mass

Hamiltonian of the first two eigenstates. The ordering refers to the real part of the expectation
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FIGURE 8.1.: Calculation of the energies of the first ( ) and second ( ) eigenstates

of 4H using the NAT-GNCSM and HO frequencies 12MeV ( ), 14MeV ( )

and 16MeV ( ). The Lawson parameter is λcm = 0.2. The two columns

use different partial-wave selections in the reference state of the natural

orbitals. For more information on the reference state see the text.

value of the center-of-mass Hamiltonian since we expect it to be small for physical resonances.

For the pn
3/2 partial-wave selection, we see that the real part of the expectation values of the

center-of-mass Hamiltonian of the first eigenstate is small compared to the second eigenstate.

Hence, we assume that the first state is the physical resonance. The real part of the energy of

the first eigenstate shows the expected convergence behavior. The alternating convergence

behavior of the second state can be explained as follows. There exist multiple eigenstates

with a very similar expectation value of the center-of-mass Hamiltonian, such that it is not

possible to determine a unique second eigenstate and the second state may alter for every

step in the Nmax sequence. The imaginary part of the corresponding eigenvalue converges
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towards a positive value which coincides with the energy of reference state in the GNCSM

calculation. This reference state excludes a part of the continuum, which is relevant to

describe the resonance state.

If we take a look at the calculation using the sn
1/2pn

3/2 partial-wave selection in the right-hand

side of figure 8.1, the determination of the physical resonance becomes more complicated

or rather impossible. The real part of the eigenvalue as well as the expectation value of

the center-of-mass Hamiltonian are very close and overlap for different HO frequencies. In

contrary to the pn
3/2 partial-wave selection, the convergence of the real part of the energy is

very smooth and has the expected convergence behavior. One possible explanation is that

these states are degenerate similar to states with similar overlaps in the previous GNCSM

calculations. Regarding the imaginary part of the energy, the first state is a non-resonant state

and the second state has a HO frequency-dependent negative imaginary part. It is important

to note, that a negative imaginary part of the energy does not necessarily mean that it is a

physical resonance. Especially, in this case where the imaginary part is heavily dependent on

the HO frequency and there exists a second state with a similar or even smaller expectation

value of the center-of-mass Hamiltonian, the eigenstate should be treated with caution.

For the previous figure 8.1, we already used a Lawson term as it is introduced in equation

(2.11). Since the inclusion of a Lawson term alters the eigenvalue problem in the case of the

NAT-GNCSM, we have to analyze the dependence of the results on the Lawson parameter

carefully. The idea behind the inclusion of the Lawson term is to try to lift the degeneracy

and obtain an eigenstate with a small expectation value of the center-of-mass Hamiltonian

compared to the other eigenstates.

The impact of a Lawson term on the energy eigenvalues and the expectation value of the

center-of-mass operator is shown in figure 8.2. The calculation without a Lawson term shows

an increase of the expectation value of the center-of-mass Hamiltonian for increasing Nmax.

Furthermore, we can see that the convergence behavior of the real part of the energy shows

some calculations with a very large center-of-mass contamination. These contaminations

are decreased if we include the Lawson term with λcm ≤ 0.2. This also flattens the expectation

value of the center-of-mass Hamiltonian with respect to Nmax. For larger values of the Lawson

parameter, we can see that the eigenvalues start to shift upwards, but the expectation value

of the center-of-mass Hamiltonian only changes very slightly. At this point, it is important

to remember that the inclusion of a Lawson term alters the eigenvalue problem, and as a

consequence, it can alter the eigenvalues since we do not have a center-of-mass separation

of the many-body wave function. Therefore, we have to be careful using Lawson parameters
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FIGURE 8.2.: Calculation of the energies of the first ( ) and second ( ) eigenstates

of 4H using the NAT-GNCSM and HO frequencies 12MeV ( ), 14MeV ( )

and 16MeV ( ). The different columns use different Lawson parameters

in the Hamiltonian. The reference state uses the sn
1/2p3/2n partial-wave

selection.

which are to large.

In addition to the analysis of the expectation value of the center-of-mass Hamiltonian, we

can compare the results of the NAT-GNCSM with the GNCSM using the Berggren basis as

depicted in figure 8.3 for both partial wave combinations. For the pn
3/2 partial-wave selection,

the real and imaginary part of the energy is not completely converged for the GNCSM, but

especially the imaginary part yields similar values compared to the NAT-GNCSM calculation.

Hence, the natural orbitals fulfill their primary goal of enhancing the convergence rate.

If we take a look at the right-hand side of figure 8.3 for the sn
1/2pn

3/2 partial-wave selection,

we observe a similar convergence pattern for the real part of the energy. However, the imagi-

nary part of the NAT-GNCSM calculation yields different results compared to the GNCSM

calculation using the Berggren basis for both states. This can have two reasons. First, the

natural-orbital basis is unable to reflect the continuum information of the reference state.

Second, the two states with a comparably large expectation value of the center-of-mass

89



Chapter 8. Gamow No-Core Shell Model with Natural Orbitals

0

−3

−6

R
e(

E
0

)
in

M
eV BG NAT

2 3 4 5 6

N HO
max

−5.0

−2.5

0.0

2.5

Im
(E

0
)

in
M

eV

4681012

Nmax

R
e(

E
0

)
in

M
eVBG 0

−3

−6

R
e(E

0 )
in

M
eV

NAT

2 4 5 6

N HO
max

Im
(E

0
)

in
M

eV

4681012

Nmax

−5.0

−2.5

0.0

2.5 Im
(E

0 )
in

M
eV

FIGURE 8.3.: Comparison of the eigenvalues of the ground-state energy of 4H using the
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1/2pn
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(right) partial-wave selections. The HO frequencies are 12MeV ( ), 14MeV

( ) and 16MeV ( ). The NAT-GNCSM uses λcm = 0.2. For further infor-

mation on the Gamow basis and the reference state for the NAT-GNCSM

calculation see the text.

Hamiltonian are somehow degenerate. We observed a similar behavior for the GNCSM when

we found two eigenstates with similar overlap values.

Ultimately, we need to define a procedure to determine the correct physical resonances

of the spectrum from the NAT-GNCSM calculation. Some points in this guideline are based

on experience and caution in order to avoid problems in the results even though this might

restrict the range of applicability of the GNCSM framework. Some of the following arguments

are also strengthened in the next section when we investigate the dependence on the trunca-

tions of the reference state and the Gamow basis. A physical many-body eigenstate has to

fulfill the following conditions.

I. The expectation value of the center-of-mass Hamiltonian of the state is positive and

smaller than ℏΩ.

II. The expectation value of the center-of-mass Hamiltonian is small compared to other

eigenstates in the same energy region.
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III. The dependence on the HO frequency is of the same order of magnitude for the real

and imaginary part of the energy.

With point I, we require the center-of-mass excitation of the intrinsic state to be rather

small, similar to applications of alternative single-particle basis sets in the standard NCSM

[TMR19]. Point II is motivated by the calculations using the sn
1/2pn

3/2 partial-wave selection

shown in figure 8.1. The application becomes more complicated if there exist two intrinsic

eigenstates with similar energies. In this case, we need the same number of eigenstates with

small expectation values of the center-of-mass Hamiltonian. The third point, originates from

the independence of the results on the HO frequency in standard NCSM calculations. We

expect a similar behavior for a range of HO frequencies around the optimal HO frequency

for the NAT-GNCSM even though the impact of the HO frequency is more complex in the

GNCSM framework as we will discuss in the next section. Furthermore, point III is often times

not fulfilled if II is not fulfilled as well, as can be seen for the imaginary part of the second

eigenstate of the sn
1/2pn

3/2 partial-wave selection shown in figure 8.1.

8.4. Analysis of Reference State Truncations

The reference state of the natural-orbital basis we used for the previous calculations had one

specific set of truncations. In general, it is not possible to determine an optimal reference

state. As already discussed in the previous chapters, the reference state depends on the

choice of the one-body potential in the setup of the Gamow basis as well as the model space

truncations of the single-particle and many-body basis. The former is discussed in the next

section and we focus on the model space truncations in this section.

Most of the truncations of the Gamow basis are either converged or we used the optimal

values, e.g., the radial cutoff in the matrix element approximation. The only exception is the

number of scattering states on the contour. On the one hand, more scattering states represent

a better approximation of the continuum. On the other hand, the non-orthonormality of the

Gamow basis gets more sever the larger the number of scattering states is. As a compromise

between these two extremes, we choose a range of values for the number of scattering by

hand, which yield suitable reference states. In addition to the single-particle basis truncations,

the many-body model space is truncated via the Smax and the N HO
max truncation which already

adds up to three truncations, which we have to discuss.

A rather unobvious parameter that effects the reference state is the HO frequency. On

the one hand, the HO frequency is a free parameter that alters the single-particle basis and
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should not affect the converged results in the many-body calculation. On the other hand,

there are a lot of steps during the calculation which are affected by the HO frequency. It starts

at the calculation of the nuclear matrix elements and continues in the HO partial waves of

the Gamow basis. Since we use a reference state whose eigenvalues are not converged yet,

the reference state and its coupling to the continuum depends on the HO frequency. Lastly,

in the NAT-GNCSM calculation the HO frequency remains in the HO partial waves that were

not included in the model space of the reference state. In the previous chapter, we have

already seen that the convergence patterns can differ for different HO frequencies, but if the

eigenstate of interest, e.g., the ground state, is determined uniquely by the expectation value

of the center-of-mass Hamiltonian the dependence on the HO frequency becomes small.

We start the analysis with the reference states using the pn
3/2 partial wave in the reference

state. Here, we are always able to find a unique ground-state in the NAT-GNCSM. Afterwards,

we perform a similar analysis for the sn
1/2pn

3/2 partial wave selection in the reference state,

where we were not able to determine a unique ground-state in the NAT-GNCSM.

Figure 8.4 shows a comparison of the ground-state energy of 4H in the NAT-GNCSM for

different N HO
max truncations of the reference state. For the two smaller values of the N HO

max trun-

cation, the energies seem to converge towards different energies for different HO frequencies.

In itself this is not a problem, because we do not know how the interplay between the real

part and the imaginary part works. Nevertheless, it shows that the reference states are not

converged, and consequently, HO frequency dependent. This dependence seems to be re-

duced for N HO
max = 4, where the reference states are more converged. Besides the dependence

on the HO frequency, the energies tend towards lower real parts and larger imaginary parts

with increasing N HO
max.

The second truncation parameter we need to investigate for the pn
3/2 partial wave is the

scattering truncation Smax. Similar to the previous figure, figure 8.5 shows the variation of the

scattering truncation for the same HO frequencies. The first observation is that the energies

differ for Smax = 1 compared to the other values of Smax. Similar to before, the energies also

depend on the HO frequency, which again shows that the reference states are not converged.

If we increase the scattering truncation, the energies increase slightly and the HO frequency

dependence is decreased. The step from Smax = 1 to Smax = 2 has the largest impact in the

description of the reference state and the energies do not change a lot for the subsequent

step towards Smax = 3. We have already seen this behavior for the sn
1/2pn

3/2 selection in the

GNCSM calculation in figure 7.8, where the energies seem to be converged at Smax = 2.

The final truncation we have to discuss is the number of scattering states in the Gamow
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FIGURE 8.4.: Comparison of the ground-state energy and expectation value of the center-

of-mass Hamiltonian of 4H for HO frequencies 12MeV ( ), 14MeV ( ) and

16MeV ( ) and the pn
3/2 partial-wave selection. The columns refer to differ-

ent N HO
max truncations of the reference state. The remaining truncations are

Smax = 2 and νs = 18. The Lawson parameter is set to λcm = 0.2.

basis, which is shown in figure 8.6. The convergence patterns for the real part fo the energy are

similar for all values for the number of scattering states, but the ordering of the HO frequency

changes, i.e., different HO frequencies converge towards the lowest values for the real part of

the energy. The imaginary part of the energy becomes smaller and tends towards zero if we

increase the number of scattering states. For this range of scattering states, none of the two

aforementioned problems regarding too large or too small values for the number of scattering

states plays a role here. We use νs = 18 as suitable value for the upcoming calculations.

Concluding the analysis of the pn
3/2 partial-wave selection, we see that the convergence

behavior of the energy differs slightly if we use Smax ≥ 2. Since we are not able to argue which

of the combinations of truncation parameters yields the best results, we define a procedure

to deduce an extrapolated energy with a corresponding many-body uncertainty based on the

results for different combinations of the truncations of the reference state in section 8.6.

If we take a look at the sn
1/2pn

3/2 partial-wave selection, the dependence on the truncations
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FIGURE 8.5.: Comparison of the ground-state energy and expectation value of the center-

of-mass Hamiltonian of 4H for HO frequencies 12MeV ( ), 14MeV ( )

and 16MeV ( ) and the pn
3/2 partial-wave selection. The columns refer to

different Smax truncations of the reference state. The remaining truncations

are N HO
max = 4 and νs = 18. The Lawson parameter is set to λcm = 0.2.

becomes much more complicated. In the first calculations, we have already seen that the

determination of a ground state is rather complicated or even impossible and we do not find

a resonance state for the chosen reference state. This reference state was chosen by hand

based on the results of the GNCSM calculation with the Berggren basis, i.e., Smax = 2, νs = 18

and N HO
max = 3.

We start with a variation of the scattering truncation in figure 8.7. As we have seen in the

previous section, it is very complicated to determine a unique eigenstate for Smax = 1. For

Smax = 2 it is slightly easier to determine the ground state with the exception of the last step

in the Nmax sequence for the smallest HO frequency. Arguably the best results are given by

the calculation for Smax = 3. Not only is it possible to determine a unique ground state, but

the expectation value of the center-of-mass Hamiltonian becomes very small as well. It might

indicate that we need much information from the continuum to derive a good single-particle

basis, which results in small center-of-mass expectation values. Keep in mind, the motivation
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of-mass Hamiltonian of 4H for HO frequencies 12MeV ( ), 14MeV ( )

and 16MeV ( ) and the pn
3/2 partial-wave selection. The columns refer to

different numbers of scattering states in the Gamow basis of the reference

state. The remaining truncations are N HO
max = 4 and Smax = 2. The Lawson

parameter is set to λcm = 0.2.

to use the expectation value of the center-of-mass Hamiltonian is based on the HO basis and

does not necessarily work in case of the natural-orbital basis. However, since we do not have

any other observable to determine the ground states, we assume that smaller expectation

values of the center-of-mass Hamiltonian are preferable. For the following calculation, we

use Smax = 3 which also fixes the N HO
max truncation to N HO

max = 2 because of the large model

space dimensions.

The variation of the remaining truncation parameter, the number of scattering states, is

shown in figure 8.8. The real part of the energies depends not only on the HO frequency

but also on the number of scattering states. The most interesting part is the behavior of the

imaginary part of the energy. The imaginary part gives two distinct energy values for νs = 15

and νs = 21 compared to νs = 18. This means that the admixtures of the continuum in the

reference state differ depending on the number of scattering states. One indication for this, is
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FIGURE 8.7.: Comparison of the ground-state energy and expectation value of the center-

of-mass Hamiltonian of 4H for HO frequencies 12MeV ( ), 14MeV ( ) and

16MeV ( ) and the sn
1/2pn

3/2 partial-wave selection. The columns refer to

different Smax truncations of the reference state. The remaining truncations

are N HO
max = 2 and νs = 18. The Lawson parameter is set to λcm = 0.2.

the overlap of the reference state with the bound-state approximation. For νs = 15,21, the

overlaps are ∼ 25%, whereas the overlap for νs = 18 is ∼ 20%. Even though this is not a large

discrepancy, it might indicate that the reference states could differ significantly, such that the

natural-orbital basis sets differ as well.

In conclusion, we demonstrated that the truncations can have a big impact on the results

in the NAT-GNCSM. It is necessary to manually optimize the truncations parameters. This

introduces a model dependence, but it is unavoidable in some cases. The alternative solution

is to discard all calculation which do not have a similar energy convergence behavior over all

variations of the truncation parameters of the reference state. In part III, we will show that the
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state. The remaining truncations are N HO
max = 2 and Smax = 3. The Lawson
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results do not always show these large dependencies on the reference state as we observed

here for 4H.

8.5. Analysis of Gamow Basis Parameters

The parameters of the Gamow basis determine the one-body potentials for the Berggren

partial waves or the path of the scattering contour. In this section, we briefly discuss the

influence of different one-body potentials on the NAT-GNCSM calculation. For a full analysis

of the results it is necessary to go through all the steps regarding the truncations of the

reference state, which we have discussed in the previous section. However, the aim of this

section is not to do the full investigation again for a different one-body potential, but rather

to show that there exist more parameters which impact our calculations. The chosen one-
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potential VWS VLS aWS Eb
(
sn

1/2

)
Er

(
pn

3/2

)

number in MeV in MeV in fm in MeV in MeV

I −20 −25 0.67 −3.35 0.98−0.84i

II −25 −30 0.67 −5.64 0.47−0.22i

TABLE 8.1.: List of two one-body potentials with different potential parameters for the

calculation of a Gamow basis of 4H. It includes the energy of the bound and

resonance state in the sn
1/2 and pn

3/2 partial wave, respectively.

body potential always introduces a model dependence as we have already discussed in the

last paragraph of section 7.7. Every one-body potential includes different aspects of the

continuum into the Berggren partial waves. This model dependence is strongly connected to

the fact that we are only able to use a small number of partial waves in the Berggren basis.

For this analysis, we only use one additional one-body potential and investigate the de-

pendence on the N HO
max truncation of the reference state. The potential parameters are shown

in table 8.1. The second potential we use here produces a bound and a resonance state

with a smaller binding energy compared to the first potential. It was also used in previous

calculations for the 4H ground-state energy in the the GNCSM framework [Li+21].

A comparison of the ground-state energy of the two potentials is shown in figure 8.9. The

reference state of potential I is obtained for Smax = 3, N HO
max = 2 and νs = 21 and the reference

state of potential II is obtained for Smax = 2, N HO
max = 3 and νs = 21. The ground state can be

determined uniquely for both calculations. The largest difference in the two calculations is

the real part, which seems to converge to two different energies. For the two largest N HO
max,

the energies for potential II are ∼ 2MeV larger than for potential I. The possibility that the

energies of potential II correspond to an excited state were ruled out. Thus, the difference

must be a consequence of the reference state.

One potential explanation for these different ground-state energies is based on empir-

ical and experimental knowledge about the 4H system. We know that the experimental

ground-state energy of 3H is 8.48MeV [TWH87] and the ground-state energy of 4H is 5.29MeV

[TWH92], which is 3.19MeV above the n+3H threshold. Taking these experimental energies

into account, the ground-state energies of potential I seem to converge towards the ground-

state energy of 3H and the energies of potential I converge towards the 4H ground-state energy.

However, it is unclear whether it is even possible to describe a n+3H system in the GNCSM
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FIGURE 8.9.: Comparison of the ground-state energy and expectation value of the center-

of-mass Hamiltonian of 4H for HO frequencies 12MeV ( ), 14MeV ( ) and

16MeV ( ) and the sn
1/2pn

3/2 partial wave combination. The columns refer

to different one-body potentials. The Lawson parameter is set to λcm = 0.2.

For the truncation parameters of the reference state see the text.

framework. If this is the case, the neutron must have a vanishing wave function and zero

kinetic energy. The possibility of a creation of a n+3H is an interesting application for the

future.

As a last analysis in this section, we show the dependence of the ground-state energy of 4H

on the N HO
max truncation of the reference state for potential II in figure 8.10. This comparison

shows that we converge towards the ground-state energy of 3H for potential II if we use a

reference state with N HO
max = 2. This demonstrates that this phenomenon is not solely caused

by the one-body potential of the Gamow basis, but also by the model space truncations of the

reference state. Note, the results for the HO frequencies 12MeV and 14MeV in particular are
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FIGURE 8.10.: Comparison of the ground-state energy and expectation value of the

center-of-mass Hamiltonian of 4H for HO frequencies 12MeV ( ), 14MeV

( ) and 16MeV ( ) and the sn
1/2pn

3/2 partial wave combination. The

Gamow basis is generated using Potential II. The columns refer to differ-

ent N HO
max truncations of the reference state. The remaining truncations

are Smax = 2 and νs = 18. The Lawson parameter is set to λcm = 0.2.

not unique. The imaginary part of energy of the state for 16MeV is positive and small which

indicates that it is a bound state.

The energies of the two further reference states with N HO
max = 3,4 converge towards larger real

parts of the energy. The imaginary part of the energy is small and negative for N HO
max = 3 and

approximately zero for N HO
max = 4, which corresponds to a narrow resonance and a bound state,

respectively. For both calculations, we are able to determine a unique physical eigenstate

with the exception of the energy for N HO
max = 3, ℏΩ= 12MeV and Nmax = 12.

In conclusion, the results of the NAT-GNCSM can heavily depend on the one-body potential
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used for the Gamow basis of the reference state. This requires some physical motivation for

the definition of the one-body potential, and consequently, creates a model dependence

for the final energy eigenvalues. In addition to the dependence on the Gamow basis of the

reference state, it is also possible that the converged energy eigenvalues differ depending on

the reference state. In the next section, we develop a method to extrapolate the energy eigen-

value for the real and imaginary part of the energy and calculate statistical and systematic

uncertainties.

8.6. Extrapolation and Uncertainty Quantification

The final step in the development of the GNCSM framework is the extrapolation of the

energy eigenvalues for the Nmax sequences in the NAT-GNCSM. In addition, we would like

to quantify an uncertainty to the extrapolated energy. The extrapolation and uncertainty

quantification is not straight forward, since we have seen that we are not able to determine

an optimal reference state, which we could use for the following NAT-GNCSM calculation.

Therefore, we use a statistical approach to determine a mean extrapolated energy with a

standard deviation for a set of Nmax sequences that converge towards the same results. Note,

the deviations of the results are not a consequence of any statistical method used during

the calculations, but strictly speaking, small systematic uncertainties that a generated by

different reference state truncations. However, for the calculation of a final result, we treat

these small systematic uncertainties as statistical uncertainties. In our approach to calculate

an uncertainty, a systematic uncertainty describes calculations that converge towards to

different results as we will see later. Those systematic uncertainties are treated separately

to the statistical uncertainty. We start this section with the extrapolation of a single Nmax

sequence. Afterwards, we combine the extrapolated results to determine a mean extrapolated

energy, a statistical uncertainty and a systematic uncertainty.

Extrapolation For the extrapolation of an Nmax sequence, we treat the real and the imag-

inary part of the energy separately. For the real part of the energy, we use an exponential

function

ER(Nmax) = a ·exp(−bNmax)+E∞
R (8.7)

with the parameters a,b and E∞
real. The latter is the extrapolated real part of the eigenvalue

for an Nmax sequence. This exponential ansatz is frequently used for ground-state energies

in the standard NCSM [MVS09] since the energy decreases monotonically and converges
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for Nmax →∞. Note, the variational principle and the monotonic decrease of the energy

eigenvalues does not formally hold for rigged Hilbert spaces. Nevertheless, all previous

calculations have shown such a monotonic decrease of the energy eigenvalues of the ground

states.

In case of the imaginary part of the energy, we are unable to detect any convergence

patterns. The only observation we can make is that the variation of the imaginary part of the

energy with respect to Nmax is usually smaller than the variation of the real part. Therefore,

we use the value of the imaginary part of the energy for the largest Nmax.

Statistical Mean and Uncertainty As already mentioned, we are not able to determine an

optimal reference state, and consequently, cannot favor one extrapolated value. In order

to combine all the extrapolations for all Nmax sequences for different reference states, we

apply a statistical ansatz and use a set of reference states. For this set of reference states,

we use fixed parameters of the Gamow basis and only vary the truncations of the GNCSM

calculation, i.e., νs, N HO
max, Smax, and ℏΩ. Since we have already seen that the NAT-GNCSM

calculations can be very sensitive with respect to these parameters, it is often necessary to

manually filter the Nmax sequences. In the following, we usually use three values for νs and

N HO
max as well as one or two values for Smax. The latter is usually the most unstable and often

the only calculations that yield suitable results use Smax = 2.

The variation of the HO frequency is a little more complicated. It affects the convergence

of the GNCSM and the NAT-GNCSM calculations via the HO partial waves. In the standard

NCSM, we usually use the HO frequency with the best model space convergence for the

extrapolation. We adopt this ansatz for the NAT-GNCSM. The best HO frequency in the

NAT-GNCSM has the smallest extrapolated real part of the energy. In order to take the HO

frequency dependence of the reference state into account as well, we use the second best

HO frequency for our statistical approach, too. The imaginary part is not the included in the

procedure to determine the best HO frequencies.

The combination of all truncations ideally results in

nref = #νs ·#N HO
max ·#Smax ·#ℏΩ (8.8)

different reference states. However in practice, typical numbers of suitable and stable refer-

ence states are nref ∈ [5,15]. For the final result of the set of NAT-GNCSM calculations, we

use the statistical mean energy with the corresponding standard deviation for the real and

imaginary part, respectively. Note, since we only use mean and standard deviation for the
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calculation of our final result, the exact number of reference states is not very important, such

that it is not a problem if we have to discard the calculations for some reference states.

Systematic Uncertainty It is possible that the calculations converge towards two distinct

energy eigenvalues. In this case, it is not useful to calculate a single extrapolated energy using

the statistical ansatz from above, but to compute the statistical mean and uncertainty for

both distinct energies and define a systematic uncertainty as the difference between the two

mean values

∆E sys
R/I =

∣∣ĒR/I(1)− ĒR/I(2)
∣∣ (8.9)

for the real (R) and imaginary (I) part of the energies, respectively. If we are interested in a

combined uncertainty, we can use the Gaussian propagation of statistical and systematic

uncertainties.

Application of Extrapolation with Uncertainties In order to apply the previous definitions

of statistical means and uncertainties as well as systematic uncertainties, we return to the

ground-state energy of 4H using the Gamow basis constructed with potential II from section

8.5. Since we found that the energy eigenvalues for the reference states with a N HO
max = 2

truncation converged towards the ground-state energy of 3H, we exclude all reference states

with N HO
max = 2 for the extrapolation of the ground-state energy of 4H. In addition, we only

use Smax = 2 because for smaller values of Smax the reference state does not include enough

information from the continuum and for larger values of Smax it was impossible to find a

unique eigenstate. Figure 8.11 shows the Nmax sequences of the NAT-GNCSM calculation

using the remaining reference states. For the real part of the energy we can see very clearly

that the Nmax sequences converge towards two different energy eigenvalues. The statistical

uncertainty of the real part is much smaller than the systematic uncertainty. This situation

changes for the imaginary part of the energy. Especially, the imaginary part of the energy for

the first state with a smaller real part of the energy has a large statistical uncertainty. For the

second state, the statistical and systematic uncertainties have a similar size.

Similar to the discussion regarding the GNCSM calculations, it is not easy to decide which

of these two extrapolated energies is better or more trustworthy at this point.
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FIGURE 8.11.: Determination of statistical and systematic uncertainties for the ground-

state energy of 4H for the first ( ) and second ( ) eigenstate and a set

of GNCSM reference states with N HO
max ∈ [3,4], νs ∈ [15,18,21] and Smax =

2. The right column shows the extrapolated eigenvalue ( ) with the

statistical ( ), systematic ( ) and combined ( ) uncertainties for the

respective eigenstate. The Lawson parameter is set to λcm = 0.2.
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9
RESONANCES IN LIGHT NUCLEI

The development of the GNCSM framework is completed and we can start with the appli-

cations following the steps of part II. In this section, we will apply the GNCSM framework

to investigate light nuclei that have a ground-state or excited-state resonance. Firstly, we

calculate the resonance states of A = 4 nuclei with Jπ = 2−. We can compare our results with

the GNCSM calculation by Li et al. [Li+21]. In the next step, we analyze the first three excited

states of 4He, which are all resonances. As a final application in this chapter, we take a look at

the heavier helium isotopes 5He and 6He.

For all calculations in this section, we use a pure NN interaction by Entem, Machleidt and

Nosyk [EMN17] with a SRG evolution with a flow parameter α= 0.08fm4 [BFP07; Rot+11].

The inclusion of explicit 3N interactions is straight forward, but produces an increase in the

memory and time consumption of the numerical calculations. Furthermore, we will see in

chapter 10 that we can assume that the contributions of the 3N interactions are very small.

For the GNCSM calculations (cf. chapter 7), we use the truncations

kmax = 3fm−1, Rcut = 10fm,

emax = 24, lmax = 5.
(9.1)

The partial-wave selection, which truncates the continuum in the GNCSM, is adapted individ-

ually for each nucleus (cf. section 5.3). The remaining truncations in the GNCSM reference

states, νs, N HO
max and Smax, are varied in order to determine the mean energy and uncertainty
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as discussed in section 8.6. For the basis parameters, we use the two potentials shown in table

8.1 and a set of HO frequencies with an upper bound of 16MeV as discussed in chapter 6.

9.1. The 2− States in A = 4 Isobars

The first application of the GNCSM framework targets the A = 4 isobars 4H, 4Li, and 4He. In

particular, we are interested in the first 2− eigenstate of these nuclei, which is the ground

state for 4H and 4Li and an excited state for 4He. The ground-state resonance energies of the

former two nuclei are of special interest because the experimental and theoretical results are

inconclusive for both nuclei as presented in tables 9.1 and 9.2. In case of 4H, the real part of the

ground-state energy varies between 1.60MeV to 3.19MeV above the n+3H threshold and the

width varies between 0.40MeV to 5.42MeV, depending on the experiment or the theoretical

calculation [TWH92; Bla+91; Sid+04; Gur+05; LHC19; Li+21]. Similarly for 4Li, the real part

of the ground-state energy varies between 2.70MeV to 4.07MeV above the p+3He threshold

and widths of 0.80MeV to 6.03MeV for different experimental and theoretical calculations

[TWH92; Bru+90; Bri+90; Li+21]. Note, there are two important things to keep in mind

regarding the energies above the threshold. First, the theoretical calculations use different

chiral interactions. The calculations by Lazauskas et al. and Li et al. use the interaction by

Entem and Machleidt [EM03], whereas we use the interaction by Entem, Machleidt, and

Nosyk [EMN17]. Second, the experimental ground-state energy of the 3H can differ from the

theoretical calculations.

The ground-state resonance of 4H was already investigated extensively throughout part II.

Hence, we use the results already shown in figure 8.11 for potential II and the sn
1/2pn

3/2 partial-

wave selection. In case of the mirror nucleus 4Li, we followed the same steps using potential

I, which, compared to potential II, produces a slightly weaker bound state in the s1/2-wave

and broader resonance state in the p3/2-wave, and the sp
1/2pp

3/2 partial-wave selection. We

chose this one-body potential since the reference states were more stable and included more

admixtures of the continuum.

In case of 4He, the first 2− state is an excited state, which is more challenging in the GNCSM

calculation. It can become complicated to compute physical eigenstates of excited states

in the GNCSM, since the spectrum gets filled with discretized many-body scattering states.

Therefore, the calculation of the excited state was not possible in the GNCSM and we used the

natural orbitals generated by the 0+ ground state of 4He, which converges towards a bound

state. However, in the small model spaces we also observed continuum admixtures in these
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Er
(

4H
)

Γr
(

4H
)

in MeV in MeV

Tilley et al. [TWH92] (ex.) 3.19 5.42

Blagus et al. [Bla+91] (ex.) 3.1 2.3

Sidorchuk et al. [Sid+04] (ex.) 3.05(19) 4.2(10)

Gurov et al. [Gur+05] (ex.) 1.6 0.4(1)

Lazauskas et al. [LHC19] (th.) 1.15(5) 3.97(7)

Li et al. [Li+21] (th.) 1.7 0.9

this work
2.02(14) 0.4(10)

2.78(32) 0.05(39)

TABLE 9.1.: Comparison of the resonance energy of the ground state of 4H for different

experimental (ex.) and theoretical (th.) calculations. The resonance energy

is given with respect to the n+3H threshold.

Er
(

4Li
)

Γr
(

4Li
)

in MeV in MeV

Tilley et al. [TWH92] 4.07 6.03

Bruno et al. [Bru+90] 3.3 0.8

Brinkmöller et al. [Bri+90] 3.3 1.0

Li et. al. [Li+21] 2.7 2.0

This work 2.94(23) 1.76(22)

TABLE 9.2.: Comparison of the resonance energy of the ground state of 4Li for different

experimental (ex.) and theoretical (th.) calculations. The resonance energy

is given with respect to the p+3He threshold.

reference states. Thus, we want to investigate to what extent this continuum information can

be used to describe an excited state in 4He. The GNCSM calculation for 4He uses potential II

and we select the pn
3/2 partial wave after we found that the pn

3/2, pp
3/2, and ppn

3/2 partial-wave

selections yield similar results and the inclusion of s-wave partial waves leads to unstable

results.

In figure 9.1, we show the energy convergence of the first 2− resonance states of the A = 4
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FIGURE 9.1.: Comparison of the energy of the first 2− states resonances of the A = 4

isobars 4H, 4He, and 4Li. The colors show the first ( ) and the second ( )

possible eigenstates. The extrapolated eigenvalue ( ) and the statistical

( ) uncertainty are depicted next to the energy sequences. The results are

compared to the calculations by Li et al. ( ) [Li+21] and the experimental

result shown in tables 9.1 and 9.2 as well as Tilley et al. for the excited state

in 4He ( ) [TWH92; Bla+91; Sid+04; Gur+05; Bru+90; Bri+90].

isobars. Compared to the energy sequences of 4H, the other two nuclei yield more stable

results, especially for the imaginary part. If we compare the mirror nuclei 4H and 4Li, we

can observe that the real part of the energy is larger and the imaginary part of the energy is

smaller for 4Li. This is an expected consequence of the Coulomb force. For the ground-state

energy of 4H, the results are in agreement with the results obtained by Li et al. [Li+21] for both

parts of the energy if we use the energy sequence with a smaller extrapolated real part of the

energy. Compared to the experimental results, the real part lies in between the experimental
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results and the imaginary part is close to the results by Gurov et al. [Gur+05].

In case of the ground-state energy of 4Li, the results also agree with the results by Li et

al. The real part of the energy appears to converge towards two different energy values as

well, but since the number of robust reference states is very small and the difference in the

extrapolated energies is rather small, we have decided to assign them to a single extrapolated

energy with a larger statistical uncertainty. In order to improve the uncertainty quantification,

it is necessary to increase the number of reference states, e.g., by using a larger variation of

νs. Compared to the experimental results, our results are close to the results by Bruno et al.

[Bru+90] and Brinkmöller et al. [Bri+90].

In case of 4He, the real part is described very well compared to the theoretical [Li+21] and

experimental [TWH92] results. In contrast, the imaginary part of the energy is underestimated,

which can be a consequence of the reference state we use for the natural orbitals. The bound

state of 4He might not include enough information about the continuum of the respective

excited states. In order to improve this, we have to extend the calculations of the reference

states in the GNCSM, such that it is possible to use the respective excited state from the

GNCSM calculation as reference state.

The first applications of the GNCSM framework demonstrate two things. We are able to

produce comparable results to other implementations of the GNCSM framework [Li+21] with

the addition of a suitable uncertainty quantification. This also indicates that the results are

rather independent of the choice of the chiral interaction for these nuclei. Furthermore, it

shows the difficult search for reference states, which yield suitable and robust results. This

has been most problematic for the calculation of 4Li, where only four calculations yield

suitable reference states. In future endeavors, this needs to be improved in order to optimize

the extrapolation and uncertainty quantification. One idea is to vary the parameters in the

Gamow basis, since we have seen that the stability of the results can heavily depend on the

one-body potential.

9.2. The 4He Energy Spectrum

The next application of the GNCSM framework focuses on the spectrum of 4He. In the

previous section, we have already discussed the first 2− state, which is the third excited state

in total. Similar to before, we use the pn
3/2 partial-wave selection and the bound 0+ eigenstate

as reference state for the natural orbitals.

The first three excited states of 4He are shown in figure 9.2 with increasing energy from left
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FIGURE 9.2.: Eigenvalues of the first three eigenvalues of the excited states of the 4He

energy spectrum. The colors show the first ( ) and the second ( ) possible

eigenstates. The extrapolated eigenvalue ( ) with the statistical ( ),

systematic ( ) and combined ( ) uncertainties are depicted next to the

energy sequences. The results are compared to Li et al. ( ) [Li+21] and

the experiment ( ) [TWH92].

to right, respectively. At first look, the results are very stable compared to the ground state

of 4H, which we discussed thoroughly throughout part II. The first excited 0+ state shows

two systematically different imaginary parts of the energy, which we treated separately. If we

assume a variational principle here, the mean and uncertainties on the left-hand side should

be chosen as best result for this calculation. In this case, the real part slightly underestimates

the experiment, whereas the imaginary part overestimates the experimental result. However,

we have to keep in mind that we do not include 3N contributions to the interaction.

For the other two excited states, there only exists a single set of energy sequences that
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converge towards a similar value. The real part of the energy is described by the NAT-GNCSM

results very well compared to the experimental results [TWH92], but the imaginary part is

underestimated. This might be a consequence of the reference state of the natural orbitals,

which is the bound state of 4He. In addition, the continuum structure of eigenstates with

unnatural parity may be completely different, which requires some further investigation

using a reference state with unnatural parity as well.

9.3. Heavier Helium Isotopes

The last application of this chapter regards two heavier isotopes of the helium chain, i.e., the

ground-state resonance of 5He and the first two excited-state resonances of 6He. Similar to

the first application to A = 4 isobars, the experimental results of these two heavier helium

isotopes are inconclusive as well, which is shown in tables 9.3 and 9.4 for 5He and 6He, re-

spectively. Additionally, we show the results of our calculations and other NCSM frameworks,

the GNCSM with the density matrix renormalization group (GNCSM+DMRG) [Pap+13] and

the NCSM/RGM [Rom+14], which include the continuum as well. Similar to before, we have

to keep in mind that the threshold energy of the 4He ground-state varies for the experiment

and the theoretical calculations and that the chiral interactions of the theoretical calculations

differ. The theoretical calculations by Papadimitriou et al. [Pap+13] and Romero-Redondo

et al. [Rom+14] use the interaction by Entem and Machleidt [EM03], whereas we use the

interaction by Entem, Machleidt, and Nosyk [EMN17]. In section 9.1, we found that the

specific choice of the chiral interaction does not affect the calculations of the A = 4 isobars

very much, such that it is interesting to investigate if this holds for the heavier helium isotopes

as well.

We start with the ground state of 5He, which is a 3
2
−

state. We expect the nucleus to consist

of a strongly bound 4He core and a loosely bound neutron in the p3/2 shell. Thus, we use the

pn
3/2 partial-wave selection and potential I for the reference states. The energy sequence of

the NAT-GNCSM calculation is shown on the left-hand side of figure 9.3 for a set of suitable

reference states. Since the model-space dimensions increase rapidly with particle number A,

we are limited to Nmax ≤ 10. The real part of the ground-state energy is extrapolated to

Re
[
E0

(5He
)]=−28.47(33)MeV, (9.2)

which is

Er
(5He

)= 0.59(34)MeV (9.3)

113



Chapter 9. Resonances in Light Nuclei

Method
Er

(
5He

)
Γr

(
5He

)

in MeV in MeV

Tilley et al. [Til+02]
(ex.) 0.798 0.648

0.963 0.985

Bond et al. [BF77] (ex.) 0.771 0.644

Papadimitriou et al. [Pap+13] (th.) 1.17 0.4

This work 0.59(33) 0.51(24)

TABLE 9.3.: Comparison of the resonance energy of the ground state of 5He for different

experimental (ex.) and theoretical (th.) calculations. The resonance energy

is given with respect to the n+4He threshold.

Method
Er1

(
6He

)
Γr1

(
6He

)
Er2

(
6He

)
Γr2

(
6He

)

in MeV in MeV in MeV in MeV

Jänecke et al. [Jän+96] (ex.) 0.92(17) 4.6(0.3) 12.1(11)

Mougeot et al. [Mou+12] (ex.) 0.824 0.113 1.63(3) 1.6(4)

Romero-Redondo et al. [Rom+14] (th.) 1.24 0.16 2.6 1.17

This work 1.55(0.34) 2.62(1.3) 4.90(44) 1.26(88)

TABLE 9.4.: Comparison of the resonance energy of the first two excited 2+ states of
6He for different experimental (ex.) and theoretical (th.) calculations. The

resonance energy is given with respect to the n+n+4He threshold.

above the n+4He threshold energy of

E0
(4He

)=−29.06(1)MeV. (9.4)

The resonance width is extrapolated to

Γr
(5He

)= 2Im
[
E0

(5He
)]= 0.51(24)MeV. (9.5)

These extrapolated energy values are in the same region as the experimental results and

another theoretical calculation using the GNCSM+DMRG, which are shown in table 9.3.

The many-body uncertainty of our calculation, includes almost all remaining results. The

GNCSM+DMRG calculation does not use a natural-orbital basis to optimize the calculation.

Instead, it uses the DMRG to efficiently diagonalize the Hamilton matrix [Pap+13].
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FIGURE 9.3.: The ground-state resonance energies of 5He and the first two excited 2+

states of 6He for a set of reference states. The extrapolated eigenvalues

( ) with the statistical ( ) uncertainties are depicted next to the energy

sequences. The results are compared to theoretical ( ) [Pap+13; Rom+14]

and the experimental ( ) [Mou+12; BF77; Til+02] results. The imaginary

part of the result by Jänecke et al. [Jän+96] for the second excited state of
6He is outside the scope of the plot.

In case of the first two excited 2+ state resonances of 6He, we use the sn
1/2pn

3/2 partial-wave

selection with the one-body potential I for the reference state. Hence, compared to the

previous calculation for the 5He ground-state, we have to include the sn
1/2 partial wave to the

reference state in order to include enough information about the continuum to our reference

state. The scattering truncation is set to Smax = 1 in order to keep the model space dimensions

manageable.

The energy sequences for the two excited states are shown on the right-hand side of figure

9.3. For 6He, we are limited to Nmax ≤ 8 in the NAT-GNCSM, which is reflected in comparably

large uncertainties for the extrapolated eigenvalues. In contrast to the ground-state energy of
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4He, which showed a systematic uncertainty for the real part of the energy, the two different

extrapolated eigenvalues correspond to two different excited states for 6He. The real parts are

extrapolated to

Re
[
E1

(6He
)]=−27.51(34)MeV, (9.6)

Re
[
E2

(6He
)]=−24.16(86)MeV, (9.7)

which is

Er1

(6He
)= 1.55(34)MeV, (9.8)

Er2

(6He
)= 4.90(44)MeV (9.9)

above the n+n+4He threshold with a width of

Γr1

(6He
)= 2.620(13)MeV, (9.10)

Γr2

(6He
)= 1.26(88)MeV. (9.11)

Compared to other experimental and theoretical results, the real part of the energy is de-

scribed very good for the first excited state. For the second excited state, the real part is

comparable with the results by Jänicke et al. [Jän+96]. The imaginary part is overestimated

for the first excited state compared to the other results. Surprisingly, the resonance width of

the second excited state is smaller than resonance width of the first excited state, which is

uncharacteristic. This could be a consequence of the reference state from the GNCSM, which

is the first excited 2+ state. On the other hand, the width of the first excited state is much

larger than other experimental and theoretical results shown in table 9.4, which hints towards

a problem in the structure of the reference state for the first excited state as well.

In conclusion, the NAT-GNCSM finds a good description the ground-state resonance of
5He compared to other theoretical and experimental results. For the first two excited-state

resonances of 6He, a comparison is challenging and the calculation should be improved in

the future. However, the description of the ground state of 6He is already very challenging

in the standard NCSM. Thus, the description of the excited-state resonances might be even

more challenging. Furthermore, we have to optimize the selection of reference states in order

to obtain more robust results.

We have already noticed the factorial scaling of the model space dimensions with respect to

the particle number A. In order to be able to calculate one or two additional steps in the Nmax

sequence it might be necessary to apply an importance truncation scheme as it is already

done for the standard NCSM [Rot09].
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The nuclear interaction plays a key role in the precise calculation of nuclear observables.

We have already discussed the shift from phenomenological interactions towards realistic

interactions derived from χEFT, so-called chiral interactions, in chapter 1. So far, we have

used a chiral interaction derived by Entem, Machleidt, and Nosyk [EMN17] without discussing

any details. This chapter provides a short introduction to the advantages and problems of

interactions derived from χEFT.

There exist multiple sets of chiral interactions, which we call different families of inter-

actions. We will use the NAT-GNCSM framework to probe those different interactions for

resonance states, which has not been done before. We will analyze different characteristics

of the family of chiral interactions derived from Entem, Machleidt, and Nosyk [EMN17] for

the first excited 0+ state of 4He, which we already discussed in section 9.2. For a detailed

description of χEFT beyond the short introduction in this chapter, we refer the following

reviews [EHM09; ME11; HKK20].

General Aspects of Chiral Interactions The Lagrangian of χEFT consists of an infinite

number of contributions [EHM09; ME11; HKK20]. Since it is not possible to derive all

contributions of the interaction, it is necessary to find an ordering scheme that allows for

a systematic setup and successive improvement of the interaction. The so called power

counting orders the interaction terms, or interaction diagrams, by
(

Q
Λb

)ν
, with a soft scale Q ∼
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mπ in the order of the pion mass and the chiral symmetry breaking or hard scaleΛb ∼ 1GeV,

which defines the momentum at which the theory breaks down. The parameter ν defines

the order of the contributions, namely leading order (LO) for ν = 0, next-to-leading order

(NLO) for ν= 2, next-to-next-to-leading order (N2LO) for ν= 3 and so on. At LO and NLO the

interaction consists solely of nucleon-nucleon (NN) terms. Starting from N2LO and N3LO,

three-nucleon (3N) and four-nucleon (4N) interactions appear, respectively. Furthermore,

the number of diagrams increases for every chiral order. The power counting scheme of the

chiral interactions is a key advantage of χEFT compared to phenomenological interactions

because it allows to systematically improve the interaction and to estimate an interaction

uncertainty of higher order contributions.

Regulator Scheme During the calculation of the different interaction diagrams, we find

that some of the diagrams include diverging integrals [EHM09; ME11; HKK20]. In order to

regulate these divergences, it is necessary to define a regulator scheme, which consists of

a regulator function and a cutoff value Λ. This is a first step in the derivation of a chiral

interaction and there is a freedom in the choice of the regulator scheme and the cutoff value.

We do not discuss the different regulator schemes in detail here, but mention some chiral

interactions with different regulator schemes. The NN interaction from Entem, Machleidt,

and Nosyk [EMN17] uses a non-local momentum-space regulator and is complemented

by the 3N interaction by Hüther et al. [Hüt+20]. The NN+3N interaction by Ekström et al.

[Eks+15], apply a non-local regulator scheme as well for their interaction. The NN+3N chiral

interaction by Reinert et al. [RKE18; Mar+21] uses a semilocal momentum-space regulator

scheme and the chiral interaction by Epelbaum et al. [Epe+19] uses a semilocal coordinate-

space regulator scheme. This collection of different families of interactions already shows

the diversity in possible families of interactions. All of the interactions use different regulator

schemes and different regulator cutoff values. The goal of all sets of NN+3N interactions is a

consistent treatment of all diagrams with the same regulator scheme and cutoff.

Low-Energy Constants Besides the regulator schemes, there exists a second step which

differs for the different families of interactions and regards the choice of the low-energy con-

stants (LECs). The LECs are free parameters and characterize the strength of the interaction

diagrams. In order to determine these LECs, we have to fit them to existing experimental

data. This introduces the second source of differences in the final interaction. Not only the

data, especially for the 3N contributions to the interaction, may differ, but also the fitting

procedure can differ. The NN+3N interactions by Maris et al. [Mar+21] as well as Epelbaum et
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al. [Epe+19] are to fitted NN data as well as to the ground-state binding energy and β-decay

half-life of 3H in the three-body sector. Whereas, the 3N interaction of Hüther et al. [Hüt+20]

is fitted to the ground-state energies of 4He and 16O. A different fitting procedure is applied

by Ekkström et al. [Eks+15]. First, they use a total of 13 experimental values for the binding

energy or charge radius of light and medium-mass nuclei between 3H and 25O in addition to

the NN data. Second, they do not fit the NN and 3N interactions separately, but perform an

overall optimization of the full NN+3N interaction to the experimental data set.

Investigation with NAT-GNCSM Now, we investigate the family of NN interactions derived

by Entem, Machleidt, and Nosyk [EMN17] in detail. In previous calculations, we already

used one of these interactions for a cutoff value of Λ= 500MeV at N3LO. We will vary both

parameters separately and are particularly interested on the dependence of the imaginary

part of the energy on the cutoff value as well as the order-by-order convergence behavior of

the imaginary part of the energy. In case of the order-by-order convergence, the impact of

higher orders in the interaction should become smaller following the motivation of the power

counting scheme. The situation is a little different for the cutoff parameter. In an ideal χEFT,

the final observables are cutoff independent. In practical applications, this does not hold for

multiple technical reasons, which we do not discuss here and refer the reader to [ME11].

Figure 10.1 shows the order-by-order convergence for a set of reference states including the

statistical uncertainties. Thus, we can analyze the impact of the order-by-order convergence

on the final extrapolated eigenvalues and their statistical uncertainty. The uncertainties show

two different behaviors. First, the uncertainty bands overlap throughout all orders for the real

part of the second extrapolated eigenvalue and the imaginary part of the first extrapolated

eigenvalue. Second, for the other extrapolated eigenvalues, the extrapolated eigenvalues

shift downwards, for the real and imaginary part respectively, but the uncertainty bands still

overlap for every successive order. A consequence of this characteristic is that we can exclude

3N contributions to the interaction in our calculation since they first appear at N2LO and

the inclusion of this order does not have a significant impact on the final results. However, if

we are able to optimize the calculations and minimize the many-body uncertainties in the

future, it might be necessary to include the 3N contributions.

Note, the uncertainties we discuss here are just the uncertainties from the many-body

method, i.e., the NAT-GNCSM. The calculation of the interaction uncertainties is an additional

step, but in our case the total uncertainty is dominated by the many-body uncertainty. In

particular for the last two steps in the order-by-order convergence from N2LO to N3LO, the
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FIGURE 10.1.: Analysis of the dependence of the first excited-state energy of 4He on

different orders of the chiral interaction. The interactions correspond

to the family of interaction by Entem, Machleidt, and Nosyk [EMN17] at

NLO ( ), N2LO ( ), and N3LO ( ) with Λ = 500MeV. In addition to the

energy sequences, we show the extrapolated energy with an statistical

uncertainty for a set of reference states and the experimental value ( )

[TWH92]. The colors of the uncertainty bands correspond to the orders

of the interaction.

statistical uncertainty bands mostly overlap or include each other.

Next, we are interested in the dependence of the energy sequences on the cutoff valueΛ.

A comparison of the extrapolated eigenvalues and their statistical uncertainties for a set of

reference states is shown in figure 10.2. It shows that the statistical uncertainties overlap

for the real and imaginary parts of the extrapolated eigenvalues for all three cutoff values.

A surprising observation is that the many-body uncertainties are smaller for Λ= 500MeV,

which might hint towards an effect of the cutoff value.

The analysis of the interaction on the energy eigenvalues, especially the imaginary part
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FIGURE 10.2.: Analysis of the dependence of the first excited-state energy of 4He on

different cutoff parameters of the chiral interaction. The interactions

correspond to the family of interaction by Entem, Machleidt, and Nosyk

[EMN17] with a cutoff of Λ = 450MeV( ), 500MeV( ), and 550MeV( )

at N3LO. In addition to the energy sequences, we show the extrapolated

energy with an statistical uncertainty for a set of reference states and the

experimental value ( ) [TWH92]. The colors of the uncertainty bands

correspond to the different cutoff values of the interaction.

of the energy, in the NAT-GNCSM form a new perspective on the quality check of a family

of interactions. However, in order to compute an independent interaction uncertainty it is

necessary to further improve and optimize the many-body method such that the statistical

many-body uncertainties become smaller.
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11
THE TETRANEUTRON

The existence of a multi-neutron nucleus is a question that concerns theoretical and experi-

mental physicists for more than 50 years [MC21]. To this day, there is no clear answer to the

question whether a bound or resonant multi-neutron system exists. The evidence of such

a multi-neutron system would affect many parts of nuclear physics, e.g., the nature of the

nuclear forces, the setup of new experiments, the development of theories for such systems,

and on the description of neutron stars [MC21]. Before we perform first calculations using

the GNCSM framework for one specific multi-neutron system, the tetraneutron, we give a

historical introduction to experiments and theoretical models that tried to investigate the

existence of a bound or resonance state in the four-neutron system following the review by

Marques et al. [MC21].

11.1. Experiment Approaches

All experimental approaches to detect a multi-neutron system face a general and, in a way,

simple problem. Since neutrons have no charge, they do not interact with atomic electron

clouds, but only with nuclei, which already reduces the detection efficiency of a single neutron

significantly. The experiments can be classified into four types, which we mention briefly in

the following. In the end, we discuss some of the most recent experimental endeavors in a

little more detail.
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The first experimental technique uses a double charge-exchange reaction of a pion with

a 4He target via the 4He(π−, π+)4n reaction. The measurement of the final π+ allowed a

conclusion on the 4n using the missing mass method. The first experiments were performed

by Gilly et al. in 1965 [Gil+65] and were followed by similar experiments by Ungar et al. in

1984 [Ung+84] and Gorringe et al. in 1989 [Gor+89]. The 208Pb(π−, π+)4n reaction was used

by Chultem et al. in 1979 [Chu+79]. In all cases, it was not possible to observe a bound or

resonance state for the tetraneutron, which might be a consequence of bad statistics since

the reaction cross sections are very small [MC21].

The second experimental approach used a two-step process to prove the existence of the

tetraneutron. The first experiment by Schiffer et al. in 1963 [SV63] radiated a nitrogen and

aluminum sample with a secondary radioactive beam that was produced by the fission of

a uranium beam. If a bound tetraneutron is produced during the fission the 14N(4n, n)17N

or 27Al(4n, 3H)28Mg reaction could occur and the subsequent β-decay of 17N or 28Mg would

be observed. The approach was reapplied for different reactions by Detraz et al. in 1977

[Det77], Turkevich et al. in 1977 [Tur+77], de Boer et al. in 1980 [De +80], and most recently,

by Novatsky et al. in 2012 [Nov+12; NSS14]. Again, all of these experiments were unable to

prove the existence of a bound or resonance state in the tetraneutron despite some initial

hopes of the evidence of a bound tetraneutron, which were withdrawn three years later due

to a problem with the experimental setup [De +80; MC21].

The third experimental approach uses multi-nucleon transfer reactions with a stable pri-

mary beam and target. Similar to the double charge exchange reaction using aπ+, the missing

mass method is used to characterize the final multi-neutron system. In 1974 Cerny et al.

[Cer+74] used a 7Li beam and target in order to produce the tetraneutron via the 7Li(7Li,
10C)4n reaction, but the poor separation from the trineutron channel via the 7Li(7Li, 11C)3n

reaction did not allow to find a significant signal. Similar reaction processes were used by

Belozyorov et al. in 1988 [Bel+88] that were able to overcome this problem. However, again

no evidence of a bound or resonance state in the tetraneutron was found.

The GANIL Experiment The fourth experimental technique became accessible with ra-

dioactive secondary beams. Marques et al. [Mar+02] proposed an improvement of the

multin-ucleon transfer reactions at the GANIL facility in 2002. The idea is that the tetraneu-

tron is already formed as a sub-cluster in a radioactive secondary beam. They used a 14Be

secondary beam and a carbon target in order to investigate the 4n+10Be breakup. In order

to determine the mass of the tetraneutron they analyzed the recoil energy of after elastic
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scattering of the neutral tetraneutron with a charged particle. The results showed a possible

tetraneutron bound or low-energy resonance state with an energy of E ≤ 2MeV.

This first possible experimental evidence of a bound or resonance state also triggered many

theoretical calculations, which we discuss in the next section.

The RIKEN Experiments The availability of a radioactive secondary beam at the RIKEN

facility was first exploited by Kisamori et al. in 2016 [Kis+16]. They used a double charge

exchange 8He(4He, 8Be)4n reaction to produce a tetraneutron. This reaction allowed the

production af a multi-neutron system with vanishing momentum transfer, which should

benefit the creation of a bound or resonance state of the tetraneutron. They also applied the

missing mass method by measuring the two α particles from the in-flight breakup of 8Be.

In total, they were able to detect four events that would correspond to a tetraneutron with

an energy of E(4n) = 0.8(13)MeV and an upper limit for the width of Γ< 2.6MeV. Note, the

large uncertainty, which mainly results from the missing mass method, also allows a bound

tetraneutron.

A second experiment at the RIKEN facility, which searched for the tetraneutron, has been

published very recently in 2022 by Duer et al. [Due+22]. They used a quasi-elastic knockout

of an α-particle from the 8He secondary beam using a hydrogen target, i.e. a 8He(p, p4He)4n

reaction. They assumed that 8He consists of a well bound 4He core and four valence neutrons

with a small center-of-mass motion, such that the knockout of the 4He core would leave a

four-neutron system that could form a tetraneutron state. They also applied the missing mass

method and found a possible resonant 4n state at

Er = 2.37±0.38(stat.)±0.44(sys.) MeV, (11.1)

Γ= 1.75±0.22(stat.)±0.30(sys.) MeV. (11.2)

Note, all experimental approaches measured all reaction constituents except for the four-

neutron system. Afterwards, they drew a conclusion on the tetraneutron using the missing

mass method or two-step processes. A future experiment at RIKEN is planned which intends

to measure the neutrons as well. This would allow the use of the invariant mass method for

the final calculation of the energy of the tetraneutron.

11.2. Theoretical Calculations

The development of theoretical models to describe the tetraneutron follows a similar history

as the experimental approaches. Often, the possible experimental evidence of a bound or
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resonance state of the tetraneutron prompted an increased interest on the theoretical side.

However, similar to the experiments, there does not exist a final answer whether a bound or

resonance state exists and, if it does, at which energies.

The theoretical calculations of the four-neutron system face a few main difficulties, which

we mention here. First of all, it is necessary to find a method that is able to solve the eigenvalue

problem in an ab initio manner. Nowadays, there exist multiple advanced methods for bound

states, e.g., NCSM [Rot09; Var+09], coupled cluster [DH04], Green’s function Monte-Carlo

[CBN13], and in-medium SRG [Her17]. However, significantly less progress was made for the

methods including the continuum, e.g., GNCSM [Li+21; Pap+13; Fos+17], and the Fadeev-

Yakubovsky (FY) equations [LHL88; LC05; LC20].

Furthermore, the use of two-body scattering methods is impossible since there does not

seem to exist a bound subsystem of the tetraneutron, i.e., a di- or tri-neutron. Hence, it would

be necessary to calculate a full four-particle scattering process which is easy to derive, but

very complicated to calculate [MC21].

A further problem for the precise calculation of a possible tetraneutron is the development

of realistic nuclear interactions from χEFT, which made a lot of progress in the recent decade

[EMN17; Epe+19; Mar+21; Hüt+20]. But, as we discussed in chapter 10, the interactions were

never probed extensively for methods that include the continuum in the four-body system.

After the GANIL Experiment Since all historical calculations up to the GANIL experiment

involved some modeling of the method or the interaction, we start with the theoretical

developments after the experiment at the GANIL facility in 2002 [Mar+02].

In 2003 Pieper [Pie03] applied the Green’s function Monte Carlo approache to search for

a bound tetraneutron using the NN Argonne V18 interaction [VP11] and the 3N Illinois IL2

interaction [Pie+01]. They found that the production of a bound tetraneutron would require

huge changes in the nuclear interaction, which would have many consequences on the

remaining nuclear chart. In order to search for a possible resonance, they added an attractive

Woods-Saxon potential to their calculation, such that they could produce an artificial bound

state. Afterwards, they extrapolated the energy towards a vanishing Woods-Saxon potential

strength and predicted a tetraneutron state at an energy of E ∼ 2MeV. Since the Green’s

function Mont Carlo approach can only calculate bound-states, it is not possible to deduce

an imaginary part for this state.

A similar technique was used by Lazauskas et al. in 2005 [LC05], who used the analytic con-

tinuation in the coupling constant (ACCC) [V I89; TSV97] in order to continue FY calculations
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into the continuum. With this approach they did not find a bound or resonance state in the

tetraneutron.

After the First RIKEN Experiment After the first possible detection of a low-energy reso-

nance at RIKEN in 2016 [Kis+16], the interest of theoretical physicists increased once more.

In 2016, Hiyama et al. [Hiy+16] used the FY equation in configuration space [LC05] as well as

the variational Gaussian expansion method [Kam88; HK12] in combination with the com-

plex scaling and the ACCC method in order to describe a possible tetraneutron resonance.

Again, no evidence for a bound or resonance state of the tetraneutron was found, such that

they concluded that the results by Pieper in 2003 [Pie03] must be induced by some residual

extrapolation artifacts induced by the Woods-Saxon potential.

In contrast, Shirokov et al. in 2016 [Shi+16a] used the single-state harmonic oscillator

representation of scattering equations (SS-HORSE) to compute a ground state of the tetra-

neutron. The SS-HORSE is an extension of the NCSM, which extends the Hamilton matrix

with an infinite kinetic energy matrix in the HO basis [MC21]. Hence, the interaction matrix

elements are set to zero for a Slater determinants with N > Nmax. The eigenvectors of this

infinite Hamilton matrix can be calculated if the eigenvalue problem in the Nmax space can be

calculated, which is a standard NCSM calculation [Shi+16b; Maz+17]. With the eigenvectors

of the infinite Hamilton matrix it is possible to derive scattering observables at positive energy,

e.g., the scattering phase shift. From this phase shifts they determined a resonance energy of

Er = 0.8MeV, (11.3)

Γ= 1.4MeV (11.4)

using the JISP16 NN potential [Shi+16a]. This results is in accordance with the results obtained

by the first experiment at RIKEN [Kis+16] as well as the results of Pieper [Pie03].

At this point, we mention that all methods except the SS-HORSE method were based on

bound-state calculations and used extrapolation techniques in order to obtain results in

the continuum. Hence, they assume a continuous transition from bound system towards

continuum systems, which might be a strong assumption. In case of the SS-HORSE method,

the approximation of the continuum is a consequence of the single-state approximation. One

thing all of these calculations concluded was that there does not exist a bound tetraneutron.

However regarding the possible existence of a resonance in the tetraneutron the results were

inconclusive.

The first methods that were able to perform direct calculations in the continuum and
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were applied to the tetraneutron, use some version of a GNCSM ansatz. In 2017, Fossez

et al. [Fos+17] used a similar GNCSM framework to search for a tetraneutron resonance.

However, for a robust calculation with the NAT-GNCSM in the continuum, they had to scale

the interaction and extrapolate towards the correct interaction. In contrast to Pieper [Pie03],

they were still able to perform some NAT-GNCSM calculations in the continuum before the

calculations became unstable. Furthermore, they were able to perform a robust calculation

for the tetraneutron and the unscaled interaction with the GNCSM, but only for Smax = 2. The

resonance energy for this calculation is

Er ≈ 7MeV, (11.5)

Γ≈ 4MeV, (11.6)

which seemed to be an upper bound for their other calculations [Fos+17].

In 2019, Li et al. [Li+19] also used a similar GNCSM framework with a NAT-GNCSM cal-

culation for the tetraneutron. In contrast to Fossez et al. [Fos+17], they used an external

Woods-Saxon potential instead of a scaled NN potential in order to stabilize their calculations.

Their most optimal calculation yields an energy of

Er ≈ 2.64MeV, (11.7)

Γ≈ 2.38MeV. (11.8)

In conclusion, there already exist a few theoretical calculations for the tetraneutron. They

all agree regarding a non-existence of a bound state in the tetraneutron. Regarding the

existence of a resonance in the tetraneutron, the results are ambiguous. The methods using

the few-body FY equations in combination with the ACCC method do not predict a resonance

in the tetraneutron, whereas many-body methods, especially the GNCSM frameworks, predict

a low-energy resonance in the tetraneutron, which is in rough agreement with the current

experimental results. However, there is still a lot of work to do until a complete ab initio

description of the tetraneutron will yield conclusive results.

11.3. First Calculations with our NAT-GNCSM

We have already pointed out many of the theoretical problems regarding the description

of a tetraneutron. Other GNCSM frameworks already tried to investigate the tetraneutron

and faced severe problems regarding the stability of the results without altering the nuclear
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potential VWS VLS aWS RWS Eb
(
sn

1/2

)
Er

(
pn

3/2

)
Er

(
pn

1/2

)

number in MeV in MeV in fm in fm in MeV in MeV in MeV

I −20 −25 0.67 2.02 −3.35 0.98−0.84i 0.27−4.17i

II −25 −30 0.67 2.02 −5.64 0.47−0.22i 0.87−3.32i

III −15 −10 0.67 2.5 −3.11 0.93−0.94i 1.09−2.04i

TABLE 11.1.: List of three different one-body potentials with different potential param-

eters for the calculation of a Gamow basis of 4n. It includes the energies

of the bound and resonance state in the sn
1/2, pn

3/2, and pn
1/2 partial wave,

respectively.

potential or adding an external potential. Hence, we take a step back and start our analysis

of the tetraneutron at the beginning of the GNCSM framework. In chapter 9, we have used

physically motivated partial-wave selections as well as one-body potentials. Since the tetra-

neutron is a very exotic system, it is unclear if any assumptions, e.g., the shell structure, are

still correct for this system.

Therefore, we have to start the investigation of tetraneutron with an analysis of the partial-

wave selection. We expect the tetraneutron to have many contributions from the continuum,

and thus, only use partial-wave selections with at least two partial waves. For the first

calculations, we use potential I of table 11.1, which was already used successfully in chapter

9. In case of the sn
1/2pn

1/2 partial-wave selection, the sign of VLS is switched such that the p1/2

wave is energetically lower than the p3/2 partial wave. The variation of the one-body potential

will be done in a next step.

In figure 11.1, we show the lowest-lying eigenvalue of the tetraneutron for different partial-

wave selections. The energy eigenvalues of the sn
1/2pn

1/2 partial-wave selection have a rather

stable convergence behavior for the energy of the larger two HO frequencies, but the imag-

inary part is very small or vanishes. Since the real part of the energy is still positive, we

can eliminate the possibility of a bound state. Hence, this partial-wave selection might not

include enough information about the continuum in the reference state.

In case of the pn
3/2pn

1/2 partial-wave selection, the convergence behavior of the real part of

the energy is still stable and the imaginary part of the energy deviates from zero, which hints

towards an important contribution of the p3/2 continuum. Especially, the calculation for a HO

frequency of 4MeV seems to produce a resonance state with a stable convergence behavior
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FIGURE 11.1.: Calculations the energies of the first ( ) and second ( ) eigenstate of
4n for the HO frequencies 2MeV ( ), 4MeV ( ), 6MeV ( ). The columns

apply different partial-wave selections in the reference state for the one-

body potential I. For the truncations of the reference state see table 11.2.

of the energy as well as a clear differentiation from the second state in the expectation value

of the center-of-mass Hamiltonian.

The next two partial-wave selections, i.e., sn
1/2pn

3/2 and sn
1/2pn

3/2pn
1/2, show strong insta-

bilities. This is also reflected in the exclusion of calculations for th HO frequency 6MeV

because we were unable to obtain a robust energy sequence in that case. For the sn
1/2pn

3/2

partial-wave selection, the real part of the energy contains at least one problematic step

in the Nmax sequence, for which the ground-state exhibits a comparably large expectation

value of the center-of-mass Hamiltonian. The irregularity of the real part of the energy is also

visible for the imaginary part of the energy. However, similar to the pn
3/2pn

1/2 partial-wave

selection, the energies could describe a possible resonance even though this has to be treated

with particular caution as the overall calculations are very unstable. For the sn
1/2pn

3/2pn
1/2
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Partial-wave
N HO

max Smax νs
selection

sn
1/2pn

1/2 4 2 18

pn
3/2pn

1/2 3 2 18

sn
1/2pn

3/2 3 2 15

sn
1/2pn

3/2pn
1/2 3 2 18

TABLE 11.2.: Reference state truncations for different partial-wave selection depicted in

figure 11.1.

partial-wave selection, the energy convergence is slightly more stable and the imaginary parts

of the energy become positive for the HO frequency 4MeV.

Note, we had to apply different reference state truncations for all partial-wave selections,

which are shown in table 11.2. This was necessary to obtain stable results in the NAT-GNCSM

calculation. It is already a first indication of the challenge to find suitable reference states for

the tetraneutron.

We will continue our investigations using the pn
3/2pn

1/2 partial-wave selection and move

on towards a variation of the three one-body potentials characterized in table 11.1. The first

two one-body potentials were already used successfully for different nuclei in chapter 9. The

third potential is proposed in order to optimize the Gamow basis for the large extension of

the many-body wave function of the tetraneutron.

In figure 11.2, we show the energy convergence for the three different one-body potentials.

For all potentials, there exist energy sequences which could correspond to resonance states,

but for potential II the calculations are less stable. Thus, the calculations for the larger two

HO frequencies 5MeV and 6MeV have to be excluded. The energy convergences for potential

III are similar to the energy sequence of potential I, but all calculations show a resonance

with a significant width. In case of potential I, most of the calculation correspond to either a

bound state or a very narrow resonance.

Finally, after we investigated the underlying structure of the Gamow basis using different

partial-wave selections and one-body potentials, we can start to analyze the truncations of

the reference state. This allows us to investigate the stability of the energy sequences for

a set of reference states and possibly a first extrapolation of a ground-state energy of the

tetraneutron.
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FIGURE 11.2.: Comparison of the ground-state energy of 4n for different one-body po-

tentials from table 11.1 in the Gamow basis and HO frequencies 2MeV

( ), 4MeV ( ), 5MeV ( ), 6MeV ( ). The Gamow basis of the reference

state uses the pn
3/2pn

1/2 partial-wave selection. The other truncations are

shown in table 11.2.

Figure 11.3 shows the variation of the N HO
max truncation of the reference state for potential

III of table 11.1. The energy sequences for both parts of the energy are comparably stable

with respect to a variation of the N HO
max truncation even for the smallest N HO

max = 2 truncation,

which often showed too little admixture of the continuum in chapter 9. Nevertheless, the

calculations still show some irregularities in the convergence, which is a consequence of two

eigenstates with similar expectation value of the center-of-mass Hamiltonian.

Even though there exist some unstable energy sequences for the ground-state energies

of the tetraneutron, we attempt to determine a mean and statistical uncertainty for the

ground-state energy. Since some convergence curves do not follow a steady monotonous

decrease, we extend our procedure to determine an extrapolated eigenvalue from section 8.6.
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FIGURE 11.3.: Comparison of the ground-state energy of 4n for different N HO
max trun-

cations of the reference state and HO frequencies 2MeV ( ), 4MeV ( ),

5MeV ( ), 6MeV ( ). The Gamow basis uses potential III from table 11.1

and the pn
3/2pn

1/2 partial-wave selection. The remaining truncations of the

reference state are νs = 18 and Smax = 2.

If an exponential fit is impossible or not appropriate because the real part of the energy has

a constant, linear, or slightly alternating convergence pattern, we just use the value of the

largest accessible Nmax of the respective Nmax sequence. This corresponds to the procedure

we use to determine the extrapolated eigenvalue for the imaginary part of the energy.

The energy sequences and the corresponding mean and statistical uncertainty of the

extrapolated eigenvalues are shown in figure 11.4 for a set of suitable reference states. The

extrapolated eigenvalues yield a resonance energy and the resonance width of

E = 3.0(9)MeV, (11.9)

Γ= 2.4(16)MeV, (11.10)
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FIGURE 11.4.: Calculation of a mean and statistical uncertainty for the ground-state

energy of the 4n for a set of reference states.

which would be in overall agreement with the recent experimental results [Mar+02; Kis+16;

Due+22] and other theoretical calculations using the GNCSM framework [Fos+17; Li+19].

However, further work is crucial in order to stabilize the calculations, especially with respect

to the partial-wave selection and the underlying one-body potential. The sn
1/2pn

3/2pn
1/2 partial-

wave selections seems to be an interesting extension of the pn
3/2pn

1/2 partial-wave selection

if we are able to stabilize the calculations. Regarding the one-body potentials, an extensive

survey of one-body potentials for the Gamow basis of the reference states could help to

optimize the subsequent NAT-GNCSM calculations. We have already seen that potential II,

which is the deepest potenital we used, generates unstable results. Thus, an extension towards

weaker potentials with larger potentials widths could be a promising task. Furthermore, we

could apply an external potential [Li+19] or scale the NN interaction [Fos+17] in order to

artificially bind the tetraneutron and stabilize the calculation in this regime.
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CONCLUSION

In this work, we have developed a complete GNCSM framework for the calculation of nuclear

resonances. The GNCSM framework is constructed in four main steps, which are depicted

on the left-hand side of figure 11.1. During the development of the GNCSM framework and

its application to different nuclei, we were able to establish guidelines for the different steps

of the GNCSM framework. For future applications, this guidelines form a starting point for

the calculation of nuclear resonances in light nuclei. However, the application to very exotic

nuclear systems like the tetraneutron can become a lot more challenging.

As a first step, we set up a Gamow single-particle basis, which contains a Berggren basis for

a set of partial waves. The Berggren basis contains single-particle resonance and scattering

states, which include information about the continuum. In combination with the HO basis in

the remaining partial waves they form the aforementioned Gamow basis. In the applications

to light systems, the use of the s1/2 and p3/2 partial waves, i.e., the lowest two shell model-

orbitals, has proven to provide the most important contributions of the continuum.

In the second step, the two-body matrix elements of the asymptotically free resonance and

scattering states of the Berggren basis were expanded in HO wave functions. The finite range

of the HO wave functions regulates the expansion. Since we are limited to a finite number of

HO wave functions, we have defined a range of HO frequencies, for which the calculation of

the matrix elements converges. The matrix elements form the relevant input for the GNCSM

calculation.

In the third step, we perform a first GNCSM calculation. The use of the Gamow single-

particle basis has two consequences on the GNCSM calculation. First, the Hamilton matrix,

and consequently the matrix eigenvalue problem, becomes complex symmetric. Second, we
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GNCSM framework

Gamow basis

(chapter 5)

Matrix elements

(chapter 6)

GNCSM

(chapter 7)

NAT-GNCSM

(chapter 8)

• Use one-body potentials I or II (cf. section 8.5)

• Use p3/2 or s1/2p3/2 partial waves with contour

definiton from equation (5.10)

• Ensure convergence of matrix element expansion

(cf. section 6.2)

• Use HO frequencies between ℏΩ= (6 to 16)MeV

• Calculate reference state for different truncations
I. N HO

max = 2,3,4 III. νs = 12,15,18,21,24

II. Smax = 2,3 IV. ℏΩ= (8 to 16)MeV

• Check that reference states are not pathologic

I. Overlaps are > 0.1

II. Re(E) is in the correct order of magnitude

• Determine unique physical eigenstate with smallest〈
Ĥcm

〉
(cf. section 8.3)

• Analyze dependence on reference state truncations

(cf. section 8.4) and one-body potential (cf. section

8.5)

• Extrapolate energy and calculate uncertainties (cf.

section 8.6)

FIGURE 11.1.: Guidelines for the application of the GNCSM framework.

introduce an additional many-body truncation for the partial waves that use the Berggren

partial waves. Regarding the choice of the Gamow basis for the GNCSM calculations, it

would be desirable to use the Berggren basis for as many partial waves as possible in order

to maximize the information about the continuum. In practical applications, the correct

selection of partial waves in the Berggren basis is one of the most crucial points of the

entire calculation. The selection of the partial waves affects the GNCSM calculation in three
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ways. First, if we increase the number of partial waves in the Berggren basis, the GNCSM

calculations become less stable and it becomes more challenging to determine suitable

resonance states in the GNCSM as the discretized many-body scattering states dominate the

calculated spectrum. Second, we use an orthogonal eigenvalue solver, but the Gamow basis is

non-orthogonal in the Berggren partial waves. Hence, the solution becomes worse the more

Berggren partial waves we include. Third, the single-particle model space of Berggren partial

waves is much larger compared to the HO basis which translates to a much larger many-body

model space.

In the final step, we use the first GNCSM calculations to obtain a set of reference states,

which we use for the calculations of a set of Gamow natural orbitals. The goal of the Gamow

natural orbitals is to enhance the convergence rate of the energy eigenvalues and to circum-

vent the approximation of an orthogonal eigenvalue solver. Due to the approximations and

the increased instability of the GNCSM calculation for larger model spaces, it is difficult to

determine an optimal reference state for the subsequent NAT-GNCSM calculation. Thus, we

perform a NAT-GNCSM calculation for a set of natural-orbitals and use a statistical approach

to determine an extrapolated eigenvalue and a many-body uncertainty for the NAT-GNCSM

calculations, which takes the results for every suitable reference state into account.

In the first applications of the GNCSM framework, we present ground and excited-state

resonances in light nuclei. For the ground-state resonances of 4H, 4Li, and 5He, we compared

our results with existing GNCSM calculations [Li+21; Pap+13]. Additionally, we were able to

quantify the many-body uncertainties in our calculations. The description of the 2− ground-

states of the 4H and 4Li mirror nuclei is of particular interest since the experimental results

are inconclusive up to this point. Even though, the selection of a suitable set of reference

states has been challenging, we found an overall agreement for both states with the other

GNCSM calculation. The theoretical uncertainties are smaller than the variations of different

experimental measurements.

For the ground-state energy of 5He, we were able to compute a very stable result for the

real and imaginary part of the energy. This probably is a consequence of the rather simple

structure of the ground-state of 5He consisting of a strongly bound 4He core and a loosely

bound neutron in the p-shell. The computed ground-state energy agrees with both, another

GNCSM calculation and the experimental results, very well.

The calculation of excited-state resonances of 4He and 6He demonstrated two challenges of

the current GNCSM framework. The determination of suitable reference states in the GNCSM

calculation for 4He is very difficult, such that we had to fall back on the ground state of 4He,
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which shows resonance characteristics in the small model spaces of the GNCSM. However,

it will become a bound state in large model spaces, and thus, might contain not enough

admixtures of the continuum in order to describe the excited-state resonances. It might be

necessary to improve the GNCSM calculations for highly excited states in order to obtain

stable and suitable reference states for the subsequent NAT-GNCSM calculation.

For the first excited states of 6He, we are able to use a suitable reference state. The compari-

son to other theoretical calculations and experimental measurements were rather problem-

atic. The real parts of the energies coincide with some other results, whereas the imaginary

parts of the energies coincide with other results, such that the correct description of the first

excited states of 6He is of strong interest in the future. The most challenging part of the theo-

retical calculations is the many-body model space dimension, which scale factorially with

the particle number, in the GNCSM as well as the NAT-GNCSM, such that we are limited to

rather small many-body truncations. A solution might be the introduction of an importance

truncation scheme [Rot09], which decreases the model space dimension using an a priori

estimate on the importance of every Slater determinant.

Besides the calculation of resonance states for different nuclei, we analyzed the dependence

of the resonance energy for a family of interactions with different momentum cutoffs and

chiral orders from Entem, Machleidt, and Nosyk [EMN17]. For the cutoff variation at N3LO,

we found that the uncertainty induced by the many-body method exceeds the deviations for

different cutoffs. The order-by-order analysis of the interaction showed a small change in the

step from NLO to N2LO, but no significant change for the subsequent order N3LO. However,

the uncertainties are still dominated by the many-body uncertainty. The order-by-order

behavior also justified that we neglected contributions of 3N forces to the interaction since

we obtain very good results for NLO already, which only consists of NN forces.

Finally, we applied the GNCSM framework to the description of the tetraneutron, which is

of special interest after the most recent experimental efforts by Duer et al. [Due+22]. Since

the tetraneutron is an extreme nuclear system, we had to optimize the basis parameters

of the Gamow single-particle basis. We assumed that a possible ground-state resonance

of the tetraneutron has a very extended wave function. Thus, we used a weak and broad

one-body potential. This allowed us to obtain suitable reference states, which contain enough

admixtures of the continuum. In the subsequent NAT-GNCSM calculation, we were able to

compute the resonance energy for a possible tetraneutron resonance if we use the p-wave

continuum. The calculations have shown that the determination of suitable and stable

reference states is very important for such an extreme system.
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A possible way to stabilize the overall calculation is used by other applications of the

GNCSM [Fos+17; Li+19], which scale the nuclear potential or add an external Woods-Saxon

potential to confine the neutron system and increase the binding energy. In future endeavors,

this ansatz could be used to include the s-wave continuum into the calculation, which might

improve the description of the ground-state.

We have already mentioned some extensions and optimizations of the GNCSM framework

for future applications. A very important extension of the GNCSM towards heavier nuclei is

the development of an importance truncations scheme, which is already applied in the stan-

dard NCSM very successfully [Rot09]. It optimizes the many-body model space a priori, such

that the final diagonalization is performed in a smaller subspace. A second extension targets

the correct treatment of non-orthogonal basis sets. At the moment, we use an orthogonal

eigenvalue solver for the diagonalization in the GNCSM, but the Gamow single-particle basis

is non-orthogonal. The necessary changes are the correct calculation of the matrix elements

of the Hamilton matrix and the use of a non-orthogonal eigenvalue solver.

During the applications of the GNCSM framework, we found the determination of a suitable

set of reference state is one of the most crucial steps. This is necessary to determine a many-

body uncertainty of the calculation. Something we have not targeted too much during this

thesis, is the choice of the one-body potential of the Gamow basis. We have already seen

that the stability of the reference states and the result are dependent on the choice of the

one-body potential. Hence, an extended survey of one-body potentials can help to stabilize

the reference state calculation, and consequently, improve the results.
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