
Noname manuscript No.
(will be inserted by the editor)

Ab initio description of monopole resonances in light- and medium-mass
nuclei
III. Moments evaluation in ab initio PGCM calculations

A. Porro1,2,3, T. Duguet3,4, J.-P. Ebran5,6, M. Frosini7, R. Roth1,8, V. Somà3
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Abstract The paper is the third of a series dedicated to the
ab initio description of monopole giant resonances in mid-
mass closed- and open-shell nuclei via the so-called projected
generator coordinate method. The present focus is on the
computation of the moments mk of the monopole strength dis-
tribution, which are used to quantify its centroid energy and
dispersion. First, the capacity to compute low-order moments
via two different methods is developed and benchmarked
for the m1 moment. Second, the impact of the angular mo-
mentum projection on the centroid energy and dispersion
of the monopole strength is analysed before comparing the
results to those obtained from consistent quasi-particle ran-
dom phase approximation calculations. Next, the so-called
energy weighted sum rule (EWSR) is investigated. First, the
appropriate ESWR in the center-of-mass frame is derived
analytically. Second, the intrinsic EWSR is tested in order to
quantify the (unwanted) local-gauge symmetry breaking of
the presently employed chiral effective field theory (χEFT)
interactions. Finally, the infinite nuclear matter incompress-
ibility associated with the employed χEFT interactions is
extracted by extrapolating the finite-nucleus incompressibil-
ity computed from the monopole centroid energy.

1 Introduction

The study of giant resonances provides valuable insights into
the structural and dynamical properties of atomic nuclei [1–
4]. In particular, the characteristics of the isoscalar giant
monopole resonance (ISGMR or GMR for brevity here) and
of the isovector giant dipole resonance (IVGDR) not only
deepen our comprehension of nuclear structure but also have
implications for the modelization of several astrophysical
systems. This is the case, for instance, of the description

of core-collapse supernovæ explosions [5, 6] and neutron
stars mergers [7–10], both phenomena being associated to
the nucleosynthesis of heavy elements and the behavior of
nuclear matter under extreme conditions [11].

This article is the third (Paper III) of a series of four address-
ing the properties of the GMR in closed- and open-shell nu-
clei from an ab initio standpoint using the so-called projected
generator coordinate method (PGCM). While the first paper
(Paper I) [12] detailed the uncertainty budget associated to
PGCM calculations of monopole and quadrupole responses,
the second paper (Paper II) [13] focused on the GMR prop-
erties of 16O, 24Mg, 28Si and 46Ti. Two-dimensional PGCM
calculations were shown to account well for the fragmented
monopole response of (rather) light doubly open-shell nuclei
thanks to their capacity (i) to capture the impact of the in-
trinsic static quadrupole deformation and of its fluctuations
on the position of the breathing mode (typically at play in
spherical nuclei), (ii) to describe in a refined way the cou-
pling between the GMR and the giant quadrupole resonance
(GQR) mechanism responsible for the appearance of an ad-
ditional component in the GMR of intrinsically-deformed
nuclei and (iii) to seize anharmonic effects that were shown
to be significant in light systems.

The present paper focuses on the computation of the moments
mk of the monopole strength distribution in order to quantify
its main characteristics such as its centroid energy and disper-
sion. Furthermore, the first moment m1 leads to the so-called
energy-weighted sum rule (EWSR) that is used to extract
experimental strength functions. Also, the inverse-energy
weighted sum rule (IEWSR) associated with the moment
m−1 delivers, when applied to the dipole response, the so-
called dipole polarizability that is relevant to the computation
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of radiative capture cross sections. Finally, the centroid en-
ergy of the monopole strength distribution gives access to
the nucleus-dependent nuclear compressibility KA that can
eventually be linked to the nuclear matter incompressibility
K∞ [14, 15]. The latter quantity is a key characteristic of the
nuclear equation of state and, as such, has a clear interest for
several astrophysical applications.

The moments of a strength function can be computed in two
ways. The first one involves an explicit sum over excited
states and matrix elements of the simple one-body excitation
operator F. The second one does involve the expectation
value of a complicated many-body operator, but in the sole
ground state. The first approach is presently denoted as the
sum over excited states (SOES) method whereas the sec-
ond one is referred to as the ground-state expectation value
(GSEV) method. For a given many-body method, the agree-
ment between the two approaches constitutes an internal-
consistency test to pass1 in order to correctly describe the
excitation mode defined by the operator F.

In this context, the formal capacity to compute low-order
moments via the GSEV approach is developed in Sec. 2
and Appendix D. Based on such an advancement, and after
briefly introducing the numerical setting in Sec. 3, the SOES
and GSEV approaches to m1 are compared in Sec. 4 using
the PGCM monopole responses of 16O, 24Mg, 28Si and 46Ti.
Sec. 5 further discusses the impact of angular-momentum
projection in the SOES approach. Next, PGCM moments are
compared in Sec. 6 to those obtained via the quasi-particle
random phase approximation (QRPA), the goal being to com-
plement the study of Paper II [13]dedicated to the monopole
strength function by focusing on its global characteristics.
Section 7 focuses on the EWSR. First, it is demonstrated
that the textbook expression of the EWSR must be corrected
for the fact that nuclear excitations of interest are intrinsic
excitations in the center-of-mass frame. Second, the intrinsic
EWSR is tested in order to quantify the (unwanted) local-
gauge symmetry breaking of the presently employed chiral
Hamiltonian. Eventually, Sec. 8 is dedicated to accessing KA

in 16O, 24Mg, 28Si and 46Ti. The computed values are then
employed to extract K∞ and verify if the result thus obtained
is consistent with empirical expectations. This constitutes
an important test for the chiral Hamiltonian under present
use. The main findings of this work are summarised in Sec. 9
whereas a set of technical appendices complement the main
body of the paper.

1It is a necessary but not sufficient condition for the response function
associated with the operator F to be a good approximation of the exact
one.

2 Moments of the strength function

In many respects, the present section follows Ref. [16]. By
convention, all operators at play are redefined in such a way
that their expectation value in the ground state is subtracted,
i.e. for a given operator O its rescaled companion is intro-
duced as2

O ≡ O − ⟨Ψσ0
0 |O|Ψ

σ0
0 ⟩ , (1)

where |Ψσ0
0 ⟩ denotes the ground state and the superscript σ0

characterises its symmetry quantum numbers, as specified in
the next paragraph. Equation (1) has the effect of removing
the elastic part from the nuclear response function.

2.1 Definition

The strength function associated with a generic transition
operator F reads as

S (E) ≡
∑
νσ

| ⟨Ψσν |F|Ψ
σ0
0 ⟩ |

2 δ(Eσν − Eσ0
0 − E) , (2)

where Eσ0
0 denotes the ground-state energy whereas

{|Ψσν ⟩(E
σ
ν ), ν = 1, . . . , νmax} designates the set of excited states

(energies). The superscript σ ≡ (JMΠNZ) characterises the
symmetry quantum numbers carried by the eigenstates, i.e.
the angular momentum J and its projection M, the parity
Π = ±1 as well as neutron N and proton Z numbers.

The k-th moment of the strength distribution3 associated with
the operator F is defined as4

mk ≡

∫ +∞

0
EkS (E)dE . (3)

2.2 Mean energy(ies) and dispersion

Two sets of quantities having the dimension of an energy are
introduced according to

Ēk ≡
mk

mk−1
, (4a)

Ẽk ≡

( mk

mk−2

)1/2
. (4b)

2Notice that Eq. (1) is no longer relevant as soon as one deals with
commutators, since it is immediate to show that [A − ⟨A⟩ , B − ⟨B⟩] =
[A, B].
3From a mathematical standpoint, the moment mk constitutes the k-th
moment of a discretized probability distribution associated with the
transition generated by F. Moments of a physical strength function are
not guaranteed to be finite. The fact that it is indeed the case or not
depends on mathematical characteristics of the Hamiltonian, e.g. of
inter-nucleon interactions [16].
4Except for m0, and as it will become evident below, there is in fact no
difference in using F or F in Eq. (8).
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They coincide for all k’s if the strength distribution is con-
centrated in a single peak. The degree to which they differ
reflects the fragmentation of the distribution. By definition,
the average value of the energy distribution is given by

Ē1 =
m1

m0
. (5a)

In this work the following energy averages are also em-
ployed

Ẽ1 =

√
m1

m−1
, (5b)

Ẽ3 =

√
m3

m1
. (5c)

Compared to the centroid energy Ē1, the scaled (constrained)
energy Ẽ3 (Ẽ1) is more sensitive to the high (low) energy part
of the strength.

As shown in Appendix A, the moments entertain the set of
inequalities

· · · ≥
mk+2

mk+1
≥

√
mk+2

mk
≥

mk+1

mk
≥

√
mk+1

mk−1
≥ . . . , (6)

providing a practical tool to set boundaries on a specific
moment in case it cannot be easily computed5. Thanks to
these inequalities, the variance of the strength distribution is
shown to satisfy

σ2 =
m2

m0
−

(m1

m0

)2
≥ 0 . (7)

2.3 SOES formulation

Inserting Eq. (2) into Eq. (3) delivers the expression

mk ≡
∑
νσ

(Eσν − Eσ0
0 )k | ⟨Ψσν |F|Ψ

σ0
0 ⟩ |

2 , (8)

requiring the knowledge of excited states of the system. Equa-
tion (8) constitutes the SOES approach to the moments com-
putation.

2.4 GSEV formulation

By means of the identity resolution on the A-body Hilbert
spaceHA

1 =
∑
νσ

|Ψσν ⟩ ⟨Ψ
σ
ν | , (9)

5From a practical standpoint, Eq. (6) holds if the involved moments are
all computed within the same approximation scheme.

Eq. (8) can be rewritten as a ground-state expectation value

mk =
∑
νσ

(Eσν − Eσ0
0 )k ⟨Ψσ0

0 |F|Ψ
σ
ν ⟩ ⟨Ψ

σ
ν |F|Ψ

σ0
0 ⟩

=
∑
νσ

⟨Ψσ0
0 |F(H − Eσ0

0 )k |Ψσν ⟩ ⟨Ψ
σ
ν |F|Ψ

σ0
0 ⟩

= ⟨Ψσ0
0 |F(H − Eσ0

0 )kF|Ψσ0
0 ⟩ . (10)

Computing moments via Eq. (10) constitutes the GSEV
method based on the expectation value of a complicated
operator in the sole ground state.

Clearly, the complexity of the operator at play in Eq. (10)
increases with |k|. For k ≥ 0 the many-body rank increases
with k whereas for k < 0 it further involves a non-trivial
inversion. Examples of calculations employing the GSEV
formulation can be found in Refs. [17, 18].

2.5 Moment operators

Positive moments can be re-expressed in more convenient
forms by invoking the appropriate definition of moment op-
erators. As shown in Appendix B, moments with k ≥ 0 can
be further rewritten as

mk = (−1)i ⟨Ψσ0
0 |CiC j|Ψ

σ0
0 ⟩ (11)

with

Cl ≡ {Hl, F}

≡ [H, [H, ...[H, [H︸            ︷︷            ︸
l times

, F]]...]] (12)

and where i and j are any pair of integers fulfilling i + j = k.
By definition C0 ≡ F.

For odd moments, Eq. (11) can be further expressed in terms
of a commutator

mk =
1
2

(−1)i ⟨Ψσ0
0 |[Ci,C j]|Ψ

σ0
0 ⟩ . (13)

The last step provides a useful simplification to the structure
of the operator whose ground-state expectation value is to be
computed. Indeed, taking F to be a one-body operator, while
the product CiC j contains up to [(n− 1)k+ 2]-body operators,
n being the highest-rank component of H, the commutator
contains only up to [(n−1)k+1]-body operators. Because even
moments can only be written in terms of anti-commutators
that have the same many-body rank as the product CiC j, this
simplification does not occur in this case.

Eventually, two sets of moment operators are introduced
according to

M̆k(i, j) ≡ (−1)iCiC j ∀ k ≥ 0 , (14a)

Mk(i, j) ≡
1
2

(−1)i[Ci,C j] ∀ odd k > 0 , (14b)
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whose expectation value in |Ψσ0
0 ⟩ delivers mk and where i and

j are any pair of integers fulfilling i + j = k.

Based on a Hamiltonian H containing up to three-body opera-
tors, the algebraic expressions of the tensors defining M1(1, 0)
are explicitly derived in Appendix D . The result is used to
numerically compute the PGCM m1 moment associated with
the monopole operator F = r2 via the GSEV approach in
Sec. 4.2.

2.6 Alternative formulation

It is possible to access the operator Mk( j + 1, j) associated
with the odd positive moment mk in an alternative way. To
do so, the similarity-transformed Hamiltonian

Hk(η) ≡ e−ηGk HeηGk

= H + η[H,Gk] +
1
2!
η2[[H,Gk],Gk] + O(η3) , (15)

is introduced, where the expansion in powers of the parameter
η results from the application of Baker-Campbell-Hausdorff’s
identity. To match the expression given in Eq. (14b) one takes
i = j + 1 and

Gk ≡ C j with k ≡ 2 j + 1 , (16)

such that

Mk( j + 1, j) =
1
2

(−1) j+1 ∂
2

∂η2 Hk(η)
∣∣∣∣∣
η=0
. (17)

Based on a Hamiltonian H containing up to three-body opera-
tors, the algebraic expressions of the tensors defining M1(1, 0)
are also derived in Appendix D as a way to validate the
correctness of the expressions obtained via the more direct
commutator approach laid down in Sec. 2.5.

2.7 Practical merits and limitations

The great practical advantage of the GSEV approach is to
access strength function’s moments based on the sole knowl-
edge of the nuclear ground state. This indeed is a tremendous
simplification given that accessing a complete-enough set of
excited states constitutes a challenge within any state-of-the-
art ab initio many-body method6

Such a benefit however comes at the price of evaluating the
ground-state expectation value of operators (Eq. (14)) whose
many-body complexity increases with the moment order.

6Interestingly, once the investment to set up a moment operator has been
done, it can be employed with any method delivering the many-body
ground-state.

The set of moment operators indeed involve the hierarchy of
operators

C1 =[H, F] ,

C2 =[H,C1] ,
...

C j+1 =[H,C j] ,

whose many-body rank increases with j due to the new com-
mutator involved at each step. With F a one-body operator
and H containing up to three-body operators, C1 contains up
to three-body operators, C2 up to five-body operators, C3 up
to seven-body operators, i.e. C j contains up to (2 j+ 1))-body
operators. As a result, M̆k(i, j) contains up to (2k + 2)-body
operators and Mk(i, j) up to (2k + 1) operators. For exam-
ple, M̆0(0, 0) contains up to two-body operators and M1(1, 0)
contains up to three-body operators. Knowing that dealing
with three-body operators constitutes the current computa-
tional limit, it makes possible to compute both m0 and m1

exactly via the GSEV approach in PGCM calculations7. Mov-
ing further, M̆2(1, 1) contains up to six-body operators and
M3(2, 1) contains up to seven-body operators, which makes
them beyond reach8. While it is in principle possible to de-
sign approximations to M̆2(1, 1) and M3(2, 1) based on rank-
reduction techniques [19], this avenue is not pursued in the
present work and PGCM moments such as m2 and m3 are
accessed via the SOES approach.

3 Numerical setting

All calculations presented here use the same setting as in
Paper II [13]. The PGCM formalism and the characteristics
of the numerical applications were detailed in Paper I [12].
In particular, the definitions of mean-square-radius-like oper-
ators under use all throughout the present paper read

r2 ≡

A∑
i=1

r2
i (18)

for the monopole operator,

r2
lab ≡

1
A

A∑
i=1

r2
i (19)

7Because in practice the Hamiltonian is first rank-reduced to be an
effective two-body operator [19], M1(1, 0) only contains up to two-body
operators in present calculations.
8Because the Hamiltonian is first rank-reduced to be an effective two-
body operator [19], M̆2(1, 1) would only contain up to four-body opera-
tors whereas M3(2, 1) would only contain up to five-body operators in
the present calculations. It still makes them beyond the reach of current
capabilities.
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for the radius in the laboratory frame and

r2
int ≡

1
A

(
1 −

1
A

) A∑
i=1

r2
i −

1
A2

A∑
i, j=1

r⃗i · r⃗ j , (20)

for the radius in the center-of-mas or intrinsic frame.

A one-body spherical harmonic oscillator basis characterised
by the optimal frequency ℏω = 12 MeV is employed. All
states up to emax ≡ max(2n + l) = 10 are included, with
n the principal quantum number and l the orbital angular
momentum. The representation of three-body operators is
further restricted by only employing three-body states up to
e3max = 14.

A Hamiltonian based on chiral effective field theory (χEFT)
and built at next-to-next-to-next-to-leading-order (N3LO) [20]
is employed. It contains consistent two- (2N) and three-
nucleon (3N) interactions and is further evolved via simi-
larity renormalization group (SRG) transformations [21] to
the low-momentum scale λ = 1.88 fm−1 (i.e. flow param-
eter α=0.08 fm4) and truncated at the three-body operator
level. The resulting three-body force is approximated via the
rank-reduction method developed in Ref. [19].

Two-dimensional (2D) PGCM calculations mix a set of con-
strained HFB states with axial symmetry using the root-mean-

square radius r ≡
√
⟨r2

lab⟩ and the axial mass quadrupole de-
formation parameter β2 as generator coordinates. The QRPA
calculations are performed at the HFB minimum via the
quasi-particle finite amplitude method (QFAM) [22]. The
QFAM monopole moments are computed via the contour
integration of the response function in the complex energy
plane [23] employing a 100 MeV contour radius.

Eventually, the present analysis is based on the (P)GCM and
QFAM monopoles responses of 16O, 24Mg, 28Si and 46Ti. For
28Si, both the oblate gorund state and the prolate isomeric
state have been analyzed. In the following, thus, the notation
28Si is used in reference to the ground state while 28Siiso is
employed for the isomeric state. Given that the present paper
only focuses on spectral moments, the reader is referred to
Paper II [13] for a detailed analysis of the corresponding
strength functions.

4 SOES and GSEV approaches to m1

4.1 Rationale

From a formal standpoint, the equivalence between the SOES
and GSEV approaches relies on the completeness assump-
tion from Eq. (9) allowing one to use the identity resolution.
While the GSEV value of a given moment can be considered
to be the formal value of reference, the SOES value is the
one corresponding to the strength function actually computed
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Fig. 1 Difference between monopole m1 values obtained via the GSEV
and SOES approaches in (P)GCM calculations as a function of A for
16O, 24Mg, 28Si (ground-state and prolate isomer) and 46Ti. Upper panel:
difference in percentage. Lower panel: absolute difference multiplied
by A−5/3 to remove the expected trivial A dependence (see Eq. (25)).
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Fig. 2 Integral m1(ω) moment, as defined in Eq. (21), as a function of
the maximum excitation energy and normalised by the GSEV value of
m1 from PGCM monopole calculations of 16O, 24Mg, 28Si (ground-state
and prolate isomer) and 46Ti.

in practice on the basis of a necessarily incomplete set of
excited states9. In this context, the agreement between the
two values constitutes an internal-consistency test for the em-
ployed many-body method relative to the excitation operator
F of interest. The agreement tests whether the vector F|Ψσ0 ⟩
belongs to the subspace S spanned by the set of computed
eigenstates {|Ψσν ⟩, ν = 0, . . . , νmax} explicitly at play in the
SOES approach.

Presently employed (P)GCM eigenstates are linear combi-
nations of the non-orthogonal (projected) Bogoliubov vacua

9The moment obtained via the GSEV approach constitutes an upper
bound of the value computed via the SOES approach.
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16O 24Mg 28Si 28Si iso
46Ti

SOES GSEV SOES GSEV SOES GSEV SOES GSEV SOES GSEV
GCM 7940 8611 16676 17850 21046 22384 22104 23625 43185 46776
PGCM 8386 8617 17178 17978 21490 22526 22846 24016 44392 47046

Table 1 GCM and PGCM m1 monopole moments computed via the SOES and GSEV approaches for 16O, 24Mg, 28Si (ground-state and prolate
isomer) and 46Ti. All quantities are in fm4MeV.

defining the set {(Pσ)|Φ(r2, β2)⟩} with r ∈ [rmin, rmax] and
β2 ∈ [βmin, βmax] (σ ∈ IRREPs). Consequently, the (P)GCM
subspace S (σ) is nothing but the span of that set. In Appendix
C of Ref. [24], the monopole and quadrupole operators were
shown to be indeed exhausted for a GCM calculation based
on Slater determinants built out of the lowest eigenstates
of axially deformed harmonic oscillators, the two generator
coordinates being the corresponding axial and perpendicular
oscillator frequencies. While realistic (P)GCM calculations
rely on more general Bogoliubov vacua (and include particle-
number and angular-momentum projections), such a proof
gives some confidence that the monopole operator might be
well exhausted in present 2D (P)GCM calculations using r2

and β2 as generator coordinates. It is the goal of the present
section to test quantitatively to which extent this is indeed
the case for m1.

4.2 Results

The (P)GCM m1 values obtained from both evaluation meth-
ods are reported in Tab. 1. Furthermore, their difference
(rescaled according to their expected A5/3 scaling; see Eq. (25))
is displayed in Fig. 1 along with the difference in percent-
age.

Results obtained via the SOES approach are about 6 − 7%
smaller than their GSEV counterpart across the five cases
under consideration. The underestimation of the SOES ap-
proach is stable from A = 16 to A = 46 once the A5/3 scaling
has been removed. The small but systematic improvement
of the PGCM over the GCM is attributed to the benefit of
the symmetry restoration, i.e. symmetry contaminants are
removed by the angular momentum projection on J = 0 such
that the operator r2 is better exhausted by the corresponding
subspace S P. For PGCM calculations the SOES m1 moment
as a function of the maximum excitation energy, reading

m1(ω) ≡
∫ ω

0
E S (E)dE , (21)

is displayed in Fig. 2 normalised by the corresponding GSEV
value. The excited states included in the SOES evaluation
reach a maximum energy of 97 MeV for 16O, 74 MeV for
24Mg, 94 and 98 MeV for the ground and isomeric state of
28Si and 102 MeV for 46Ti.

Eventually, the operator r2 is exhausted, within a few per-
cents, by the (P)GCM subspace S (P). This translates into the
fact that the SOES approach to m1 can be safely used within
a few percent uncertainty10. Differences between the GSEV
and SOES approaches signal the necessity of improving the
determination of an optimal (P)GCM subspace S (P). While
this topic is of current interest, it goes beyond the scope of
the present article.

5 Angular-momentum projection

The effect of angular momentum projection on the monopole
moments mk, k = −1, 0, 1, 2, 3, evaluated via the SOES ap-
proach is presently quantified by comparing results from
GCM and PGCM calculations. As seen in Tab. 2, the angular
momentum projection systematically enlarges mk in a way
that increases with k. In fact, while the increase with the
moment order is rather marked in 16O, it is limited in 24Mg
and has entirely disappeared in 46Ti. Thus, and even though
the range of nuclei presently tested is too limited to draw
general conclusions, the impact of the angular momentum
projection seems to decrease with A.

While the behavior of specific moments is interesting, it is
more pertinent to investigate how this translates into the
modification of physically-relevant quantities, e.g. the mean
value and the dispersion of the monopole strength function.
As visible from Tab. 3, the impact of the angular momentum
projection on the centroid energy Ē1 decreases from 3.4% in
16O to 1.5% in 24Mg, and eventually down to 1.1% in 46Ti.
Except in 16O, where it amounts to 750 keV, the GMR energy
shift due to angular momentum projection is thus essentially
negligible. The situation is similar for Ẽ1 that is used as an
alternative to evaluate the GMR energy.

The impact on the dispersion is typically more significant.
Again, the set of nuclei is too limited to draw general con-
clusions. Still, the dispersion varies by as much as 19.3% in

10The resulting uncertainty for a moment mk can be conjectured to in-
crease with k. Indeed, the energy weight Ek entering mk accentuates the
importance of higher-energy states as k increases while the truncation of
the completeness relation in the SOES approach probably affects more
this higher-energy domain. Given that m1 is the highest moment that
can be computed exactly within the GSEV approach, this conjecture
cannot be presently tested.
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16O 24Mg 46Ti
(β2 = 0.00) (β2 = 0.56) (β2 = 0.27)

SOES GCM ε [%] PGCM GCM ε [%] PGCM GCM ε [%] PGCM
m−1 [fm4MeV−1] 17.83 0.4 17.90 57.95 0.4 58.16 120.75 0.1 120.86
m0 [fm4] 369 2.1 377 955 1.4 969 2226 1.7 2264
m1 [fm4MeV] 7940 5.2 8386 16676 2.9 17178 43185 2.7 44392
m2 [fm4MeV2] 182667 11.0 205277 315053 4.4 329629 871376 3.2 900105
m3 [fm4MeV3] 4718706 19.8 5887075 6661187 5.3 7031885 18469397 2.7 18976050

Table 2 Monopole moments computed using the SOES approach for GCM and PGCM calculations of 16O, 24Mg and 46Ti. Numbers in between
GCM and PGCM results indicate the variation between the former and the latter in percentage.

16O 24Mg 46Ti
(β2 = 0.00) (β2 = 0.56) (β2 = 0.27)

SOES GCM ε [%] PGCM GCM ε [%] PGCM GCM ε [%] PGCM
Ẽ1 21.10 2.5 21.64 16.96 1.3 17.19 18.91 1.3 19.17
Ē1 21.51 3.4 22.26 17.46 1.5 17.72 19.40 1.1 19.60
σ 5.67 19.3 7.02 5.01 1.7 5.09 3.89 7.1 3.63

Table 3 Average energies and dispersion computed using the SOES for GCM and PGCM calculations of 16O, 24Mg and 46Ti. All results are
expressed in MeV units. Numbers in between GCM and PGCM results indicate the variation between the former and the latter in percentage.

16O and 7.1% in 46Ti. In 24Mg, the impact of angular mo-
mentum projection on σ is small but the strongly fragmented
monopole strength is in fact significantly modified as can be
seen in Paper II [13], which reflects the fact that Ē1 and σ
are anyway insufficient to characterize the behavior of the
strength in such a case.

6 Comparison to QRPA

In Paper II [13], the QFAM and GCM monopole strengths
of 16O, 24Mg, 28Si and 46Ti were discussed at length. In
comparing GCM to QFAM calculations, the objective is to
analyse the impact of additional ground-state correlations in
the evaluation of moments, excluding the effects associated
with symmetry restoration, which were addressed in Sec. 5.
The GCM and QFAM m1 values calculated within the GSEV
approach are compared in Tab. 4 and shown to agree to better
than 3% across the four nuclei under consideration, GCM
values being systematically larger than QFAM ones.

The QRPA is known to fully exhaust any one-body excitation
operator in odd-k moments, i.e. it can be shown analytically
that, within the quasi-boson approximation, odd-k QRPA mo-
ments computed with the GSEV and the SOES approaches
are strictly identical, the state at play in the GSEV being
the HFB ground state [25–27]. This result demonstrates the
internal consistency of the QRPA as far as strength functions
are concerned. While the GCM does not strictly share this
property as discussed above, the GCM ground-state is neces-
sarily a better approximation of the exact ground state than
the HFB state, such that GCM moments based on the GSEV

approach are necessarily better than QRPA ones11. This is
testified by the larger values of the GCM m1 moment reflect-
ing the beneficial impact of (static) correlations associated
with fluctuations of r2 and β2 leading to slightly larger GCM
mean-square radii compared to HFB ones12.

The trend with A of the difference between GCM and QRPA
m1 values is better inferred from Fig. 3. Given the hypothesis
at the heart of the QRPA, such a difference is expected to
increase with the degree of anharmonicity of the system. As
expected, and as discussed in Sec. 6 of Paper II [13], larger
systems are more harmonic than lighter ones. This is indeed
consistent with the fact that the difference with GCM values
decreases with A. This interpretation is further supported
by Fig. 4 where the difference is shown to grow with the
size of the cubic coefficient13 a3 extracted in Sec. 6 of Paper
II [13].

Figure 3 also displays the deviation of QFAM m1 values
from GCM results based on the SOES approach. In this
case, QFAM values are systematically a few percent above
GCM ones; i.e. they are located in between the two sets of
GCM values. Eventually, the disagreement between QRPA
and GCM is smaller than the uncertainty in the evaluation
of the GCM values. Contrary to values based on the GSEV

11This recalls that the capacity of a method to fully exhaust the strength
of a given excitation operator is not a sufficient condition to deliver a
better approximation of the exact moments than a method that does not
fully exhaust it.
12The argument qualitatively relates to the EWSR expressing m1 in
terms of the ground-state mean-square matter radius.
13The cubic coefficient is rescaled by A−3/2 to remove its trivial A
dependence due to the use of the rms radius as the variable in the fitted
function; see Paper II [13] for details.
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16O 24Mg 46Ti 28Si 28Si iso
GSEV QFAM GCM QFAM GCM QFAM GCM QFAM GCM QFAM GCM
m1 [fm4MeV] 8356 8611 17478 17850 46387 46776 22080 22384 23075 23625

Table 4 Monopole m1 moment computed via the GSEV approach for GCM and QFAM calculations of 16O, 24Mg, 28Si (ground-state and prolate
isomer) and 46Ti.

16 24 28 46
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ε
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Fig. 3 Difference between the GCM and the QRPA monopole m1 values
as a function of A for 16O, 24Mg, 28Si (ground-state and prolate iso-
mer) and 46Ti. The GCM moment is evaluated both through the SOES
and GSEV approaches. Upper panel: absolute difference in percentage.
Lower panel: difference multiplied by A−5/3 to remove the expected
trivial A dependence (see Eq. (25)).

approach, GCM values obtained from the SOES approach
do not converge towards QRPA as A increases and thus do
not scale as expected with the harmonic character of the
system.

Eventually, the centroid and the dispersion of the QRPA
monopole strength function are compared to GCM values
based on the SOES approach in Tab. 5. The GCM centroid
energy is typically 4 − 6% below the QRPA one14, which
amounts to less than 1 MeV difference in the studied nu-
clei. The QRPA and GCM dispersions are also very consis-
tent, especially in view of the remaining many-body uncer-
tainty.

7 Energy weighted sum rule

7.1 Definition

The EWSR is a standard quantity in studies of giant res-
onances, and its exhaustion by a specific nuclear excita-

14While it is true for the centroid of the actually computed GCM strength
function (SOES value), the formal (GSEV) value not computed here is
probably higher in view of the behavior of m1 studied above.

0.5 1 1.5 2

1

2

3
16O

46Ti
28Si

24Mg

28Si iso

a3A
−3/2 [MeV fm−3]

ε
[%

]

Fig. 4 Relative difference between the QFAM and the GSEV GCM
monopole m1 values as a function of the cubic coefficient a3 (see Sec. 6
of Paper II [13]). The factor A−3/2 is included to remove the trivial A
dependence of a3. See text for details.

tion serves as a good indicator of its degree of collectiv-
ity [16, 28, 29]. Furthermore, the EWSR is used to extract
strength functions from experimental data as briefly recalled
in Appendix E.

The ESWR relies on an analytical evaluation of m1 via
Eq. (14), i.e. using the GSEV approach. Targeting the first
moment of the isoscalar monopole strength function, the
similarity transformation of the Hamiltonian in Eq. (15) com-
puted with the isoscalar local operator G1 = F = r2 is nothing
but a local-gauge transformation. In case the inter-nucleon
interaction V is local-gauge invariant, Eq. (15) reads

H1(η) = e−ηr
2
Heηr

2

= e−ηr
2
Teηr

2
+ e−ηr

2
Veηr

2

= e−ηr
2
Teηr

2
+ V

= T (η) + V , (22)

such that V does not contribute to the quadratic term in η
entering Eq. (15). Under such an assumption, thus, only the
kinetic-energy operator T contributes to M1(1, 0). The kinetic
term is then divided into its laboratory- and center-of-mass
component according to

H = T + V

≡ Tlab − Tcm + V . (23)
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16O 24Mg 46Ti
(β2 = 0.00) (β2 = 0.56) (β2 = 0.27)

QFAM ε [%] GCM QFAM ε [%] GCM QFAM ε [%] GCM
Ē1 22.33 3.8 21.51 18.48 5.9 17.46 20.15 3.9 19.40
σ 5.55 2.1 5.67 5.58 11.5 5.01 3.96 1.8 3.89

Table 5 Centroid energy and dispersion from QFAM and GCM(SOES) calculations of 16O, 24Mg and 46Ti. All results are expressed in MeV units.
Numbers in between QFAM and GCM results indicate the variation between the former and the latter in percentage.

If the sole laboratory-frame component

Tlab ≡
1

2m

A∑
i=1

p2
i (24)

is considered in the evaluation of the EWSR starting from
M1(1, 0), m1 is then obtained analytically under the form [16,
30]

EWSRlab(r2) =
2ℏ2A

m
⟨Ψσ0

0 |r
2
lab|Ψ

σ0
0 ⟩ , (25)

which constitutes the textbook EWSR formula for the
isoscalar monopole mode. Interestingly, EWSRlab(r2) is pro-
portional to the laboratory-frame ground-state mean-square
matter radius from Eq. (19). Thus, accessing it only requires
the computation of that mean-square radius from the many-
body method of interest, e.g. using the Bogoliubov state at
the HFB minimum in QFAM calculations or the (P)GCM
ground state in (P)GCM calculations.

However, it happens that nuclear excitations of interest are
intrinsic excitations. Consequently, present many-body calcu-
lations employ the intrinsic Hamiltonian H from Eq. (23) con-
taining the intrinsic kinetic-energy operator Tint ≡ Tlab − Tcm,
with the subtracted center-of-mass kinetic-energy operator
reading as

Tcm ≡
1

2mA

A∑
i, j=1

p⃗i · p⃗ j . (26)

In this context, the monopole m1 moment reads as

m1 =
1
2
⟨Ψσ0

0 |[r
2, [H, r2]]|Ψσ0

0 ⟩

= EWSRlab(r2) −
1
2
⟨Ψσ0

0 |[r
2, [Tcm, r2]]|Ψσ0

0 ⟩

≡ EWSRlab(r2) −
2ℏ2A

m
⟨Ψσ0

0 |R
2
cm|Ψ

σ0
0 ⟩ , (27)

with R⃗cm the center-of-mass position vector. The derivation
of the correction term from Tcm is provided in Appendix F.
Eventually, the two terms can be combined such that the
appropriate, i.e. intrinsic, ESWR is given by

EWSRint(r2) =
2ℏ2A

m
⟨Ψσ0

0 |r
2
int|Ψ

σ0
0 ⟩ , (28)

and thus amounts to using the intrinsic mean-square radius
from Eq. (20) rather than the laboratory-frame one.

The EWSRint(r2) must in principle be fulfilled in ab initio cal-
culations given that χEFT-based 2N and 3N interactions are
meant to be local-gauge invariant, which is a necessary con-
dition to achieve a consistent coupling to the electromagnetic
field [31]. However, enforcing the local-gauge invariance is
not straightforward in practice. First, it cannot be exactly
fulfilled if the same EFT truncation level is applied to both
nuclear interactions and currents, even in the case of dimen-
sional regularization. Second, the use of (nonlocal) cutoff
regulators makes its fulfillment even more challenging [32].
Eventually, existing χEFT-based 2N and 3N interactions are
not strictly local-gauge invariant and it is our goal to quantify
such a feature by testing the departure of EWSRint(r2) from
the computed m1.

The potential breaking of the local gauge invariance can be
straightforwardly formulated by schematically expressing
the intrinsic Hamiltonian as

H = Tlab − Tcm + V

≡ Tlab − Tcm + Vlgi + V�lgi , (29)

where V�lgi ≡ V − Vlgi formally defines the departure of the
nuclear interactions from their local-gauge invariant formu-
lation. Given Eq. (29), the monopole m1 moment effectively
reads in practice as

m1 =
1
2
⟨[r2, [H, r2]]⟩gs

= EWSRint(r2) +
1
2
⟨[r2, [V�lgi, r

2]]⟩gs

≡ EWSRint(r2) + δm�lgi
1 , (30)

where δm�lgi
1 quantifies the effective breaking of EWSRint(r2).

7.2 EWSRlab versus EWSRint

Values of EWSRint(r2) (EWSRlab(r2)) from QFAM and PGCM
calculations are reported in Tab. 6 (Tab. 7). While PGCM val-
ues are systematically larger, the difference is eventually very
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EWSRint QFAM PGCM
16O 8462 8475
24Mg 17480 17658
28Si 22004 22129
28Si iso 22883 23352
46Ti 45600 45844

Table 6 Isoscalar monopole EWSRint from Eq. (28) for QFAM and
PGCM calculations of 16O, 24Mg, 28Si (ground-state and prolate isomer)
and 46Ti. All results are expressed in fm4MeV.

EWSRlab QFAM PGCM
16O 8832 8851
24Mg 17885 18064
28Si 22415 22540
28Si iso 23287 23749
46Ti 46053 46299

Table 7 Isoscalar monopole EWSRlabfrom Eq. (25) for QFAM and
PGCM calculations of 16O, 24Mg, 28Si (ground-state and prolate isomer)
and 46Ti. All results are expressed in fm4MeV.

√
⟨r2

lab⟩gs

√
⟨r2

int⟩gs

HFB PGCM HFB PGCM
16O 2.580 2.583 2.525 2.527
24Mg 2.998 3.013 2.963 2.979
28Si 3.107 3.115 3.078 3.087
28Si iso 3.167 3.198 3.139 3.171
46Ti 3.474 3.484 3.457 3.467

Table 8 Ground-state expectation value of point-matter nuclear radii in
the laboratory and intrinsic frames for HFB and PGCM calculations of
16O, 24Mg, 28Si (ground-state and prolate isomer) and 46Ti. All results
are expressed in fm.

small. These features reflect the behavior of the point-matter
radii reported in Tab. 815.

The relative difference between EWSRint and EWSRlab is
plotted as a function of A in Fig. 5. Results are identical for
QFAM and PGCM calculations. The A dependence of the
difference relates to the −A−1 scaling driven by the center-of-
mass-correction entering EWSRint, as is analytically demon-
strated in Appendix F for its one-body component. Again, the
trend reflects directly how the difference of the mean-square

15The difference between HFB and PGCM radii relates to the impact
of so-called static correlations beyond the mean-field included into
the PGCM ansatz. In general, static correlations have little impact on
radii, the exceptions being light spherical nuclei in which they can
non-negligibly increase radii and transitional nuclei in which they can
strongly reduce them. In nuclei displaying a sharp total energy surface
around the deformed HFB minimum, as is the case here, the impact of
static correlations on the mean-square radius is typically very small [33].
The presently employed χEFT Hamiltonian typically delivers good radii
such that the further addition of missing dynamical correlations to the
PGCM ansatz [19] is expected to enlarge radii.

16 24 46

−4

−2

0

28

GS

iso

A

∆
E

W
S

R
[%

]

QFAM
PGCM

Fig. 5 Relative difference between the monopole EWSRint and
EWSRlab as a function of A for QFAM and PGCM calculations.

point matter radii computed in the intrinsic frame and in the
laboratory frame decreases with A.

7.3 Departure from Sum Rules

The actual deviation from the values provided in Tab. 6 is now
tested. Introducing the discrepancy in percentage

ε ≡

(
m1

EWSRint
− 1

)
× 100 , (31)

the percentage (100 + ε) of EWSRint(r2) is reported in Tab. 9
for QFAM and PGCM calculations. It is observed that PGCM
results overshoot the EWSRint(r2) by [1.7, 2.6]% whereas
QFAM results are slightly lower and fulfill it within
[−1.3,+0.8]%.

Overall, the violation of EWSRint(r2) due to the breaking
δm�lgi

1 of local-gauge invariance by the presently employed
χEFT interactions is small and remains below 3% in the
present calculations. Still, it manifests slightly differently
depending on the (approximate) many-body method, the nu-
cleus or the eigenstate under consideration.

To illustrate this point more transparently, ε is plotted in
Fig. 6 as a function of A. The difference to EWSRint(r2)
evolves with A for the ground states under consideration
and is systematically larger for PGCM than for QRPA. One
observes that the trend with A is flatter for the PGCM and
that QFAM results seem to approach PGCM ones as the mass
increases. One may conjecture that this is a sign of better
convergence of the PGCM ground-state.

Eventually, a thorough investigation of the violation of
EWSRint(r2) requires a larger set of nuclei and excited states
as well as to employ an expansion many-body method at var-
ious truncation orders. Furthermore, δm�lgi

1 must be studied as
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% of EWSRint QFAM PGCM
16O 98.74 101.67
24Mg 99.99 101.81
28Si 100.35 101.80
28Si iso 100.84 102.85
46Ti 101.73 102.62

Table 9 Percent agreement between GSEV-based m1 monopole mo-
ment and EWSRint in PGCM and QFAM calculations of 16O, 24Mg,
28Si (ground-state and prolate isomer) and 46Ti.

16 24 46
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28
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Fig. 6 Percent variation of the computed monopole m1 compared to
the corresponding EWSRint as a function of A for QFAM and PGCM
calculations of 16O, 24Mg, 28Si (ground-state and prolate isomer) and
46Ti. The PGCM values are based on the GSEV approach.

a function of the chiral order and for various regularizations
of the employed χEFT interactions. Such a systematic study
is left to a future work.

8 Nuclear incompressibility

The monopole breathing mode probes the compressibility
of nuclear matter. Consequently, the infinite matter incom-
pressibility modulus K∞ has been extracted based on micro-
scopic calculations of E GMR, typically within the frame of
the nuclear energy density functional (EDF) method [3]. As
a matter of fact, the extraction procedure is not unambigu-
ous in itself. Furthermore, while originally applying it to a
couple of doubly closed-shell nuclei (208Pb and 92Zr) led to
consistent values of K∞, the more recent use of open-shell
nuclei produced conflicting results [3, 34–40].

The goal is to extract the value of K∞ associated with χEFT-
based interactions via ab initio calculations. In EDF calcula-
tions, it has become customary to extract K∞ by computing
directly the symmetric nuclear matter equation of state, while
checking that E GMR is well reproduced in a selected set of
finite nuclei on the basis of the same EDF parameterization.

Another approach, presently in use, consists of extracting K∞
from the leptodermous expansion of the finite-nucleus com-
pressibility modulus computed microscopically [14]. While
the former approach typically carries smaller uncertainties,
the latter bypasses the need to compute the infinite matter
equation of state.

The second approach was recently employed to extract K∞
for NNLOsat [41] and NNLOopt [42] χEFT-based Hamiltoni-
ans via symmetry-adapted no core shell model (SA-NCSM)
calculations of 4He, 16O, 20Ne and 40Ca [43]. The extracted
result for NNLOsat (K∞ = 297(37) MeV) was shown to be
consistent, within the rather large extrapolation uncertainties,
with the value (K∞ = 253 MeV) based on the computation of
the equation of state with the same Hamiltonian [41].

Following the same protocol but only relying on a set of
intrinsically-deformed nuclei, i.e. 24Mg, 28Si and 46Ti, the
compressibility modulus K∞ associated with the N3LO Hamil-
tonian under use [20] is presently estimated based on PGCM
and QRPA calculations.

8.1 Finite-nucleus compression modulus

The first step consists of accessing the finite-system compres-
sion modulus given by [14]

KA ≡
m
ℏ2 ⟨Ψ

σ0
0 |r

2
lab|Ψ

σ0
0 ⟩ E

2
GMR , (32)

which thus requires the ground-state mean-square matter
radius and the GMR energy as inputs. In finite, especially
light and deformed, nuclei the GMR strength is not concen-
trated into a single peak. Consequently, the choice of E GMR

to be used in Eq. (32) is neither unique nor obvious. Specific
derivations support the use of Ẽ1 or Ẽ3 whereas general argu-
ments also motivate the use of the centroid energy Ē1 [14].
In the following, all three cases are tested16.

Based on the GMR energies provided in Tab. 10, the set
of KA values are given in Tab. 11 and displayed in Fig. 7
as a function of A. The higher values of KA in QRPA than
in PGCM reflects the characteristics of the GMR energies
pointed out earlier on whenever computing PGCM moments
via the SOES approach as presently done. The spread of KA

values depending on the definition of E GMR is the manifesta-
tion that Ẽ1 (Ẽ3) is more sensitive to the part of the strength
located at lower (higher) energies than Ē1. Eventually, KA

can typically vary by as much as 30% in 24Mg depending on
that choice. However, this variation quickly decreases with A
to reach 14% in 46Ti. Such a trend is encouraging in view of
extracting K∞.

16Whenever a single mode exhausts the complete monopole response,
the three energies are the same and the choice is thus straightforward.
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Ẽ3 Ẽ1
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Fig. 7 Finite-nuclei compression modulus KA as a function of A for
PGCM and QFAM calculations. Different definitions of the average
GMR energy E GMR entering Eq. (32) are used, see Eqs. (5) for the
notation.

EGMR
QFAM PGCM

Ē1 Ẽ3 Ẽ1 Ē1 Ẽ3
24Mg 18.48 21.19 17.19 17.72 20.23
28Si 18.88 20.91 18.04 18.45 20.60
46Ti 20.15 21.33 19.17 19.60 20.68

Table 10 Average GMR energies in MeV computed from QFAM and
PGCM calculations according to Eqs. (4).

KA
QFAM PGCM

Ē1 Ẽ3 Ẽ1 Ē1 Ẽ3
24Mg 74.0 97.3 64.6 68.7 89.5
28Si 83.0 101.8 76.2 79.7 99.4
46Ti 118.2 132.4 107.5 112.5 125.1

Table 11 Finite-nucleus compression modulus KA (in MeV) computed
from QFAM and PGCM calculations. Values are categorised according
to the definition of the GMR energy (see Eqs. (4)) employed to compute
KA via Eq. (32).

8.2 Extraction of K∞

The method to extract K∞ is based on the leptodermous
expansion of KA given by [14]

KA = Kvol + KsurfA−1/3 + KCoulZ2A−4/3 + Ksymβ
2 , (33)

where Kvol, Ksurf, KCoul and Ksym are the volume, surface,
Coulomb and symmetry contributions to the compression
modulus, respectively. The parameter β characterizes the
isospin asymmetry

β ≡
N − Z
N + Z

, (34)

where N (Z) denotes the neutron (proton) number. Equa-
tion (33) is fitted based on the values of KA given in Tab. 11
and Kvol is interpreted as the infinite nuclear matter incom-
pressibility K∞. Given that the Coulomb and symmetry terms

do not significantly impact the asymptotic behaviour of KA

for very large A [43], K∞ can be obtained via a simple linear
fit in the variable x ≡ A−1/3

KA = K∞ + Ksurf x . (35)

While the linear fits are displayed in Fig. 8, the corresponding
values of K∞ and Ksurf are reported in Tab. 12 along with the
uncertainties associated with the fit. The extracted incom-
pressibility is K∞ ≈ 290 MeV. While QRPA central values
are a few MeV higher than PGCM ones, they only differ by
about 3.3% and 4.2% when using E GMR ≡ Ē1 and E GMR ≡

Ẽ3, respectively. Eventually, QRPA and PGCM values are
consistent within extrapolation uncertainties, which are sig-
nificantly larger for QRPA than for PGCM results17.

Interestingly, while the hierarchy KA(Ẽ1) < KA(Ē1) < KA(Ẽ3)
is systematically valid for all computed nuclei with A ≤ 46,
the trends are such that the extrapolation to very large A
values leads to K∞ being the smallest for E GMR ≡ Ẽ3. Even-
tually, the nuclear matter incompressibility varies by 6.6%
(7.5%) for QRPA (PGCM) between the two extreme values
obtained for Ẽ3 and Ē1. This confirms the trend observed
above for KA as a function of A.

In Fig. 8, the shaded gray area accounts for the generally
accepted range 250 < K∞ < 315 MeV [45]. All values
of K∞ fall, within extrapolation uncertainties, into this re-
gion18.

Uncertainties of the present theoretical predictions (partially)
evaluated in Paper I [12] are not presently propagated to
K∞. While they are not negligible, they are typically sublead-
ing compared to the uncertainties associated with the choice
of E GMR and with the extrapolation based on the leptoder-
mous expansion. While the range of masses presently used
in the fit allows one to make quantitative statement, the use
of (much) heavier systems in the future will help reducing
the extrapolation uncertainty and ensure the stability of the
fit. In any case, and as already stipulated in Ref. [43], the
present work demonstrates that extrapolating the finite-nuclei
compressibility modulus for a large enough set of nuclei can
be complementary to the computation of the equation of state
in order to extract the nuclear matter compressibility.

9 Conclusions

The present paper focused on the ab initio computation of
the monopole strength’s moments mk. As a first step, the

17The tiny extrapolation uncertainty of the PGCM results might be acci-
dental, i.e. it may simply reflect the small number of points employed
in the fit rather than a genuine behavior following strictly the A−1/3

law of Eq. (35). The exercise needs to be repeated in the future with a
significantly larger number of points.
18Values of Ksurf are also in qualitative agreement with systematic stud-
ies [45].
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Fig. 8 Finite-nucleus compression modulus KA as a function of A−1/3 obtained from PGCM and QRPA calculations (black circles). The best fit is
shown in all cases with the corresponding 1σ (darker shade) and 2σ (lighter shade) bands of regression (see, e.g., Chap. 3 of Ref. [44]). The shaded
gray area represents the empirically accepted range 250 < K∞ < 315 MeV [45].

K∞ Ksurf

QFAM Ē1 303(12) -664(38)
QFAM Ẽ3 283(23) -540(72)
PGCM Ẽ1 284(3) -632(9)
PGCM Ē1 293(1) -649(3)
PGCM Ẽ3 271(4) -523(12)

Table 12 Fitting parameters for the linear extrapolation given in
Eq. (35). All quantities are expressed in MeV.

formal capacity to compute low-order moments in PGCM
calculations via the ground-state expectation value of mo-
ment operators was achieved. This development was then
exploited to validate the use, within a few percent uncertainty,
of the approach based on the explicit sum over excited states
for the first moment m1 in 16O, 24Mg, 28Si and 46Ti.

With this at hand, the angular momentum projection was
shown to have little impact on the centroid but to affect signif-
icantly the dispersion of the monopole strength distribution.
Next, the centroid energy obtained in GCM calculations was
demonstrated to be typically 4 − 6% below QRPA results,
which amounts to less than 1 MeV difference in the nuclei
under study. The QRPA and GCM dispersions were seen to
be also very consistent.

The next part of the study focused on the EWSR and first
demonstrated that its textbook expression must be corrected
for the fact that nuclear excitations of interest are intrin-
sic excitations in the center-of-mass frame. Having derived

the appropriate intrinsic analytical EWSR, deviations were
shown to be of 3% as a result of the (unwanted) local-gauge
symmetry breaking of the employed χEFT-based Hamilto-
nian [20].

Eventually, the finite-nucleus compressibility KA was com-
puted in 24Mg, 28Si and 46Ti in order to extract the infinite
matter nuclear incompressibility K∞ = 290(15) MeV that
happens to be consistent, within uncertainties, with empirical
expectations.
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Appendix A: Schwartz’ inequalities

With ρ(E) a positive definite function and, thus, ρ(E)dE a
positive measure, Schwartz’s inequality reads as∫

f 2(E)ρ(E)dE
∫

g2(E)ρ(E)dE ≥
( ∫

f (E)g(E)ρ(E)dE
)2
,

(A.1)

with f and g two arbitrary functions. The strength function
S (E) is defined for positive values of E (see Eq. (2)), so that

ρ(E) ≡ EkS (E) (A.2)

is positive definite. For f (E) = E and g(E) = 1 Eq. (A.1)
reads

mk+2mk ≥ m2
k+1 , (A.3)

which provides the sequence of inequalities in Eq. (6).

Appendix B: Commutator approach

The introduction of moment operators first relies on express-
ing the moments in terms of the commutators Cl. This step
relies on rewriting Eq. (10) as

mk = ⟨Ψ
σ0
0 |FHkF|Ψσ0

0 ⟩

= ⟨Ψσ0
0 |FHiH jF|Ψσ0

0 ⟩

= ⟨Ψσ0
0 |[F,H

i][H j,F]|Ψσ0
0 ⟩ , (B.4)

with i + j = k and where the property H |Ψσ0
0 ⟩ = 0 has

been used. Since [Hn,F] = [Hn, F] for n ∈ N, the bold
notation can in fact be omitted. The needed commutators can
be rewritten [46] as

[Hl, F] =
l−1∑
n=0

(
l
n

)
Cl−nHn , (B.5a)

[F,Hl] =
l−1∑
n=0

(
l
n

)
HnC̃l−n , (B.5b)

with Cl introduced in Eq. (12) and C̃l defined through

C̃l ≡ {F,Hl} ≡ [[...[[F,H],H]...,H],H︸             ︷︷             ︸
l times

] , (B.6)

the two being equal up to a sign, i.e. C̃l = (−1)lCl. The only
non-vanishing contributions to Eq. (B.4) are obtained for
n = 0 in Eqs. (B.5) by virtue of H |Ψσ0

0 ⟩ = 0 (even though
the bold notation could be omitted in the meantime). This
finishes to prove Eq. (11).

Appendix C: Second-quantized operators

Given an arbitrary orthonormal basis of the one-body Hilbert
space H1 represented by the particle annihilation and cre-
ation operators {cp, c

†
p}, a generic (particle-number conserv-

ing) operator O containing up to three-body operators reads
as

O ≡ O[0] + O[2] + O[4] + O[6]

≡ O00 + O11 + O22 + O33

≡ O00

+
1

(1!)2

∑
pq

o11
pqc†pcq

+
1

(2!)2

∑
pqrs

o22
pqrsc

†
pc†qcscr

+
1

(3!)2

∑
pqrstu

o33
pqrstuc†pc†qc†r cuctcs , (C.7)

where O[0] = O00 is a number. Given that O is presently taken
to be particle-number conserving, the k-body class O[2k] con-
tains a single operator Okk characterized by the equal number
k of particle-creation and annihilation operators. Such an
operator is obviously in normal order with respect to the
particle vacuum.

Matrix elements entering Eq. (C.7) are fully antisymmetric,
i.e.

okk
p1...pk pk+1...p2k

= (−1)σ(P)okk
P(p1...pk |pk+1...p2k) (C.8)

where σ(P) refers to the signature of the permutation P. The
notation P(. . . | . . .) denotes a separation into the k particle-
creation operators and the k particle-annihilation operators
such that permutations are only considered between members
of the same group.

Appendix D: Operator M1(1, 0)

The algebraic expressions of the matrix elements defining the
operator M1(1, 0) allowing to m1 via the GSEV approach are
presently derived. All notations are consistent with Appendix
C for operators expressed in normal order with respect to the
particle vacuum.

There are two equivalent ways to obtain the odd-moment
operators, namely given by Eqs. (14b) and (17), respectively.
They are explored separately below.

Appendix D.1: Similarity-transformed H

Using Eq. (17) for k = 1, the operator is given by

M1(1, 0) = −
1
2
∂2

∂η2 H1(η)

∣∣∣∣∣∣
η=0

(D.9)
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with

H1(η) = e−ηF HeηF , (D.10)

such that

H1(η) =H[0]
1 (η) +

∑
ab

h11
ab e−ηFc†acbeηF

+
1

(2!)2

∑
abcd

h22
abcd e−ηFc†ac†bcdcceηF

+
1

(3!)2

∑
abcde f

h33
abcde f e−ηFc†ac†bc†cc f cecdeηF . (D.11)

As shown below, the similarity transformation, F being a one-
body operator, does not change the rank of the operator, such
that M1(1, 0) has the same rank as H. Introducing the identity
operator in-between each pair of creation and/or annihilation
operators under the form

1 = eηFe−ηF , (D.12)

the similarity transformation is separately performed on each
creation (annihilation) operator. The elementary commuta-
tor

[F, c†a] =
∑

kl

f 11
kl c†kclc†a − c†aF

=
∑

kl

f 11
kl c†k(δla − c†acl) − c†aF

=
∑

k

f 11
ka c†k , (D.13)

together with Baker-Campbell-Hausdorff’s formula allows
one to obtain

e−ηFc†aeηF = c†a +
∞∑

n=1

(−η)n

n!
[F, [F, ...[F, [F︸           ︷︷           ︸

n times

, c†a]]...]]

= c†a − η
∑

k

f 11
ka c†k + η

2 1
2!

∑
kl

f 11
lk f 11

ka c†l + . . .

= c†a − η
∑

k

f 11
ka c†k + η

2 1
2!

∑
k

( f 11)2
kac†k + . . .

=
∑

k

(e−η f 11
)kac†k . (D.14a)

Similarly, one has

e−ηFcaeηF =
∑

k

(eη f 11
)kack . (D.14b)

Eventually, Eq. (D.11) is written as

H1(η) =H[0]
1 (η)

+
∑

kl

h11
kl (η) c†kcl

+
1

(2!)2

∑
klmn

h22
klmn(η) c†kc†l cncm

+
1

(3!)2

∑
klm
nop

h33
klmnop(η) c†kc†l c†mcpcocn , (D.15)

with the similarity-transformed matrix elements being de-
fined as

hnn
k1...knl1...ln (η) ≡

∑
a1...an
b1...bn

hnn
a1...anb1...bn

× (e−η f 11
)k1a1 . . . (e

−η f 11
)knan

× (eη f 11
)l1b1 . . . (e

η f 11
)lnbn (D.16)

and

H[0]
1 (η) ≡ H[0] . (D.17)

The similarity-transformed matrix elements on the left-hand
side of Eqs. (D.16) naturally inherit the antisymmetry of
the original matrix elements, as it can be checked directly.
The second derivative with respect to η can now be explic-
itly performed to derive the matrix elements of M1(1, 0), i.e.

M[0]
1 =0 , (D.18a)

m11
1,kl(1, 0) ≡ −

1
2
∂2

∂η2 h11
kl (η)

∣∣∣∣
η=0
, (D.18b)

m22
1,klmn(1, 0) ≡ −

1
2
∂2

∂η2 h22
klmn(η)

∣∣∣∣
η=0
, (D.18c)

m33
1,klmnop(1, 0) ≡ −

1
2
∂2

∂η2 h33
klmnop(η)

∣∣∣∣
η=0
. (D.18d)

As for the matrix elements of the similarity-transformed
Hamiltonian in Eq. (D.16), the matrix elements of M1(1, 0)
are manifestly antisymmetric. The explicit writing of Eqs. (D.18)
can be found in Sec. 4.3.2 of Ref. [27]. The results are strictly
equivalent to those obtained via the commutator-based for-
mulation described below.

Appendix D.2: Commutator approach

The matrix elements of M1 can also be derived from Eq. (14)
for k = 1 (e.g. i = 0 and j = 1). This is achieved by applying
Wick’s theorem with respect to the particle vacuum |0⟩. In
this case the only non-vanishing contraction at play is

ca c†b ≡ ⟨0|cac†b|0⟩ = δab . (D.19)

The commutator C1 = [H, F] is computed separately for the
various components of H. The operator F being a one-body
operator, the commutator preserves the n-body nature of the
component H[n] such that each n-body component of C1 is
introduced as

[H[0], F] =0 , (D.20a)
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[H[1], F] ≡
∑
ab

c11
1,ab c†acb , (D.20b)

[H[2], F] ≡
1

(2!)2

∑
abcd

c22
1,abcd c†ac†bcdcc , (D.20c)

[H[3], F] ≡
1

(3!)2

∑
abc
de f

c33
1,abcde f c

†
ac†bc†cc f cecd . (D.20d)

The derivation of the matrix elements from Eqs. (D.20) re-
lies on the tool developed in Ref. [47]. This tool allows
one to compute the antisymmetrized matrix elements of the
normal-ordered operator obtained via the commutator of any
two normal-ordered operators. While the development was
originally done with respect to a Bogoliubov vacuum |ΦHFB⟩

and expressing normal-ordered operators in the associated
quai-particle basis, it can be readily exploited here by simply
substituting quasi-particle operators β† (β) with particle oper-
ators c† (c) and by using the particle vacuum |0⟩ instead of the
Bogoliubov one. Naturally the particle formalism only needs
to retain particle-number-conserving components.

Eventually, the matrix elements of the elementary commuta-
tor from Eqs. (D.20) can be expressed as

c11
1,ab =

∑
k

h11
ak f 11

kb −
∑

k

f 11
ak h11

kb , (D.21a)

c22
1,abcd = P(c/d)

∑
k

h22
abck f 11

kd

− P(a/b)
∑

k

f 11
ak h22

kbcd , (D.21b)

c33
1,abcde f = P(de/ f )

∑
k

h33
abcdek f 11

k f

− P(a/bc)
∑

k

f 11
ak h33

kbcde f , (D.21c)

with

P(a/b) ≡ 1 − Pab , (D.22a)

P(a/bc) ≡ 1 − Pab − Pac , (D.22b)

P(ab/c) ≡ 1 − Pac − Pbc , (D.22c)

and where Pab denotes the transposition operator exchanging
indices a and b. The extended writing of Eqs. (D.21), i.e. with
permutations explicitly carried out, can be found in Sec. 4.3.2
of Ref. [27].

The above result is exploited to readily compute the nested
commutator needed to obtain the m1 operator

M1(1, 0) ≡ −
1
2

[[H, F], F] = −
1
2

[C1, F] , (D.23)

by substituting H with C1 in Eqs. (D.21). Eventually, the
matrix elements of M1(1, 0) are obtained as

M[0]
1 = 0 , (D.24a)

m11
1,ab ≡ −

1
2

∑
c

{c11
1,ac f 11

cb − f 11
ac c11

1,cb} , (D.24b)

m22
1,abcd =

1
2

P(a/b)
∑

k

f 11
ak c22

kbcd

−
1
2

P(c/d)
∑

k

c22
abck f 11

kd , (D.24c)

m33
1,abcde f =

1
2

P(a/bc)
∑

k

f 11
ak c33

kbcde f

−
1
2

P(de/ f )
∑

k

c33
abcdek f 11

k f . (D.24d)

The extended writing of Eqs. (D.24) is provided in Sec. 4.3.2
of Ref. [27] and is found to be identical to the similarity-
evolved derivation from Appendix D.1.

Appendix E: Strength function extraction

The actual relation of the strength function to scattering ob-
servables is hereby briefly discussed. At first order in per-
turbation theory, the transition rate w0→ν from the ground
state |Ψσ0

0 ⟩ to an excited state |Ψσν ⟩ mediated by the time-
independent operator F is provided by Fermi’s golden rule

w0→ν = 2π| ⟨Ψσν |F|Ψ
σ0
0 ⟩ |

2δ(Eσν − Eσ0
0 − E) . (E.25)

The corresponding cross section σ0→ν is obtained normalis-
ing the transition rate by the flux of incident particles and the
number of scattering centers

dσ0→ν

dE
= w0→ν ×

1
flux
×

1
# of sc. centers

. (E.26)

The total cross section is computed by summing over all
possible final states ν so that it can be expressed as

σ = 2π
∫ +∞

−∞

S (E)dE = 2πm0 . (E.27)

In practice, double-differential cross sections are experimen-
tally measured to perform a multipole-decomposition analy-
sis (MDA), allowing the extraction of the multipole strength
distributions [3]. In the MDA process, the experimental cross-
sections at each angle are binned into small (typically, ≤ 1
MeV) excitation energy intervals. The laboratory angular dis-
tributions for each excitation-energy bin are then converted
into the centre-of-mass frame using standard Jacobian and
relativistic kinematics. For each excitation energy bin, the
experimental angular distributions are fitted by means of the
least-square method with the linear combination of the calcu-
lated double-differential cross sections associated to different
multipoles:

d2σexp

dΩdE

∣∣∣∣∣
Ex

=

∞∑
L=0

aL(Ex)
d2σDWBA

L

dΩdE

∣∣∣∣∣
Ex

, (E.28)
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where aL(Ex) is the m1 sum rule fraction for the L-th compo-
nent. The cross sections used for the fit procedure correspond
to the 100% of m1 for the L-th multipole at excitation energy
Ex calculated using the distorted-wave Born approximation
(DWBA). In such calculations an optical potential is used as
the scattering potential. The fractions of m1, aL(Ex), for vari-
ous multipole components are determined by minimising χ2

error. Eventually, the strength distributions for different mul-
tipolarities are obtained by multiplying the extracted aL(Ex)’s
by the strength corresponding to 100% m1 at the given energy
Ex

S L(Ex) =
mL,1

Ex
aL(Ex) . (E.29)

Traditionally, the energy-weighted sum rules mL,1 employed
in the above procedure for different L’s are always the text-
book EWSRlab rather than the appropriate intrinsic one dis-
cussed in Sec. 7.

Appendix F: Intrinsic EWSR

The monopole EWSR from Eq. (25) is evaluated under the
assumption that only the kinetic energy Tlab from Eq. (24)
contributes to Eq. (14b), such that

EWSRlab(r2) = −
1
2
⟨[[Tlab, r2], r2]⟩gs

=
2ℏ2A

m
⟨r2

lab⟩gs . (F.30)

The correction to EWSRlab(r2) due to the subtraction of the
center-of-mass kinetic energy Tcm (Eq. (26)) from the Hamil-
tonian is given by

δmcm
1 (r2) ≡

1
2
⟨[[Tcm, r2], r2]⟩gs

=
1

4mA

A∑
i jkl=1

⟨[[p⃗i · p⃗ j, r2
k ], r2

l ]⟩gs . (F.31)

The commutator relation

[ p⃗i, f (⃗rk)] = −iℏ∇⃗i f (⃗rk) (F.32)

is employed to evaluate the elementary commutator

[ p⃗i, r2
k ] = −2iℏr⃗iδik , (F.33)

allowing to process Eq. (F.31) according to

δmcm
1 (r2) =

1
4mA

∑
i jkl

⟨[ p⃗i · [ p⃗ j, r2
k ], r2

l ] + [[p⃗i, r2
k ] · p⃗ j, r2

l ]⟩gs

=
1

4mA

∑
i jkl

⟨[ p⃗i, r2
l ] · [p⃗ j, r2

k ] + [ p⃗i, r2
k ] · [ p⃗ j, r2

l ]⟩gs

= −
2ℏ2

mA

∑
i j

⟨⃗ri · r⃗ j⟩gs

= −
2ℏ2A

m
⟨R2

cm⟩gs , (F.34)

where the second equality follows from

[[ p⃗i, r2
k ], r2

l ] = −2iℏ[⃗ri, r2
l ]δik = 0 , (F.35)

and where

R⃗cm ≡
1
A

A∑
i=1

r⃗i , (F.36)

denotes the center of mass coordinate.

Eventually, the EWSR associated with the intrinsic Hamilto-
nian can be written under the alternating forms

EWSRint(r2) = EWSRlab(r2) + δmcm
1 (r2)

=
2ℏ2A

m
⟨r2

lab − R2
cm⟩gs

=
2ℏ2A

m
⟨r2

int⟩gs

= EWSRlab(r2)
(
1 −

1
A

)
−

2ℏ2

mA

∑
i, j

⟨⃗ri · r⃗ j⟩gs . (F.37)

The above result demonstrates that the subtraction of Tcm in
H leads to replacing the laboratory-frame mean-square radius
⟨r2

lab⟩ [Eq. (19)] by the intrinsic one ⟨r2
int⟩ [Eq. (20)]. The last

line splits δmcm
1 (r2) into its one- and a two-body contributions

to demonstrate that the one-body part of Tcm leads to a simple
A-dependent renormalization of EWSRlab(r2) [48].
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