07. 12. 2023 at 13:30 S2 11/10 | Theorie-SeminarMariam Gogilashvili (Florida State University) At the end of their lives, most massive stars undergo core collapse. Some stars explode as a core-collapse supernova (CCSN) explosion leaving behind neutron stars (NS) while others fail to explode and collapse to stellar-mass black holes (BH). One of the major challenges in CCSN theory is to predict which stars explode and which fizzle. We develop an analytic force explosion condition (FEC) to predict which massive stars explode. The FEC depends upon four dimensionless parameters only: 1. net neutrino heating deposited in the gain region, 2. neutrino opacity that parameterizes the neutrino optical depth in the accreted matter near the neutron-star surface, 3. the integrated buoyant driving, and 4. the radial component of the Reynolds stress. The FEC promises to be an accurate explosion condition for multi-dimensional simulations as well as being useful diagnostic to measure a "distance" to explosion. I will present a progress in validating the FEC with multi-dimensional simulations and discuss potential to expand the model by including additional effects that may be important to predict explosions in nature |
14. 12. 2023 at 13:30 S2 11/10 | Theorie-SeminarSoeren Schlichting (Bielefeld University) High-energy heavy-ion collisions provide a unique environment to explore the properties of strong-interaction matter under extreme conditions. Since the theoretical description of the complex reaction dynamics from the underlying theory of QCD poses an outstanding challenge, a macroscopic description in relativistic hydrodynamics is commonly employed to describe the emergence of collective phenomena in heavy-ion collisions. In this talk, we will discuss recent progress to understand the non-equilibrium dynamics of QCD plasmas from kinetic theory, and assess the range of applicability of hydrodynamics as an effective description for non-equilibrium systems. |
Technische Universität Darmstadt
Institut für Kernphysik
Theoriezentrum
S2|11
Schlossgartenstraße 2
64289 Darmstadt
Stephanie Müller
+49 6151 16 21558
+49 6151 16 21555
stephanie.mueller@physik.tu-...