SFB Colloquium

Upcoming Seminars

14. 12. 2017 at 15:15
S2 11/10

SFB Colloquium

Hans-Thomas Janka (MPI Garching)
TBA

Past Seminars

26. 10. 2017 at 14:00
S2 11/10

SFB Colloquium

Aleksi Vuorinen (Helsinki Institute of Physics)
Dense QCD matter from first principles

Neutron stars, currently probed using both electromagnetic and gravitational wave observations, contain some of the densest matter in the known universe, possibly including even deconfined quark matter. In my talk, I will describe recent efforts to understand the collective properties of high-density quark matter, using both resummed perturbation theory and the holographic AdS/CFT duality. Prospects for quantitatively constraining the observable properties of neutron stars using these results will also be discussed in detail.

13. 07. 2017 at 15:15
S2 11/10

SFB Colloquium

Kei Kotake (Fukuoka University/Japan)
Muli-messenger predictions from multi-D core-collapse supernova models (with refined neutrino reactions in progress)

We will report status of multi-messenger predictions from our 2D and 3D core-collapse supernova (SN) models. After some review about SN multi-messengers, we show that progenitor's core-compactness is a good diagnostics for predicting gravitational-wave (GW) signals and also diffuse-supernova-neutrino-background (DSNB) signals. From our 3D rotating models, we show some interesting viewing-angle effects of the neutrino and GW signals. Finally we report our on-going project to update neutrino opacities in our work-horse supernova code.

28. 06. 2017 at 11:00
S2 08/171

SFB Colloquium

Sharon McGrayne (SFB 1245 Women's Week)
From Maria Goeppert Mayer to today, and what research suggests can be done

When my first book Nobel Prize Women in Science was published in 1993, the legal barriers against women in academic science seemed to be fading into the past. But now we realize that subtle barriers are also difficult to deal with. In my talk, I'll give some examples, past and present, and describe recent research on the subject. In particular, I will draw on what I've learned from the writing a book about the present situation for women in science with Dr. Rita Colwell, microbiologist, former director of the National Science Foundation, and Distinguished Professor at the University of Maryland, College Park, and Johns Hopkins University.

18. 05. 2017 at 15:30
S2 11/207

SFB Colloquium

Paul-Gerhard Reinhard (Uni Erlangen)
Nuclear density-functional theory - from photo-absorption strength to bulk

Self-consistent nuclear models are based on energy-density functional adjusted to a reference set of nuclear data. The talk concentrates on the most widely used Skyrme- Hartree-Fock (SHF) approach comparing occasionally with the relativistic mean-field model.
The first part of the talk gives an introductory overview illustrating the wide range of phenomena which can be described by static and dynamics SHF.
The second part explains the empirical calibration of the energy functional by least-squares fits and discusses how statistical analysis, related to the least-squares method, allows to estimate extrapolation uncertainties and correlations between different observables.
The third part discusses as application response properties of finite nuclei (giant resonances, polarizability) and extrapolations to neutron matter. It works out the connections between the equation of state of bulk matter and the response observables. This way one can estimate the relation between quality of data in finite-nuclei and predictions on star matter. Particularly the dipole polarizability plays a crucial role in neutron matter.

09. 02. 2017 at 15:15
S2 11/10

SFB Colloquium

Thomas Luu ()
Applying Lattice QCD techniques to low-dimensional non-relativistic systems

I discuss the application of lattice monte carlo (MC) techniques to calculate the properties of low-dimensional non-relativistic systems. For specific applications I consider the 2-dimensional graphene and quasi 1-dimensional carbon nanotube systems at half-filling with strongly correlated electrons. I compare and contrast the use of MC techniques in lattice QCD with these low-dimensional non-relativistic systems, and show how lattice QCD techniques can be applied to calculate the quasi-particle spectrum of these systems. I discuss the limitations of this formalism, and conclude with an outlook of possible future calculations.

26. 01. 2017 at 15:15
S2 11/10

SFB Colloquium

Barbara Dietz (Lanzhou University/China)
Chaos and Regularity in the Doubly Magic Nucleus 208Pb

High resolution experiments have recently lead to a complete identification (energy, spin, and parity) of 151 nuclear levels up to an excitation Energy of Ex= 6.20 MeV in 208Pb. We present a thorough study of the fluctuation properties in the energy spectra of the unprecedented set of nuclear bound states. In a first approach we grouped states with the same spin and parity into 14 subspectra, analyzed standard statistical measures for short- and long-range correlations and then computed their ensemble average. Their comparison with a random matrix ensemble which interpolates between Poisson statistics expected for regular systems and the Gaussian Orthogonal Ensemble (GOE) predicted for chaotic systems shows that the data are well described by the GOE. In a second approach, following an idea of Rosenzweig and Porter we considered the complete spectrum composed of the independent subspectra. We analyzed their fluctuation properties using the method of Bayesian inference involving a quantitative measure, called the chaoticity parameter f, which also interpolates between Poisson (f=0) and GOE statistics (f=1). It turns out to be f~0.9. This is so far the closest agreement with GOE observed in spectra of bound states in a nucleus. The same analysis has also been performed with spectra computed on the basis of shell model calculations with different interactions (SDI, KB, M3Y). While the simple SDI exhibits features typical for nuclear many-body systems with regular dynamics, the other, more realistic interactions yield chaoticity parameters f close to the experimental values.

24. 11. 2016 at 15:20
S2 11/10

SFB Colloquium

Pierre Capel ()
Past, present and future of the eikonal description of reactions involving exotic nuclei

Away from the valley of stability, a numerous of exotic nuclear structures are encountered: shell inversions, halo nuclei,... The study of these short-lived exotic systems is mostly performed through nuclear reactions measured at Radioactive-Ion Beam facilities. To infer valuable structure information from experimental data, a reliable model of the reaction mechanism coupled to a realistic description of the nucleus under investigation is required.

The Dynamical Eikonal Approximation (DEA) is such a model for reactions involving one-nucleon halo nuclei. It has shown to provide excellent results for all kinds of observables when compared to experiments with both one-neutron (e.g. 11Be, 15C) and one-proton (8B) halo nuclei. It is hence an accurate tool to analyse reactions measured with exotic loosely-bound nuclei. However, as every model, the DEA has its own range of validity: it is mostly limited to intermediate or high beam energy. Moreover, the projectile description considered within the DEA remains simple: a valence nucleon bound to an inter core.

During this seminar, I will review the DEA, show how it compares to other, more sophisticated, reaction models, and describe its successes in the analysis of exotic nuclear structures. I will also present what is planned in the future to extend its range of validity both in the reaction part and in the description of the projectile.

03. 11. 2016 at 15:20
S2 11/10

SFB Colloquium

Xiaofei Yang (KU Leuven)
Nuclear structure studies by the measurement of nuclear spins, moments and charge radii via laser spectroscopy techniques

High resolution laser spectroscopy can access to multiple nuclear properties of ground/isomeric states of radioactive nuclei far from stability, such as nuclear spins, nuclear magnetic and quadruple moments and charge radii [1]. These fundamental properties of exotic nuclei provide important information for the investigation of the nuclear structure in different regions of nuclear chart. Currently, two complementary collinear laser spectroscopy set-ups are available at ISOLDE, Collinear Laser Spectroscopy (COLLAPS) and Collinear Resonant Ionization Spectroscopy (CRIS) [2].
Combining these two techniques, the nuclear structure in several key regions of the nuclear chart can be investigated, for example the structure of neutron-rich isotopes in the Ca region and in the Ni region, which just happens to be my research interest. Currently, several experiments are focusing on nuclear structure studies in these two regions [3-5].
In this talk, after an introduction of both the COLLAPS and CRIS techniques, I will mainly focus on my research interest on neutron-rich K[4], Sc[4] and Zn[3], Ge[5] isotopes using both experimental techniques. The results of nuclear spins, moments and charge radii of Zn isotopes, achieved from COLLAPS experiments, will be presented in details together with all the physics discussion [3]. For others, the physics motivation of each individual experiment and the status of the experiments will be introduced [4,5].
References:
[1] P. Campbell et al., Progress in Particle and Nuclear Physics 86, 127 (2016).
[2] http://collaps.web.cern.ch/ and http://isolde-cris.web.cern.ch/isolde-cris/
[3] X. F. Yang et al., Phys.Rev.Lett. 116, 182502 (2016); C.Wraith and X.F.Yang et al., in Preparation for
Phys. Let. B (2016); L. Xie and X. F Yang et al,m In preparation for Phys. Rev. C (2016) [4]X.F. Yang et al., CERN-INTC-2016-008/INTC-P-458, X.F. Yang et al.,
CERN-INTC-2015-051/INTC-P-451 ; X.F. Yang et al., CERN-INTC-2015-050/INTC-P-450 ; [5]M.Bissell,X.F.Yang et al., CERN-INTC-2016-035/INTC-P-472 ; X.F.Yang, M.Bissel et al.,
CERN-INTC-2016-036/INTC-I-170.

14. 07. 2016 at 14:00
S2 11/10

SFB Colloquium

(Argonne National Laboratory)
Laser Probing of Simple Atoms, Exotic Nuclei

The atomic structure of simple, few electron systems can be precisely calculated. Likewise, few nucleon systems can be accurately treated within ab-initio nuclear theories. Bringing these two fields together, we perform precision studies of light, radioactive isotopes that show a remarkable range of neutron-to-proton ratios. Techniques of high-resolution laser spectroscopy and of laser cooling and trapping offer unique access to precision nuclear structure and weak interaction studies of these isotopes to probe nucleon-nucleon interactions and to search for physics beyond the Standard Model. In my talk I will cover two on-going efforts in this direction: precision measurements of nuclear charge radii moving towards the proton rich Boron-8 and a beta-neutrino angular correlation measurement with laser trapped Helium-6.

Address

Technische Universität Darmstadt

Institut für Kernphysik
Theoriezentrum

S2|11
Schlossgartenstraße 2
64289 Darmstadt

Secretary

Genette Kluckner

+49 6151 16 21551
+49 6151 16 21555

Stephanie Müller

+49 6151 16 21558
+49 6151 16 21555

Next Seminar

SFB Colloquium

on 14. 12. 2017 at 15:15
(S2 11/10)
Hans-Thomas Janka
TBA
zum Seitenanfang