Seminar
Computational Nuclear Structure Physics

Robert Roth
WS 2025/2026

Seminar: Do. 15:20 - 17:00 @ S1 03/102
The treatment of the atomic nucleus as quantum many-body problem presents an exciting challenge for numerical algorithms and methods in computational physics. In recent years, there have been many new developments in this area, both in terms of formulating approaches and controlled approximations for handling the quantum many-body problem, and in the numerical algorithms necessary for practically solving the defined problem.

This seminar aims to provide a hands-on overview of modern computer-based methods in nuclear structure physics, extending to the most powerful approaches in computational nuclear physics used in current research. Each seminar topic includes a “theoretical” part, which focuses on the formulation of the method within many-body quantum mechanics, and a “computational” part, where you will create your own proof-of-concept implementation of the respective method, e.g., in Python or Mathematica. Basic programming skills, such as those taught in the “Computational Physics” lecture, are sufficient for this.

Below you will find the schedule for the seminar. The topics were distributed during the initial meeting. Since all the presentations happen in the final weeks of the lecture period, there will be enough time (more than 3 month) to work on your topic and on the presentation. During this time there will be regular meeting slots to ask questions and discuss intermediate results.

IMPORTANT: You have to start working on your project right away. Yes, the presentation is still a couple of months away and it is very tempting to postpone everything until the Christmas break... well, this will likely end in disaster! Therefore, if you chose to participate in the seminar you have to be willing and able to start working on your project right away.

 

Date Title Speaker
16 October Initial Meeting:
Assignment of Topics
30 October Discussion on gerneral reading material, distribution of topic-specific material
13 November Discussion on topic-specific material, implementation ideas
27 November Further discussion on topic-specific material, first ideas for presentations
December Individual appoitnments for help with implementation and presentation
22 January Two-Body Bound States:
Basis Expansion and Convergence
Simon Schultheis
Taming the Hamiltonian:
Similarity Renormalization Group
Linus Jauch
29 January Many-Nucleons in a Mean Field:
Hartree-Fock Method
Shreyas Nikam
Beyond Mean-Field:
Many-Body Perturbation Theory
Adam Schasiepen
5 February Configuration Interaction I:
Numerics of Large-Scale Sparse Eigenvalue Problems
Timon Feldbusch
Configuration Interaction II:
Basis Expansion of the Many-Nucleon Problem
Valentin Reichenbach
12 February Predicting the Converged Result I:
Artificial Neural Networks for Extrapolation
Paul Brand
Predicting the Converged Result II:
Artificial Neural Networks for Interpolation
Peter Seefried